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and of Morphisms in the Infinite Radical

Karin Baur1 ·Hermund André Torkildsen2
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Abstract
We give a geometric realization of the module category of a hereditary algebra of type Ã.
We work with oriented arcs to define a translation quiver isomorphic to the Auslander-
Reiten quiver of the module category of type Ã. To get a description of the module category,
we introduce long moves between arcs. These allow us to include the infinite radical in the
geometric description. Finally, our results can also be used to describe the corresponding
cluster categories by taking unoriented arcs instead.

Keywords Tame module category · Cluster category · Infinite radical · AR quiver

1 Introduction

In this article, we want to describe the module categories and cluster categories of type Ã

combinatorially. In particular, we will provide a geometric combinatorial interpretation of
their infinite radicals.

Let k be an algebraically closed field. In this article we will first concentrate on mod Ã =
mod kQg,h for some quiver Qg,h with fixed orientation, as described in Section 2.1, and on
rad∞(mod Ã) = ∩i radi (mod Ã).

Recall that the Auslander Reiten quiver AR(mod kQg,h) describes the isomorphism
classes of indecomposable modules and the irreducible maps between them. It does not
describe the elements of the infinite radical rad∞(mod Ã). The shape of the AR-quiver of
mod Ã is well-known, it consists of several connected components (cf. [9]).
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We will write P , I to denote the subcategories of mod kQg,h of the preprojective, prein-
jective modules of mod kQg,h, T g , T h and T λ for λ ∈ k \ {0} for the subcategories of
the modules whose vertices belong to the tubes of rank g, h and to the homogeneous tubes
respectively.

We describe indecomposable modules inP , I , T g or T h via oriented arcs in the annulus.
This geometric model has been used in various articles on (cluster) tubes, module/cluster
categories of type Ã, cf. [1, 2, 5, 8, 10, 11]. Note that the geometric interpretation of ele-
ments in the homogenous tubes can be achieved via closed loops in the annulus, with labels.
It seems less natural to us and we thus restrict our attention to the other components.

However, we will also focus on the infinite radical of the module and the cluster cate-
gories of type Ã. We will introduce long moves as a new tool, and show howwe can interpret
them as elements of the infinite radical.

In [4], Brüstle introduces a quiver Qm, for every m ≥ 1, by truncating the different
components in AR(mod kQg,h) at appropriate levels and then inserting additional arrows
linking the different components. The author then defines full subcategories JmQg,h of the
module category mod kQg,h consisting of modules in the union of Pm, Im, (T g)2m(n+1),
(T h)2m(n+1), T λ

2m(n+1) (λ ∈ k \ {0}) (see Section 3). He finally proves that the associ-
ated path category C(kQm) modulo certain relations (see Theorem 3.4) is isomorphic to
JmQg,h.

Note that for every module M ∈ mod kQg,h, there exists m ≥ 1, such that M is isomor-
phic to a direct sum of objects of JmQg,h and hence the categories JmQg,h can be used to
describe mod kQg,h.

In Sections 2 and 3, we will fix the notation, recall the truncated quiver Qm from [4].
In Section 4, we use oriented arcs in the annulus to define the translation quiver � which

is isomorphic to AR(mod kQg,h).
Geometric models for categories have been studied by various authors in recent years.

A geometric model for cluster categories of type ˜A has been described in in [5] (treating
marked surfacds) and for m-cluster categories of type Ã in [10] in independent work. It is
based on arcs in an annulus with marked points on the boundary. Annuli have also been
used to describe string modules [11] and (cluster) tubes [1, 8].

Our goal is to give a geometric model for the infinite radical in terms of moves between
such arcs. To do this, we define long moves between arcs of the annulus in Section 5 and
define a quiver �, whose objects are the same as the objects of �. The arrows of � are kept,
and we add new arrows for the long moves. The long moves are the ones corresponding to
elements of the infinite radical.

We then show in Section 6 that up to the homogenous components, we obtain an isomor-
phism between certain subquivers �m of � and the truncated quiver Qm from [4]. We thus
give a full description of Jm(Qg,h) for every m ≥ 1 via the combinatorial geometric model.
Finally, in Section 8 we show how we can use the above results to obtain the description of
appropriate subcategories of the cluster category of type Ã. In the Appendix, we include the
geometric description of the relations imposed in Theorem 3.4.

2 TheModule Category of Type Ã

2.1 The AR-quiver of theModule Category

As quiver of type Ã we choose a quiver Qg,h on n + 1 = g + h vertices, for g ≥ h > 0.
Let 0, 1, 2, . . . , g − 1, g, g + 1, . . . , n be arranged clockwise on a circle. Then Qg,h has g
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successive clockwise arrows βi : i → i + 1 for i = 0 . . . , g − 1 and h successive anti-
clockwise arrows, αi : i + 1 → i for i = g, g + 1, . . . , n (with αn = 0 → n) with a source
at 0 and a sink at g.

1
β1 �� 2

β2 �� · · · �� g − 1
βg−1

���
��

�

0

β0
�����

αn ���
��
� g

n
αn−1 �� n − 1 �� . . . �� g + 1

αg

�����������

Let k be an algebraically closed field. We consider the module category mod Ã of left
kQg,h-modules. Its AR-quiver describes the isomorphism classes of indecomposable mod-
ules and the irreducible maps between them. It does not describe the elements of the infinite
radical rad∞(mod Ã) = ∩i radi (mod Ã).

In this article, we want to describe the whole module category mod Ã by giving a geo-
metric combinatorial interpretation of its infinite radical. We will recall the set-up necessary
for our purpose. The focus of this article is the infinite radical of the module and the cluster
categories of type Ã, restricting to the preprojective/preinjective components and the regu-
lar tubes T g , T h. We will introduce long moves as a new tool. Long moves correspond to
elements in the infinite radical.

As a running example we take n = 4 with g = 3 and h = 2. The quiver Q3,2 looks as
follows:

•1 �� •2
���

��

•0
�����

		��
���

�� •3

•4


							

The preprojective and preinjective components P and I are viewed as infinite horizontal
tubes, with P bounded from the left by the slice containing the projective indecomposables
and I bounded from the right by the slice containing the injective indecomposables. We are
adopting the convention of [4] to draw the tube T h upside down. This will be conventient
when describing relations involving the infinite radical.

In addition, there are infinitely many tubes: two regular tubes T g and T h of rank g and
h respectively and the homogeneous tubes of rank 1, Tλ, λ ∈ k \ {0}. See Fig. 1 for the AR-
quiver of mod(kQ3,2). Note that in the figure, the component T 2 = T h is drawn upside
down, as mentioned above. We write Mi for the modules sitting at the mouth of T g and Mi

for the modules at the mouth of T h. These are the quasi-simple modules. In order to keep
the picture readable, we have omitted the dashed lines for the AR translation τ . The effect
of τ is to send a vertex horizontally to its neightbour to the left. For the homogeneous tubes
T λ, this means that τ sends a vertex to itself.

3 A Truncated Translation Quiver

In [4], Brüstle recalls the description of the Auslander Reiten quiver of the module category
mod kQg,h (the quiver Qg,h is called K in [4]). Brüstle then defines subquivers Q∗ of the
AR-quiver formed by the vertices of the preprojective indecomposables (quiverQP ), for the
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Fig. 1 AR-quiver of mod kQ3,2: P and I and tubes

preinjective indecomposables (quiver QI ) and for the vertices in the tubes (quivers Qλ) for
∗ appropriate (preprojective, preinjective, tubes) (Sections 2-4 of [4]). We will now recall
his notation for the vertices of the AR-quiver. The vertices all lie in lattices of cylindrical
shape. These cylinders are cut open to draw the lattices in the plane, the components QP

and QI are cylinders lying on their sides, bounded on the left by the projectives or on the
right by the injectives. The tubes are oriented vertically, with Q∞ pointing downwards, all
components are viewed in the plane.

• The vertices of QP are the (r, i)P with r ≥ 0, 0 ≤ i ≤ n. The (0, i)P form the
slice of projectives, in QP , the entry r increases to the right. The one-dimensional
projective indecomposable module Pg gets the notation (0, g)P , the largest projective
indecomposable P0 is (0, 0)P .
There are arrows (r, βi) : (r, i + 1)P → (r, i)P and (r, β ′

i ) : (r, i) → (r + 1, i + 1) for
i = 0, . . . , g −1, as well as arrows (r, αi) : (r, i) → (r, i +1) and (r, α′

i ) : (r, i +1) →
(r + 1, i) for g ≤ i ≤ n. For 0 < i < g − 1 this looks as follows

(r, i − 1)P (r,β ′
i−1)

��







(r, i)P

(r,βi−1) �������

(r,β ′
i )

��
���

(r + 1, i)P

(r, i + 1)P
(r+1,βi )

�������

where the second entry is taken modulo n + 1. The dashed line indicates the AR
translation.

• The underlying graphs of QP and QI can be mapped one into the other by a mirror
symmetry along a vertical line (for the mirror axis S see Fig. 2). The vertices of QI are
the (r, i)I with r ≥ 0, 0 ≤ i ≤ n with r increasing to the left. The (0, i)I form the
slice of injective indecomposables. By the symmetry, for every arrow γP : (r1, s1)P →
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Fig. 2 Qm for g = 3, n = 4

(r2, s2)P in QP , there is an arrow γI : (r2, s2)I → (r1, s1)I in QI . For 0 < i < g − 1,
we get subquivers

(r, i − 1)I(r,βi−1)

��







(r + 1, i)I

(r,β ′
i−1) ��

(r,βi )
�����

��
(r, i)I

(r, i + 1)I
(r,β ′

i )

�������

with k ≥ 1 and where the second entry is taken modulo n + 1.
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• The vertices of Q0 are the (r, s)g with r ≥ 0, 1 ≤ s ≤ g. The vertices at the mouth of
T g are (0, s)g . The arrows in Q0 are π(r, s) = π(r, s)0 : (r + 1, s + 1)g → (r, s)g and
ρ(r, s) = ρ0(r, s) : (r, s)g → (r + 1, s)g for r ≥ 0. For r > 0, this gives

(r + 1, s)g
π(r,s−1)

�����
����

(r, s)g

ρ(r,s) ����������

π(r−,s−1) ���
����

���
(r, s − 1)g

(r − 1, s − 1)g
ρ(r−1,s−1)

���������

with the second entry reduced modulo g. For r = 0, this becomes

(1, s + 1)g
��

��

(0, s + 1)g

������
(0, s)g

This is chosen such that the vertex (0, g)g is the h + 1-dimensional quasi-simple
indecomposable with a non-zero morphism from Pg = (0, g)P and with a non-zero
morphism to I0 = (0, h)I .

• The vertices of Q∞ are the (r, s)h, r ≥ 0, 0 ≤ s ≤ h − 1. The vertices at the mouth of
T h are the (0, s)h. The arrows in Q∞ are π(r, s) = π∞(r, s) : (r +1, s−1)h → (r, s)h
and ρ(r, s) = ρ∞(r, s) : (r, s)h → (r + 1, s)h for r ≥ 0. For r > 0, we have

(r − 1, s)h
ρ(r−1,s)

�����
����

�

(r, s − 1)h

π(r−1,s) ���������

ρ(r,s−1) �����
����

(r, s)h

(r + 1, s − 1)h
π(r,s)

����������

with s + 1 = 0 if s = h − 1. For r = 0, this becomes

(0, s)h
		��

� (0, s + 1)h

(1, s)h

������

This is chosen such that the vertex (0, 0)h is the g + 1-dimensional quasi-simple
indecomposable with a non-zero morphism from Pg = (0, g)P and with a non-zero
morphism to I0 = (0, h)I .

• The vertices of Qλ (λ ∈ k \ {0}) are the (λ, i)λ, i ≥ 1. The vertex at the mouth of Qλ

is (λ, 1)λ. The arrows in Qλ are as follows (for s ≥ 2):

(λ, s + 1)λ
��

��
(λ, 2)λ

����
�

(λ, s)λ

������

��
��

(λ, s)λ (λ, 1)λ

�����
(λ, 1)λ

(λ, s − 1)λ

������

The union of all these vertices gives all the isomorphism classes of indecomposable
kQg,h-modules, cf. [4, Proposition §1] or [7].
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In what follows, we will write P to denote the subcategory of mod kQg,h whose objects
are the preprojective indecomposable modules, I for the subcategory of the preinjective
indecomposable modules, T 0 = T g and T ∞ = T h (the former versions are used in
Brüstle, the latter are more convenient for our geometric model) for the subcategories
formed by the objects in the tubes of rank g and h respectively and T λ for the objects
forming the homogenous tubes (λ ∈ k \ {0}).

On the AR-quiver as described above, one imposes the mesh relations for any diamond
(quadrilateral formed by four neighbours) in it and for all the triangles appearing at mouths
of tubes, as indicated by the dotted lines.

Figure 2 below illustrates this AR-quiver.
Brüstle then truncates AR(mod kQg,h) to define quivers Qm, for m ≥ 1. This is obtained

by cutting the preprojective component QP at the vertices (ghm, i), so that the resulting
full subquiver QP

m of QP has ghm + 1 slices, starting from the vertices of the projective
indecomposables, (see Section 2 of [4]). Similarly, QI is cut in order to get a full quiver
QI

m of QI , containing ghm + 1 slices, ending at the injectives, (see Section 3 of [4]). The
regular tubes are cut to form quivers that have cylindrical shapes with a cone on the top:
Q0

m denotes the full subquiver with mouth given by the (0, i)g , 0 ≤ i ≤ g, and top row the
single vertex (gm + g, g)g . Similarly, Q∞

m is the full subquiver with mouth containing the
(0, i)h, 0 ≤ i ≤ h, and top vertex (hm + h, h). The components Qλ are cut to get the full
subquivers Qλ

m on the m + 1 vertices (λ, 1), . . . , (λ, m + 2). For the tubes see Section 4
of [4].

Furthermore, let Pm be the full subcategory of P on the objects corresponding to the
vertices of QP

m define the subcategories Im, T 0
m, T ∞

m and T λ
m similarly. Brüstle proves the

following statement in [4, Sections 2,3,4]. Here, C(kQ∗
m) is used to denoted the k-category

associated to Q∗
m, modulo the relations of this quiver (as in [7, §2.1, Example 6]).

Proposition 3.1 There are isomorphisms between the k-categories C(kQ∗
m), ∗ ∈

{P, I, 0, ∞} or ∗ = λ ∈ k \ {0}, defined by Q∗
m and the corresponding categories Pm, Im,

T 0
m, T ∞

m , T λ
m.

To describe the AR-quiver of a truncated version of mod Ã, we then have to define Qm

from the truncated pieces of correct size (cf. Section 5 in [4]):

Definition 3.2 For m ≥ 1 let Qm be the quiver whose vertices are the vertices of QP
m,

of QI
m and of Qλ

2m(n+1) for λ ∈ k ∪ {∞}, the arrows are all the arrows of these quivers
with additional “connecting” arrows ι0(x), κ0(x) for x = 0, . . . , g, ι∞(y), κ∞(y) for y =
0, g, g + 1, . . . , n and ιλ, κλ for λ ∈ k \ {0}.

For illustration we include a picture of Qm for the running example (g = 3, h = 1), see
Fig. 2. It is taken from [4].

Definition 3.3 Let m ≥ 1. By JmQg,h we denote the full subcategory of mod Ã whose
indecomposable objects are the union of the objects of Pm, Im, T σ

2m(n+1), σ ∈ k ∪ {∞}.

Note that for every object M of mod Ã there exists m ≥ 1 such that M is isomorphic
to a direct sum of modules from JmQg,h and hence the categories JmQg,h can be used to
describe mod kQg,h.

We need a few abbreviations to be able to write the relations in Theorem 3.4:
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β
g
P denotes the path of length g from (ghm, g)P to (ghm, 0)P composed by the arrows

(ghm, βi)P , i = g − 1, . . . , 1, 0.
αh

P denotes the path of length h from (ghm, g)P to (ghm, 0)P composed by the arrows
(ghm, αi)P , i = g, g + 1, . . . , n.

The definitions of α
g
I , β

g
I , π

g

0 , ρ
g

0 , π
h∞ and ρh∞ can be understood from the picture above.

Finally, we write
ελ = ρλ(2m(n + 1) + 1)πλ(2m(n + 1) + 1) for λ ∈ k \ {0}.

Theorem 3.4 (Hauptsatz) Let C(kQm) be the k-category of Qm subject to the following
relations

(a) γ ′γ = δ′δ for all arrows γ , γ ′, δ, δ′ of Qm in a diamond from X to Z with X �=
(ghm, 0)P .

(b) πλρλ = 0 for all λ ∈ k∪{∞} and all arrows πλ, ρλ of Qλ
2m(n+1) of the form X∗ ρλ−→

Y
πλ−→ Z∗ for X∗ and Z∗ vertices at the mouth of a tube (possibly, X∗ = Z∗).

(c1) ι0(g) = π
g

0 ι0(0)αh
P ι∞(g) = πh∞ι∞(0)βg

P .
(c2) κ0(g) = βh

I κ0(0)ρ
g

0 κ∞(g) = α
g
I κ∞(0)ρh∞.

(d) ιλα
h
P = λιλβ

g
P + ελιλβ

g
P αh

I κλ = λβ
g
I κλ + β

g
I κλελ.

(e) κ0(0)ι0(0)(ghm, αn)P = 0 (ghm, αn)I κ0(0)ι0(0) = 0.
(f) κ∞(0)(ρh∞πh∞)j ι∞(0) = κ0(0)(ρ

g

0π
g

0 )2m(n+1)+1−j ι0(0).

(g) κλε
j
λιλ = ∑j

i=0

(2m(n+1)+1−j+i
2m(n+1)+1−j

)

λiκ0(0)(ρ
g

0π
g

0 )j−i ι0(0)
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with λ ∈ k \ {0} and j = 0, . . . , 2m(n + 1) + 1.
Then there is an isomorphism

C(kQm) → JmQg,h

Remark 3.5 We observe that the relations also imply

(e′) κ∞(0)ι∞(0)(ghm, β0)P = 0 (ghm, β0)I κ∞(0)ι∞(0) = 0

To see this, one uses (e) and (f) (with j = 1) and the diamond relations from (a) to push
the path all the way down to the mouth of the tube, where it will include a triangle as in (b),
hence the zero relation.

4 A Translation Quiver on Arcs in the Annulus

We now describe the set-up of the geometric model we use to describe mod Ã and later
for the cluster category C

Ã
. It is similar to the one appearing in [11] and in [1]. Our main

focus is on the interpretation of the infinite radical of the module category resp. the cluster
category in type ˜A, in terms of the geometry.

Let Pg,h be an annulus with g marked points on the outer boundary ∂ and h marked
points on the inner boundary ∂ ′, gh �= 0, let g ≥ h. .

We assume that the marked points are distributed in equidistance on the two boundaries.
We will identify Pg,h with a cylinder Cylg,h of height 1 with g marked points on the lower
boundary and h marked points on the upper boundary. We can view this cylinder as a rect-
angle of height 1 and width gh in R2, identifying its two vertical sides. We will always label
the marked points of Cylg,h from left to right on the lower boundary and from right to left
on the upper boundary.

On the lower boundary (the outer boundary of the annulus), we choose the points (0, 0),
(h, 0), . . . , (gh − h, 0) and (gh, 0) as marked points. On the upper boundary (the inner
boundary of the annulus), we choose the points (0, 1), (g, 1), . . . , (gh − g, 1) and (gh, 1)
to be marked points, as in Fig. 3.

With the annulus in mind, we denote the points on the lower boundary by i∂ , for 0 ≤ i ≤
g − 1:

0∂ := (0, 0) = (gh, 0), 1∂ = (h, 1), . . . , (g − 1)∂ := (hg − h, 0)

Fig. 3 Annulus via rectangle Cylg,h
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and the points on the upper boundary by j∂ ′ , for 0 ≤ j ≤ h − 1:

0∂ ′ := (gh, 1) = (0, 1), 1∂ ′ := (g, 1), . . . , (h − 1)∂ ′ := (g(h − 1), 1),

We thus label marked points on both boundaries from the left to the right, by Zb with
b ∈ {∂, ∂ ′}.

For our purposes, it will be most convenient to work in the universal cover U = (U, πgh)

of Cylg,h with U = {(x, y) ∈ R
2 | 0 ≤ y ≤ 1} an infinite strip in the plane. It inherits the

orientation from its embedding in R2. The covering map πgh : U → Cylg,h is induced from
wrapping U around Cylg,h, it takes the first entry of (x, y) ∈ U modulo gh:

π := πgh : U → Cylg,h, (x, y) �→ (x, y)

where x denotes the class of x modulo gh. As we can identify the annulus Pg,h with Cylg,h,
π is also a covering map of Pg,h.

We take as marked points on the lower boundary the points {(hx, 0) | x ∈ Z} and as
marked points on the upper boundary of U the points {(gx, 1) | x ∈ Z}, see Fig. 4.

When working in the universal cover, it is most convenient to use integers to denote
marked points on the lower and upper boundary. We will write subscripts to indicate the
boundary on which the points sit. So for i, j ∈ Z, i∂ is a marked point on the lower boundary
and j∂ ′ a marked point on the upper boundary. We do this in such a way that the copy
of Cylg,h with vertices (0, 0) and (gh, 0) obtains the labels 0∂ , 1∂ , . . . , g∂ on the lower
boundary and the labels 0∂ ′ , 1∂ ′ , . . . , h∂ ′ on the upper boundary, as shown for the case g =
3, h = 2 in Fig. 4. More generally, for fixed g, h, with g ≥ h ≥ 1, we endow U with the
following set of marked points

{i∂ = (ih, 0) | i ∈ Z}
{j∂ ′ = (jg, 1) | j ∈ Z}

placing 0∂ ′above 0∂ , h∂ ′ above g∂ etc.

4.1 Arcs in Pg,h and in the Universal Cover

We want to consider certain oriented arcs between marked points of the annulus Pg,h to
define a stable translation quiver �. We recall that our goal is to show that � is isomorphic
to the AR-quiver of the module category of type Ã, with underlying quiver Qg,h and to
describe the infinite radical in terms of moves between arcs. Passing to unoriented arcs, we
will then obtain a quiver which is isomorphic to the AR-quiver of the cluster category of
type Ã of the same underlying quiver Qg,h.

Fig. 4 Universal cover for g = 3, h = 2
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We will call the arrows in this quiver moves. There are two types of moves, namely
elementary moves and long moves. We describe these moves below. In the oriented case,
elementary moves between arcs of an annulus have appeared in [11] and [1] independently
to describe (components of) module categories of type Ã. In the unoriented case, elemen-
tary moves appeared in [5] for the cluster category of a marked surface, in [8] for tubes
and in [10] for the m-cluster category of an annulus. To our knowledge, long moves of
(oriented/unoriented) arcs have not been considered so far.

To define an oriented arc of U, we need to give its start and end point as well as its
winding number around the inner boundary. A convenient way to define such arcs is to work
in the universal cover instead.

We need to recall a few facts before we can do this, cf. [1, §2.2] in the case with marked
points on one boundary. Let σ : U → U be the translation (x, y) �→ (x + gh, y), with
inverse σ−1(x, y) = (x − gh, y). The group G = 〈σ 〉 acts naturally on U. Note that in
terms of z∂ and z∂ ′ , σ acts on vertices of the lower boundary as z∂ �→ (z + g)∂ and on the
upper boundary as z∂ ′ �→ (z + h)∂ ′ .

An oriented arc in U is an isotopy class of arcs joining marked points of the boundary
of Pg,h. If an arc starts at a marked point xb1 and ends at a marked point yb2 with x ∈ Z,
bi ∈ {∂, ∂ ′}, we write [xb1 , yb2 ] for this arc (defined only up to isotopy fixing endpoints).

We will distinguish two main types of arcs in U and in Pg,h.

Definition 4.1 Let α = [xb1 , yb2 ] be an arc inU. If b1 �= b2, then we say that α is a bridging
arc.
If b1 = b2 and x ≤ y − 2, we say that α is a peripheral arc and that α is based at b1.

We do not consider arcs in the remaining cases.

Definition 4.2 A bridging arc in Pg,h is an arc πg,h(α) where α is a bridging arc of U.
Similarly, a peripheral arc of Pg,h is an arc πg,h(α) for α a peripheral arc of U.

Remark 4.3 If α is an arc of Pg,h starting at ∂ (at ∂ ′) it has a unique lift α̃ in U with starting
point in {0∂ , 1∂ , . . . , (g − 1)∂ } (with starting point {0∂ ′ , 1∂ ′ , . . . , (h − 1)∂ ′ }).

All other lifts of α (of β) can be obtained by applying σ or σ−1 repeatedly to α̃, hence
π−1

g,h(α) = Gα̃.

Bridging arcs will serve as models for the preprojective and preinjective components,
peripheral arcs correspond to objects of the tubes T g , T h, as we will explain in Sections 4.3
and 4.4.

4.2 Elementary Moves

The geometric idea is that a move rotates an arc clockwise around one of its endpoints. For
elementary moves, this is a “shortest” clockwise rotation. We keep the idea of rotating in
mind for the long moves.

Let g ≥ h > 0 be fixed, let π = πg,h : U → Pg,h be the covering map. Let α be an
arc of Pg,h and let [xb1 , yb2 ] be a lift of α, with b1, b2 ∈ {∂, ∂ ′}. Since an elementary move
gives rise to an irreducible map in the module category, it should be a minimal rotation: it
fixes one endpoint of an arc and moves one endpoint by ±1 (depending on the boundary
this sits on).
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So there are at most two elementary moves from α, namely to the arcs π([xb1 , (y±1)b2 ])
and π([(x ± 1)b1 , yb2 ]), where ±1 is −1 on the boundary ∂ and +1 on ∂ ′.

Note that when drawing vertices and moves between them, we will always use the con-
vention that arrows (moves) go to the right. Furthermore, we will draw moves fixing the
starting point, i.e. the first entry of an arc in U as pointing down and moves fixing the
endpoint, i.e. the second entry of the arc in U will be pointing up.

We will sometimes also need to work with moves between arcs in U itself, they are
defined analogously.

Observe that if b1 = b2, one of the images might be isotopic to a segment of the bound-
ary. In this case, there is only one elementary move from α.
On the other hand, if an arc corresponds to an injective indecomposable, it should only have
an elementary move to another arc for an injective indecomposable or no elementary move,
if α is the terminal object, i.e. if α corresponds to the 1-dimensional injective module.

We use lifts to describe the elementary moves case-by-case.

• Bridging arcs: Let α be a bridging arc of Pg,h. Then we define two elementary moves
starting at α.

(i) If the lift of α in U is [i∂ , y∂ ′ ] for some i, y ∈ Z, they are of the form

π([(i − 1)∂ , y∂ ′ ])
α = π([i∂ , y∂ ′ ])

�������

�������

π([i∂ , (y + 1)∂ ′ ])
The corresponding picture in U is:

(ii) If the lift of α in U is [j∂ ′ , x∂ ] with j, x ∈ Z, they are of the form

π([(j + 1)∂ ′ , x∂ ])
α = π([j∂ ′ , x∂ ])

�������

�������

π([j∂ ′ , (x − 1)∂ ])
In pictures in U:

• Peripheral arcs: Let α be a peripheral arc of Pg,h.
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(i) Assume that the lift of α is [i∂ , a∂ ] with i, a ∈ Z.

– If a = i + 2, there is only one elementary move from α:

π([(i − 1)∂ , (i + 2)∂ ])
α = π([i∂ , (i + 2)∂ ])

��������

– If a > i + 2, there are two elementary moves from α:

π([(i − 1)∂ , a∂ ])
α = π([i∂ , a∂ ])

�������

�������

π([i∂ , (a − 1)∂ ])
In U, the case a > i + 2 looks as follows:

(ii) Let [j∂ ′ , b∂ ′ ] be a lift of α, with b, j ∈ Z.

– If b = j + 2, there is one elementary move from α:

α = π([j∂ , (j + 2)∂ ])
��������

�

π([j∂ , (j + 3)∂ ])
– If b > j + 2, there are two elementary moves from α:

π([(j + 1)∂ ′ , b∂ ′ ])
β = π([j∂ ′ , b∂ ′ ])

�������

�������

π([j∂ ′ , (b + 1)∂ ′ ])
For b > j + 2, we have the following picture in U:

4.3 Preprojective Arcs

Recall that the quiver Qg,h has its source at vertex 0, its sink at vertex g (cf. Section 2.1).
Hence, among the projective indecomposable modules, Pg is one-dimensional, with irre-
ducible morphisms to Pg−1 and to Pg+1. Also, P0 is the largest projective indecomposable
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module, with irreducible morphisms from P1 and from Pn. The preprojective component
of mod kQg,h starts with the projective indecomposable modules (cf. Figure 1 for g = 3,
h = 2). All other indecomposable modules in P are reached through compositions of
irreducible maps from the Pi .

We now describe a subset of the bridging arcs from ∂ to ∂ ′ that will play the role of
projective indecomposable modules.

Let

βi :=
{

π([(i − g)∂ , 0∂ ′ ]) i = 0, 1, . . . , g − 1, g
π([0∂ , (i − g)∂ ′ ]) i = g + 1, g + 2, . . . , n

Definition 4.4 The arcs β0, . . . , βn of Pg,h are called projective arcs. Figure 5 displays the
βi . We call an arc α = [x∂ , y∂ ′ ] of Pg,h preprojective if it can be reached from βg through a
finite (possibly empty) sequence of elementary moves. In particular, the βi (i = 0, . . . , n)
are preprojective arcs.

Roughly speaking, the preprojective arcs of Pg,h are winding positively from the outer
to the inner boundary, with initial object βg .

4.4 Preinjective Arcs

Among the injective indecomposable modules of mod kQg,h, the module I0 is the one-
dimensional one, with irreducible morphisms from In and from I1, whereas Ig is the largest
one, with irreducible morphisms to Ig+1 and to Ig−1 (cf. Figure 1 for g = 3, h = 2).
All other indecomposable modules in I map to the injectives through compositions of
irreducible maps.

We now describe a subset of the bridging arcs from ∂ ′ to ∂ for the injective indecompos-
able modules. Let

γi :=
{

π([−2∂ ′ , (i − g + 2)∂ ]) i = 0, 1, . . . , g
π([(i − g − 2)∂ ′ , 2∂ ]) i = g + 1, g + 2, . . . , n

Definition 4.5 The arcs γ0, . . . , γn of Pg,h are called injective arcs. Figure 6 displays the
γi . We call an arc α = [x∂ ′ , y∂ ] of Pg,h preinjective if γ0 is reached from α through a finite
sequence of elementary moves. In particular, the γi (i = 0, . . . , n) are preinjective arcs.

Up to rotating the inner boundary by 22π
h
, the preinjective arcs are winding positively

from the inner to the outer boundary towards the terminal object γ0.

Definition 4.6 An oriented arc of Pg,h is called admissible, if it is either preprojective,
peripheral or preinjective.

4.5 A Translation Quiver

With the definitions from the last sections, we are ready to define a translation quiver struc-
ture on arcs in Pg,h. The vertices of � = �(Pg,h) are the admissible arcs of Pg,h. The
arrows of � are given by the elementary moves. Furthermore, let τ be induced by the map
i∂ �→ (i + 1)∂ and j∂ ′ �→ (i − 1)∂ ′ .
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Fig. 5 The projective arcs

In terms of U, τ shifts endpoints on ∂ to the right and endpoints on ∂ ′ to the left. Periph-
eral arcs are thus shifted to the right/to the left, whereas the endpoints of bridging arcs of �

move in different directions under τ .
The translation τ on � makes (�, τ ) a translation quiver. This means that whenever we

have two vertices τ(α), α ∈ �, there is a mesh relation involving the subgraph on these two
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Fig. 6 The injective arcs

vertices and their common neighbours. In our case, these meshes have either four or three
vertices:

γ1

���
� γ

���
�

τα

�����

����
� α τα

�����
α

γ2

����
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The meshes on three vertices only occur at the mouth of tubes formed by peripheral arcs.
As relations on the quiver (�, τ ), we impose on meshes with four vertices that the two
paths between τ(α) and α are equal and on meshes with three vertices, that the composition
of the two arrows is zero.

The following result is well-known, it appears in [11] for the module category and in [1]
for tubes.

Proposition 4.7 (�, τ ) is a translation quiver, (�, τ ) is isomorphic to the AR-quiver of
mod kQg,h.

By the above result, (�, τ ) describes mod kQg,h up to maps in the infinite radical.

Remark 4.8 (1) Observe that by definition, τ(βi), 0 ≤ i ≤ n is not admissible and neither
are the τ−1(γi).

(2) However, if we forget the orientations of arcs, there is a way to go from βi to γi via
τ 2 or back via τ−2 as follows: Let 0 ≤ i ≤ n. Then γi can be obtained from βi by
applying τ 2 to the arc (the result is not admissible, but bridging) and reversing the
orientation of the image. I.e. if βi has lift [a∂ , b∂ ′ ] in U, then the arc [τ 2(b∂ ′), τ 2(a∂ ]
is a lift of γi .

5 The Infinite Radical

In this section, we describe the elements of the infinite radical of mod kQg,h. We will do
this using the geometric interpretation of objects in terms of admissible arcs. With this, we
will obtain a quiver � = �(Pg,h) from � = �(Pg,h). The vertices of � are the vertices of
�, the arrows of � are the arrows of � together with the arrows arising from elements of the
infinite radical (corresponding to the “long moves”, see below).

Elementary moves are combinatorial models for irreducible morphisms, i.e. correspond
to nonzero elements of rad(X, Y )/ rad2(X, Y ) for X, Y the two indecomposable objects
corresponding to the starting and end point of α. We have seen that an elementary move
sends an arc α to another arc α′ with a common endpoint by rotating the arc α clockwise
around the common endpoint. The other endpoint is moved by ±1 along the corresponding
boundary.

Long moves are models for maps in the infinite radical of mod Ã, i.e. for elements of
rad∞(mod Ã) = ∩i radi (mod Ã). In terms of the AR-quiver, maps in the infinite radical
arise from infinitely many compositions of irreducible morphisms, keeping the direction
fixed, i.e. moving along a ray or coray in the quiver �g,h.

5.1 LongMoves

Long moves correspond to nonzero elements of of the vector space rad∞(X, Y )/(rad∞
(X, Y ))2 (for X, Y indecomposable). In our model, we view them as limits of sequences of
elementary moves, fixing one common vertex for all the elementary moves involved. This
way, long moves follow a line in the quiver �(Pg,h).

Geometrically, this is achieved by rotating an arc α clockwise to an arc α′ which has one
endpoint in common with α and where the other endpoint has changed boundary compo-
nents. The endpoint switching boundary components is allowed to go to any marked point
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on the new boundary, as long as the image is an admissible arc (preprojective, peripheral or
preinjective).

In particular, there are infinitely many long moves from α. This is now described case-
by-case. We will indicate the long moves by drawing dashed arrows. Let g ≥ h > 0 be
fixed, let π = πg,h : U → Pg,h be the covering map.

• Bridging arcs: Let α be a preprojective arc, let [i∂ , y∂ ′ ] be a lift of α.

– There are long moves from α to every vertex of the coray of π([i∂ , i + 2∂ ]) in
the tube T g , i.e. to every arc π([i∂ , (i + k)∂ ]) for k ≥ 2.

. . .

���
��

��
��

�

α = π([i∂ , y∂ ′ ])

���������
��    

��!!!!!!!!!

��"
""""""""""""""" π([i∂ , (i + 4)∂ ])

���
��

��
��

π([i∂ , (i + 3)∂ ])

���
��

��
��

π([i∂ , (i + 2)∂ ])

(1)

Geometrically this means that from every preprojective arc starting at i∂ , there
are long moves to every peripheral arc starting at i∂ .

– There are long moves from α to every vertex of the coray of π([(y − 2)∂ ′ , y∂ ′ ]
in the tube Th, i.e. to every arc [(y − k)∂ ′ , y∂ ′ ] with k ≥ 2. (Recall that the
quiver of T h is drawn upside down, the vertex π([(y − 2)∂ ′ , y∂ ′ ]) sits at the
mouth of this component).

π([(y − 2)∂ ′ , y∂ ′ ])

π([(y − 3)∂ ′ , y∂ ′ ])

���������

α = π([i∂ , y∂ ′ ])

�
������

��    

��#########

��$$$$$$$$$$$$$$$$
π([(y − 4)∂ ′ , y∂ ′ ])

���������

. .
.

����������

(2)

Geometrically this means that from every preprojective arc ending at y∂ ′ , there
are long moves to every peripheral arc ending at y∂ .

• Peripheral arcs:
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– Let α be peripheral and based at ∂ , let [a∂ , y∂ ] be a lift of α. Then we define a
long move to every preinjective arc π([x∂ ′ , y∂ ]) of Pg,h.

γ

..
.

���������

..
. π([x∂ ′ , y∂ ])

���������

α = π([a∂ , y∂ ])

��%
%
%
%
%
%
%
%

�
�����

��      

��###########

�������������������������
π([(x − 1)∂ ′ , y∂ ])

���������

π([(x − 2)∂ ′ , y∂ ])

���������

. .
.

����������

(3)

Note that the terminal object of this sequence is one of the injective arcs γ0, . . . ,

γg−1. More precisely, if we assume that the lift of α satisfies −2 ≤ y < g −2,
then the terminal object is π [2∂ ′ , y∂ ] = γ0 if y = −2 and γ = γy+2 otherwise.
Geometrically the description above means that from every peripheral arc end-
ing at y∂ , there are long moves to every admissible bridging arc ending at y∂ .

– Let α be a peripheral arc based at ∂ ′ and let [x∂ ′ , b∂ ′ ] a lift of α. Then we
define a long move from α to every arc π([x∂ ′ , z∂ ]).

. . .

���
��

��
��

�

π([x∂ ′ , (z + 2)∂ ])

���
��

��
��

α = π([x∂ ′ , b∂ ′ ])

��&
&
&
&
&
&
&
&

��������
��      

��!!!!!!!!!!!

�
���������������������� π([x∂ ′ , (z + 1)∂ ])

���
��

��
��

... π([x∂ ′ , z∂ ])

���
��

��
��

...

���
��

��
��

γ

(4)

Again, the terminal object of this sequence is an injective arc, it is γ0 or one of
the arcs γg+1, . . . , γn. If we assume that the lift of α satisfies 0 ≤ x < −h−1,
then this injective arc is π [x∂ ′ ,−2] = γ0 if x = 2 and γ = γx+g−2 otherwise.

Geometrically the above descriptionmeans that from every peripheral arc start-
ing at x∂ ′ , there are long moves to every admissible bridging arc starting at x∂ ′ .
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Remark 5.1 Note that unlike �, the quiver � is connected.

5.2 Preimages Under LongMoves

Now we make a few observations which follow from the definitions of the long moves
above. We will need this when we define relations in the Section 7.

Consider a peripheral arc π([i∂ , (i + k)∂ ]) with k ≥ 2. Then for every y∂ ′ such that
π([i∂ , y∂ ′ ]) is a preprojective arc there exists a long move π([i∂ , y∂ ′ ]) → π([i∂ , (i + k)∂ ]).
Combining this with elementary moves between preprojective arcs starting at i∂ , we have
the following picture:

��
π([i∂ , (j − 2)∂ ′ ])

���
��

��
��

��"
""""""""""""""""

π([i∂ , (j − 1)∂ ′ ])

���
��

��
��

��!!!!!!!!!!

π([i∂ , j∂ ′ ])

���
��

��
��

��       π([i∂ , (i + k)∂ ])

π([i∂ , (j + 1)∂ ′ ])

��������

��

(5)

Similarly, if we consider long moves from P to the tube of peripheral arcs at the inner
boundary: Let π([(y − k)∂ ′ , y∂ ′ ]) be a peripheral arc, k ≥ 2. Then there is a long move
π([j∂ , y∂ ′ ]) → π((y − k)∂ ′ , y∂ ′ ]) for every preprojective arc of the form π([j∂ , y∂ ′ ]).
Combining this with elementary moves between preprojective arcs ending at y∂ ′ , we get

π([(j − 2)∂ , y∂ ′ ])

��

���
�

�
�

�
�

�
�

�

π([(j − 1)∂ , y∂ ′ ])

���������

����������

π([j∂ , y∂ ′ ])

���������
��          π([(y − k)∂ ′ , y∂ ′ ])

π([(j + 1)∂ , y∂ ′ ])

���������

���������������
��

(6)

Now we consider long moves from the tubes to I . Let π([x∂ ′ , y∂ ]) be an admissible bridg-
ing arc in I . Then there is a long move π([(j − k)∂ , y∂ ]) → π([x∂ ′ , y∂ ]) for every k ≥ 2.
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In other words, there are long moves from every arc in the ray of π([(j − 2)∂ , y∂ ]) to
π([x∂ ′ , y∂ ]).

π([(j − 4)∂ , y∂ ])

���������

��

π([(j − 3)∂ , y∂ ])

���������
��         π([x∂ ′ , y∂ ])

π([(j − 2)∂ , y∂ ])

���������

���������������

��

(7)

Similarly we get long moves from every arc in the ray of π([y∂ ′ , (y + 2)∂ ′ ]) to π([x∂ ′ , y∂)].
π([y∂ ′ , (y + 2)∂ ′ ])

���
��

��
��

���������������

π([y∂ ′ , (y + 3)∂ ′ ])

���
��

��
��

��        π([x∂ ′ , y∂ ])

π([y∂ ′ , (y + 4)∂ ′ ])

���������

��

(8)

Remark 5.2 The connected quiver � is not locally finite.

5.3 Mesh Relations in�

In what follows, when we refer to connected components, we will usually refer to the
connected components P , I , T g , T h of �.

For �, we keep the mesh relations involving the arrows of �. Within �, there are new
diamonds of arrows arising, formed by moves of different kinds. If such a diamond involves
vertices from two connected components of �, we define a new relation from it. We do not
impose any relations on diamonds involving four long moves.

The diagrams giving rise to new relations are of the form

Y1 g1
��'

'

X

f1   ((

f2
���

� Z

Y2
g2

  ((

where one pair of opposite arrows come from elementary moves (i.e. f1 and g2 or g1 and
f2) and the two other arrows from long moves.
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5.4 Diamonds from Preprojective Arcs to Peripheral Arcs

Recall that elementary moves in P are either of the form π([i∂ , y∂ ′ ]) → π([(i − 1)∂ , y∂ ′ ])
or π([i∂ , y∂ ′ ]) → π([i∂ , (y + 1)∂ ′ ]). As before, we write dashed arrows to indicate long
moves. Combining long moves with elementary moves, there exist diamonds

π([(i − 1)∂ , y∂ ′ ])
������

π([i∂ , y∂ ′ ])
��#######

��!!!! π([(i − 1)∂ , (i + k)∂ ])
π([i∂ , (i + k)∂ ])

����������

for all k ≥ 2. The vertices to the left and above belong to P , the other two vertices are
peripheral arcs based at the outer boundary.

And diamonds

π([(y − k)∂ ′ , y∂ ′ ])
��������

��

π([i∂ , y∂ ′ ])
��####

��!!!!
!!!

π([(y − k)∂ ′ , (y + 1)∂ ′ ])
π([i∂ , (y + 1)∂ ′ ])

������

for all k ≥ 2. Here the left vertex and the one below are preprojective, the other two
peripheral and based at the inner boundary.

In � we require that all such diamonds commute. The geometric descriptions of these
relations is in Cases A) and B) in Section 7.2.

5.5 Diamonds from Peripheral Arcs to Preinjective Arcs

We also have diamonds involving peripheral and preinjective arcs.

π([y∂ ′ , i∂ ])
�������

�����

π([(i − k)∂ , i∂ ])
��)))))

)))

��*****
π([y∂ ′ , (i − 1)∂ ])

π([(i − k)∂ , (i − 1)∂ ])
������

for all k ≥ 3. The first vertex and the one below are peripheral arcs of ∂ , two are preinjective
arcs.

Also, we have diamonds

π([(i + 1)∂ ′ , (i + k)∂ ′ ])
������

π([i∂ ′ , (i + k)∂ ′ ])
����������

������� π([(i + 1)∂ ′ , y∂ ])
π([i∂ ′ , y∂ ])

������������

for k ≥ 3. The first vertex and the one on top are peripheral arcs based at ∂ ′, the other two
are preinjective arcs.

In � we require that all such diamonds commute. The geometric descriptions of these
relations is in Cases C) and D) in Section 7.2.
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5.6 Relations in�

Recall that τ is defined as moving endpoints on ∂ by +1 and endpoints on ∂ ′ by −1, induc-
ing meshes and thus relations on �. There are additional relations we need to impose on �.
In Section 5.1 we defined long moves (cf. (1)-(4)) and and then in Section 5.2 we described
diagrams coming from the long moves (see (5)-(8)). In these diagrams we have that all
triangles commute.

From these relations we get the following facts.

• From (1) and (2) we get that any map (long move) from P to a tube factors through
infinitely many arcs in that tube. In particular, from (1), any map of the form
π([i∂ , y∂ ′ ]) → π([i∂ , (i + k)∂ ]), with k ≥ 2, factors through all arcs π([i∂ , j∂ ]) where
j > i + k. Similarly, from (2), maps from P to Th factor through infinitely many arcs
in Th.

• From (3) and (4) we get that any map from a tube to I factors through infinitely
many preinjective arcs. In particular, from (3), any map of the form π([i∂ , y∂ ]) →
π([x∂ ′ , y∂ ]) factors through all arcs π([(x − k)∂ ′ , y∂ ]) where k > 1. Similarly, from
(4), with maps from Th to I .

• From (5) and (6) any map fromP to a tube factors through infinitely many preprojective
arcs.

• From (7) and (8) we have that any map from a tube to I factors through infinitely many
arcs in that tube.

In addition, we have relations coming from the diamonds involving two different kind of
arcs, see Sections 5.4 and 5.5.

6 An Isomorphism of Translation Quivers

6.1 Definition of�m

We now want to define a subquiver �m of � and prove that it is isomorphic to the translation
quiver Qm defined by Brüstle in [4], except from the homogeneous tubes. See Section 3.

By Proposition 4.7, the quiver (�, τ ) is isomorphic to the AR-quiver of mod kQg,h. Let

�
P
, �

I
, �

0
and �

∞
be the subquivers of � consisting of the preprojective arcs, preinjective

arcs, the arcs in the tube of rank g and the tube of rank h respectively. Then we have that �
P

is isomorphic to QP , �
I
is isomorphic to QI , �

0
is isomorphic to Q0 and �

∞
is isomorphic

to Q∞.
Following [4], we define a subquiver �

P

m of �
P
which is isomorphic to QP

m. We take the

arcs in �
P

m to be all arcs that can be reached from a projective arc by applying τ−ghm, for

some integer m ≥ 0. In other words, the arcs in �
P

m are all arcs of the form τ−rP , with P

a projective arc and 0 ≤ r ≤ ghm. It follows directly from the definition of QP
m that �

P

m is

isomorphic to QP
m. Similarly we define �

I

m to be all arcs in �
I
of the form τ rI , with I an

injective arc and 0 ≤ r ≤ ghm. Clearly �
I

m is isomorphic to QI
m.

When cut open to lie in the plane, the components �
0
m and �

∞
m look like rectangles with

an equilateral triangle on top. We start from this top vertex to describe �
0
m. We take the

peripheral arcs at ∂ , the longest one we want in �
0
m is the arc π [0∂ , (gm+g +2)∂ ]. We take



K. Baur, H.A. Torkildsen

g − 1 predecessors along the ray of this top vertex, namely π [0∂ , (gm + g + 2 − i)∂ ] for
i = 1, . . . , g − 1. Then �

0
m consists of the full subgraph on the vertices in the corays from

the mouth up to these g vertices.
For �

∞
m , we start with π [−2∂ ′ , (hm + h)∂ ′ ] and take h − 1 predecessors of this vertex

along its ray, π [−2∂ ′ , (hm + h − i)∂ ′ ] for i = 1, . . . , h − 1. Then �
∞
m consists of the full

subgraph on the vertices in the corays from the mouth down to these h vertices.

Definition 6.1 We define �m to be the full subquiver of � consisting of the objects in �
P

m,

�
I

m, �
0
2m(n+1) and �

∞
2m(n+1) m.

Let Q′
m be the full subquiver of Qm on all vertices apart from the homogeneous tubes. It

is clear that the quivers�m andQ′
m have the same vertices. Within the components, they also

have the same arrows. Since we have arrows for long moves in �m, the quiver �m has many
more arrows than Q′

m, the latter only has very few arrows linking the components,namely
the ι0(i) and κ0(i) with 0 ≤ i ≤ g, the ι∞(i) and the κ∞(i) for i = g, g + 1, . . . , n. The
translation maps on both quivers work the same, so we will denote both by τ .

To be able to go between �m and Q′
m, we need to know exactly which vertex of �m

corresponds to which vertex of Q′
m. We do this now by giving a function F : �m → Q′

m

Recall from Section 5 the bridging arcs that play the role of projective and injective
indecomposable modules. This gives the function from the projective arcs to the projective
objects in Qm, i.e. F(βi) = F(π[(i − g)∂ , 0∂ ′ ]) = (0, i)P for i = 0, 1, ..., g − 1, g and
F(βi) = F(π[0∂ , (i − g)∂ ′ ]) = (0, i)P for i = g + 1, g + 2, ..., n.

This describes how F works on �
P

m since every preprojective arc is in the τ -orbit of a
projective arc, as every vertex of QP

m belongs to the τ -orbit of some projective (0, j)P . E.g.
if 0 ≤ i ≤ g, we have

F(τ jβi) = F(τ jπ [(i − g)∂ , 0∂ ′ ]) = F(π[(i − g + j)∂ , (−j)∂ ′ ])
= τ j (0, i)P = (−j, i)P (9)

for −ghm ≤ j ≤ 0
Now we consider the preinjective component.
We define F(γi) = F(π[−2∂ ′ , (i − g + 2)∂ ]) = (0, i)I for i = 0, 1, ..., g and F(γi) =

F(π[(i − g − 2)∂ ′ , 2∂ ]) = (0, i)I for i = g + 1, g + 2, ..., n.
As above, we can apply τ to get the other objects in the preinjective component.

For the tube �
0
2m(n+1) we only describe the function on the arcs at the top in the tube,

because we only need those for the proof. Note that we can easily describe the function on
all objects by considering the rays of the arcs at the top. The arc at the top is π([0∂ , (2m(n+
1)+g +2)∂ ]), so we set F(π([0∂ , (2gm(n+1)+g +2)∂ ])) = (2gm(n+1)+g, g)g . Then
F(π([k∂ , (2gm(n + 1) + g + 2)∂ ])) = (2gm(n + 1) + g − k, g)g for 0 ≤ k ≤ g. Also, we
have F(π([0∂ , (2gm(n + 1) + g + 2− k)∂ ])) = (2gm(n + 1) + g − k, g − k)g , 0 ≤ k ≤ g.

The arc at the mouth of �
∞
2m(n+1) is π [−2∂ ′ , (2m(n + 1) + h)∂ ′ ] and from this, one can

describe the map F similarly as for �
0
2m(n+1).

Remark 6.2 Observe that in the quiver �m, the relations (c1),(c2), (e), (f) of Theorem 3.4
hold.

To see that relations (c1) and (c2) hold, we use similar arguments as in the proof of
Theorem 6.3, using the relations from Section 5.6.
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To see that (f) holds in �m, one looks at the corresponding compositions into elementary
moves, one long move and elementary moves and observes that both paths have the same
effect on the arc corresponding to (ghm, 0)P . The proof of (e) then uses (f) with j = 0 or
2m(n+1)+1 and the fact, that these compositions will pass through two successive vertices
at the boundary of the corresponding tube, hence the zero relation. A detailed geometric
interpretation of these four relations is given in the Appendix.

6.2 Isomorphism

Recall thatQ′
m is the full subquiver ofQm on the vertices not belonging to the homogeneous

tubes. Let R denote the relations (c1),(c2),(e) and (f) on Q′
m, write Q′

m/R for the bound
quiver (Q′

m,R). Then we can formulate our result.

Theorem 6.3 Let Q′
m be the full subquiver of Qm consisting of all vertices not in a

homogeneous tube. Then �m and Q′
m/R are isomorphic as quivers with relations.

Proof We already have that the components �
∗
m are isomorphic to Q∗

m (∗ ∈ {P, I, 0, ∞}).
We need to show that every long move in �m factors through a long move corresponding to
one of the appropriate ι0, ι∞, κ0 or κ∞.

Without loss of generality, assume we have a long move f : α → β with α ∈ �
P

m and

β ∈ �
0
m (all other cases follow completely analogously). Since there exists a long move

between α and β, their starting points in Pg,h must be the same.
We first describe the long moves corresponding to the ι0(i) for i = g, g − 1, . . . , 1, 0.

These maps start from g + 1 different vertices of the last slice in �
P

m, namely from the
τ−ghmβi with i = g, g − 1, . . . , 0. By (9), they are arcs of the form π [(−ghm + i −
g)∂ , ghm∂ ′ ] for i = g, . . . , 0. We can choose lifts for them as follows:

[i∂ , (hm(n + 1) + h)∂ ′ ] for i = g, . . . , 0.

The ι0(i) map these vertices to the g + 1 vertices sitting on the ray at the top level of �
0
m,

namely the vertices π [i∂ , (2gm(n + 1) + g + 2)∂ ] for i = g, . . . , 0. We also use ι0(i) to
denote the corresponding long move,

ι0(i) : [i∂ , (hm(n + 1) + h)∂ ′ ] → π [i∂ , (2gm(n + 1) + g + 2)∂ ]
Observe that the rays in �

P

m passing through the g + 1 vertices π [i∂ , (hm(n + 1) + h)∂ ′ ]
cover the whole component. Each of these rays consists of a (finite) sequence of elementary
moves. In terms of arcs, every such ray starts at βi , i = g, . . . , 0 and consists of all vertices
obtained through a sequence of rotations around the common starting point of the arcs, the
vertex i of Pg,h

Similarly, �
0
m is formed by the vertices of all corays between the top vertices

π [i∂ , (2gm(n + 1) + g + 2)∂ ] and the mouth. The corays in �
0
m are formed by all arcs

obtained from the top one by sequence of rotations around the common starting point i∂ .
Denote the sequence of elementary moves (fixing starting points) from α to

π [i∂ , (hm(n + 1) + h)∂ ′ ] by (μr)r and the sequence of elementary moves (fixing starting
points) from π [i∂ , (2gm(n + 1) + g + 2)∂ ] to β by (νt )t .

Then the composition (νt )t ◦ ι0(i) ◦ (μr)r is a long move from α to β. By using both

commutativity relations for triangles between �
P

m and �
0
m (Section 5.6, for a geometric
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interpretation cf. Section 7.3.1), it is then straightforward to see that f is equal to this
composition.

Recall the equivalence of categories C(kQm) → JmQg,h from [4], see Theorem 3.4.
The category C(kQm) is the k-category of Qm subject to the relations (a)− (g). As we have
mentioned before, we do not consider the homogeneous tubes, so we will use the equiva-
lence C(kQ′

m) → J ′
mQg,h, where we take the full subcategories without the homogeneous

tubes.
Now we define C(k �) to be the k-category determined by � (modulo relations) and

C(k �m) the k-category determined by �m (modulo relations) Now, clearly C(k �m) is a full
subcategory of C(k �). Since in �m the relations (not involving the homogeneous tubes) are
satisfied, we have the following theorem.

Theorem 6.4 Let Q′
m be the full subquiver of Qm consisting of all objects not in a

homogeneous tube. Then the category C(k �m) is equivalent to C(kQ′
m) and J ′

mQg,h.

7 Relations and Their Geometric Interpretation

In this section, we give the geometric interpretation of the relations we have defined for �,
using lifts of arcs in U.

Recall that � is the quiver obtained from � =AR(mod kQg,h) by adding arrows corre-
sponding to long moves, subject to additional relations (Sections 5.4, 5.5 and 5.6). We first
consider commuting squares. Let

Y1 g1
��'

'

X

f1   ((

f2
���

� Z

Y2
g2

  ((

be any diamond in �. Such a diamond commutes in the following cases:

a) All the arrows in this diamond are elementary moves and hence all four vertices belong
to the same connected component of �, with τ(Z) = X.

b) Two opposite arrows are elementary moves and the other two are long moves. In the
latter case, X and Y1 (or Y2) are in the same component (preprojective or a tube) of
� and Y2 (Y1, respectively) and Z are in a common component of � (a tube or the
preinjective component).

In both cases, the relations g1 ◦ f1 = g2 ◦ f2 are imposed on �. We will illustrate the
meshes in Section 7.1. They are all instances of the so-called Ptolemy relation: the two end
terms X and Z of the diamond are viewed as the two different diagonals of a quadrilateral,
the AR translate is the exchange of one of those diagonals by the other. This is called a flip.

Then we give the geometric interpretation of the new relations for diamonds in 7.2.
We show that the new relations can also be viewed as Ptolemy relations by describing the
quadrilateral in which the flip takes place.

7.1 Geometric Interpretation of Mesh Relations: Diamonds

The geometric interpretation of a mesh relation in type A is well known, cf. [6, Section 2]
(for cluster categories of type A).
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The geometric reason for the commutativity is the Ptolemy relation: The two arcs Y1 and Y2
can be viewed as opposite boundary edges of a quadrilateral, withX andZ the two diagonals
of this quadrilateral. Then the diagonals X and Z are related by a flip inside this polygon.

In �, we have four cases: meshes within P or I , and meshes within the tubes. These
meshes are all instances of the Ptolemy relation, we illustrate all cases briefly.

We consider the preprojective component, the preinjective case is completely analogous.
Let X = [i∂ , j∂ ′ ], Y1 = [(i − 1)∂ , j∂ ′ ], Y2 = [i∂ , (j + 1)∂ ′ ] and Z = [(i − 1)∂ , (j + 1)∂ ′ ].

Next we consider the regular tubes. W.l.o.g. let X and Y be indecomposable objects of
the tube T g . Let X = [i∂ , j∂ ], with j ≥ i + 3 Y1 = [(i − 1)∂ , j∂ ], Y2 = [i∂ , (j − 1)∂ ] and
Z = [(i − 1)∂ , (j − 1)∂ ].

7.2 Diamonds Involving LongMoves

As before, long moves are indicated by dashed arrows.
We have four cases:

A) X and Y1 belong to P , Y2 and Z to T g ,
B) X and Y2 belong to P , Y1 and Z to T h,
C) X and Y2 belong to T g , Y1 and Z to I ,
D) X and Y1 belong to T g , Y2 and Z to I .
We will illustrate each of them by giving the quadrilateral of the Ptolemy relation.
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Case A): P to T g .

[(i − 1)∂ , j∂ ′ ]
��)))))

[i∂ , j∂ ′ ]
������

��))))))) [(i − 1)∂ , k∂ ]
[i∂ , k∂ ]

������

with k ≥ i + 2.

Case B): P to T h.

[m∂ ′ , j∂ ′ ]
�����

��

[i∂ , j∂ ′ ]
��*******

��






[m∂ ′ , (j + 1)∂ ′ ]
[i∂ , (j + 1)∂ ′ ]

�������

with m ≤ j − 2.

Case C): T g to I .
[k∂ ′ , j∂ ]

��""
""

[i∂ , j∂ ]
��*******

��






[k∂ ′ , (j − 1)∂ ]
[i∂ , (j − 1)∂ ]

��*****

with j ≥ i + 3.
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Case D): T h to I .

[(i + 1)∂ ′ , j∂ ′ ]
��)))))

[i∂ ′ , j∂ ′ ]
��$$$$

��))))))) [(i + 1)∂ ′ , k∂ ]
[i∂ ′ , k∂ ]

��$$$$

with j ≥ i + 3.

7.3 Commuting Triangles Involving LongMoves, Geometrically

In �, there are also commuting triangles, involving two long moves and an elementary
move.

X

f
��++

+
h

��

�
,

-Y

g ���
��

Z

X f

���
��

h ��

-
,

�
Y g

��++
+

Z

Z

Y

g �����

X

f ��... h

��

�
/

0
Z

Y
g

��...

X
f

�����

h

��

0
/

�

Recall that arrows for moves fixing the endpoint of an arc go up, arrows for moves fixing
the starting point go down. There are twice four cases: two from P to T g or to T h, two
from T g or from T h to I .

7.3.1 Commuting Triangles with LongMaps fromP toT g

Let [i∂ , j∂ ′ ] be a preprojective arc. Then for every m ≥ i + 2 there are two cases of
commuting triangles g ◦ f = h involving two long and one elementary move.

[i∂ , j∂ ′ ]
f ���

��
��
�

h

��

1
�

2
3

�
4

[i∂ , (j + 1)∂ ′ ]
g �

����

[i∂ ,m∂ ]

[i∂ , j∂ ′ ]
f

�
����

h

��

4
�

3
2

�
1

�

[i∂ , (m + 1)∂ ]
g

!!2
22

22
22

2

[i∂ , m∂ ]
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7.3.2 Commuting Triangles fromP toT h

Let [i∂ , j∂ ′ ] be a preprojective arc. Then for every k ≤ j − 2, there are two kind of
commuting triangles g ◦ f = h involving one elementary and two long moves.

[k∂ , j∂ ′ ]

[(i + 1)∂ , j∂ ′ ]

g
�������

[i∂ , j∂ ′ ]

f

��������
h

��

5
�

6
7

�
8

[k∂ , j
′
∂ ]

[(k − 1)∂ , j ′
∂ ]

g

""6666666

[i∂ , j∂ ′ ]
f

�������

h

��

8
�

7
6

�
5



7.3.3 Commuting Triangles fromT g toI

Let [j∂ , i∂ ] be a peripheral arc (i.e. j ≤ i − 2). The two kind of commuting triangles
g ◦ f = h involving elementary and long moves end at an arbitrary preinjective arc
[k∂ ′ , i∂ ]:

[k∂ ′ , j∂ ]

[(i − 1)∂ , j∂ ]

g
�������

[i∂ , j∂ ]

f

��������
h

��

5
�

6
7

�
8

[k∂ ′ , j∂ ]

[(k − 1)∂ ′ , j∂ ]
g

""66666666

[i∂ , j∂ ]
f

�������

h

��

8
�

7
6

�
5
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7.3.4 Commuting Triangles fromT h to I

Let [i∂ ′ , j∂ ′ ] be a peripheral arc (i.e. i ≤ j − 2). The two kind of commuting triangles
g◦f = h involving elementary and long moves end at an arbitrary preinjective arc [i∂ ′ ,m∂ ′ ]:

[i∂ ′ , j∂ ′ ]
f ���

��
��
�

h

��

1
�

2
3

�
4

[i∂ ′ , (j + 1)∂ ′ ]
g �

����

[i∂ ′ , m∂ ]

[i∂ ′ , j∂ ′ ]
f

�
����

h

��

4
�

3
2

�
1

�

[i∂ ′ , (m + 1)∂ ]
g

!!2
22

22
22

2

[i∂ ′ ,m∂ ]

7.4 Zero Relations, Geometrically

It is well known that there are zero relations at the mouth of the tubes. Geometrically, they
can be viewed as special cases of the diamond relations in the tubes, namely the case where
Y2 (or Y1) becomes zero, i.e. where the vertex X is of the form [i∂ , (i+2)∂ ] or [i∂ ′ , (i+2)∂ ′ ]
see Section 7.1

8 Application to the Cluster Category of Affine Type A

The cluster category of type Ã has been introduced by [3]. It is by definition the orbit
category Db(mod Ã)/τ−1 ◦ [1]. The effect of taking such a quotient is most visible on the
AR quiver: the cluster category has a transjective component, arising from the components
P and I of the module category.

Using unoriented versions of our arcs, we can describe the AR-quiver of the cluster
category. The only missing ingredient is the slice linking the preprojective component with
the preinjective component. We also write τ for the translation map on unoriented arcs,
induced by i �→ i + 1 on ∂ and i �→ i − 1 on ∂ ′.
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If α ∈ � is an oriented arc, let α be the unoriented version of α. Furthermore, let η0, η1,

. . . , ηn be the arcs τ−1(γi) = τ(βi).

Let � be the quiver whose vertices are the α, α ∈ �, together with the ηi . Its arrows

are the arrows of � together with the obvious arrows from the γi to the ηi and from the ηi

to the βi , subject to the relations from � and the additional mesh relations around the new
slice. The new quiver � is a stable translation quiver. Up to the additional slice of vertices,
the quiver � looks like �, the latter is isomorphic to a full subquiver of �. The quiver � has
components �0 and �∞ consisting of peripheral arcs and the transjective component of the

arcs from �
P ∪ �

I
together with {ηi | i = 0 . . . , n}. Write �T r

m for the full subquiver on the

vertices of �
P ∪ �

I
and the {ηi | i = 0 . . . , n}.

Definition 8.1 We define �m to be the full subquiver of � consisting of the vertices in �T r
m ,

�0
m and �∞

m .

Let J ′
m(C

Ã
) be the full subcategory of the cluster category C

Ã
of type Qg,h consisting of

all objects who correspond to vertices in �m. Then the following is a direct consequence of
Theorems 6.3 and 6.4.

Corollary 8.2 The k-category of �m is equivalent to J ′
m(C

Ã
).
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Appendix: Relations appearing in Theorem 3.4

We use the geometric interpretation of relations to visualize the relations in Theorem 3.4
Relations (a) and (b) of the theorem are the usual mesh relations, they have already been

described above.
Relations (c1),(c2) Relation (c1) has on one side h compositions of elementary moves
between preprojective arcs, followed by a long move and then g elementary moves in the
tube of rank g, we can write it as

dropping the subscripts on the α and π . The arcs corresponding to these vertices all have
lifts starting at 0∂ , the Xi end at ∂ ′ and the Yi correspond to peripheral arcs. More pre-
cisely, we can choose a lift for X0, X0 = [−ghm∂, ghm∂ ′ ]. Under the arrows α, the
arcs get lengthened by elementary moves fixing the ending point −ghm∂ , up to the lift
[−ghm∂, (ghm + h)∂ ′ ] Xh.

http://creativecommons.org/licenses/by/4.0/
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To prove that in our geometric set-up the first relation of (c1) holds, we can use the
commuting triangle on the left hand side of Section 7.3.2 to see that ι0(0)◦α is a long move
μh−1 from Xh−1 to Yg . Using this relation again, we see that α ◦ μh−1 is a long move μh−2
from Xh−2 to Yg , etc. This proves that the composition ι0(0)◦α

g
P is equal to a long move

μ0 : X0 → Yg . Now we use the commuting triangle on the right hand side of Section 7.3.2
h times to iteratedly replace the long move from X0 composed with π by another long move
from X0 to Yi , i = g − 1, . . . , 0.

The other three relations in (c1) and (c2) work completely analogously, using Sections
7.3.2, 7.3.3 and 7.3.4 respectively.

The relations in (e) rely on relation (f), so we will first consider the latter.

Relation (f) For this, we need more work. Consider a tube Tg of rank g. We want to describe
the effect of a composition of 2g elementary moves from an indecomposable object X of
Tg to itself.

Let [a∂ , b∂ ] be the arc (viewed in U), b ≥ a + 2. There are (at most) two elementary
moves on [a∂ , b∂ ].

Going down (up) from a peripheral arc in U corresponds to moving the endpoint (resp.
the starting point) of the corresponding arc one step to the left, thus making it shorter
(longer). We write fd for the elementary move downwards, fd : [a∂ , b∂ ] �→ [a∂ , (b − 1)∂ ]
and fu for the one going up, fu : [a∂ , b∂ ] �→ [(a − 1)∂ , b∂ ]. Note that for b = a + 2, the
image under fd is a boundary segment and hence zero.

For g ≥ 1 we write f ↓g for the composition of g elementary moves downwards and
f ↑g for g consecutive elementary moves upwards. We then abbreviate the composition of
g downwards with g upwards elementary moves by f ↓↑g:

f ↓↑g([a∂ , b∂ ]) := f ↑g ◦ f ↓g([a∂ , b∂ ])
We will use the notations for these compositions of elementary moves within the universal
cover U, and also in the annulus.

The effect of a composition of g downwards with g upwards moves on peripheral arcs at
the lower boundary is the following:

f ↓↑g[i∂ , j∂ ] =
{ [(i − g)∂ , (j − g)∂ ] if j − i > g + 1
0 else.

For arcs of Th, we define f ↑↓h analogously, the effect of h elementary moves up followed
by h elementary moves down. Since for endpoints at ∂ ′, elementary moves increase an
endpoint by +1, we get

f ↑↓h[i∂ , j∂ ] =
{ [(i + h)∂ , (j + h)∂ ] if j − i > h + 1
0 else.

In Pg,h, this shift by g or by +h is not visible, the effect of the compositions f ↓↑g and f ↑↓h

on arcs in Pg,h is to move both endpoints of a peripheral arc around the boundary once (or
zero, if the arc is close to the mouth of the tube):

f ↓↑gπ [i∂ , j∂ ] =
{

π [i∂ , j∂ ] if j − i ≥ g + 2
0 else

f ↑↓hπ [k∂ ′ , l∂ ′ ] =
{

π [k∂ ′ , l∂ ′ ] if l − k ≥ h + 2
0 else

Note that it follows from the (geometric) mesh relations, that the effect of g downwards
moves combined with g upwords moves in Tg (h upwards moves with h downwards moves
in Th) is independent of the order in which this moves are done.
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Relation (f) involves the four “top” vertices in Qm and arrows corresponding to long
moves between them. We will first describe these vertices giving one lift in U for each of
them. First recall that (ghm, 0)P = τ−ghm(0, 0)P , (ghm, 0)I = τghm(0, 0)I and observe
that (0, g)g has as lift [0∂ , 2∂ ], (0, 0)h has as lift [−2∂ ′ , 0∂ ′ ] (cf. Figure 2 for m = 2 to
determine the latter).

In terms of lifts in U, the four arrows ι∗(0), κ∗(0) of Qm can be described as long moves
moving vertically between the two boundary components composed with a sequence of
elementary moves.

A.1 ι∞(0): (ghm, 0)P → (2hm(n + 1) + h, 0)h

This arrow is a long move from an arc ∂ → ∂ ′ to a peripheral arc at ∂ ′. In geometric terms
it is a rotation around the common ending point on ∂ ′ of the involved arcs. In terms of lifts
in U with a common ending point:

[−ghm∂, (h + ghm)∂ ′ ] (νr )rμ−→ [(−2 − h(m(n + 1) + hm))∂ ′ , (h + ghm)∂ ′ ]

The effect of ι∞(0) is to first use a long move μ, changing the starting point from ghm∂ by
sending it vertically across to hhm∂ ′ and then to use 2 + hm(n + 1) elementary moves νr

still fixing the ending point on ∂ ′ to send this starting point along ∂ ′ to the left by subtracting
2 + hm(n + 1).

A.2 ι0(0): (ghm, 0)P → (2gm(n + 1) + g, g)g

The arrow ι0(0) is a long move around a common starting point on ∂ . In terms of lifts:

[−ghm∂, (h + ghm)∂ ′ ] (νr )rμ−→ [−ghm∂, (2 + g(m(n + 1) + gm + 1))∂ ]

The effect of ι0(0) is to first send the ending point of the arc from (h + ghm)∂ ′ to (g(1 +
gm))∂ (long moveμ) and then to send this point along ∂ to the right by adding 2+gm(n+1)
(composition of 2 + gm(n + 1) elementary moves νr around the same starting point).

A.3 κ∞(0): (2hm(n + 1) + h, 0)h → (ghm, 0)I

This arrow corresponds to a rotation around the common starting point on ∂ ′. In U,

[(−2− h(m(n + 1) + hm))∂ ′ , (h + ghm)∂ ′ ] (νr )rμ−→ [(−2− h(m(n + 1) + hm)∂ ′ , 2− ghm∂ ]

we can describe the effect of κ∞(0). First, the endpoint of the arc on ∂ ′ is sent vertically
across to (g+g2m)∂ under the long move μ and then under 2−g−g(m(n+1)) elementary
moves μr , the endpoint is sent to the right to obtain [(−2−h(m(n+1)+hm)∂ ′ , 2−ghm∂ ].
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A.4 κ0(0): (2gm(n + 1) + g, g)g → (ghm, 0)I

κ0(0) corresponds to a rotation around the common ending point on ∂ . In U

[−ghm∂, (2+g(m(n+1)+gm+1))∂ ] (νr )rμ−→ [(−2+ghm+h)∂ ′ , (2+g(m(n+1)+gm+1))∂ ]
We first have a long move μ fixing the endpoints, sending the starting point from −ghm on
∂ across to −h2m on ∂ ′. This is then composed with −2+h+hm(n+1) elementary moves
μr to send the new starting point to the right and get the desired result.

A.5 ρh∞πh∞ and f↑↓h

In terms of arcs, the effect of the path ρh∞πh∞ is f ↑↓h and the effect of π
g

0 ρ
g

0 is f ↓↑g .

Path κ∞(0)(ρh∞πh∞)j ι∞(0) We use the lifts from above (Section A.1) describing ι∞(0) and
compose with the remaining paths:

(ρh∞πh∞)j : [(−2 − h(m(n + 1) + hm))∂ ′ , (h + hgm)∂ ′ ]
−→ [(−2 − h(m(n + 1) + hm − j))∂ ′ , (hgm + hj + h)∂ ′ ]

Applying κ∞(0) (Section A.3), this has the image

[(−2 − h(m(n + 1) + hm − j))∂ ′ , 2 − ghm + jg)∂ ] (10)

Path κ0(0)(π
g
0 ρ

g
0 )

2m(n+1)+1−j ι0(0) The arrow ι0(0) is described in Section A.2, we
compose with the remaining paths:

(ρ
g

0π
g

0 )2m(n+1)+1−j : [−ghm∂, (g(m(n + 1) + gm + 1) + 2)∂ ]
−→ [(−g(2m(n + 1) + hm + 1 − j))∂ , (g(mh − j) + 2)∂ ]

Finally, applying κ0(0) (Section A.4), we get

[(−2 − ghm − hj
︸ ︷︷ ︸

:=x

)∂ ′ , (2 + ghm − gj
︸ ︷︷ ︸

:=y

)∂ ] (11)

With the projection to Pg,h in mind, we translate the resulting arc in U so that the images
(11) and (10) of the two paths have the same endpoint. To the endpoint y∂ of (11) we add
2g(j − hm) (on boundary ∂). On ∂ ′, the corresponding translation is by +2h(j − hm):

π [x∂ ′ , y∂ ] = [(−2 − ghm − hj + 2h(j − hm))∂ ′ , (2 − ghm + gj)∂ ]
= [(−2 + hj − h(2hm + gm))∂ ′ , (2 − ghm + gj)∂ ]
= [(−2 + hj − h(hm + m(n + 1)))∂ ′ , (2 − ghm + gj)∂ ]

Hence the images of these arcs in Pg,h under the projection map are the same and relation
(f) is satisfied.

Relation (e) We only show the first claim κ0(0)ι0(0)(ghm, αn)P = 0, the second claim is
completely analogous.

By (f), with j = 2m(n + 1) + 1, we know that κ0(0)ι0(0) = κ∞ρh∞πh∞
h
. In terms of

arcs in the annulus, ρh∞πh∞ is the map f ↑↓h from above, it sends any arc π [i∂ ′ , j∂ ′ ] with
j − i ≥ h + 2 to itself. Relation (e) concerns a path going through (2m(n + 1)h, 0)h, the
vertex corresponding to α := π [−2∂ ′ , (2hm(n+1)−h)∂ ′ ] and this is high up in the tube �

∞
,
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hence the effect of f ↑↓h is to send this arc to itself. Applying f ↑↓h to the arc 2m(n+1)−1
times still sends α to itself, however, the composition of all these elementary moves touches
the mouth of the tube exactly once. In (e), this is precomposed with the elementary move
corresponding to (ghm, αn)P . But this means that we can use Case B) from Section 7.2 to

replace the elementary move in �
P
(and the long move from �

P
) by a long move to the arc

π [−2∂ ′ , (2hm(n + 1) + h − 1)∂ ′ ] followed by an elementary move to α within the tube.
Hence the path from α to itself, going all the way down to the mouth, is precomposed with
one downwards move (in �

∞
). Then we use the mesh relations within �

∞
to push this all

the way to the mouth, hitting the tube a second time just to the left of the other vertex at the
mouth. That means that in our path, there are two shortest peripheral arcs. Between them,
there is only a boundary segment (hence a zero object) and an arc of the form [i∂ ′ , (i +3)∂ ′ ].
The zero relation at the mouth proves the claim (Section 7.4).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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