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Abstract

Network packet processing in software on commodity hardware is the main
topic of this master thesis. The transition of moving the packet processing
from specialized hardware into software has had a rapid improvement over
the last years, primarily driven forth by the telecommunication industry.
In the development of the new 5G mobile network, the ability to do
packet processing in software has been pointed out as a critical factor for
its success: moving the network functions into a virtualized environment
on commodity hardware.

More specifically, this thesis will focus on doing software routing of network
traffic in a virtual environment on commodity hardware. Different kinds
of challenges by doing this has been identified and different types of
software solutions have been evaluated that can accomplish these tasks.
Four different routers have tested in an experimental testbed, with focus
on the performance. The four tested routers have been the Cisco CSR
1000v, pfSense, VPP and the OVS router. The experimental testing
includes some test traffic to push the router to their limits, near realistic
traffic and some test to see how they perform against specialized physical
hardware.

All of these routers can perform at speeds close to 10 Gbit/s, and some of
them are able to perform way beyond this. Out of these four routers, the
VPP is the one that has the best performance and shown that routing in
software at high-speeds is possible today.





Sammendrag

Prosessering av nettverkstrafikk i programvare på standardisert maskin-
vare er hovedtemaet for denne masteroppgaven. Overgangen fra å flytte
prosesseringen fra spesialisert maskinvare til programvare har hatt en
drastisk utvikling de siste årene, spesielt drevet frem av mobiltelefoni
industrien. Det å kunne gjøre pakke prosessering i programvare har blitt
pekt ut som en nøkkelfaktor for utviklingen av det nye 5G mobilnettet.
Det vil si å flytte nettverksfunksjoner til virtuelle miljøer på standardisert
maskinvare.

Mer spesifikt så vil oppgaven ta for seg nettverks ruting av trafikk i et
virtuelt miljø på standardisert maskinvare. Flere utfordringer knyttet
til akkurat dette har blitt identifisert og forskjellige typer programvare
som kan gjøre ruting har blitt evaluert. Totalt har 4 forskjellige pro-
gramvarerutere blitt evaluert og ytelsestester har blitt gjennomført på
disse i en testlab. De fire ruterne som har blitt testet har vært Ciscos
CSR 1000v, pfSense, VPP og OVS. Den eksperimentelle testingen har
inkludert test-trafikk som skal presse ruterne til sine grenser, trafikk som
er så reel som mulig og en test for å se hvordan de gjør det i forhold til
en spesialisert fysisk ruter.

Resultatet av disse testene har vært at alle ruterne klarer å prosessere
trafikk opp til 10 Gbit/s, og noen langt over dette igjen. Av disse 4 ruterne
er VPP ruteren den som har hatt den beste ytelsen og vist at den er
kapabel til å gjøre ruting i programvare med dagens krav til ytelse.
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Chapter1Introduction

The topic of this report is about softwarization, which is about doing networking in
software on commodity hardware instead of specialized hardware. The main focus
will be to see what challenges there is by doing packet processing in software and
finding different kind of solutions that is able to do this. Specifically, software routers
that can do layer 3 forwarding will be investigated. The second main focus is to do a
performance test on these software routers in a virtual environment.

The main reason for moving the networking into software is flexibility, better resource
utilization and to make it hardware independent. The telecommunication industry
has been the driving force for bringing this technology forth, and mainly because of
the development of the new 5G mobile network. One of the main goals of the 5G
network is to be able to offer differentiated services like low latency, high throughput
and both low latency and high throughput combined. The use of Network Function
Virtualization (NFV), and then specifically virtual routers in software, really help
achieve these goals. Combined with Software Defined Network (SDN), it is possible to
make different kind of network flows take different paths in the network, for instance
pass by different types of virtual routers.

Regarding the 5G network, virtual routers are not the only functions needed. However,
the most important part is to be able to process large network traffic loads in
software. It is not only the telecommunication industry that can take advantage of
this technology; all other places that use routers could potentially use virtual routers.
The cloud providers have begun to use this technology heavily, and providers like
Amazon Web Services (AWS), Google Cloud Platform (GCP) and Microsoft Azure
is already started using virtual routers to some degree.

SDN is the idea of separating the data plane (the forwarding of packets) and the
control plane (controlling how the data plane is forwarding packets). Much research
has been done on in this field, but mainly the controller is the only part that has
been taken out of physical hardware and put into software. The data plane is still,
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2 1. INTRODUCTION

in most cases, being executed by specialized equipment. In softwarization, the data
plane is also moved into software, and this introduces many challenges. Dedicated
hardware that does packet processing, often uses specialized Application Specific
Integrated Circuits (ASIC) to perform most of the processing and does this very
efficiently. ASIC is also much more expensive than CPUs, as it is produced in much
smaller quantities and this gives a high production cost. Commodity hardware and
CPUs is produced in millions of units, which helps to keep the production cost down.
CPUs is built for multipurpose operations, so doing the processing will not be as
efficient as in ASIC. However, commodity hardware has become quite powerful, and
with multi-core CPUs, it has become possible to do networking in software quite
efficient and achieve throughput needed for to days high-speed networks.

To be able to determine how far the development has come in softwarization and
virtual routers, performance tests are needed on different kinds of software routers.
This has to be tested using realistic and test-specific network traffic, to see the actual
throughput that these routers can perform. To see how they perform in a NFV
setting, the routers will be virtualized and tested in a virtual environment. The
first objective of this thesis will be to research what kind of software routers that
are available and the challenges with doing this in software compared to doing it
in specialized hardware. The search for routers will include commercially available
software, open-source routers and routers that are still in the research phase. The
second objective will be to install and configure these routers in a virtual environment
and do the same performance tests on them, so the results are comparable.

1.1 Motivation and Thesis Scope

Specialized hardware network equipment that uses ASIC is quite expensive compared
to multi-purpose hardware. If the networking could be moved to commodity hardware,
the cost gain perspective is potentially huge. However, it is not only the cost
perspective that is a great advantage, but also the flexibility it offers. Softwarization
and virtualization are considered as two disruptive paradigms and the basis in the
design process of 5G networks [CM18]. In all the use cases of the 5G network and the
different kinds of slices proposed, it would be extremely costly and hard to maintain
if a lot of specialized physical equipment is used. Softwarization, SDN and NFV
could potentially solve all of these problems.

For virtual routers, the manufactures and developers all states different kind of
specifications for their product, and these data is not always directly comparable.
The knowledge of how different types of routers compares to each other, specifically
as a Virtual Network Function (VNF), does not exist today. This new knowledge
could shed some light on how different kind of routers perform in different settings
and using different types of functions. The performance of these routers is also
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compared with some specialized hardware, to give some perspective on the difference
between software and hardware ASIC packet processing.

The scope of this report will be to find some software routers that can be virtualized,
and do some performance tests on these. Some of the routers offer the possibility
for configuration and performance tuning, so this will be done to get the best
performance possible. This will not involve changing the source code and writing
own code, but changing the configuration parameters available. An RFC exists for
doing performance tests on network equipment [IET], but it does not fully specify
everything in the tests that should be done. The test parameters have to be defined
on how the performance test should be done, and some software/equipment for the
traffic generation/measurement has to be explored. The scope is limited to only
testing layer 3 forwarding, purely layer 2 forwarding is not considered 1.

1.2 Research questions

The main research questions, based on the problem description, are as stated:

1. What are the challenges of doing fast packet processing in software, and how
can these challenges be overcome?

2. What is the performance of different kinds of software solutions for routing
that is available today when they are used as VNFs?

1.3 Contributions

This thesis provides the following contributions:

– An example of a virtualized experimental testbed setup for performance testing
of software network routers.

– Script for automated performance testing

– Comparable test results of different kinds of software routers used as VNFs

1.4 Thesis Outline

The master thesis is structured as follow:

– Chapter 1 is an introduction to, motivation for and a scope of the thesis work.
1The layer 2 performance for the VMware ESXi hypervisor is indirectly tested during the VNF

chaining tests



4 1. INTRODUCTION

– Chapter 2 introduces some background for the work and some theory of
technologies relevant for the thesis.

– Chapter 3 describes the choice of methods.

– Chapter 4 presents the experiment design selected and how this is implemented
in the test lab.

– Chapter 5 presents how the tests are to be conducted and the evaluation
methodology chosen.

– Chapter 6 presents the results from the experimental testing

– Chapter 7 discuss the theory and the results from the thesis.

– Chapter 8 gives a conclusion on the thesis work, and some suggestions for
future work on this topic



Chapter2Background/Theory

2.1 NFV and SDN

NFV is a way to decouple the network functions that traditionally is being done by
specialised and proprietary hardware, into software that can be run on infrastructure
independent from the hardware underneath. The telecommunication industry has
been a driving force for NFV, with especially focus for the new 5G mobile network.
This means that the use of generic hardware Commercial Off-The-Shelf (COTS)
is preferred, instead of much more expensive specialised hardware. These network
function can be:

– IP firewall (IP-FW)

– Network Address Translation (NAT)

– Load Balancer (LB)

– Proxy

– Deep Packet Inspection (DPI)

– Intrusion Detection System (IDS)

– virtual switch/router

– mobile network specific services like Ip Multimedia Subsystem (IMS)/Home
Location Register (HLR)/Home Subscriber Server (HSS)

They are run as applications (VNFs) on top of a virtualised layer, often as Virtual
Machine (VM) on top of a hypervisor (Figure 2.1). This gives the VNF the same
flexibility as other VMs, like elastic capacity, better utilisation of resources, portable,
hardware independent and the possibility to make them more fault tolerant [Shi18].

5
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Virtualized Network Functions (VNFs)

NFV 
Management 

and 
Orchestration

VNF

VM

VNF

VM

VNF

VM

VNF

VM

VNF

VM

VNF

VM

VNF

VM

VNF

VM

VNF

VM

VNF

VM

Virtual 
Compute

Virtual 
Storage

Virtualization Layer
(Hypervisor)

Hardware Resources

Compute Storage Network

E S T

Virtual 
Network

NFV Infrastructure (NFVI)

Figure 2.1: NFV Architecture

SDN is the decoupling the control plane from the data plane, which means that the
device that is controlling how traffic is to be forwarded (controller) is separated from
the devices that are doing the forwarding (Figure 2.2). One controller can manage
multiple devices and can be centralised, which offers the possibility for more smart
and sophisticated networks. Both SDN and NFV are promising driving technologies
to dis-aggregate the traditional vertically integrated systems into components by
using softwarization[Shi18]. These components consist of both software and hardware.
Network softwarization is the trend of doing networking in software, using commodity
COTS hardware instead of specialised hardware.
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Application layer

Applications,
running on physical
or virtual hosts

Control plane

Network controller

Data plane

Programmable
switches

Northbound
APIs

Southbound
API

Figure 2.2: SDN overview [Mon]

A problem with NFV is that it could lead to large variations in latency and erratic
throughput. An example of this was the findings Wang did find in the Amazon EC2
cloud[WN10]. They use virtualised software routing as a VNF, and it resulted in very
unstable TCP/UDP throughput. The delay variations were about 100 times larger
than most propagation delays, which is around 0.2 ms. Another problem with VNF
in VM, is that it has slow instantiation time and relatively large memory footprint,
because an entire Operating System (OS) has to be run for each VNF. The use of
containers instead of VM has shown to overcome a lot of the problems with VMs,
and is promising for further use with VNFs [NLH+15]

VNF chaining is an important concept within NFV. It offers the possibility of chaining
different functions (VNFs) within the same physical machine (see Figure 2.3). The
VNFs in this setting could be a vRouter, an IP-FW and an IDS. The internal boxes
are virtual networks created by the hypervisor (see Section 2.4) and are just an
internal network within the physical machine. Only VNF1 and VNF4 are directly
connected to the physical world (physical Network Interface Card (NIC)s). This
offers the flexibility to easily add/remove functions in a network path, and combined
with SDN the controller could determine what kind of VNF different kinds of flows
should go through.
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Figure 2.3: VNF chaining [25]

2.2 Challenges with routing in software

When doing routing in software, there is many challenges that have to be overcome.
Usually routing is being done in specialized hardware designed to do just that, but
now the data plane (Figure 2.2) is moved into software. When doing routing in
software on commodity hardware, this becomes a problem since it is designed for
doing more generic tasks. This means that it would not be nearly as efficient to do
packet processings as specialized ASIC. The CPU is always in any cases the bottleneck
when processing packets in software [BRR+16]. Other factors like Memory (RAM,
CPU cache), NIC functionality, PCIe bus lanes and Non-Uniform Memory Access
(NUMA) locality for CPU cores is also important but is rarely the bottleneck. For
instance at 10 Gbit/s, with the smallest frame size of 64 bytes, the time between
packets is 67,2 ns (at 14.88 Million Packets Per Second (PPS))1. On a CPU with 1,7
GHz clock speed, this means that it has approximately 114 2 CPU cycles per packet.
To compare, a single cache-miss takes 32 ns, userspace system call is between 40 and
75 ns and RAM access is around 70 ns[Bro15]. 67,2 ns is not much processing time
for each packet, and you don’t have time to do unnecessary operations.

When routing network traffic, there is often a lot more functionality than just routing
a packet from one interface to another. Firstly, a look up in the routing table has
to be done to determine what interface to send the packets. On the routers on the
internet, the table can have around 0,5 - 1 million entries, which is many entries to
look through. Other services like Access Control List (ACL), NAT, Virtual Private

1Total size of the frame on the wire is 84 bytes (64 bytes + 7-byte preamble, 1-byte start-of-frame
delimiter and 12-byte inter-frame gap). 10 Gbit/s / (84 bytes * 8 bit) = 67,2 ns. (84 bytes * 8 bit)
/ 10 Gbit/s = 14.88 MPPS

267,2 ns * 1,7GHz = 114,24 Cycles per packet
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Network (VPN) and IDS can be performed by a router, and requires additional
resources to be processed. Again specialized hardware is designed to do these tasks,
but commodity hardware is not. So to be able to do routing in software efficiently,
optimisation in the way the packet processing path is needed. This can for instance
be:

– Multi-threading (more CPU cores)

– optimise the use of CPU memory cache

– reduce cache line misses

– batch processing of packets

– pre-fetching instructions from memory ahead of time

– offloading some packet processing to the NIC

The most obvious choice is to increase the number of CPU cores, as a typical modern
server CPU has around 20-30 cores pr. socket. This means that eventually the
address bus between the NIC and the socket will be a bottleneck, but we are then
talking about throughput far beyond 10 Gbit/s.

2.3 Kernel bypassing

One of the most important thing when doing fast packet processing is to bypass
the kernel network stack. This means that the packets are delivered directly from
the NIC to userspace, with minimal kernel interference. There are many reasons
for this, but the main reason is that the kernel is not able to process that kind of
packet that is needed when moving beyond 1 Gbit/s. Studies have shown that using
kernel bypassing framework like Data Plane Development Kit (DPDK) is 12 times
faster than using the Linux kernel for packet processing [ERWC15]. For instance, the
Linux kernel can process between 1-2 MPPS, which is a far behind the line rate of 10
Gbit/s (14.88 MPPS). Other advantages of doing the processing in userspace are that
it is much easier to write some new code and gives the possibility for a fast upgrade.
The kernel has to be stable, which mean that changing the code is not something
that is done overnight since it requires revisions thoroughly. Changing the code in
userspace is much easier as it is just a process, and can also be updated/restarted
easily without the need for a full system restart. Figure 2.4 show how the Linux
kernel is bypassed with DPDK and the userspace applications are interacting directly
to the NIC
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Figure 2.4: DPDK Kernel Bypassing [AY]

Intel DPDK is considered the de-facto standard for kernel bypassing[BBGJ18], to
be able to do fast-packet processing in commodity hardware. It is an open-source
project managed by Intel and supports a variation of NICs (not only the one from
Intel). There exist other options as well like PCAP, PF_RING DNA, netmap and
HPCAP. These were tested and compared, and PF_RING DNA and Intel DPDK
were the only ones that could achieve line rate for 10 Gbit/s when fewer than 4
receiving queues (4 CPU core) where used[MRdR+15]. One large disadvantage with
DPDK, is that pulling is used to receive packets from the NIC. This means that
100% of the core is utilised, even if no packets are incoming. The Linux kernel uses
interrupt mode, where the CPU is only involved when the packets are incoming.

DPDK uses huge memory pages in RAM, which is much larger than default memory
allocation. When increasing the chunk of memory, the time to find where a particular
memory is mapped is decreased significantly, since the Page Table Entry is much
smaller. A userspace application can write and read data directly into these pages
using Direct Memory Access (DMA). DPDK also uses a NUMA aware design, which
is the memory design for each CPU socket. This ensures that each packet that is
processed stays within the same local memory bank. Each processor may in a NUMA
design access its own chunk of memory in parallel, which significantly improves the
performance and reducing the CPU data starvation problem [MRdR+15]. If CPU
has multiple sockets (therefore multiple NUMA nodes), it is important that the NIC
is attached to a PCIe slot assigned to the socket that is processing the packet. This
to avoid having to transmit data between sockets, degrading system performance
(illustrated in Figure 2.5).
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B. Current and Past Operating System Network Stacks

While network hardware has been rapidly evolving focusing
on high-speed packet capture, software has not followed the
same trend. In the case of software, modern operating systems
are nowadays designed to provide compatibility rather than
performance. Such operating systems present a general-purpose
network stack that provides a simple socket user-level interface

for data exchange and handles different hardware and network
protocols. Nevertheless, such an interface is not optimal in
terms of high-speed traffic capture.

Particularly, Linux kernels prior to 2.6 presented an interrupt-
driven approach in the network stack. Focusing on behavior:
whenever a packet arrives at the corresponding NIC, a descrip-
tor in a NIC’s receive (RX) queue is allocated and assigned to

Figure 2.5: NUMA architecture with 2 sockets [MRdR+15]

The NIC has some important features that can be utilised by DPDK and applications,
and the most important is the Receive Side Scaling (RSS) feature. The main feature
for RSS is to distribute incoming packets to different queues (CPU cores). The
distribution is based on a hash value calculated from IPv4/6 source and destination
address, protocol fields and TCP/UDP source and destination ports. This should
ensure that sessions are processed by the same CPU core, to minimise jitter. Other
features from the NIC that can be utilised is the calculation of the checksum for
IPv4 and TCP/UDP packets. This is done much faster in hardware, and this can be
offloaded to most NIC.
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2.4 Virtualization

Virtualization is a key component to be able to virtualize the layer 3 forwarding
(routing). There is a lot of virtualization software to choose from like Microsoft’s
Hyper-V, VMware‘s ESXi, Citrix XenServer or Oracle VM. These are bare-metal
hypervisors, which means that they are installed directly on the server without any
other underlying OS. Each of the solutions offers different kinds of features and
licensing options. VMware ESXi is the one offering the most advanced features, but
also the one that has the highest licensing costs[Sie]. The hypervisors are used in
combination with VMs and are not used when using containers.
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When doing routing in software, it requires a lot of network I/O. A problem when
virtualizing is that some overhead between the hypervisor and the guest OS/VNF
can occur when the network I/O are copied. When using DPDK, it requires to be
able to read and write directly to the memory using DMA. This access can have lower
performance when doing virtualization compared to a native network I/O[Shi18].

VMware ESXi and DPDK supports two kinds of connections to the physical NICs,
which both bypasses the hypervisors layer for network I/O (vSwitch)[VMw]. They are
DirectPath I/O (PCI passthrough) and Single Rooted I/O Virtualization (SR-IOV)
(Figure 2.7). DirectPath I/O gives a VM direct and exclusive access to a NIC, which
generate the least overhead of I/O between NIC and VM. SR-IOV does not give
exclusive access to a NIC, so multiple VM can access a single NIC. DirectPath I/O
can be considered as a hypervisor bypassing, and SR-IOV is almost the same as
bypassing. A small switch in the hypervisor is added when using SR-IOV that uses
MAC addresses to identify the different VMs. The NIC still appear as a physical PCIe
device to the VM and all the functions from the physical NIC is available through
DMA. This small switch requires some computational power from the hypervisor, as
all of the MAC addresses for the traffic has to be read, to deliver the frames to the
correct VM. However, the computational power and generated overhead are much
smaller than the network stack integrated into the hypervisor (vSwitch for VMware).
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However, when either vSphere DirectPath I/O or SR-IOV is used to migrate a legacy application, 
it bypasses the hypervisor layer for I/O, which disables the VMware advanced features that are 
needed to create a cloud-ready environment, including vMotion, DRS, Fault Tolerance, High 
Availability, Snapshots, and others. For example, because SR-IOV ties a virtual machine to the 
host, rapid service delivery cannot be provided because manual steps are required to provision 
each host.  

Intel DPDK in the Cloud 
With Intel DPDK and VMware vSphere, businesses can get the best of both the physical 
environment and virtual environment  all in one solution.  

Intel is committed to delivering cloud-ready support for Intel DPDK. With Intel DPDK 1.6, Intel 
introduces built-in support for the VMXNET3 para-virtual NIC, which makes all vSphere advanced 
features fully available. Note that Intel DPDK already provides support for the E1000 and E1000E 
virtual devices on the VMware platform.  

The Intel DPDK with VMware vSphere solution enables applications to be built with virtualization 
in mind. When used with Intel DPDK para-virtual device connectivity, the solution provides these 
key advantages: 

 Portability. When developed with Intel DPDK, an application can maintain a single code base 
as it is migrated from the physical environment to the virtualization environment. This 
provides for easier portability between physical and virtual environments, lower 
maintenance costs, and faster time-to-market.  

Figure 2.7: Intel DPDK and VMware NIC direct assignment[VMw]

2.5 Why use software routers

Routers are in use all over the world and are essential in today‘s internet architecture.
Traditionally this has been done in specialised hardware routers (because of the
challenges stated in section 2.2). However, with to days use of the cloud infrastructure
and the coming 5G mobile network, the use of virtual routers in software as a VNF



2.6. SOFTWARE ROUTERS 13

is essential. There are many advantages by virtualizing the routers, and the biggest
is that it utilises the hardware better. Other advantages with vRouters as VNF is
that it is possible to have multiple routers on a single hardware, making it possible
for instance to have one router per segment (slices) in a 5G network, depending on
the requirement for that segment (delay, throughput).

Many functions in a router are used, depending on how/where the router is used. A
core router for an Internet service provider (ISP) uses different functionalities than
branch and home routers do. These functionalities can be dynamic routing protocols
and Multiprotocol Label Switching (MPLS), different VPN technologies, IP-FW,
and Dynamic Host Configuration Protocol (DHCP). A core router often uses Border
Gateway Protocol (BGP) as a dynamic routing protocol with large routing tables
with around 500-800k entries [BGP]) and with very high throughput. A branch
router often uses VPN to connect to different sites and uses some security functions,
but the throughput and routing table is not near that of a core router. Also, a typical
home router often has quite a few functions in use, and the throughput is quite low
(1-1000 MBit/s). So the requirements for different use cases of the routers vary quite
a bit. A physical router often has all the functions built in, often in ASIC. This
means that if an ACL is used in the router, there is almost no performance degrading
because of the use of ASIC. In a software router, only the functions needed are used.
The software router can then be tailored for a specific purpose. However, for each
function that is added, more computational power from the CPU is required. That
is one of the reasons why a software router is not always preferable, it will depend
on the use case.

2.6 Software routers

There exists a lot of software and OSes that are capable of doing routing. For
instance, both Linux and Windows can do layer 3 routing. Other OSes like Cisco
IOS, which originally is used on physical hardware, has been designed to be run in a
virtual software environment. However, most of the available high-speed software
routers are designed to be run in Linux, with kernel bypassing frameworks. Most
software routers can handle traffic up to 10 Gbps, but what packet sizes that this
depends on is often not stated by the developers.

2.6.1 VPP

VPP is a platform that is designed by Cisco and is released as an open-source project
as part of FD.IO. FD.IO is a collection of several projects with the goal of optimising
networking in commodity hardware [FD.a]. It utilises the DPDK framework to
bypass the kernel, and the main advantage with VPP is that it is batch processing
all the packets (in vectors). This makes it possible to save a lot of CPU cycles since
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the same processing is done with similar packets. The first packet in a vector then
"warms up" the instruction set for that vector, and when the vector is full/time
limit reached, the entire vector is processed as one. This make is possible to achieve
14+MPPS on a single core with layer 2 forwarding, which is close to the wire rate for
10 Gbps (14.88 MPPS). For IPv4 layer 3 forwarding it has a capacity of processing 9
MPPS [FD.e].

Figure 2.8: VPP Sample graph of plugins[FD.c]

The VPP framework runs on Linux and supports the same physical and virtual NICs
that DPDK supports. It has for example support for L2/L3 forwarding, MPLS,
IPv4/IPv6, VLAN, ACLs and multi-million entry for the Forwarding Information
Base (FIB). All these functions are realised with plugins and a graph tree which
the packets are processed (see Figure 2.8). So each vector of packets is processed
by one node before it is passed to the next one. This makes this architecture very
modular and flexible, to add a new feature or modify an existing one, just modify
the plugin(s). One such feature could be a firewall or IDS. Researchers have shown
that VPP is a fully functional router, well suited for NFV applications on commodity
hardware [LRP+17]. It is also capable to handle on a single server over 100 Gbps,
only limited by the PCIx express bus. The key factor for VPP to be able to achieve
these throughputs is the low-level vectorized processing primitive. This increases
both the data cache hit rate and the instruction cache hit rate.

VPP uses polling mode when using the CPU, which means that 100% of the core is
utilised when in use. This offers more efficient use of the CPU on high loads since it
does not have to do any other processing. However, if the load is low, the efficiency is
not very high since the CPU utilisation is still 100%. The alternative to pulling mode
is interrupted mode, where only the CPU resource necessary is used. However, this
mode is not as efficient with high loads as pulling mode. It is possible to configure
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VPP to use interrupt mode instead of pulling mode.

2.6.2 OVS

Open vSwitch (OVS) is virtual network switch, primary designed to be used in
a virtual environment and provides a fast data-plane in userspace. It offers the
possibility to interconnect VMs with high throughput and rich with features like
Spanning Tree Protocol (STP), OpenFlow, Virtual LAN (VLAN), NIC bonding,
multiple tunnelling protocols and more [Pro]. It can (like VPP) take advantage of
DPDK to be able to move the packets directly from the physical NIC to userspace
and the vSwitch. Tests have shown that OVS can process packets at wire-speed for
10 Gbps (14.88 MPPS) [Cha]. Other similar project like Vosyswitch (based on OVS
can perform even better than OVS when doing L2 forwarding with small frames
[PFNR16].

Since OVS supports protocols like OpenFlow, it can be controlled by a SDN controller
and therefore do L3 forwarding. This makes OVS capable of being a fast vRouter
since it takes advantage of the fast data-plane provided by the switch. The functions
of the vRouter are then decided by the SDN controller used. It can then be used as
a VNF in a NFV setting. Like VPP, OVS uses polling mode for the CPU.

2.6.3 Cisco 1000v CSR

Cisco 1000v Cloud Service Router (CSR) is a router specially designed to be used in
the cloud in a virtual environment. It has almost the same functions as Cisco’s physical
routers, and it runs the same IOS. The Command Line Interface (CLI) is the same, so
for a network administrator, it is easy to switch from configuring physical hardware
to the virtualized software. Based on the licensing and features/functions needed,
the Cisco 1000v supports up to 10 Gbit/s network speeds with the configuration of 2
CPUs and 4 GB RAM [Cisa]. It is not stated what packet size that is used when
supporting 10 Gbps. At that speed, only basic IP features are supported (the IP
Base license) like dynamic routing, tunnelling and basic networking. The router is
supported by the public cloud providers AWS, GCP and Microsoft Azure. The most
common hypervisors for virtualization is also supported, including VMware ESXi.
The Cisco CSR is not a free product, but they offer a fully functional 60 days trial,
and this is used in this thesis. VPP is stated to be the packet processing in the
software [Cisc].

2.6.4 pfSense

pfSense is a free network firewall distribution and based on the FreeBSD operating
system. It is like the Cisco CSR a complete solution with OS and software, and is
capable of being run in a virtual environment. It is officially supported by the cloud
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providers AWS and Microsoft Azure and supports the most common hypervisors
[Netb]. pfSense also comes with physical hardware where the software is pre-installed.
The current version (2.4.4) used a modified Linux kernel for the network stack, so
the data plane has almost the same limitations as the Linux kernel. In the road
map for pfSense, it is stated that support for DPDK and VPP is planned, so the
limitation in the Linux kernel will be eliminated in the future [Neta]. Netgate also
has a software TNSR, which is based on DPDK and VPP for the dataplane. This is
not an open and free solution.

2.7 Packet generation and testing

To be able to test and compare different kinds of vRouters, a key component is a
traffic generator capable of generating enough traffic to test the performance. Then
this traffic has to be measured with respect to throughput and latency. Ideally, this
measurement is done by the traffic generator and not by the vRouter itself, to get
comparable results. Moreover, ideally, the generator is a hardware ASIC, since it has
improved performance over software generators, and is less affected by other factors
like hypervisor overhead (when virtualized).

When measuring throughput on routers, the most common measurements units
are the number of bits/bytes that is pushed through and the number of packets
processed (PPS). Since the packets sizes vary based on the traffic, PPS is a good
measurements unit when comparing routers. The CPU is in almost any case when
processing packets in software the bottleneck [BRR+16]. Since memory is often in
abundance on commodity servers nowadays, the actual packet size does not affect
the overall performance much, but the number of packets processed does. When
testing router performance, the smallest packet size of 64B (84B on the wire) is used
to get the actual PPS performance. The stateless protocol User Datagram Protocol
(UDP) is used, since it does not set up a connection (like Transmission Control
Protocol (TCP)) and it is easier to have control on whats actual transmitted (no
retransmissions and congestion). By using UDP the routers maximum performance
will be around where packets start to get lost (packet loss). However, it is still
possible to get a higher throughput even when packets are starting to get dropped
by the router.

Many router manufactures reports that their products support 10 Gbps or 40 Gbps,
but does not supply the information on what packet sizes this applies for. Most
normal traffic does not include just 64B packets, but often quite larger than this up
to 1518B packets 3.The average packets size for internet connections was measured
on Campus traffic in 2018 to 870B [JRB18]. 870B packet sizes is a realistic size to

3Maximum Ethernet Maximum Transmission Unit (MTU) (1500B + 18B header), from the
IEEE802.3 specification
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use to test the router for a realistic throughput, in the number of bytes. To get an
even more realistic measurement, the use of real traffic like http/mail/dns is ideal
in a server/client setting. This does not just use UDP for transport protocol for
transmission, but also distributes the traffic on the ports more like a server/client
setting (more traffic from the server to the client, than the other way around).

The overall performance is also affected by what kind of features/functions that are
being used on the router. This can be the size of the FIB (routing table) or the
number of ACLs that is in use for instance. These factors can greatly impact overall
performance, especially in software routers. In hardware routers, these tasks are
often done in ASIC, so if you have 0, 1 or 1000 ACLs, it does not affect the overall
performance. In software, on the other hand, the performance with 0 or 1 ACL could
affect the performance greatly. This is because when there is no ACL, no packets is
being checked against any ACL, and that actual ACL process/plugin/component is
not run. However, as soon as you have an ACL, each packet has to be checked, and
this requires extra computation. Look-up in the FIB has to be done anyway when
doing routing, but the size of the table could have an effect on the performance. To
compare, the BGP internet IPv4 routing table had in Januar 2018 700 000 entries
[Hus].

2.7.1 TRex

TRex is an open-source software traffic generator designed and developed by Cisco.
It runs on Linux, uses DPDK for kernel bypassing and supports up to 20 MPPS
packet generation [Tt]. It can generate realistic traffic up to 200-400 Gbps (depending
on hardware) and has built-in measurements for latency and jitter. It comes pre-
shipped with traffic templates to use for testing, like 64B/1518B UDP packets and
HTTP/HTTPS traffic. It also has the option to add own templates and pcap files4,
so the traffic generated can be custom made.

TRex
Traffic generator

DUT

Figure 2.9: Test topology, defined by RFC 2544[IET]

4Network traffic dump
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TRex simulates any number of servers/clients needed and rewrites the IP source/des-
tination from the pcap files. This makes it ideal to test large routing tables where
all the entries are used. This means that if the routing table contains 1k entries,
TRex can simulate 1k servers/clients. For latency measurements, the Stream Control
Transmission Protocol (SCTP) is used and sent in addition to the other traffic with
a defined interval. This allows for an accurate measurement using the time stamps
on the packets, and since the sender and the receiver are within the same machine.



Chapter3Method

The following chapter presents the separate phases of the work and choice of method.
There are two main methods within the scientific method of research, qualitative and
quantitative. These will be explained in the following sections.

3.1 Qualitative method, literature study

The qualitative method literature study was chosen to gather information about the
topic area. The literature study aims to get a better understanding about the reason
packet processing in software is needed, the challenges related to doing it and how
this kind of research could benefit for further development into the field. There is a
lot of research being done in the field of software packet processing and NFV, both
by academics and commercial parties. The focus is often very different, ranging from
a detailed description of one of the building blocks needed, to different combination
of technologies and techniques to complete solutions. To get an overview and a real
understanding of how far the development has come, the literature study has to
be quite extensive to get an overview of the topic. The Institute of Electrical and
Electronics Engineers (IEEE) has published a lot of research regarding this topic and
will be the primary source of information. However, other scientific publication sites
will also be used. Public websites for the software routers, guides and forums will be
used to learn about the software, but also how to install and configure them.

The result of the qualitative method will be a good understanding of how packet
processing in software is achieved, challenges with doing this and where the technology
is today. It will result in 3-5 different solutions/products that can do routing in
software. They will be routers that are fully working, able to be virtualised and
to be configured according to RFC2544 [IET]. Each of these routers will have a
specification on performance, but they are most likely not comparable due to different
testing criteria. A quantitative method for testing these routers with equal criteria is
therefore required.

19
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3.2 Quantitative method, experimental testing

The quantitative method will include some lab testing of different kinds of software
solutions that were found in the literature study. The lab testing environment is to be
mostly virtual, but two physical servers are to be interconnected using physical NICs
and physical Twisted Pair (TP) cable. The actual setup of the test lab was done
during the specialisation project in Fall 2018. The first thing will be to get a working
traffic generator and measurement unit, to be able to verify the software routers
are working. Then the different routers can be installed, configured and verified
that they are working. They are also, if possible, tuned the perform at maximum
(by changing the default configuration, not the source code). When the routers are
confirmed working, the performance tests can be performed.

For the actual performance tests, they are divided into three different categories:

1. Different number of CPU cores, using optimal router configuration 1

2. With 2 CPU cores, testing with respectively a large FIB and ACLs activated

3. One of the routers is multiplied into many VNFs and tested in parallel and
series (chaining)

The critical data from these performance test will be the actual throughput of data
the software can process and forward from one physical interface to another, the delay
of the forwarding and the number of packets forwarded. For the test categories 1 and
2, the hypervisors network stack is bypassed completely (using PCI passthrough), so
those test should be hypervisor independent. Category 3 uses the hypervisor network
stack to pass traffic between different VMs, so that test will mostly be a test of the
hypervisors ability to process packets.

1Minimal number of functions activated and minimum number of IP routes, to get the most
optimal performance



Chapter4Experiment Design and
Implementation

This chapter documents how the experiment testing is designed and implemented,
and the setup for a virtual lab accessible from the internet. Next, it shows how the
different kind of software routers where installed, configured and tuned. Lastly, the
chapter documents how the various test was performed.

4.1 Lab Design and Setup

The RFC 2544 "Benchmarking Methodology for Network Interconnect Devices"[IET]
has been a base for designing the performance tests used for the software routers. It
defines how to do benchmarking or performance tests for network devices, including
how to set up the experiment, different kinds of metrics, frame sizes to use, filters
(ACLs), how many times/how long the test has to be run etc. It uses the notation
Device Under Test (DUT) for the router, and the generic setup is as shown in figure
2.9. The RFC is from 1999 and is a little bit outdated, but the main concepts are
being used in this experimental design.

When designing the lab, the goal was that it should be virtualized, no need for
re-wiring between tests and accessible from everywhere. This was achieved by using
VMware ESXi hypervisor for the virtualization part, and an IPsec VPN connection
to get access to the internal management network. The network was set up as shown
in figure 4.1. The firewall and IPsec server is logically placed before the physical
servers, but is physically located on ESXi-host 1 in a VM running pfSense. This is
just the network for managing the different kinds of servers and VMs, the test traffic
from the software routers are not passed over this network.
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Management network

Spezialication project Fredrik Andreassen

192.168.100.1

NTNU WEB

  129.241.209.211     

ESXi-host-1
192.168.100.10Firewall

IPsec-server
Ntnu.homedns.org

VMsVMs

ESXi-host-2
192.168.100.11

Figure 4.1: Overview Management Network in the virtual test lab

4.1.1 Physical setup

The lab was, as stated in section 3.2, set up during the specialization project period
Fall 2018. Two Dell PowerEdge R730 Servers with the following specifications:

– Intel® Xeon® E5-2650LV v4 1,7 GHz, 14 cores/28 threads CPU

– 4 x 32GB RDDIM RAM

– 4 x 1TB 7.2K RPM SATA 2.5in Hot-plug Hard Drive

– Intel Ethernet x540 10Gb BT DP + i350 1Gb BT DP Network Card

– Intel Ethernet x710 Dual Port 10 Gigabit DA/SFP+ Network Card

In addition, a JH145 HPE 5510 24G 4SFP+ switch was used for the management
connections and a reference test as a physical router. These pieces of equipment
were connected as shown in figure 4.2. It show how the management network (yellow
lines) is connected, the 10 Gbps TP test network (blue line) and single mode fibre
(blue line) connections for testing the switch routing capability.
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Figure 4.2: Connectivity of the physical equipment

4.1.2 Virtual environment

VMware ESXi v6.7 was used as the hypervisor for the virtual environment. This
is because I have previous knowledge and training using this software, and because
NTNU has student licenses available to unlock all the features of the hypervisor.
VMware vCenter was installed (separate VM) to be able to administer both servers in
one web interface (Figure 4.3). A virtual switch was added into both of the servers, to
get inter-connectivity for the management network. The IP plan for the management
network can be found in Appendix A. All the router VMs could be considered as
individual VNFs.

The web interface for vCenter offers the possibilities to manage all the VMs with a
lot of options. This includes basic options like the number of CPU cores, hard disk
size, size of RAM, different kinds of NIC to more advanced features like specific core
allocation to specific VM, RAM reservation, migration (moving between physical
hosts) and duplication. This facilitates an excellent platform to perform the necessary
tests on the VNFs, with the abilities to adjust the required options. The hypervisor
also offers resource monitor, where it is possible to see how the resource consumption
is on each VM through the Web interface. The resource monitor in vCenter is only
used to see CPU consumption when the hypervisor vSwitch is in use, to see the CPU
consumption for the virtual switch. For the VMs, the internal resource manager in
the respectively OS is used.
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Figure 4.3: Screenshot of the web interface for vCenter

An essential part of this performance test is the connectivity to the physical ports on
the NIC. There are multiple ways of doing this in VMware; one is as stated below to
add a virtual switch inside the hypervisor, and connect both the physical ports and
the VMs to this switch. With this method, the network stack in the hypervisor has
to process all the packets in a virtual switch, which involve additional computational
power and potential bottleneck when processing a large number of packets. It is also
not possible for the VMs to directly access the NIC functions like RSS and IPv4/6
checksum offloading. The use of PCI passthrough and SR-IOV (described in section
2.3) gives the VM direct access to these functions and minimal/to none processing
by the hypervisor.

To be able to access the management network and the test lab, a firewall has been set
up with IPsec capabilities. pfSense has been used (the same software that is being
performance tested, but two separated VMs). All of the software routers that are
being installed and configured are equipped with three virtual NICs: two that either
uses PCI passthrough or SR-IOV and one that is connected to the management
network. This ensures connectivity to all the VMs, and that the management traffic
is not affecting the network the tests are being conducted on. Each of the VMs is
being set up with a Secure Shell (SSH) key pair, which enables the use for remote
command executions. This is specifically used in the automation test script (described
in section 5.3.1), to change different parameters during the tests.

4.2 Choice of software routers

During the research phase, many software routers where considered. MoonRoute
was one of them, a promising software router based on DPDK capable of 14.6 MPPS
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with one CPU core [GES+17]. I was not able to get the router to run in my test
lab, so the router was not used in any further testing. Packet-journey is another
capable router, which is also used DPDK. The performance for this one is 32.4 MPPS
with 4 CPU cores, 50 ACLs and 500k routes, which is quite impressive [Git]. Like
MoonRoute, I was not able to get this one to work. Lagopus is like the two mentioned
above, a fast Linux router based on DPDK [IT16]. This one almost worked, but only
managed to get half-duplex connections, so the throughput was not that good. For
other commercially available software routers like HP VSR1000 and Vyatta (from
Brocade), it was not so easy to get hold of a copy of their software for trial testing.
However, they would have been good candidates for use in this test.

Cisco CSR 1000v offers a complete solution for deployment in a VMware virtual
environment, in the form of a template which configures all the parameters needed.
It also offers a 60 days trial for the 10 Gbps licensing, which make it ideal for this test
purpose. pfSense is an open source and comes like Cisco with a complete solution. It
is a popular software router (mostly because of its firewall qualities) and will offer
a good comparison with other routers. It also mostly uses the Linux kernel for the
network stack, so it would also indicate the performance for the Linux kernel. VPP
and OVS do not come as a complete solution like Cisco and pfSense, but they are
well established and a lot of guides and support is available on the internet. Both
of them are mention in many research articles [KS18] [BA16] [BLM+18] [LRP+17],
looks promising and have good performance results on paper.

Based on this, the 4 software routers Cisco CSR 1000v, pfSense, OVS and VPP was
chosen to use in the performance tests and comparison. I addition, the HPE switch
used to connect the two physical servers to the internet is also used for performance
testing, to get an overview of the performance for a hardware ASIC router. The
switch is not a high-performance router, but it can do layer three forwarding at
decent speeds (214MPPS throughput and less than 3 µsec delay [HP]).

4.3 Configuration of the routers

All of the routers were installed and configured with the same IP settings. This
simplifies the testing procedures, as the different VMs (VNFs) can just be turned on
and off to test each different ones. All of the routers were configured as shown in
Figure 4.4, but with unique management IP. Some of these parameters are changed
when doing some of the tests described in section 5, but this is described in the
details of that actual test.
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Interface 2: 200.0.0.1Interface 1: 100.0.0.1

MGMT Interface: 
192.168.100.X

VNF (DUT)

IP route:
16.0.0.0/8 is at 100.0.0.2
48.0.0.0/8 is at 200.0.0.2

Figure 4.4: Generic router configuration

4.3.1 Cisco CSR 1000v

The Cisco router comes as stated above with a complete solution for deployment,
which includes an Open Virtual Appliance (OVA) template. This is a pre-configured
VM image that contains all that is necessary to get the VM up and running, including
setting the parameters needed. These parameters can be IP address for the different
interfaces, user name and passwords, enabling of remote access etc. During the
installation, different choices can be made depending on how the router should
perform. The choices are Small, Medium and Large, and all have 4 GB RAM and
respectively 1, 2 and 4 CPU cores. Cisco recommends that Medium configuration
must be used when processing 10 Gbps, which is the maximum license available. The
large configuration is for using advanced security features (not available for the 10
Gbps licensing), and the small configuration is for bandwidths lower than 10 Gbps.

Three different VM were installed, each with different configuration options (respec-
tively small, medium and large). The configuration of the router is the same as Cisco
hardware routers, the CLI commands are the same. The routers were all configured
according to Figure 4.4. No additional configuration was set/possible to set to
improve the overall performance for the router. The version of the software used in
the test was 16.09.02 and was downloaded directly from the Cisco website[Cisb].

4.3.2 pfSense

The pfSense comes shipped with an ISO image file, which only contains the software.
Unlike the Cisco OVS file, the configuration of the VM has to be done manually.
Only one VM was created, and the CPU configuration was just changed when doing
different kinds of tests (described in chapter 5). The initial configuration of pfSense
is done through the console in vCenter, like interface and IP assignment. After that,
all the configuration is done through the web interface. The router was configured
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according to figure 4.4. pfSense is mainly a firewall, but this feature is turned off, so
it only acts as a basic layer three router. No other configuration or tuning of the
performance was done (nor is it possible without changing the source code). The
version used was 2.4.4 and downloaded directly from the pfSense website[Netb].

4.3.3 VPP

VPP does not come shipped as a complete solution; it has to be built from the
source code manually. This first requires the installation of an OS, and the Linux
distribution Ubuntu Server 18.04.1 was used for this purpose. This distribution
comes shipped with minimal features and does not give any Graphical User Interface
(GUI). The advantage compared to the desktop version (with GUI) is that only the
minimum services and processes are installed, so the resource consumption is lower.
The guide from FD.IO [FD.b] was followed to download, build and install the VPP
software router. It was configured according to figure 4.4.

Unlike Cisco CSR and pfSense, VPP offers many possibilities when it comes to
configuration for optimal performance, both with changing the source code and
configuration options. The how-to guide from FD.IO was used to optimize the router
[FD.d], and some of the tips were used like setting the power management, virtual
extensions, CPU Affinity, NIC drivers etc. However, the tuning did not give any
decisive improvements, as the default configuration is quite optimized. One important
thing to make sure of is that the physical NIC is connected to the same NUMA as the
cores that are processing the packets. Otherwise, the packets have to be transferred
between different NUMA structures, which might introduce a performance bottleneck.
This is not a problem with the CPU used in this test setup, as it only has one socket
and therefore one NUMA architecture.

4.3.4 OVS

OVS, like VPP, has to be installed on top of a Linux distribution, and the source code
built and installed. The guide from openvswitch.org was followed for this process
[Ope]. OVS does not come with any routing capabilities; it is just a virtual switch
which provides the dataplane. To make this into a working router, a SDN controller
has to be used to control the switch. The open source SDN controller Faucet was
chosen, since it was recommended by open vSwitch and guides to how to integrate
OVS and the Faucet where provided [Dev]. The guide was followed to install and
configure the SDN controller.

OVS also have many options, both in the source code and configuration files. In the
installation guide, there is an own section for performance tuning. This guide was
followed, but like the tuning of VPP, this did not have a significant impact on the
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overall performance. The most important options are the number of CPU cores that
is in use.

4.3.5 HP Switch

The HP Enterprise switch is both used as a switch to interconnect the two physical
servers and to act as a hardware ASIC router to get some comparable results against
the software routers. As stated before, this is primarily a switch designed to do
layer 2 forwarding, but is quite capable of doing layer 3 forwarding as well. The 10
Gbit/s ports on this router is only accessible through Small form-factor pluggable
(transceiver) (SFP) and fibre, so the 10 Gbit/s TP ports cannot be used in this
setting. This means that another physical NIC is used for the testing of the HP
switch than when the software routers are tested and could be a cause for some errors
in the experimental testing.

The configuration of the HP switch is done through a web interface and is configured
in the same way as the other software routers. One key difference with this switch is
that it uses ASIC for the packet processing, so the core configuration done in the
software router does not apply here. An Intel X710 NIC is used for the fibre traffic
(see connectivity in figure 4.2). The X710 has almost the same specification as the
X540 NIC, at least those relevant for these tests.



Chapter5Test Evaluation Methodology

This chapter will describe how the different test will be performed and what kind of
results (metrics) that will be used. The main purpose of these experimental tests is
to measure the performance of the different software routers in different scenarios.
The tests are based on the RFC 2544 [IET] where the main ideas are used.

5.1 Network topology

The general network topology used for the tests is shown in Figure 5.1. This topology
is used in all the tests, except those using VNF in parallel and chaining (described
in section 5.4.6). The IP-addresses used were taken from a sample configuration for
the TRex packet generation. TRex also simulates a chosen number of clients/servers
to generate traffic from/to, to get a more realistic testing scenario. This is described
in more detail in section 5.3. The actual physical setup of the TP cables is shown in
Figure 5.2 (the full physical setup is shown in Figure 4.2).
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Figure 5.1: Generic Network topology for the tests
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Figure 5.2: Physical setup

The physical NICs supports 10 Gb/s each, so the maximum of traffic to process for
the DUT is theoretically 10 Gb/s when sending from end to another. To get more
traffic for the DUT to process, 10 Gb/s traffic is sent from both ends simultaneously,
so theoretically the DUT could be processing 20 Gb/s. Thus the term client/servers
used is not entirely accurate, but TRex uses the terms and therefore used in the rest
of the thesis.
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5.2 Metrics

To be able to compare the different kinds of routers, it is necessary to establish some
metrics to be used in the experimental testing. All of these metrics are outputs given
by the traffic generator TRex. The metrics used are:

– Packet Loss - Given in percent and is the number of packets that are sent, but
not received in the other end.

– Actual throughput - Given in PPS and is based on the number of packets that
are sent and received in the other end, regardless of the packet loss. Calculated
by taking the total number of packets received divided by the test duration
time.

– Packet Delay - Given in seconds, the time from the packet is sent to it is received
again. This is done by sending additional packets on top of the generated
traffic, and the time difference measured. Since the sender and receiver are on
the same physical CPU, the delay measurement should be quite accurate. The
SCTP is used to measure the delay.

The number of packets the router can handle (PPS) is a more interesting number
than the number of bits its able to handle because it is independent of the packet
size. This number is not necessarily the metric Actual throughput since this could
involve some packet loss. The maximum throughput in PPS for a software router is
(in this thesis) determined by what the actual throughput is when the packet loss is
less than 0.1%.

Other metrics, like CPU utilization and RAM usage, are not considered and evaluated
in these tests. The primary focus on the tests is to find the maximum throughput,
and then the CPU utilization will be around 100%. Some routers also use polling so
the CPU utilization will always be 100%, regardless of the packet load. The CPU
utilization is therefore not so interesting in this test setup. RAM is today considered
quite cheap, and all the routers did from their specifications specify how much RAM
they require to operate. All the routers were therefore given "unlimited" RAM (32
GB), which is way more than required. The size of the RAM will therefore not be a
bottleneck and is not considered when measuring the routers. The number of cache
misses is measured in a lot of research papers when testing software packet processing
[ERWC15] [GES+17] [BLM+18]. This will also not be tested, mainly because of the
difficulty of measuring this in the routers that do not run on Linux. Also, since
maximum performance in the interesting part, cache misses is not so useful in this
context.
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5.3 TRex packet generation

TRex is configured as shown in figure 5.1 regarding the IP addresses. The platform
was configured to use 1 CPU core for the general handling, 1 for latency measurement
and 14 cores for traffic generation and measurement. This to ensure that TRex is not
the bottleneck in the test setup. The general subnets used are 16.0.0.0-16.7.255.255
for the clients, and 48.0.0.0-48.7.255.255 for the servers. This means that 524k clients
and 524k servers are simulated for the test. When testing with a large routing table
and ACLs, the number of clients/servers are set to be equal to the size of the routing
table and ACL entries.

TRex comes with some templates pre-installed. One template consists of one 64B
UDP packet, that is sent from the client to the server. This template (specifically the
pcap file) were modified using WireEdit [Omn] to consist of two 64B UDP packets.
Wireshark [Wir] were used to verify that the packages created are valid (correct
checksum). The two packets where modified so that one is sent from the client to the
server, and the other is sent the other way. This template is used as a base for all
the tests. When it is modified, or another template is used, it is specified in the test.

t-rex-64 -f udp_64B_2_ways.yaml -c 14 -l 100 -d 60 -m X

Figure 5.3: TRrex command

The command in figure 5.3 is what is used in most of the tests. It specifies what
kind of template to be used (udp_64B_2_ways.yaml), the number of cores to use
(14), number of packets per seconds to send for latency measurement (100), test
duration (60) and how much traffic to send (the variable X). The number defining
how much traffic to send is based on some numbers in the template file and for the
"udp_64B_2_ways.yaml" the number 1 equals 0,181 MPPS 1. It is this number that
is the variable when doing the tests, to determine the maximum throughput.

5.3.1 Script for automating the tests

To be able to determine the performance of a router, it is necessary to perform
multiple tests. The span chosen is from 0 to 35 MPPS. The theoretical maximum
PPS is around 30M (2 * 14,88 MPPS), and the span was determined a little bit
over this to see what happens when this limit is reached. An initial test is done

1This number is based on the Connections Per Second (CPS) in the template file, which is set
to 90615. Sending on both interfaces, this equals 0.181 MCPS. Since one connection is just one
packet, the CPS equals PPS in this case
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prior to the final test, to see approximately where the maximum performance is.
These results are then used to determine what kind of interval to use for m (in
the TRex command, figure 5.3). The density of the tests is more intense around
the approximately maximum performance acquired from the initial test, and not so
intense elsewhere.

Each test has around 40 individual tests where the PPS is the variable, and since
each of those tests takes 60 seconds, the total time for each router test is around 40
minutes. In order to be able to do all these performance tests, a script was developed
to automate most of these tests. This can be found in Appendix B. This performs
all the tests and stores the result in a csv file. For the routers VPP and OVS the
script can also change the configuration between each tests using remote commands,
like the CPU core configuration and routing table size. For the Cisco and pfSense
router, these changes have to done manually between each test.

5.4 Tests scenarios

To be able to compare the different kinds of software routers when they are used
as a VNF, different kinds of test scenarios has been formed. First is a test where
different kind of core configuration is tested. Based on this test, one optimal core
configuration is used for the rest of the tests, and other factors are changed like
routing table, ACLs, realistic traffic etc... Then the software router that has the best
performance based on the previous tests, is tested without virtualization, to see what
impact the virtualization has on the performance. Lastly, the same software router is
tested with multiple instances, in both parallel and when chained. Unless otherwise
specified, the 64B UDP packet sending on both ports is used as test traffic.

5.4.1 Testing with different core configuration

This test purpose is to see how the number of CPU cores in a software router affects
the overall performance. The network architecture from figure 5.1 is used, and the
most optimal configuration on the router is used. This means that all unnecessary
functions have been deactivated on the routers (that can be deactivated), so that
they only perform as a layer 3 forwarder. 2 routes2 is inserted into the router, to
be able to forward the traffic correctly to/from the TRex traffic generator. The HP
switch performance is also tested, but since ASIC is used when doing the packet
processing, it is not possible to test with different core configurations. One test is
therefore performed on the HP switch. 524k clients and 524k servers are simulated
for sending and receiving the traffic.

2IP routes: 48.0.0.0/8 is at 200.0.0.2 and 16.0.0.0/8 is at 100.0.0.2
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To generate the routing table, a script was created to do this. The generic script
for this can be found in Appendix C. Since the configuration of the routing table is
different for each of the routers, a script for each router has been created.

5.4.2 Testing with large routing table

This test purpose is to see how the performance is effected by using a large routing
table. This involves IP route look-up for each incoming packets, which means more
CPU computation. 262k of routing table entries was chosen to be tested since this
was the maximum number of route entries the Cisco and pfSense allowed (found by
trial and error). Each of the simulated client/servers has a corresponding route entry
so that the router is forced to do a look-up for each of the client/servers. This means
that only 262k client/servers are simulated in this test, opposite to the 524k in the
previous test.

The HP Switch did only support 32k routes, so the number of routes tested on the
switch is 8 times smaller than with the software routers. But it will still give an
indication of how adding many route table entries will affect the overall performance.

5.4.3 Testing with ACL

This test purpose is to see how the performance is affected when turning the software
router into a IP-FW using ACLs. To have the same number of ACLs on all the
routers, 1024 entries are used. The number of simulated client/servers is reduced
to 512, and each of them has a corresponding ACL. The packets are checked on
the input on both of the ports. The ACLs where created from the scripts found in
Appendix C.

5.4.4 Testing with realistic traffic

This test purpose is to test the performance of the routers with more realistic traffic,
not just the smallest packet size possible. The use of 64B UDP packets give a good
picture of how much packets the router is able to process, but in a real-life scenario,
this is not the type of traffic that will be routed. As stated in section 2.7, the average
packet on the internet is around 870 byte. To use this packet size will give a good
indication on how the router will perform in a real-life scenario. A template was
created based on the previous one ("udp_64B_2_ways.yaml") and changed to 870
bytes (888 bytes on the wire).

This test still only test UDP packets with a fixed size, which is still not realistic.
In a real-life scenario packets have different kinds of sizes, may belong to the same
sessions, uses other protocols than UDP etc... TRex comes pre-shipped with some
other test templates, including an SFR template. This includes traffic like HTTP
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and HTTPS browsing, exchange and mail operations, some streaming media over
RTP, video call and DNS traffic. The purpose is to get more realistic traffic that
could be found on the internet today, and this includes much of that traffic. This
template does not send the same amount of traffic on each port, since it is a more
realistic client/server distribution ratio.

5.4.5 Testing without virtualization

To be able to see how the virtualization is affecting the performance of the software
routers, the best router (VPP) was installed directly on a server, without the VMware
hypervisor and on the same type of server as used before. The Ubuntu server was
therefore installed directly on the physical server, and VPP was installed on top of
that. The configuration is exactly the same as used when the router was a VNF. The
test traffic was with the 64B UDP template.

5.4.6 Testing with VNF in parallel and chaining

The purpose of this test is to see how the VPP router performs when used in chaining
and parallel (offloading) mode. It also gives some indications on how well suited
the router is to be used as a VNF, when it is cloned and multiplied into several
instances. When testing VNF in parallel or chaining, this involves some processing
for the hypervisor. Unlike the previous tests where the NIC was directly connected
to the VNF (PCIe passthrough), some virtual network switch has to be used. In
the parallel test, the SR-IOV is used to share access to the physical NIC. And in
the chaining test, only the end VNF (figure 5.4) is connected to the physical NIC.
The network between each VNF is a virtual one provided by the hypervisor, which
requires CPU power to be processed.
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Figure 5.4: Topology for VNF chaining

The VNF chaining is shown in figure 5.4, and up to 8 VNF is tested (all the cores is
then taken on the physical server). They are all cloned from the VPP VM used in
previous tests, so the only changes that are done are reconfiguring the IP addresses
and what virtual NIC that is connected. Each of the virtual network (vSwitch)
between the VNF is using one core each for packet processing. All the routers are
configured to send the traffic to the next VNF in the chain, so all the packets will
have been processed N times after passing through the chain. A detail description
on how the setup with 8 VNF was done, including IP addresses, can be found in
Appendix D.

The VNF parallel testing is shown in figure 5.5. Basically what this setup is, is
a kind of offloading of network functions, where each of the VNF is configured to
do the same tasks. Normally there would be a load balancer before and after the
VNFs, to distribute the load between them. In this setup, the TRex is doing the
load balancing, by sending a different kind of traffic to the different IP addresses
of the routers. SR-IOV is used to share the access of the physical NIC, and some
computation is required from the hypervisor to distribute the traffic to the correct
VNF. A detailed description of the test setup can be found in Appendix D.
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Figure 5.5: Topology for VNF in parallel

For all these tests; 2, 4 and 8 VNFs have been tested. The 64B UDP packet template
is used for traffic generation.





Chapter6Results
This chapter describes the result found during the configuration part of the different
kind of software routers and the performance results from the different scenarios in
section 5.4. All of the proposed routers can process and forward IP packets when
they are used as a VNF, but the rate they are able to do this varies. For the routers
that have the possibility of performance tuning, this has been tried but did not give
any significant improvements from the default configuration. The total number of
individual tests run during this thesis is 1546; each consist of a 60 seconds test. All
of these results are being presented in graphs, and the performance numbers have
been collected from these graphs.

When the Cisco and pfSense router is tested with the number of cores specified, the
VM is only allocated that exact number of cores. For the VPP and OVS router
the VM is allocated 10 cores, but the configuration is restricting how many cores
that can be used. The number of cores tested is the number of actual cores that are
doing packet processing, but the software may use more cores than this. This can,
for instance, be to coordinate the work between cores and compile statistics. For
the Cisco and pfSense router, these tasks have to be done by the cores that are also
doing the packet processing. That is the reason that during testing, the SSH session
is disconnected from the Cisco router because the packet processing is prioritised.
The same applies to the web interface for the pfSense during testing. This is not the
case for VPP and OVS.

Not all of the software routers are able to be tested according to the test scenarios,
as some have some limitation on how many IP routes that is possible to add or the
number of ACL inserted. For instance the Cisco CSR, the packet loss is never under
2-3%. So for this router, the results are when the packet loss is 5%, to be able to
compare it to the other routers. The final results for the Cisco router have been
corrected and reduced by 5% and the other routers by 0,1%, to compensate for the
packet loss.

39
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6.1 Routers with different core configuration

In figure 6.1 to 6.4 are the test results from the scenario described in section 5.4.1. It
shows how the different software routers performs regarding packet loss and latency
when test traffic up to 35 MPPS is processed. Only the latency results for 1-core
configuration is shown in this section, the rest of the results can be found in Appendix
E
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Figure 6.1: 1 core: Packet loss test result with optimal configuration
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Figure 6.2: 1 core: Latency test result with optimal configuration
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Figure 6.3: 2 core: Packet loss test result with optimal configuration
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Figure 6.4: 4 core: Packet loss test result with optimal configuration

A summary of these results of what the maximum performance in PPS and what the
latency is, can be found in table 6.1. The result is taken out of the graphs where the
packet loss is 0,1%. The graph in figure 6.5 shows the same throughput numbers. As
before, for the Cisco CSR router, the number is collected for a packet loss at 5%.

Cores: 1 2 4
MPPS µsec MPPS µsec MPPS µsec

VPP 9,05 242 19,14 248 19,95 204
OVS 3,20 97 5,71 105 11,89 97
Cisco* 1,73 589 1,89 5062 2,60 4087
pfSense 0,91 508 1,77 3557 1,81 2574
HP Switch 27,27 12 N/A N/A

Table 6.1: Throughput and delay with 0,1% packet loss and different core configu-
ration
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Figure 6.5: Throughput with 0.1% packet loss and different core configuration
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6.2 Performance with additional features

Based on the test done in the previous section, all the rest of the tests are done with
a 2-core CPU configuration. Only the PPS throughput performance test results are
displayed in this section; the rest of the results can be found in Appendix E. The
figure 6.7 to 6.10 show the results when a 262k large routing table was inserted and
when 1024 ACLs was inserted (not at the same time). Some results also show results
when just 1 or 2 ACLs are activated, to show the effect by just having a few rules.

The OVS is not included in these results, as it was not possible to add 262k IP routes
or 1024 ACL and get the router to work. 1 ACL was added to see the performance
effect, and it performed the same as without one. Figure 6.6 show how adding
IP routes to OVS affects the performance compared to VPP, and shows that the
performance reduces drastically when adding IP routes. This is only to give an
indication of how the performance is degraded, as these tests are performed by the
developers of the VPP router.

Figure 6.6: VPP and OVS comparison with various IP routes (tests performed by
fd.io) [FD.e]
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Figure 6.7: VPP: Performance with large routing table and ACLs activated
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Figure 6.8: Cisco: Performance with large routing table and ACLs activated
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Figure 6.9: pfSense: Performance with large routing table and ACLs activated
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Figure 6.10: HP switch: Performance with large routing table and ACLs activated

For the summary after the tests with different core configuration, table 6.2 and
figure 6.11 shows the summary of the maximum throughput with 0.1% packet loss.
There are no new results for the OVS router, and pfSense has no results for the
configuration with 1024 ACLs. For the Cisco router, the 5% packet loss limit is still
used.
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Configuration: Optimal 262k
Routes

1024 ACLs

MPPS µsec MPPS µsec MPPS µsec
VPP 19,14 248 13,76 314 6,89 730
OVS 5,71 105 N/A N/A
Cisco* 1,89 5062 1,85 170 2,34 1984
pfSense 1,77 3557 1,82 4085 N/A
HP Switch 27,27 12 27,23 20 27,29 20

Table 6.2: Throughput and delay with 0,1% packet loss and and different number
of routes and ACLs
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Figure 6.11: Throughput with 0.1% packet loss and different number of routes and
ACLs

6.2.1 Realistic traffic

Table 6.3 and figure 6.12 shows the results from the test where (near) realistic traffic
has been tested. The throughput is for the first time showed in bit/s, and not PPS.
This is because when increasing the packet size above 64B, the number of bits that is
pushed through the interface is more likely to be the limiting factor. In the table, the
throughput of each of the two ports is shown individually, because of the different
kind of traffic that is going through them in the SFR test.
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Traffic Port 0 (Gbit/s) Port 1 (Gbit/s) Sum (Gbit/s) MPPS

VPP UDP 888B 9,79 9,79 19,58 2,76
SFR 2,77 9,76 12,53 2,76

Cisco* UDP 888B 5,03 5,03 10,06 1,41
SFR 1,68 5,35 7,03 1,52

pfSense UDP 888B 3,74 3,74 7,48 1,05
SFR 1,08 3,47 4,55 0,98

OVS UDP 888B 9,79 9,79 19,58 2,76
SFR 3,02 9,77 12,79 2,75

HP Switch UDP 888B 9,79 9,79 19,58 2,75
SFR 3,07 9,77 12,84 2,75

Table 6.3: Throughput with realistic traffic
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Figure 6.12: Throughput with with realistic traffic, the sum of traffic on both
interfaces

6.2.2 Without virtualization

For the test to compare the difference in performance with and without virtualization,
only the VPP software router was tested. This is because that VPP was the router
that performed best in the previous tests. The same configuration files from the
VPP VNF router was used. Figure 6.13 and table 6.4 shows the results from this
tests, compared with the results from when VPP was used as a VNF. It was also
tested with 4 and 6 core configuration, but these results are not shown here as they
were identical to the 2-core configuration.
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Figure 6.13: VPP performance throughput with and without virtualization

MPPS µsec
1-core VNF 9,05 242
1-core no virtualization 7,75 72
2-core VNF 19,14 248
2-core no virtualization 19,50 159

Table 6.4: VPP performance and latency with and without virtualization at 0.1%
packet loss

The graph in figure 6.13 shows that the performance is slightly better without
virtualization, but the table 6.4 shows that 1-core VNF performs better when
virtualized. For unknown reasons the 1-core without virtualization has some packet
loss around 1% from 8-11 MPPS. But at 10,88 MPPS, the packet loss for the VNF
is 11% and the packet loss without virtualization is 1%, so the performance is still
better without virtualization.

6.3 VNF in parallel and chaining

The test results for the parallel and chaining scenarios are shown in figure 6.14 and
6.16. In previous tests, the CPU usage has been easy to determine, since the pulling
mode uses 100% of the CPU cores allocated. In the parallel and chaining scenario,
additional computation has to be done by the hypervisor since the virtual network is
introduced. And this is affecting the results when adding more VNFs and the total
number of CPU cores for the physical server becomes a bottleneck. Everything is
still working, but the hypervisor is then sharing the resources, which might mean
that a VPP process is not actually getting 100% of a CPU core.

When testing with four VNFs in the chaining scenario, the total CPU consumption
on the physical server was 83% (data collected from the vCenter). When testing
with eight VNFs, the total consumption was almost 100%. In the parallel scenario,
the physical CPU consumption never reached 100%, even with eight VNFs.
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Figure 6.14: VPP performance throughput in a parallel scenario, packet loss
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Figure 6.15: Actual throughput VPP, in a parallel scenario

At the time of the testing, VPP did not fully support the use of the VMXNET3
virtual NIC. One of the features that were not supported was the RSS feature,
which is the NIC feature that can distribute packets between multiple CPU cores.
VMXNET3 is the virtual network drivers that are used between the VNFs in the
chaining scenario.
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Figure 6.16: VPP performance throughput in a chaining scenario





Chapter7Discussion

This chapter is a discussion based on the theory in chapter 2 and the results from
chapter 6 within the scope of the research question presented in section 1.2. It starts
with a discussion on the experimental testing that has been performed, the possible
errors in the test and the individual test results for the VNFs. The aim is to address
the second research question. After that, a general discussion addressing the first
research question on the different challenges of doing routing in software, and how
the different routers tested in this thesis overcome these.

All of the proposed software routers were able to forward layer 3 IP traffic, and they
did this while they were configured as VNFs. Most of the results were as expected,
according to the research done and what the developers had claimed their product
should be able to perform. The way the test was performed, and that the same
experiment was able to be run on all the routers, gives a good comparison between
the different solutions. This knowledge is directly linked to a part of the research
question two.

The experimental testing has some room for errors in the results, but by doing many
60 seconds test for each specific configuration, these errors are hopefully reduced.
Before each test, a short test is always performed, to see that the results are near
what they are expected to be. Also, this short test has also helped to decide where
the highest resolution of the actual test should be (around its maximum throughput
performance). Doing this also helps reduce the possible errors that could occur. The
measurement of the latency is done on top of the generated test traffic. It is in many
ways a separate test, but it is performed by the same software that generates and
checks the test traffic. This way it should give accurate latency results, but might
affects the total performance some. 100 SCTP packets are sent per second to do the
measurement, which means that at 1 MPPS test traffic, the latency measurement
packets is 0,01% of this traffic. At 20 MPPS it is 0,0005%. This use of this latency
measurement should not affect the overall performance throughput significantly.
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During the test, some limitations have been discovered. Research has shown that
it is possible to do almost 100 Gbit/s packet processing in commodity hardware
[LWRL17]. In this test setup two 10 Gbit/s NIC is used, which at maximum allows
for traffic up to 20 Gbit/s / 29,76 MPPS. As the tests have shown, this limits is only
reached for the HP switch which used ASIC, but that still does not mean that the
physical NIC is the only limitation for the tests. This is discussed more in 7.1. Other
limitations in the test are the number of CPU and cores, but does not really kick in
before the number of VNFs is increased above 4.

7.1 Individual test results

7.1.1 Cisco CRS 1000v

The Cisco CSR 1000v performs almost as expected and as promised by the developers.
For the UDP 888B test, it manages to process and forward 10 Gbit/s. This is probably
a limit set by the licensing for the router, as it is only for 10 Gbit/s. When testing
with SFR data, it is only able to process 7 Gbit/s with 1,52 MPPS. With the UDP
64B test, it was able to process 1,89 MPPS, so the potential is there to manage to
process 10 Gbit/s. However, the SFR traffic introduces some more complex traffic
than simple UDP packets, and the average packet size is also smaller than 888B. One
surprising thing about the router is that it has a constant packet loss around 3-5
percent, even when its maximum performance is not reached. The reason for this
is unclear, and during the research phase, nothing suggested that this would be a
problem. However, this means that the maximum performance is set to be when the
packet loss is 5%, to get some numbers out of the test. This makes the numbers not
completely comparable to the other routers in the test.

When reaching maximum throughput, and the CPU usage is around 100%, it shows
clearly that all of the cores are used and prioritized in the packet processing. The SSH
connection is disconnected when reaching 100% CPU usage, and it is not possible
to connect to it again before the test traffic is stopped. This makes it impossible
to monitor and make changes to the router during heavy load operation, which in
some cases could be a problem. When increasing the IP routing table and adds
ACLs, the router actually performs better than without. This is a little bit strange
since more computation is required when these extra loads are introduced. Why
the performance is better with is unclear, but it shows that the process of checking
large IP routing tables and doing ACLs check does not affect the overall performance
negatively.
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7.1.2 pfSense

The pfSense router performs almost as good as the Cisco router does, with 1,77
MPPS performance with 2-core configuration. With the UDP 888B test, it performs
7,5 Gbit/s. With the SFR traffic, it performs even worse, only able to process 4,5
Gbit/s of data. The PPS is only around 1M, which is almost half the maximum PPS
performance it has with 64B packets. This indicates that the assumption that only
the PPS performance for a router is important, is not entirely correct. Other factors
come into play when the packet size is increased from 64B, and the most likely factor
that has an impact on this is the RAM (size and the access speed). pfSense does
not take advantage of multi-core architecture, as only one core is used for packet
processing. In the release of a new version of the router, it is announced that it will
support DPDK and VPP for packet processing and the performance throughput is
expected to be dramatically increased.

The latency is like the Cisco router quite high at maximum performance, around 3,5
msec. But up until that limit is reached, the latency is around 3-500 µsec, which is not
that bad. It also does not start dropping packets before the maximum throughput is
reached, which is what is expected for a router. When adding large IP routing table,
the overall performance is not affected much by this. However, when activating the
firewall function, which is needed to use the ACLs, the performance drops drastically.
When the FW is activated, more than just checking ACLs is being done. One thing
that is being done, is keeping track of sessions. Also, with the 64B UDP test traffic,
each of the packets is treated as a session, and the maximum of sessions possible in
pfSense is soon reached. And when this limit is reached, it stops processing further
packets. The performance with the FW activated is much better than the results
shows in this test, but in the 64B UDP test, it is not able to do that.

7.1.3 VPP

VPP is by far the best software router in this test when considering maximum
throughput performance. The latency results are only beating by the OVS router,
but expected since one of the main thing VPP does to boost performance, is batch
processing. And this does naturally introduce some delay. With 9 MPPS performance
with 1-core configuration, and 19 M with 2-core, means that it can process layer
3 packets at 10 Gbit/s line rate (14,88 MPPS) with just 2 CPU cores. At around
20 MPPS the performance is at a maximum, independent of the number of cores
allocated (tested with up to 8 cores). For the HP switch ASIC the performance is
measured to 27 MPPS, so the test method is able to measure throughput above 20
MPPS. The latency results after reaching 20 MPPS is also volatile. Up until 20
MPPS, it is quite stable, but after it varies both up and down. The reason for this
is unclear, but one theory is that queuing in some part of the processing chain is
kicking in because there is a performance bottleneck. Some sort of queuing would
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explain the unstable latency results, but why and where the queuing is taking place
is unclear.

When adding 262k IP routes into the FIB, the performance is reduced from 19 to 13
MPPS. That is far from what the developers claim, that the performance is hardly
affected by the number of routes in the FIB (as shown in figure 6.6) They claim that
the performance is the same with 6 routes, as it is with 2M routes. This is not true,
based on the results produced for this thesis, but the developers do not in any way
say how the test has been performed. A different test might give some other results.

When adding ACLs and by that activating the ACL-plugin for, the performance is
reduced drastically. By just adding 2 ACLs, the performance is halved to around
10 MPPS, and when 1024 ACLs is added, the performance is reduced to 7-8 MPPS
(from graph in figure 6.7). This clearly shows the plugin-tree used in VPP, where only
the necessary plugins are used. When activation this plugin, every packet (or vector)
has to be processed by that plugin, which introduced a considerable performance
downgrading. Other routers are not heavily affected by adding ACLs, which indicates
that a check is performed anyway, regardless of any ACL is entered or not. This
shows that using plugins is a smart way to get high-performance since only the
necessary packet processing is done.

When realistic traffic is tested on the router, it is only limited by the physical 10
Gbit/s NICs. It has no problem at processing regular traffic at 20 Gbit/s, with a
2-core configuration.

7.1.4 OVS

OVS is the second best software router, based on the performance. With realistic
traffic, it is able to perform at maximum with 20 Gbit/s. The throughput with the
64B UDP traffic is 5,7 MPPS with a 2-core configuration, and can achieve around
20 M with an 8-core configuration. This makes the OVS a perfectly capable packet
processor but does not have so good per core as the VPP. The latency delay is
the best results of all the software routers, with roughly 100 µsec at maximum
throughput. So for a time delay sensitive use cases, this router could be the best
choice. The OVS does not batch process packets, so each packet is processed when
they are arriving, and therefore making the processing time shorter.

The same latency results as with VPP appear after 20 MPPS is reached, unstable
and maybe indication some sort of queuing. A common denominator for the OVS
and VPP is that they both uses the DPDK for kernel bypassing and network drivers.
It might be something with DPDK and the hardware in use that is causing this, but
that is unclear.
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When adding a large routing table and 1024 ACLs to the SDN controller that is
controlling the OVS, it fails because the loading time is too long. It might be that if
another SDN controller was used than the Faucet, it might have been possible to
test this. However, since the FIB and the ACLs were reloaded each time the test is
started, it was not possible with the SDN controller Faucet.

7.1.5 HP Switch

No surprise, the HP switch has clearly the best performance, both in throughput
and latency. This shows how hardware ASIC still has some huge advantages over
packet processing in software. The traffic generator is not near the limitation for
the switch of 214 MPPS. But here the limitation of the physical 10 Gbit/s NIC is
the bottleneck, where it is able to process 27,27 MPPS (and 29,76 MPPS is the
theoretical maximum with 2 x 10 Gbit/s NICs). With latencies around 5-7 µsec, and
max latency of 12 µsec with high load, these results are in another league than the
software routers tested in this thesis.

When adding a large IP table (just 32k, not 262k as for the other routers) and
adding 1024 ACLs, the performance is not significantly changed. This shows the
advantage of ASIC, where the packets have to go through all the circuits anyway,
and therefore no performance downgrading is introduced when adding IP routes and
ACLs. A different physical NIC (Intel X710) was used during testing, because of
the fibre connection. This might be the reason why the throughput is able to pass
the 20 MPPS limit that VPP and OVS could not pass. However, it should not be a
problem, since the x540 NIC should sustain full line rate with 64B packets on both
ports [ERWC15].

7.1.6 VNF Chaining and Parallel

When testing the VPP router in a VNF chain and parallel scenario, what is really
being tested is the hypervisors ability to process packets. Since multiple VNF
instances has to share a physical NIC, some processing has to be introduced to be
able to distribute the packets correctly. Moreover, the hypervisors ability to process
packets is considerably worse compared to the VPP processing. In the parallel
scenario, the maximum throughput is around 15 MPPS, and since more CPU cores
are actually in use to process the packets, you should expect that the performance
would go up. The SR-IOV way of sharing the interface is most likely the cause of
the performance downgrading and becomes the bottleneck. If we see on the actual
throughput regardless of the packet loss, the performance for the 2-VNF setup is
around 20 MPPS (from figure 6.15). That is the same performance as the optimal
setup where the VNFs have exclusive access to the physical NIC (but with packet
loss around 10%). This shows that the SR-IOV can perform at high bandwidth loads,
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just that some packet loss is expected. The physical number of CPU cores available
is not a problem before passing 8-VNFs, which can be seen as the unstable latency
results for the 8-VNF configuration.

In the chaining scenario, the physical interfaces are not shared between multiple
VNFs. But between each VNFs, a virtual network switch provided by the hypervisor
is responsible for processing and transferring the packets. This is the bottleneck in
this test scenario. The performance with 2-VNFs is around 4 MPPS, and just 1
MPPS with 8-VNFs. This shows that the virtual network provided by the hypervisor
is not near the performance for SR-IOV, when a physical interface is shared with
multiple VNFs. The overall performance is also going down when adding more
VNFs to the chain. This suggests that the virtual networks are using the same CPU
resources when processing the packets.

7.2 Challenges with routing in software

The software routers that had the best performance in this test was the one using
DPDK for kernel bypassing. A key factor for success in processing packets in software
is to have an efficient way of moving the packets from the physical NIC to the software
that is to process the packets. The use of multi-cores is also essential, as it makes it
possible to scale the performance based on the need. The Cisco and pfSense router
has not the ability to utilize multiple CPU cores, and this is clearly shown on the
results. A minimum number of CPU operations has to be done on each packet, so
without any way of utilizing multiple cores, there are no possibilities to be able to
process packets beyond 10 Gbit/s.

The RSS function in the NIC is a crucial part when using multiple CPU cores,
as it can distribute the packets between the cores without using CPU processing
power to do it. Offloading some of the packet processing to the NIC, like RSS and
checksumming, is much faster than doing this in software. The advantage is that most
modern NICs has these abilities. Batch processing of packets is the main difference
between the VPP and OVS router. The ability to processes similar packets as one,
and be able to pre-fetch instructions from memory ahead of time, saves many CPU
cycles and have a significant impact on the overall performance. It does introduce a
small delay, but in many use cases, this increase is insignificant. It is not without a
reason that pfSense wants to use VPP for packet processing in future editions, and
probably Cisco as well (as they are the creators behind it).

The experimental testing has shown that it is possible to do high-speed routing in
software using commodity hardware. Compared to the physical ASIC router tested
in this thesis, there is still a way to go to accomplish those kinds of throughput and
latency results, even when it was compared with a switch and not a fully functional
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router. However, depending on the use of virtual routers, the performance may be
good enough in many scenarios. Moreover, the use of routing in commodity hardware
has many advantages over specialized hardware: (often) cheaper, better utilization,
the possibility to run multiple functions (VNFs) on one physical device etc.





Chapter8Conclusion

The concluding chapter of this thesis presents the conclusion and suggestions for
future work with the topic. In the thesis, different kinds of software have been tested
when used as a VNF, and these results have been compared to each other. It has
also been a test to see if it is possible to do packet processing in software and what
challenges it introduces, especially when doing routing in a virtualized environment.

8.1 Summary

The experimental testing that is done in the thesis shows that it is possible to do
routing in software at high-speed (10 Gbit/s and above) with commodity hardware.
It has also demonstrated that the software routers can be used as VNFs, which makes
them possible to use in combination with other VNFs like an IDS. The testing done
in this thesis was limited with the use of only 10 Gbit/s NICs, but other research
has shown that it is possible to process packets at higher speeds than that using
commodity hardware. With processing speeds of 20 MPPS, that was accomplished
with the VPP software router in this thesis, and this is equivalent to 142 Gbit/s if
using a packet size of 888B. It is not entirely correct to assume that the number of
packets processed is the same with different packet sizes, but the test has shown that
the PPS that is processed is the most critical factor and that 142 Gbit/s is probably
not far off.

It is possible to overcome the challenges of doing packet processing in software,
where kernel bypassing and the use of multi-threading is the most important way
to overcome these. Since the CPU budget is so small, every aspect of the packet
processing has to be optimized. So the optimizing of memory, batch processing
and offloading including other factors are also very important, and only when every
aspect is optimized, is it possible to do high-performance packet processing. This
partly answers the research question one about the challenges in software packet
processing. The most important challenges have been highlighted, but there are still
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challenges that have not been addressed in this thesis.

The different routers tested has implemented one or many of the factors to do fast
packet processing, but the results show that not all of the tested routers can perform
10 Gbit/s with near realistic traffic. The Cisco CSR 1000v and pfSense is nearly
able to perform at 10 Gbit/s, while the VPP and OVS router has no problem at
performing this throughput. The main difference between these is that VPP and
OVS can scale up the performance by adding more CPU cores. The pfSense and
Cisco routers are not able to scale up by just adding more CPU cores, as they have
reached their maximum performance throughput. It is clear that the routers have
not as efficient packet processing like VPP and OVS, like utilising multi-cores and
kernel network stack bypassing.

The batch processing of packets is the main difference between the VPP router and
the OVS router, and have shown to be a key part of getting high performance. It is
clear that the technology used in the VPP software is one of the best available since
other products like Cisco and pfSense is planning (or have already implemented)
to use VPP for packet processing. The best software router tested in this thesis is
the VPP router. It has the best performance, but does not necessarily have all the
functions needed for every use case scenario. In this experimental test, only basic
layer 3 forwarding was tested, but usually, more advanced functions are used when
performing routing. Since VPP is based on plugins, it is easy to write and implement
new features as needed, so this should not be a problem. The comparison based on
the test results in this thesis answers the research question two, where some software
solutions available today have been explored. There are still more solutions available
today, where some mentioned in the theory part of this thesis. However, based on
the research, these four software routers seemed the best to be tested out.

The ability to do fast packet processing in software is essential, especially now with
the 5G telecommunication network that is now being designed and implemented. It
is not only routing of packets that is needed here, but other services/features like
LB, IDS and proxy could benefit from the ability to process packet at high speed.
For instance, the VPP could be used to do many of these features, just by adding
some more plugins.

8.2 Future Work

To take this work further, it would be interesting to test the VPP software with
NICs that has higher speeds than 10 Gbit/s, for instance, 40 or 100 Gbit/s. This
thesis work and what other researches have concluded with have shown that there
is a potential for processing packets at these speeds in software. To test how the
routers perform when changes and modifications are being done during heavy load
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operation would also be interesting, as most of the routers today does not just have
a static configuration. For instance, adding and modifying the routing table during
a heavy load operation.

In this test, only the VMWare hypervisor was tested. An experimental test where
other hypervisors like Citrix or Microsoft Hyper-V were used would be interesting,
especially for testing where VNFs are used in a chaining scenario. The use of
containers could be tested instead of VMs, as this could boost the performance.
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AppendixAIP Plan Management network

Hostname IP MGMT Description Host

Firewall 192.168.100.1 pfSense 2.4.4 ESXi-1

vCenter 192.168.100.8 Vmware vCenter ESXi-2

ESXi host 1 192.168.100.10 Vmware ESXi 6.7 ESXi-1

ESXi host 2 192.168.100.11 Vmware ESXi 6.7 ESXi-2

MGMT-server 192.168.100.15 Ubuntu Server 18.04 LTS ESXi-1

HP 5510 192.168.100.2 JH145A HPE 5510 N/A

Lagopus testbed 192.168.100.20 Ubuntu Server 18.04 LTS ESXi-1

Cisco V1000 testbed 192.168.100.21 Cisco IOS ESXi-1

pfSense testbed 192.168.100.22 pfSense 2.4.4 ESXi-1

VPP testbed 192.168.100.23 Ubuntu Server 18.04 LTS ESXi-1

Open vSwitch 192.168.100.24 Ubuntu Server 18.04 LTS ESXi-1

MoonRoute 192.168.100.25 Ubuntu Server 18.04 LTS ESXi-1

Traffic-tester-1 192.168.100.30 Ubuntu Server 18.04 LTS ESXi-2

Traffic-tester-2 192.168.100.31 Ubuntu Server 18.04 LTS ESXi-2

Trex 192.168.100.32 Ubuntu Server 14.04 LTS ESXi-2

Windows 10 Client 192.168.100.33 Windows 10 ESXi-2

Ubuntu bare metal 192.168.100.26 Ubuntu Server 18.04 LTS N/A

VPP SR-IOV 1 192.168.100.27 Ubuntu Server 18.04 LTS ESXi-1

VPP SR-IOV 2 192.168.100.28 Ubuntu Server 18.04 LTS ESXi-1

VPP SR-IOV 3 192.168.100.43 Ubuntu Server 18.04 LTS ESXi-1

VPP SR-IOV 4 192.168.100.44 Ubuntu Server 18.04 LTS ESXi-1

VPP SR-IOV 5 192.168.100.45 Ubuntu Server 18.04 LTS ESXi-1

VPP SR-IOV 6 192.168.100.46 Ubuntu Server 18.04 LTS ESXi-1

VPP SR-IOV 7 192.168.100.47 Ubuntu Server 18.04 LTS ESXi-1

VPP SR-IOV 8 192.168.100.48 Ubuntu Server 14.04 LTS ESXi-1

IP Plan Management network

65





AppendixBAutomation test script

1 #!/bin/bash
2

3 time=`date +"%H%M"`
4 echo "$time: Starting TRex network througput test with router $name"
5

6

7 date=`date +"%Y-%m-%d-%H%M"`
8 outfile="/home/mgmt/tmp.txt"
9

10 result="/home/mgmt/Samba/Results/${date}-Result"
11 result="/home/mgmt/${date}-Result"
12 test_cores="1 2 4 6"
13 test_time="60"
14

15 test_2_way () {
16 test_m='4 6 8 10 12 14 16 18 20 22 24 30 35 40 45 50 55 60 65 70 75

80 85 90 95 100 105 110 115 120 125 130 135 140 150 160 170 180
190 200'

↪→

↪→

17

18 for i in $test_m; do
19 time=`date +"%H%M"`
20 sudo /opt/trex/v2.47/t-rex-64 -f cap2/udp_64B_2_ways.yaml -c

14 -l 1000 -m $i -d $test_time >> $outfile↪→

21 #sudo /opt/trex/v2.47/t-rex-64 -f cap2/udp_888B_2_ways.yaml
-c 14 -l 1000 -m $i -d $test_time >> $outfile↪→

22 Expected_PPS=`head -n 65 $outfile | grep "Expected-PPS" | tr
-cd '[[:digit:]]'`↪→

23 total_tx_pkt=`head -n 1000000 $outfile | grep "Total-tx-pkt"
| tr -cd '[[:digit:]]'`↪→
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68 B. AUTOMATION TEST SCRIPT

24 total_rx_pkt=`head -n 1000000 $outfile | grep "Total-rx-pkt"
| tr -cd '[[:digit:]]'`↪→

25 maximum_latency=`head -n 1000000 $outfile | grep
"maximum-latency" | tr -cd '[[:digit:]]'`↪→

26 average_latency=`head -n 1000000 $outfile | grep
"average-latency" | tr -cd '[[:digit:]]'`↪→

27 Total_sw_err=`head -n 1000000 $outfile | grep "Total-sw-err"
| tr -cd '[[:digit:]]'`↪→

28 Total_sw_tx_pkt=`head -n 1000000 $outfile | grep
"Total-sw-tx-pkt" | tr -cd '[[:digit:]]'`↪→

29 Packets_lost=`expr $total_tx_pkt - $total_rx_pkt`
30

31 echo "$time: $2 Core(s), $3, M: $i, PPS: $Expected_PPS,
Packets lost: $Packets_lost, Average latency:
$average_latency, Max latency: $maximum_latency"

↪→

↪→

32

33 echo "$i, $total_tx_pkt, $total_rx_pkt, $maximum_latency,
$average_latency, $Total_sw_err, $Total_sw_tx_pkt" >>
$result$1

↪→

↪→

34 rm $outfile
35 done
36 }
37

38

39 test_VPP_no_virtualization_2_routes () {
40 for c in $test_cores; do #test all the cores with 2 routes
41 command="sudo cp /etc/vpp/vpp-$c-core.conf

/etc/vpp/startup.conf; sudo cp /home/mgmt/2-routes.txt
/home/mgmt/startup-vpp.txt; sudo service vpp restart"

↪→

↪→

42 sudo ssh mgmt@192.168.100.26 $command
43 sleep 5
44 result_output="VPP-bare-m-$c-cores-2-routes.csv"
45 echo "M, Total-tx-pkt, Total-rx-pkt, Maximum-latency,

Average-latency, Total-sw-err, Total-sw-tx-pkt" >>
$result$result_output

↪→

↪→

46 test_2_way "$result_output" "$c" "2-routes"
47 done
48 }
49

50 test_VPP_2_routes () {
51 for c in $test_cores; do #test all the cores with 2 routes
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52 command="sudo cp /etc/vpp/vpp-$c-core.conf
/etc/vpp/startup.conf; sudo cp /home/mgmt/2-routes.txt
/home/mgmt/startup-vpp.txt; sudo service vpp restart"

↪→

↪→

53 sudo ssh mgmt@192.168.100.23 $command
54 sleep 5
55 result_output="-$c-cores-2-routes.csv"
56 echo "M, Total-tx-pkt, Total-rx-pkt, Maximum-latency,

Average-latency, Total-sw-err, Total-sw-tx-pkt" >>
$result$result_output

↪→

↪→

57 test_2_way "$result_output" "$c" "2-routes"
58 done
59 }
60

61

62 ovs_test_cores="1 6 1E 7E" #1, 2, 4, 6 cores
63 test_ovs_2_routes () {
64 for c in $ovs_test_cores; do #test all the cores with 2 routes
65 command="sudo ovs-vsctl set Open_vSwitch .

other_config:pmd-cpu-mask=0x$c"↪→

66 sudo ssh mgmt@192.168.100.24 $command
67 sleep 15
68 result_output="OVS-0x$c-cores-2-routes.csv"
69 echo "M, Total-tx-pkt, Total-rx-pkt, Maximum-latency,

Average-latency, Total-sw-err, Total-sw-tx-pkt" >>
$result$result_output

↪→

↪→

70 test_2_way "$result_output" "$c" "2-routes"
71 done
72 }
73

74 #test_ovs_2_routes
75

76 test_2_way "-VPP-1-core-8-chain-2-routes-0-ACL.csv" "1"
"8-chain-2-routes-0-ACL"↪→

77

78 #test_VPP_no_virtualization_2_routes





AppendixCScript for generating ACL and
routing table

Powershell script for IP route generation:

1 #Network 100: 16.0.0.0/8
2 #Network 200: 48.0.0.0/8
3

4 $location_file = "C:\Users\Fredrik\Dropbox\NTNU\Masteroppgave\Lab
setup\Ruting tables\Ip_table_Cisco_262k.txt"↪→

5

6 $b_num = [int]"3"
7 $c_num = [int]"255"
8 $d_num = [int]"255"
9

10

11 $a = [int]"16"
12 $b = [int]"0"
13 $c = [int]"0"
14 $d = [int]"0"
15

16

17 while ($b -le $b_num) {
18 $c = 0
19 while ($c -le $c_num) {
20 $d = 0
21 while ($d -le $d_num) {
22 #Output for the Cisco router:
23 echo "ip route $a.$b.$c.$d 255.255.255.255

100.0.0.2" | Add-Content -Path
$location_file

↪→

↪→

24
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25 #Output for the HP Switch:
26 #echo "ip route-static $a.$b.$c.$d

32 Vlan-interface100 100.0.0.2"
| Add-Content -Path
$location_file

↪→

↪→

↪→

27

28 #Output for the pfSense routing tables:
29 #echo "`t<route>" | Add-Content

-Path $location_file↪→

30 #echo "`t`t<network>$a.$b.$c.$d/32
</network>" | Add-Content -Path
$location_file

↪→

↪→

31 #echo
"`t`t<gateway>GW_100</gateway>"
| Add-Content -Path
$location_file

↪→

↪→

↪→

32 #echo "`t`t<descr></descr>" |
Add-Content -Path
$location_file

↪→

↪→

33 #echo "`t</route>" | Add-Content
-Path $location_file↪→

34

35 #Output for the OVS router:
36 #echo " - route:" |

Add-Content -Path
$location_file

↪→

↪→

37 #echo " ip_dst:
`"$a.$b.$c.$d/32`"" |
Add-Content -Path
$location_file

↪→

↪→

↪→

38 #echo " ip_gw:
'100.0.0.2'" | Add-Content -Path
$location_file

↪→

↪→

39 $d += 1
40 }
41 $c +=1
42 }
43 $b +=1
44 }

Powershell script for ACL generation:
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1 #Network 100: 16.0.0.0/8
2 #Network 200: 48.0.0.0/8
3

4 $location_file = "C:\Users\Fredrik\Dropbox\NTNU\Masteroppgave\Lab
setup\Ruting tables\Ip_ACL_Cisco_1024.txt"↪→

5

6 $b_num = [int]"0"
7 $c_num = [int]"1"
8 $d_num = [int]"255"
9

10

11 $a = [int]"16"
12 $b = [int]"0"
13 $c = [int]"0"
14 $d = [int]"0"
15

16

17 while ($b -le $b_num) {
18 $c = 0
19 while ($c -le $c_num) {
20 $d = 0
21 while ($d -le $d_num) {
22 #Cisco:
23 echo "access-list 103 permit ip $a.$b.$c.$d

0.0.0.0 48.0.0.0 0.255.255.255" |
Add-Content -Path $location_file

↪→

↪→

24 #HP Switch:
25 #echo "rule permit source $a.$b.$c.$d

0.0.0.0" | Add-Content -Path
$location_file

↪→

↪→

26 #VPP:
27 #Write-Host "src $a.$b.$c.$d/32,"

-nonewline↪→

28 $d += 1
29 }
30 $c +=1
31 }
32 $b +=1
33 }
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AppendixEDetailed test results

1-Core configuration
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Figure E.1: Performance results 1-core configuration
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2-Core configuration
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Figure E.2: Performance results 2-core configuration
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4-Core configuration 1 core:
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Figure E.3: Performance results 4-core configuration
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VPP with different features 1 core:
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Figure E.4: Performance results VPP with different features
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Cisco with different features 1 core:
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Figure E.5: Performance results Cisco with different features
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pfSense with different features1 core:
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Figure E.6: Performance results pfSense with different features
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HP Switch with different features1 core:
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Figure E.7: Performance results HP Switch with different features
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Results with and without virtualization1 core:
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Figure E.8: Performance results with and without virtualization



85

Results VPP in parallel 1 core:

0 %

10 %

20 %

30 %

40 %

50 %

60 %

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00

P
ac

ke
t 

lo
ss

 (
%

)

MPPS

VPP Parallel - Packet Loss

2-VNF

4-VNF

8-VNF

0,00

5,00

10,00

15,00

20,00

25,00

30,00

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00

A
ct

u
al

 M
P

P
S

MPPS

VPP Parallel - Actual MPPS

2-VNF

4-VNF

8-VNF

0

200

400

600

800

1000

1200

1400

1600

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00

La
te

n
cy

 (
u

se
c)

MPPS

VPP Parallel - Average Latency

2-VNF

4-VNF

8-VNF

1 core:

0 %

10 %

20 %

30 %

40 %

50 %

60 %

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00

P
ac

ke
t 

lo
ss

 (
%

)

MPPS

VPP Parallel - Packet Loss

2-VNF

4-VNF

8-VNF

0,00

5,00

10,00

15,00

20,00

25,00

30,00

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00

A
ct

u
al

 M
P

P
S

MPPS

VPP Parallel - Actual MPPS

2-VNF

4-VNF

8-VNF

0

200

400

600

800

1000

1200

1400

1600

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00

La
te

n
cy

 (
u

se
c)

MPPS

VPP Parallel - Average Latency

2-VNF

4-VNF

8-VNF

1 core:

0 %

10 %

20 %

30 %

40 %

50 %

60 %

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00

P
ac

ke
t 

lo
ss

 (
%

)

MPPS

VPP Parallel - Packet Loss

2-VNF

4-VNF

8-VNF

0,00

5,00

10,00

15,00

20,00

25,00

30,00

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00

A
ct

u
al

 M
P

P
S

MPPS

VPP Parallel - Actual MPPS

2-VNF

4-VNF

8-VNF

0

200

400

600

800

1000

1200

1400

1600

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00

La
te

n
cy

 (
u

se
c)

MPPS

VPP Parallel - Average Latency

2-VNF

4-VNF

8-VNF

Figure E.9: Performance results for VPP in parallel
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Figure E.10: Performance results for VPP in chaining mode
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