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Chapter 1
Introduction

In telecommunications, a communication system is a system consisting of a transmitter
and a receiver enabling the possibility of transmitting information from a transmitter to
a receiver. The signal is passed through some form of radio communications channel,
altering the transmitted signal in one or multiple ways. These alterations can be more or
less predictable by the receiver depending on the cause.

For a generic, wireless communication system, the radio communications channels
introduces both additive and multiplicative noise. Additive noise typically originates
from the thermal and/or shot-noise introduced in the electrical components themselves,
but can also come from other sources such as cosmic rays or interfering transmissions.
Multiplicative noise originates from the physical environment where the radio system is
located. Effects such as reflections, absorption, scattering, diffraction and refractions are
all multiplicative noise depending on the physical environment.

Noise makes the received signal harder to detect. Most radio systems have a goal of
transferring information from the transmitter to the receiver as accurately with as few
errors as possible. To achieve this goal, the radio system should be designed to mitigate
some of the noise. Additive noise is typically random and inherent in the radio system and
cannot easily be dealt with. Multiplicative noise on the other hand, can often be suppressed
to some extent by clever transmitter and receiver design. It is common to further split
multiplicative processes into path loss, multipath fading and shadow fading. [1, 2] Where
fading is the variation in the attenuation in received signal strength due to environmental
factors. Path loss is the reduction of signal strength due to the physical distance between
transmitter and receiver.
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1.1 Channel emulation and DSP algorithms

When designing any radio system, it is common to start with simulations and modelling.
However, simulations are never perfect. After a radio system prototype has been built, it is
common practice to verify that simulations match the realized system performance. Both
for simulated components, but also for simulated DSP algorithms, of which there can be
many.

Many DSP algorithms are often used to compensate for the effects of bad channel fading.
Examples of such algorithms include beamforming to increase SNR, optimal detection
and channel equalization algorithms. The behaviour of such algorithms can often be
deeply dependent on how the channel looks. Programmers almost always have to make
some assumptions about the channel behaviour when writing the implementation of DSP
algorithms. It must be very clear what will happen if those assumptions are broken. In the
best case it can lead to reduced performance, in the worst case it can break the whole radio
link. Also, radio hardware is often different from the hardware platform the algorithm was
developed on, which can lead to unforeseen behaviour.

A radio channel for a hand-held device in a big city will look very different from the radio
channel observed by an aeroplane or drone in a rural environment. It as also virtually
impossible to test a radio system in all possible channels to ensure a robust system which
always behaves as expected.

This is where channel emulation comes in. A channel emulator replaces the physical
radio channel buy a emulated one allowing for real-time checking of a radio system. This
becomes more important as a radio systems’ complexity increases. An emulated channel
can allow an engineer to easily check the realized radio system without going out in the
field to perform tests. The main purposes of a good channel emulator is to enable easier
debugging of the radio system, verify system performance, reduce development costs and
time-to-market.

1.2 Thesis scope

This thesis covers the process documenting the main challenges when generating and
implementing channel models suitable to find errors in phased array radios with up to
16 antennas. These radio channels should be implemented and realized in real-time
on FPGAs if possible. More specifically, using four Xilinx Zynq-7000 SoC ZC702[3]
development boards and eight Analog Devices AD9361[4] transceivers as radio front-
ends. The implemented system should be scalable up to 64 antenna radios. The radio
models should comply with the system specifications stated in the next section. The
completed channel emulator must be able to cope with both very long, high delay spread
and very short urban environment channels.



1.3 Specifications

Table 1.1: Specifications of radio channels that must be emulated.

Specification Value
Carrier frequency, fc 2.4 - 6.0 GHz
Channel bandwidth, B 20 MHz
Maximum Delay Spread, Tm 1.5 ms
Maximum distance between TX and RX > 200 km
Relative speed between TX and RX 0 - Mach 2

1.4 Commercial products
There exists several commercial channel emulators. Examples are PROPSIM from
Keysight and PXIe-564xR from National Instruments. Both have a price on request, but
are expected to be very expensive. The solution from National Instruments is unable
to meet the specifications with regards to maximum delay spread and relative speed.
[5]





Chapter 2
Theory

An introduction to how radio communication channels can be modelled and the challenges
involved are presented in this chapter. The principles of phased array radios and how they
can outperform single-antenna systems are shown. Some of the strengths and limitations
of FPGA implementations are also explained.

2.1 The Radio channel
A generic communication system is shown in Figure 2.1. With N tx-antennas and M
rx-antennas.

Figure 2.1: Generic communication system with N tx- and M rx-antennas.

The signals transmitted on each xi element is passed through a radio channel hij before
being received by a rx antenna element yj .
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In vector notation it can be written as Equation 2.1.

y = Hx+ n (2.1)

Where n is the 1 ×M additive noise vector. It is common to use Gaussian noise with
noise power σn. The radio channel matrix H environment dependent multiplicative noise
source which radio systems commonly tries to deal with. In other words it is the H that
must be emulated by a channel emulator. How to find a suitable H is discussed in Chapter
2.4.

2.2 Phased array radios

One of the limiting factor in any communication system is the SNR. Signal to noise ratio
can be improved by having a directional antenna. That is, a directional antenna with a
radiation pattern stronger than a isotropic antenna in the direction of the received signal
for a receiver. Alternatively in the direction of the receiving radio in the transmitter case.
A single antennas radiation pattern is dependent on the antenna geometry. Directional
antennas can also reduce interference from other transmitters using the same frequency
band.

While modifying antenna diagrams works well for stationary systems, its use is limited
in dynamic or moving systems. Motors can be used to physically move the antenna, but
motors are slow, bulky and power-consuming. Often a better option is to use multiple
antennas, or antenna elements. Each antenna element is multiplied by a complex weight.
The antenna elements’ weights effectively shifts their phase and/or modify their amplitude.
All products are then summed. The summation of the weighted elements, together with
their physical placement within the array, effectively generates a new antenna with a
aggregated radiation diagram. This a called a phased array.

Such an array can be formulated as Equation (2.2). Where x = [x1, x2, . . . xN ]T are the
outputs of each phased array antenna element and w = [w1, w2, . . . wN ]T their respective
weights. y is the scalar output of the phased array.

y = xTw (2.2)



Figure 2.2: Example of active beamforming with 16 antennas placed on a line λ/2 apart.

A huge advantage of phased arrays over single-antenna systems is that different radiation
patterns can be achieved by modifying w. This can be done in real-time, while the system
is active. An example of this is given in Figure 2.2. Here 16 antennas is put in a straight
line along the vertical axis λ/2 apart. Where λ is the wavelength of the carrier frequency,
fc. By modifying w the main lobe is moved from 0◦ to −30◦. Due to the physical
placement of the antenna elements, the radiation pattern is mirrored around the horizontal
axis. By setting correct weights directions of destructive interference can also be selected.
This feature can be used to cancel out interference sources.

Finding optimal weights

There exists multiple algorithms for choosing w, depending on the goal of the system.
They all have their separates strengths and weaknesses. Choosing the correct algorithm
for the correct application can be essential to have a reliable radio link.

Assume that there exists multiple transmitters and that just the information from one of the
is desired. In other words, the goal is to turn the main lobe in the direction of the desired
transmitter and cancel out all other interferers. The received signal can be expressed as
Equation (2.3).

x =

N∑
i=0

sihi + n (2.3)

Where si is transmitted signal i and hi is the ith column in the channel matrix H. n is
the Gaussian noise vector. By denoting the desired signal by d and undesired signals by u
Equation (2.4) is obtained.



x = sdhd +

U∑
u=0

suhu + n (2.4)

Where U is of size 1 × (N − 1). The goal is to maximize the sdhd term and minimize
the others such that the array output y only contains the desired signal. This is often not
possible and a second best solution is to maximize the SINR, signal to interference noise
ratio.

It can be shown that an optimal solution is a Wiener filter. The Wiener solution is

wopt = R−1
xxhd (2.5)

Where Rxx = E{xxH} is the channel correlation matrix and H denoted the complex
conjugate transpose operation, also known as Hermitian. From Equation (2.4) it is clear
that Rxx can be formulated as

Rxx = hdh
H
d +

U∑
u=0

huh
H
u + σ2I (2.6)

When writing the Identity matrix as I and noise variance as σ2. The Weiner solution
assumes that all signals and propagation channels are uncorrelated and that all signals
have unit variance (E{|si]2} = 1).[2]

Optimal weights in a phased array

In a free space environment with no scatterers the incoming signal can be viewed as plane
waves coming from the direction of the transmitter. That is, assuming that the receiver is
in the far-field of the transmitter. The phased array consists of M elements in a straight
line spaced a distance d apart, as illustrated in Figure (2.3). It is also assumed that the
plane waves have constant amplitude over the array. This implies that the incoming wave
from an angle θ is identical at each antenna element, except for a phase skew, φ. This
assumption only holds if d� 2πλ. If the signal

Figure 2.3: Incoming plane wave to a uniform linear phased array.



By using the 0’th element as reference all the other elements will receive the signal phase
shifted relative to the reference. The result is commonly referred to as a steering vector, a.
As the steering vector determines the desired direction to steer the main lobe of the phased
array. The steering vector is given by

a(θ) = [a0(θ), a1(θ), ..., am(θ), ..., aN (θ)]T (2.7)

where the m’th element is given by

am(θ) = e−jkmd sin θ (2.8)

where k = 2π
λ and j the imaginary number. This model is easily extended to three

dimensions by defining the position of each antenna element by a positing vector d and
the plane waves’ direction by a unit vector r̂. The phase of the m’th element is then given
by Equation

am(θ) = e−jkr̂·dm (2.9)

By the result of Equation (2.9), inserting Equation (2.7) into Equation (2.2) the optimal
radiation diagram can be fond as the magnitude response of the phased array output with
optimal weights (Equation 2.10).

|y| = |a(θ)T ·wopt|, θ ∈ [0, 2π] (2.10)

Equation (2.10) can be used to investigate how the phased array will behave in different
scenarios in a free space environment. It is assumed that d ≤ λ

2 . Some of the main points
to notice are as follows:

• With only a desired signal the main lobe will be focused on the desired signals.

• Without noise, N antennas, N − 1 interferers, and 1 desired signal. All interferers
can be cancelled out completely.

• A system withN antennas haveN degrees of freedom. If the numbers of interferers
is greater of equal to N , all interference can not be cancelled out completely. A
trade-off will be made.

• In the presence of noise, the optimal solution may not be to completely cancel out
all interferers. A trade-off to obtain the highest SINR is made.

• If the assumption of d ≤ λ
2 is broken the signal is effectively undersampled in

spatial resolution. The Nyquist sampling rate is broken and the algorithm receives
an aliased signal. This can cause aliased lobes which are unsuitable to both enhance
desired signals or cancel interfering signals.

It can be summarized as follows. A phased array with N antennas can completely remove
N − 1 interfering signal sources in the absence of noise. With the presence of noise and
optimal solution which maximizes the SINR is chosen. The Wiener solution is one of
several solution to this problem, commonly found in radio equipment because it is easy
and cheap to implement.REF



2.3 FIR filters
The causal finite impulse response, or FIR filter is given by the difference equation

y[n] =

M∑
k=0

bkx[n− k] (2.11)

Where bn is the filter’s impulse response, and y[n] and x[n] the filter’s output and
input, respectively. By causal is meant that the filter does only can depend on previous
and current samples,not future ones. As the name implies, the filter has finite response.
Mathematically this can be expressed as

h[n] =

{
bn, n = 0, 1, . . . ,M
0, otherwise (2.12)

By taking the z-transform of Equation 2.11 it is trivial to show that the filter is all-
zero, except for a pole at z = 0. That implies that the FIR filter is inherently BIBO-
stable, independent of the filter coefficients. This is as opposed to IIR-filters which
can be BIBO-unstable, depending on the input. Although IIR-filters can achieve higher
performance through feedback-loops for a given amount of computation/digital logic,
FIR-filters are still widely used in communication systems due to their mathematically
guaranteed stability.

A filter with M →∞ and bn ∈ R could in theory produce any filter response. Except, of
course, having an infinitely long filter breaks the assumption of having a finite impulse
response in the first place. In practice will the filter coefficients bn also have to be
quantized because of memory limitations. A better statement would be that a sufficiently
long FIR-filter with filter coefficients of acceptable dynamic range, can approximate any
filter response.

A general FIR filter structure is given in Figure 2.4. A visual representation of Equation
(2.11) for any bk. The structure is known as a normal direct form FIR filter.

Figure 2.4: Normal direct form FIR filter structure.

Such a FIR filter can be used to model as SISO (Single Input Single Output)
communication system. That is, a communication system with one transmit and one
receive antenna. How to expand this model to allow for angular spread is discussed further
in chapter 2.4.



2.3.1 FIR filter optimizations
FIR filters are often used as band limiting filters in communication system. Low pass
or high pass filters for instance. There exists more efficient filter structures for such
use cases as coefficients are symmetrical. That is bi = bM−i. Examples of such FIR
filter structures are Cascade form and Linear-phase form. As a general communication
channel impulse response does not act as a pure band-limiting filter, there are very few to
these optimizations that are relevant for the channel emulation. There does however exist
efficient ways to implement FIR filters in FPGAs, which can be utilized.

2.4 Channel modelling
A single radio channel can be modelled as a FIR filter by combining Equation (2.1) in the
scalar case (M = 1) and Equation (2.11) into Equation (2.13).

y[t] = h[t] ∗ x[t] + n[t] (2.13)

Where ∗ is the convolution operator, h[t] the channel’s impulse response, x[t] the
transmitted and y[t] the received signal. n[t] is additive noise.

The interesting part is the channel’s impulse response. In the case of multipath fading a
channel impulse response may look like in Figure 2.5. Where the arrows are instantaneous
tap power, i.e. the fir filter tap magnitudes. The red line represents the average
energy which often is modelled to decay as an exponential function for each multipath
component.

Figure 2.5: Channel impulse response h[n] as function of relative delay n.

However, there is a big limitation for this model rendering it unsuitable for phased-array
radios. It implicitly assumes that multipath components are only functions of time and not
angle of arrival. This defeats the sole purpose of using a phased array.



To extend the model it is clear that the filter response should be a function of θ as well
as time. Due to hardware limitations, the antenna diagram of the transmitter needs to
be known then computing the channel response in order to compensate for it. Assume
that the channel is drawn from a probability density with some PDF (Probability Density
Function)

f(t, θ) (2.14)

The shape of the function will depend on the simulated environment put as an input to the
channel emulator. The creation of different channels is beyond the scope of this thesis.
Since h(t, θ) is directly proportional to f(t, θ) the total output of the channel emulator can
be defined as

y(t) = H(t, θ)(x(t)�w−1
tx (t)) + n(t) (2.15)

Where w−1
tx (t) is the inverse of the transmit antenna weighs. This is necessary due to

a hardware of using multiple FPGAs, further discussed in Chapter 3.2. � represents
the element wise multiplication of two vectors. The operation of Equation (2.15) has
effectively converted the phased array into a SIMO system. Where the transmit antenna
is treated as a single antenna with a radiation diagram set by the transmit weights wtx(t).
The receives is still allowed to change its weights at will, one of the algorithms channel
emulators often can be used to test.

It is natural that the weights depend on time as the optimal weights will change as the
channel changes with time. For how long a channel is considered stationary is called the
coherence time, Tc. The coherence time itself is proportional to the maximum doppler
shift, fm, which is given in the specification.

2.5 FPGAs
Field-programmable gate arrays or FPGAs are integrates circuits containing digital logic
designed to be reprogrammable. FPGAs allows for prototyping or producing fast, highly-
specialized digital circuits. These circuits are generally used in areas where high speed
and accurate timing are required. In communication systems for instance.

FPGAs are normally much cheaper than their ASIC equivalent. At least unless the
production volume is substantial. REF That is why FPGAs are used in specialized, small
volume produced equipment.

FPGAs are almost always programmed using a Hardware Description Language (HDL)
such as VHDL or Verilog. HDLs differ from programming languages as their output
cannot be run on a CPU, but their output is itself used to create digital logic circuits. A
hardware description language can therefore be used to build a CPU, but the CPU has to
be programmed in a programming language.

An FPGAs programmable logic (PL) is divided into logic blocks.1 There can also exist
slightly different logic blocks within the same FPGA. An example of a SLICEL REF logic

1Logic blocks have different names and structure depending on the FPGA manufacturer.



block used in Xilinx’ FPGAS is given in Figure 2.6.

Figure 2.6: SLICEL logic block from Xilinx FPGA REF

From the left it contains four lookup tables (LUTs) with can be programmed to perform
and arbitrary boolean function. Next is three multiplexers (MUXes). The big block is a
four bit Carry-lookahead adder made from MUXes and XOR-gates. The last row are Flip-
flops for storing bits and reducing the critical path by utilizing multiple clock cycles. It is
important to understand that there can exist tens of thousand of logic blocks in a FPGA
fabric and that these can be connected to create more complex logic.

Modern FPGAs also contain more units such as hardware DSP-blocks, SRAM and
hardware multipliers. These allow for a faster implementation of common DSP functions.
FIR-filters for instance. It is possible to implement multipliers using LUTs, but they will
never achieve the performance of hardware multipliers. Some FPGAs, such as the Xilinx
Zync-7000 SoC series, contain two ARM Cortex A57 CPU cores with several peripherals.
This is referred to as the PS, or processing system. REF Using a processing system allows
the FPGA to run software code for easier communication with the Programmable Logic.
It is common to run a lightweight Linux distribution as an operating system in the PS and
then use drivers to communicate with hardware modules in the PL.

Not all FPGAs have an PS implemented. As an alternative a soft-CPU programmed
in the PL can be used. This has many drawbacks. They are slower, consume more
power and occupy valuable logic-blocks that could be used for specialized programmable
circuity.



Fixed-point numbers

To explain fixed-point numbers a brief introduction of regular floating point numbers is
needed. Floating point numbers are an approximation of real numbers with a trade-off
between range and precision. REF Almost all programming languages have support for
floating point numbers. REF Since many problems in computer science are easiest to solve
using real numbers, floating point arithmetic is widely used. A floating point number is
given as:

s · be (2.16)

where s is the significand, b the base and e the exponent. Where all of the components
(s, b and e) are integers and b ≥ 2. Floating point numbers are essentially numbers
written in scientific notation. This allows both very small and very large numbers to be
represented in the same number of bits, effectively introducing a floating decimal point.
Thus the name, floating-point numbers. There are many quirks regarding the details of
floating-point numbers. For further reading see the IEEE-754 standard. REF

There is however one major drawback of floating point arithmetic compared to integer
arithmetic. It requires vastly more complex electronic circuits to implement. This
added complexity generally makes calculations with floating point numbers slower that
calculations using integer numbers. In CPUs floating points calculations are often
hardware accelerated using a floating-point unit or FPU for short.2

Since FPGAs traditionally does not have hardware FPUs, it is common practice to use
fixed-point arithmetic. Contrary to floating-point arithmetic with a floating decimal
point, fixed-point arithmetic uses a fixed stationary decimal point. That is, it is
predetermined how many bits that will be dedicated to the integer and fractional part of
the number.

2Not always true for small microcontrollers.



Chapter 3
Method

3.1 Channel emulator, a system overview

There are multiple challenges to overcome when moving from a theoretical simulated
channel model to a implementation. Foremost that the hardware itself my affect the model
introducing errors or artifacts into the model. Since the channel is modelled with FIR
filters, these effects can be classified into two different artifacts. Phase- and amplitude
changing artifacts. Phase artifacts may generally occur when due to imperfect sampling
and/or clocking while amplitude artifacts may originate from imperfect amplifiers,
ADCs and DACs. In this chapter a set-up for realizing a channel emulator with the
available hardware is purposed. A measurement set-up for characterizing the hardware’s
performance is also purposed.

The hardware set-up are multiple Xilinx Zynq-7000 [3] boards, each with two Analog
Devices AD-FMCOMMS2-EBZ [6] development boards connected to them. The set-up
is shown in Figure 3.1. In this master projects four such boards were used as a proof of
concept. The FMCOMMS2 boards each contain a AD9361 RF IC, supporting two RX-
and two TX-channels in full duplex mode. This gives each FPGA four radio channels to
emulate. [4]

It should be noted that the FMCOMMS2 boards contain a Johanson Technology’s
2450BL15B050E rated for operation in the 2.4-2.5 GHz range, optimized for operation
at 2.45 GHz. This is a hardware limitation makes measurements outside this range
unreliable. Because of this limitation all measurements are done at 2.45 GHz unless stated
otherwise.[6]
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Figure 3.1: FPGA and Hardware set-up for an arbitrarily large antenna array.

The configuration of the AD9361s are not trivial to set up as there are literally several
thousands of configuration registers to set in order for the to operate as desired and meeting
specifications. The ease the task of the programmer somewhat Analog Devices has written
a HDL-block that interfaces with the AD9361 chip. The AD9361s are configured through
a HDL-block located in the FPGA. This block is again connected to the ARM CPU in the
fpga and has to be configured through an API or Linux driver. In this project all ARM
chips run linux and is therefore controlled through a linux driver. The a HDL modification
is needed because the default driver does not allow for a pass-through of the signal from
RX to TX as is required in a channel emulator. Rather the chip is designed to send and
receive data, thus the HDL block has direct access to the 1 GB of DDR3 RAM. The driver
is modified to just start and stop the pass-through of data in addition to controlling the
Automatic Gain Control of the AD9361s. This is a necessary step which will be explained
in greater detail in Chapter 3.3.

As shown in Figure all FMCOMMS2-boards have an REF CLK input. This reference
clock is used in order to keep multiple boards synchronized. It can vary between 10-
80 MHz, but for the best performance a clock faster than 30 MHz is recommended. [4]
The AD9361 does contain an internal reference clock, but it can normally not be shared
between multiple boards in this configuration. The clock frequency must be specified in
the Linux Device Tree.[7]

One can easily imagine that the cables coming from the reference source are of different
length. This will create a relative delay between each boards timing, thus the will never
be phase aligned without proper calibration. As long as they don’t drift relative to each
other and thus stay phase coherent, this will not be an issue. If the channels cannot be
configured to be phase coherent one basically have created an antenna array where the



antenna elements are moving relative to each other in space. This will of course not be a
working system.

3.1.1 A closer look on the AD9361
A block diagram of the AD9361 chip is shown in Figure 3.2. The XTALN andXTALP
pins refer to theREF CLK pin in Figure 3.1. There are multiple RF input ports to each of
the channels, A, B and C. The purpose of this is to support communication across multiple
bands. The wideband LNA connected to port A supports the whole frequency range of the
chip. Since only one band per input is required for channel emulation, port A is used. The
same goes for the output TX channel. Port A is also used here.

Figure 3.2: Block diagram of the AD9361 chip. Courtesy of Analog Devices REF

The REF CLK is connected to three different PLL synthesizers according to the
schematic (This may be implemented in Silicon, but that is Analog Devices’ intellectual
property and the schematic is therefore assumed to be correct). This can pose a problem
because phase coherency is required by the system. More on this later. Another issue is
LO leakage between the TX and RX side of the chip. Placing them at the same or similar
frequencies may cause frequency intermodulation of the LO leakage which in turn distorts
the TX signal.

In this project the ADCs and DACs are run at their maximum frequencies, 56 MHz and
61.44 MHz respectively, even with a maximum specified channel bandwidth of just 20



MHz to get the maximum oversampling possible. This will help the channel emulator
to avoid timing misalignment between antenna elements. Note that this is the output
sampling frequency of the signal processing chain. In practice the RX is sampled at 640
MSPS and the the TX ad 320 MSPS. The output is filtered and decimated. Since the
channel emulator always will be connected to mains power, power consumption was not
taken into consideration in the design. All ADCs and DACs are 12-bit, giving a high
dynamic range for the signal.

The channels does support FIR filters internally for channel equalization. These are left
as all-pass filter and the processing is rather done in the FPGA. The only reason for this
design choice is arbitrary filter length (only limited by the FPGA resources available) and
more control over the design when keeping everything in the FPGA signal chain. There is
certainly room for better recourse utilization in later design revisions.

3.1.2 FPGA Signal path design

The signal chain is signal chain is shown in Figure 3.3. Since the in- and output of the
AD9361 Core data contain real and imaginary parts (IQ-data), all blocks utilize complex
numbers, increasing resource usage. In the figure it is assumed that the incoming signal is
20 MHz wide centred around fc = 2.45 GHz.

First the signal is mixed down with a fc with a frequency 15.36 MHz lower than fc.
This is a design choice made to avoid intermodulation products between RX and TX.
The frequency 15.36 is chosen because it is a decimation of exactly 1/4 from the ADCs
sampling frequency. It is also well outside the channel bandwidth of ±10 MHz, allowing
less resources to be used for the IF filter. The goal is to leave as much resources as possible
for the radio channel, H, after all.

Figure 3.3: Hardware signal path for one channel.



After the first down-mixing the output is sampled and stored in the RX FIFO. An RX FIFO
may seem unnecessary when the result is not written to DDR3 memory. It should be, but
the driver requires it to function properly. Signal is fed through a intermediate frequency
bandpass (IF BP) to remove mirrored frequency. Then the signal is digitally mixed down
to baseband around f = 0 Hz.

The filters are designed in Matlab to use 16 bit data bus with 12 bit quantization to match
the FPGA’s internals. The coefficients can then be loaded into a custom made FIR filter
block inside the FPGA. This however is not a good idea. FIR filter are very commonly
used in FPGAs, and because of this some parts of the FPGA is optimized for FIR filters.
To use these parts it is easiest to utilize the FIR filter builder given by Xilinx, the filter
builder also gives an option for real-time change of coefficients which is needed in the
channel emulator.

The IF band-pass filter is given in Figure 3.4. The filters length of 35 coefficients is not
arbitrarily chosen. In simulations it gives a relatively flat frequency response in the pass-
band ([−0.2, 0.8] dB in 15.36± 10 MHz).

Figure 3.4: The 35 tap intermediate frequency band-pass FIR filter used in the channel emulator.

In addition it has very high dampening (> 80 dB) around 0 Hz and 30.72 MHz where
LO leakage could occur depending if the RX is set to fc plus or minus 15.36 MHz. From
Figure 3.4 it is shown that the quantized filter is not predicted to do as well as the floating-
point simulation at DC level. Only a dampening of −40 dB is predicted. At 30.72 MHz
it is predicted to be more or less identical to the floating-point. Which is good as the RX-
frequency is set lower than the TX and thus it is the dampening at 30.72 that is relevant
for the systems performance.

The base-band low pass filter is given in Figure 3.5. It is a low-pass filter with a bandwidth
of 10 MHz, creating a complex base-band bandwidth of 20 MHz. A raised cosine filter



is used for its well-proven performance in real communication systems (a good trade-off
between filter length and stop-band performance).

Figure 3.5: The 23 tap baseband low-pass FIR filter used in the channel emulator.

3.2 Limitations of using more than one FPGA

Creating a four antenna elements channel emulator where everything is kept within and
connected to a single FPGA would be a challenge. Creating a 16 or more antenna elements
channel emulator split across multiple FPGAs is much more difficult. In this section some
of these challenges will be presented.

3.2.1 Keeping oscillators in Sync

A frequency synthesizer can generate a high frequency signal by multiplying a low
frequency and keeping the high frequency signal locked to the phase of the low frequency
signal with a PLL. In an idealistic world one could create multiple high frequency signals
locked to the same low frequency signal and the would all have the same high frequency
and be phase coherent. Such a system is shown in Figure 3.6.



Figure 3.6: Generating multiple high frequencies from the same low frequency.

Unfortunately the world is not ideal and two frequency synthesizers with the same input
low frequency may output a slightly different high frequency signal. That isRF1 andRF2

has a slightly different frequency. If this occurs, two or more antenna elements would be
receiving and/or transmitting at slightly different carrier frequencies.

An obvious solution to solve all synchronization issues is to use one synthesizer as
reference for all the FMCOMMS2 boards. An obvious initial attempt may be to use the
same synthesizer for both TX and RX channel as shown in Figure 3.7.

Figure 3.7: Using one synthesizer for both RX and TX.



Unfortunately the configuration shown in Figure 3.7 is invalid. There is no way for the user
to access the RX/TX-mux in the RX channel, neither through the driver nor through setting
registers manually. In fact, this mux is used internally for RSSI power measurements only
according to an Analog Devices employee. One may ask if this mux cannot be used, why
include it in the schematic?

Even if the RX/TX-mux was accessible, using the single synthesizer would not solve
synchronization issues. The only achievement is to move the synchronization issue one
step up the hierarchy. There is certainly no way to get this signal out of the chip and thus
multi-chip synchronization would be impossible.

A different approach could be to use an external RF reference like shown in Figure
3.8. It is certainly possible to do that. And it would solve the synchronization between
multiple boards elegantly. There are a couple of quirks worth mentioning with this
approach.

Figure 3.8: Using oan external RF reference for both RX and TX.

First, if the external RXLO and TXLO are too similar in frequency the same LO leakage
as described earlier may occur causing undesired intermodulation products. Second, while
Analog Devices have managed to show an unusable MUX on their schematic, they have
forgotten to add the divide-by-two frequency dividers that exists on both RXLO and TXLO
inputs. This implies that a channel emulator operating at fc = 6.0 GHz requires a
reference frequency of 12.0 GHz. A relatively high frequency which can be expensive



to generate with good performance (low phase noise being most important).

It is therefore tempting to use the same reference signal for both RXLO and TXLO.
This will eliminate any problems with intermodulation products, even with LO leakage.
Keeping in mind to use similarly length of cables to keep them relatively similar in
phase. It should be noted that even though the RXLO and TXLO inputs exist on the
FMCOMMS2-boards, they only exist as test points without SMA connectors such that
external connectors must be soldered on in order to use them.

3.2.2 Sharing data between FPGAs
One major disadvantage, as mentioned in Chapter 2.4, is the lack of inter-FPGA
communication links. This renders the channel emulator unable to simulate MIMO
systems. It is limited to simulate SIMO systems, that is a system where the input antenna
diagram is know and set, then to produce outputs for all the receiving antenna elements.
Since one receiving antenna element at most can know the input of three other antenna
elements (four channels within one FPGA), this also limits the possible antenna diagrams
(number of lobes) that the receiver can use. This may or may not matter, depending one
the receivers ability to produce RX-lobes.

It is possible to calculate how much bandwidth that is required by an inter-FPGA
communications link in order to allow for full MIMO operation. With a maximum delay
spread from the specifications given at 1.5 ms and a sampling frequency of 56 MSPS, it
gives a maximum channel filter length of 84000 coefficients. All of which are 12 bits long.
That is around 0.96 Mbits of data. Since the channel is operating at complex baseband, the
filter coefficients can be complex too. Doubling this requirement to approximately 1.92
Mbits of data. One must not forget that there exist 4 such complex channels per FPGA,
7.68 Mbits of data that is.

As described in 2.4 the Coherence time (Tc) is proportional to the maximum Doppler shift
(fm). A common approximation is 3.1.

Tc ≈
1

fm
(3.1)

To meet the specified maximum relative velocity difference between RX and TX of
Mach 2 and at the same time maximum operating frequency of 6.0 GHz, fm = v

c fc ≈
680
3·108 6 · 10

9 = 13.6 KHz. This is assuming air density at sea level. With fm = 13.6
KHz the channel must be expected to change (in other words, the Coherence time) every
73.5µs.

This implies that in order to achieve a fully supported MIMO channel emulator with there
specifications and without optimizations, each FPGA have to transmit 7.68 Mbits of data
every 73.5µs. This relates to about 102 gigabit per second. A transfer speed which is
unmanageable by must modern communication systems. If one in addition factor in that
each FPGA has to transmit this to all the other FPGAs the number becomes ridiculous and
is clearly not the way to go. An approximation is needed.



There are multiple optimizations that can be implemented. The first is to only include filter
taps that are in the dynamic range of the channel emulator and/or the devices under test.
Looking back at Figure 2.5 if only the three taps with most energy is detectable by the
system, there is no need to to do multiplications by zero for the others. Thus there is less
information to be transmitted. One simply has to implement a circuit for ”no operation”
in the FPGA to ignore the taps that are irrelevant.

Another option is to design a system that can fulfil all the specifications, but not
simultaneously. A third, the one that is simplest is to just leave out inter-FPGA
communications all together with the limitations this impose.

3.3 Analog front ends and AGCs

The AD9361 have Automatic gain control (AGC) implemented as shown in Figure 3.2.
This is a good idea when building a communication system in order to achieve the highest
possible SNR without distortion and thus reducing BER. This will also try to adapt
the input signal such that the dynamic range of the ADCs are utilized to its maximal
extent.

Automatic gain control is a good idea for a communication system. It would also be
a good idea for a channel emulator, given that the gain could be instantly known and
compensated for in the channel model. Unfortunately this is not the case without major
modifications. The AGC setting is controlled by the Linux driver and can be polled from
the driver in software, but it will not be timing perfect. That is, it will take some time
before compensation can occur. A possible solution could be to have a buffer in the FPGA
that was long enough such that it could get a message about change of AGC setting, then
measure in the samples exactly where the energy increases or decreases and thus add
compensation at just the correct sample.

3.4 Test set-up

The test set-up is given in Figure 3.9. The arrows show connections made. It does not mean
that all connections were are all the time. Some rearranging has to be done depending on
number of input/output channels, available cables etc.



Figure 3.9: Test set-up

Matlab scripts are used to automate some of the testing. The instruments are controlled
over GPIB and GPIB-over-USB. It should be emphasized that the measurement set-up
Unfortunately only allows for a single channel measurement due to lack of RF inputs in
the measurement equipment.

3.4.1 Oscillator drift: clock sync between signal generators
Oscillator drift is a minor point that should be considered when doing phase measurements.
From Figure 3.9 it is clear that all signals generated to the input of the DUT is referenced
to the internal temperature compensated crystal oscillator (TCXO) of the R&S FSQ
40. Signals internally in the other instruments are synthesized and phase locked to this
reference signal. Again, the same challenge illustrated in Figure 3.6. Only this time
between separate instruments, as opposed to within the same IC.

Assume that one wants to measure phase coherency between outputs of the DUT. Also
assume that these originate or are clocked in some way from separate instruments. The
wrong question to ask is if signals generated in two separate instruments drift relative
to each other. They always will drift to some extent, depending on the quality of the
hardware. A rather better question to ask is: ”Do the outputs drift more relative to each
other than the inherent clock drift between the instruments?”.





Chapter 4
Testresults

This chapter is about different measurements done to the system with the system set-up
given in Figure 3.9 and their results. The results are discussed in Chapter 5. All the
tests are performed with H as an one-tap channel. All tests, except 4.0.1 were clocked
by the external 4.9 GHz RF signal from the HP Agilent signal generator with the IF
filter and digital down mixer removed. There is an image of the channel emulator in
the Appendix.

4.0.1 Follow signal through FPGA pipeline
This test is to tap the digital signal processing pipeline through the FPGA and verify that
the pipeline is functioning as expected. It is a basic test to check the actual performance
versus the double-precision implementation in Matlab. The signal is tapped at multiple
stages in the FPGA. The tap points are shown in Figure 4.1. The Output results are shown
in Figure 4.2 in descending order from the start to the end of pipeline. The AGC is active
and set in ”slow-attack” mode. The y-axes are dimensionless digital values proportional
to the signal energy.

Figure 4.1: Hardware signal path for one channel with tap points indicated.
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Figure 4.2: Sanity check through pipeline. Y-axes are dimensionless and proportional to signal
energy.



4.0.2 Delay through the channel emulator.

As stated in the title this is a measurement of the delay through the system as timing and
delay can be relevant if the system is to be expanded. The input signal to the RX is 16QAM
modulated at a 2.45 GHz carrier.

Figure 4.3: Delay of signal through system with single tap all pass H.

4.0.3 Measurements of LNA distortion

Figure 4.4: The distortion of LNAs for different gain settings. CW at 2.45 GHz.



The AGC have a tendency to overcompensate the gain of the LNA distorting the output.
Because of this it is interesting to measure the LNAs performance over gain and frequency
ranges. The RX test signal was a CW at 2.45 GHz at −75 dBm power level. Any higher
and the ADCs would saturate and distort the output anyway. This would of course give
an invalid measurement of the LNAs performance. Both channels are measured to find
possible differences.

4.0.4 Measurements of LNA Phase vs gain

In order to have a working system the relative phase between RX and TX should not be
dependent of the LNAs gain setting. If it is, it must be compensated for. This is especially
important in a system where the AGC is constantly changing the gain setting of the LNA.
A measurement of the phase at different gain setting is given in Figure 4.5. As test signal
a CW at 2.45 GHz at −10 dBm power level is used.

Figure 4.5: The phase relative phase between RX and TX w.r.t. LNA gain. CW at 2.45 GHz.

4.0.5 Phase change width respect to frequency

The same argument as in the previous test. The relative phase between RX and TX should
not depend on frequency. The test result is given in 4.6. The test signal is identical to
the previous test. LNA is fixed at −20 dBm. All points are averaged phase of between
1071 and 1220 measurements. (The variation is due to timing between oscilloscope and
computer).



Figure 4.6: The phase relative phase between RX and TX w.r.t. frequency.

4.0.6 Measurements of phase drift

This test is designed to test if the internal synthesizer is adding any significant phase noise
to the system. The 40 MHz REF CLK and test signal (same as above) are clocked from
the same TCXO reference oscillator. 100 000 measurements were done at the input and
output. If the system internal synthesizer does indeed at phase noise the output should
have a significantly different standard deviation.

Figure 4.7: Phase of output signal and reference signal.



4.0.7 Resource usage

Table 4.1: Post-implementation resource utilization in one FPGA with who FMCOMMS2 boards
attached and 1 tap channel.

Resource Used Available Utilization %
LUT 14538 53200 27.33
LUTRAM 2725 17400 15.66
FF 25377 106400 23.85
BRAM 130.5 140 93.21
DSP 166 220 75.45
IO 94 200 47.00
BUFG 5 32 15.63

In addition the for each extra tap added to H, four dsp slices are required. Since the
number of DSP slices available are fairly low and the sampling frequency is relatively
slow, the Xilinx synthesizer may be able to swap some of these DSP blocks for other
resources.

Table 4.2: Post-implementation timings. All requirements are met.

Worst Negative Slack Worst Positive Slack Worst Pulse Width Slack
Slack 0.132 ns 0.018 ns 0.264 ns



Chapter 5
Discussion

There are many challenges to this project in order to create a fully working channel
emulator that meets specifications. The first stage is to verify the system works as
expected. This was done in 4.0.1. The first IF filter works as expected and the ripples
in the pass-band is very subdued compared to Matlab. Actually it seems to perform better
in the FPGA with quantized coefficients. It is also observed that the filter adds some
gain that should not be there according to simulations. This is clearly an artefact of the
quantized filter coefficients.

The mixer works just as well in the FPGA with just four coefficients (the minimum needed
to satisfy the Nyquist rate and very resource effective) as it does with a high resolution sine
wave in Matlab.

The baseband filter is fundamentally the same as the IF filter. The FPGA filters performs
worse than the double-precision filter which is to be expected due to quantization. The
double-precession filter achieves a stop-band dampening of around 7 − 2.75 = 4.25
relative to carrier, while the FPGA implementation achieves 7.8 − 3.8 = 4 relative to
carrier.

The delay through the system, as shown in 4.0.2, is around 2.62µs, compared to
the theoretical 1.05µs for 59 filter taps, sampled at 56 MHz. This implies that the
FPGA interface and/or AD9361 chip itself is adding quite a bit of delay through the
system.

The AGCs in the system has caused quite a few problems through the project. It was
therefore necessary to quantify how they behave. From 4.0.3 it is clear that the LNAs
perform well until a gain of around 50 dB. Afterwards is starts to add noise to the signal.
The noise floor at the FSQ40s settings were around −108 dBm such that any rise in noise
floor level was easily visible. One observes that the output noise is filtered strongly by the
FIR filters in the pipeline. However in the pass-band there is a lot of noise energy when the
LNAs gain settings are high. This can especially be a problem for the channel emulator
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as the AGCs seem to prefer high settings rather than low, depending on the mode. Since
the AGCs use RSSI to calculate settings, sending in a strong (−10 dBm) CW, will still
cause the AGCs to push the LNAs to its maximum gain of 71 dB distorting the output. In
a multi-antenna input this will be an even greater challenge as the RX-inputs will receive
different amounts of power, causing some TX outputs to be much more noisy than others.
This is not a very realistic behaviour and undesired in a channel emulator. A solution to
this is, as partly mentioned in the Method chapter, a digital compensation circuit for this.
When connecting the transmitter to the channel emulator by cable it is very unlikely that
an LNA gain above 50 dB is necessary anyway.

As shown in 4.0.4 the phase seems to be relatively constant over the LNA gain. The
deviation is likely do to measurement errors. For the phase over frequency (4.0.5) on the
other hand, some ware strange behaviour were observed. The phase is increasing slightly
with respect to frequency which is to be excepted, but the square-wave on top is not. It has
a period of around 10−6 seconds. Since the phase changes about every 10 MHz, it can be
that is is affected by the FIR filters. However, FIR filter have linear phase and should not
have this behaviour. It can also be that Analog Devices uses chopping amplifiers in their
design with a slightly different phase for different frequencies. This is very hard to test as
this is Analog Devices IP.

As shown in 4.0.6 the phase in and out of the system as different, which is to be expected.
The number of observations were n = 100000 and the standard deviations for receive σr
and transmit σt were σr = 2.0593 and σt = 2.0423. The hypothesis σr < σt = 2.0423
fails at all significance levels for n this large. One can therefore not conclude that the
internal synthesizer of the AD9361 makes the phase less coherent.

The resource usage of the system is generally high as 75% of the DSPs are used at only
a single tap channel. A majority of the resource usage comes from Analog Devices’ own
block to interface with the chips. To improve upon this somewhat, one could consider to
move some of the filtering into the AD9361s so free up some resources.

There are some issues when creating a system for one FPGA with four channels. These
mainly consider calibration. Phase-aligning all channels across all AGC-settings and
frequencies certainly is possible but it is a lot of work depending on the accuracy required.
This will highly depend on how picky the radio system under test is, but it can almost
certainly be solved.

There are some more, rather serious issues when porting this system to multiple FPGAs.
The most severe issue is keeping everything synchronized. The internal frequency
synthesizers will operate at slightly different frequencies even with the same REF CLK
(< 1 Hz). This was tested, but is rather difficult to graph in any meaningful way. Therefore
a video is attached that confirms this observation. A result of different frequencies are that
the antenna elements will be operating at slightly different carriers

At first glance antenna elements operating at different frequencies would seem totally
system breaking. However, this is not necessarily true. take for instance a relative
frequency offset of 1 Hz. A 1 Hz relative frequency offset can be seen as a 1 Hz doppler
shift for that particular antenna element. Any system capable of utilizing a channel



bandwidth of 20 MHz, will have to be able to deal with such small doppler shifts due
to channel dispersion anyway. Thus, a small frequency offset in the RF front ends is
acceptable.

In the ADCs and DACs a frequency offset is not at all acceptable. Having a relative
frequency offset in the sampling will break all the theory discussed in Chapter 2.2 because
the steering vector a(θ) will only exist at a single point in time. This is again equivalent
for the antenna elements to be moving relative to each other in space. This will be system-
breaking as you do not at all want to simulate antenna deformations. That is not the goal
of this project.

Having a closer look at Figure 3.2 does not help. It is clear that even if all the RF front-
ends are in sync by RXLO and TXLO, is it not possible with the hardware to synchronize
the ADCs and DACs across multiple FPGAs. Every chip will use its own synthesizer for
the baseband frequency and these will drift relative to each other.

5.1 Further improvements
All hope is not out. It turns out that the AD9361 does have a SYNC pin to achieve
the baseband synchronization. However, this pin is grounded and not accessible (BGA-
package) on the FMCOMMS2 boards. They can be accessed in the FMCOMMS5 boards,
making this project possible in theory. In order to fit the required filter lengths some form
of compression where only a few taps are used must be implemented. Also a module to
read coefficients from RAM im real-time must be implemented. This is can be difficult
as the timing requirements are strict even when the RAM is fast. It is also clear that
changing so many coefficients so often, will chew though the RAM address space very
fast. A suggestion is to only give a few megabytes of RAM to the linux distribution
leaving everything else for coefficient storage. It should also be implemented some form
of control application such that a user can control and load coefficients into the FPGAs
easily and efficiently.





Chapter 6
Conclusion

Creating a good channel emulator with the given hardware was a hard project. With
the given specifications, maybe impossible. That said, following this rabbit hole has
enlightened a whole range of potential problems and challenges with such a channel
emulator. First it is the calibration that needs to be done on every single channel for
every single board. That is a lot of work. But it can be done. It is simply not possible to
meet the specifications with the given hardware. The biggest issue maybe the requirement
for inter-FPGA communication, depending on the desired performance. Inter-FPGA
communication at the data rates given by the specifications is simply infeasible. Moreover,
the synchronization of the hardware is unlikely to by good enough to do phase-array
channel emulator. The synchronization problem can most easily be solved by switching
the different hardware.

There is probably a good reason why the commercially available products does not support
channel update rates this fast. It is also clear that if a better compression solution is used,
the system can be realized with limited performance. Furthermore, if the doppler shift
specifications are lowered to support for example helicopters instead of supersonic jet
planes, the design task will be easier.
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Appendix
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Figure 6.1: Appendix: Image of the channel emulator.

Programming source code used in the project is available at https://www.github.
com/cartfjord/MasterThesisCode
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