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Abstract—This paper investigates and implements a procedure
for parameter identification of salient pole synchronous machines
that is based on previous knowledge about the equipment and
can be used for condition monitoring, online assessment of the
electrical power grid, and adaptive control. It uses a Kalman filter
to handle noise and correct deviations in measurements caused by
uncertainty of instruments or effects not included in the model.
Then it applies a recursive least squares algorithm to identify
parameters from the synchronous machine model. Despite being
affected by saturation effects, the proposed procedure estimates
8 out of 13 parameters from the machine model with minor
deviations from data sheet values and is largely insensitive to
noise and load conditions.

Index Terms—synchronous machines, parameter identification,
condition monitoring

I. INTRODUCTION

Synchronous generators are the bulk of power generation
worldwide. In Norway, 95% of the electricity production
comes from hydro power [1], in which the use of salient
pole, synchronous generators is the norm. Therefore, the
proper understanding of these devices is essential for planning,
operation, and control of the power system [2]. Examples
of tasks requiring adequate modeling and parametrization of
synchronous machines (SMs) includes load flow analysis, state
estimation, stability assessment and tuning of grid controls and
protection settings. These tasks are important for transmission
system operators or generation companies to operate their
resources optimally and reliably.

Traditionally, SM parameters are calculated by manufac-
turers in the design phase using detailed information of the
machine [3], [4] or by recursive methods such as finite-
element analysis [5], [6]. Calculations are later validated
during commissioning through acceptance or performance
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tests as described in IEEE and IEC Standards [7], [8]. These
methods for parameter identification are well-proven and have
been used for decades to operate the power system reliably.
However, they have two major shortcomings.

The first is considering that many parameter values in the
system equations are constants and do not vary with time.
However, several effects may impact the values of SM param-
eters over time. For example, temperature and load conditions
affects the air-gap length considerably [9]; field current level
determines the saturation of the magnetic core [10]; aging
influences material properties. The reason for adopting this
restriction is simplifying the analysis of equations, which was
done with limited computational resources when the theory
for SMs was developed. However, the availability of powerful
information and communication technologies today makes
such simplifications neither reasonable nor justifiable.

The second shortcoming is requiring the machine to be in
standstill or off-line for performing the majority of tests for
parameter estimation. Since this means loss of income for
generation companies, tests are only executed during commis-
sioning or planned stops. This limits greatly the amount of data
and possible operational conditions that can be measured. In
Norway, the transmission system operator (Statnett) requires
the registration of generators’ parameters in SYSBAS for at
least two weeks before commissioning, and an update with
measured values after the machine starts commercial operation
[11]. Yet, there is no requirement for periodical updates nor
registration of distinct parameter values for different opera-
tional conditions.

Automated procedures for parameter identification of SMs
were encouraged by the popularization of system identification
techniques and their easy access in mathematical tools such
as MATLAB® [12]. Methods are varied, but approaches can
be summarized in analysis of transient data, such as short-



circuit or load rejections; and frequency response tests, with
injection of perturbations in standstill, off-line or on line
operation. Successful examples of such automated procedures
are extensive in the literature and are described in [13]-[23],
among others.

This paper presents the following contributions: 1) the
proposed procedure for parameter estimation can run with
the machine online, and without taking it out of service,
performing difficult and time-consuming tests or involving
large perturbations; 2) the required input data are datasheet
values and common measurements available in a power plant,
i.e. there is no need to install additional transducers in the
machine; 3) the algorithm is robust to noise and deviations in
measurements caused by uncertainty of instruments or effects
not included in the model.

Organization of the remaining sections are as following:
sec. II introduces the SM equations, model and parameters;
sec. Il presents details about the Kalman filter used to estimate
the states of the model and to filter out noise from outputs, and
how this observer performs in several simulation cases and
noise scenarios when compared to the SM model available
in Simscape Power Systems (SPS); sec. IV describes the
algorithm for parameter estimation, and how it performs in
the same simulation cases and noise scenarios evaluated in
sec. III; finally, sec. V presents conclusions, discussion, and
ideas for further work.

II. SYNCHRONOUS MACHINE MODEL

Fig. 1. The windings in the synchronous machine and their axes [24, p. 434]

This section presents the dynamic model of the SM used
in this paper. Fig. 1 illustrates the SM windings, axes, input
and output variables, while eq. (1) introduces its mathematical
model in per-unit. The notation adopted follows the IEEE
convention [25] and equations are based on [24, ch. 11].
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Fig. 2. Three sets of fictitious perpendicular windings representing the

synchronous machine [24, p. 438]

In order to derive eq. (1), the following assumptions are
made:

1) The three-phase stator winding is symmetrical, sinu-
soidally distributed and is wye/star connected;

2) The capacitance of all windings is neglected;

3) Each of the distributed windings is represented by a
concentrated winding;

4) The change in the inductance of the stator windings
due to rotor position is sinusoidal and does not contain
higher harmonics;

5) Hysteresis losses are negligible but the influence of
eddy currents is included in the model of the damper
windings;

6) The magnetic circuits are linear (not saturated) and the
inductance values do not depend on the current;

7) The electromagnetic effects of the three-phase stator
armature windings shifted in space by 120° (al, a2, bl,
b2, cl, c2 in fig. 1) can be represented by three fictitious
rotor windings all orthogonal to each other (d, q and
0 in fig. 2) by an isomorphic transformation, which is
referred in the literature as the dgO-transformation [26];

8) Coefficients of the dq0-transformation matrix are chosen
to make it orthogonal and power invariant;

9) The resistance of each of the stator phases is identical;

10) The effect of grounding is considered through an
impedance on the zero-sequence voltage [27, ch. VIII].

A. State space representation

By inspection of eq. (1), it would be natural to assume
U = VdqofDQ. ¥ = X = iqufDQ9 A = *Lsmilema
B = fLsmfl, C =1, D = 0, and consider the state-space
modeling done.

Nonetheless, for control purposes of a SM, it is more
natural to assume u = [iq i, io vf Up UQ]T, since
stator currents are defined by loads, field voltage is deliv-
ered by the excitation system and vp = wvwg = 0. Thus,



y = [vd Vg Vo iy ip iQ]T and matrices A, B, C,D
must be redefined for a proper state space representation.

Assuming that, a state-space definition is easily achieved
without major changes to the structure of eq. (1) by extending
the model presented in fig. 1. Let suppose a balanced, star-
connected load with resistance Ry = 10*Z; is inserted at the
ABC terminals of the machine, as shown in fig. 3. With that
extension, the stator voltages in the (d, q, 0) reference frame
can be expressed as vg = Rai(ia — iat), Vg = Rai(iq — iqt)s
vo = Rar(io — dot)-

Generator
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—
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v, —>
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Fig. 3. Generator model with a dummy load, adapted from [28]

Notice that Ry is considerably larger than the real load
of the machine, therefore the difference between the terminal
currents 4q¢, tpt, Lot and stator currents ., %p, % is negligible.
Re-arranging eq. (1) with these considerations, one obtains:

vdl = —Rsmadiiaqorpq — LsmaidqofDQ @)
where vq = [Rdlidt Raiiqe  Raiior vy O O}T and
Rsmdl =
R+ Ry wLg wlaq
—wLyg R+ Ry —wLleq —wLlgg
R+ 3RN + Ry
Ry
Rp
Rq
Hence, the following state space is defined:
u=Vqg X= idq()f[)Q (3)
. . . T
y = [Ud ’Uq Vo ’Lf 1D ZQ} (4)
A= _Lsmilemdl (5)
B=Lom (6)
C = diag [Rdl Ry Rg 1 1 1] (7
D = diag [—1 -1 -1 0 0 0] ®)

As the damper winding currents ip, g cannot be directly
measured, an observer must be implemented. The transfer
function for the observer for damper windings (ODW) currents

is derived by applying the Laplace transform to rows 5 and 6
of eq. (2), and manipulating the expressions further to obtain:
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III. OPTIMAL OBSERVER WITH KALMAN FILTER

iq= (10)

Good parameter estimation of synchronous machines re-
quires accurate and precise measurement of inputs and outputs
from eq. (1). However, some practical challenges must be
addressed:

o Damper winding currents cannot be measured directly;

o Measurements are extremely affected by noise due to
the high level of electromagnetic interference in a power
plant;

« Voltage and current measurements may come from sev-
eral independent sources, such as potential and current
transformers for measurement or protection, each of them
having different precision and accuracy values.

In the proposed procedure, measurements are filtered and
corrected by a Kalman filter (KF) using prior knowledge about
the synchronous machine model and its parameters. In addition
to the state-space definition, three additional matrices must be
specified to define a KF [29, chap. 5]:

e Q, a SxS matrix (S=number of states) in which the
diagonal elements represents the noise covariance of the
states, also called process noise covariance matrix;

e R, a YXY matrix (Y=number of outputs) in which the
diagonal elements represents the noise covariance of
the outputs, also called measurement noise covariance
matrix;

e N, a SxY matrix in which the elements represents the
noise cross-covariance between states and outputs, also
called process and measurement noise cross-covariance
matrix.

It is assumed N = 0, i.e. there is no cross-correlation
between the noise of states and outputs. The other matrices are
defined as Q = diag [0.05 0.05 0.05 0.05 0.03 0.03]
and R = diag [0.05 0.05 0.05 0.05 0.05 0.05]. No-
tice that the choice of diagonal Q and R matrices represents
a naive assumption that state and output changes are uncorre-
lated.

These values produce robust results in several load con-
ditions with and without noise or saturation, as seen in
secs. III-A and IV-A. However, fine tuning might be required
in the field for better performance, according to the level of
noise, measurement accuracy and precision of each power
plant. In practice, these values are also affected by the variance
of A, B, C,D elements.

A. Model validation

A simulation in MATLAB/Simulink is implemented to
validate the KF and the ODW. It contains a load connected to
a SM model in pu from the SPS, which is used as benchmark.



TABLE I
PARAMETERS OF THE SALIENT-POLE SYNCHRONOUS MACHINE USED AS
BENCHMARK
Parameter  Value \ Parameter  Value
Sh 555 MVA | Lgaq 1.66 pu
Up 24 kV Lag 1.61 pu
fn 60 Hz lp 0.1713 pu
Iy, 1300 A lg 0.7252 pu
p 1 pair Ry 0.0006 pu
R 0.003 pu ly 0.165 pu
ll 0.15 pu

Parameters of a real synchronous machine are taken from
examples 3.1, 3.2 and 8.1 of [2, p. 91,102,345] and listed in
table 1. Saturation effects in the SPS SM model is included.

The rotor speed is assumed constant, i.e. the prime mover
and its turbine governor are not modeled because the mechan-
ical dynamics are much slower than the electrical and have
little influence in the results. The field voltage is provided
by an DCIC type excitation system as described in [30]. The
choice of parameters for the automatic voltage regulator (AVR)
gives a fast and stable response, without overshoot in the
terminal voltage. However, they are not optimized and a power
system stabilizer is not included, as detailed modeling and
optimization of the excitation system will have little influence
in the results.

The outputs of the SM, i.e. stator and field measurements
Va, Vb, Ve, Vf, la, I, e, 4 together with the rotor mechanical
angle v, are fed into a measurement block that: 1) adds
band-limited white noise and re-samples measurements into
a lower sample frequency (400 Hz) in order to make them
more realistic; 2) applies the dgO-transformation and converts
the values to per-unit. Finally, the output of the measurement
block is fed into the proposed ODW and KF.

The simulation runs with the following load conditions,
where P represent the active power, Q the reactive power and
the per-unit base is given in table I:

e Case 1: P =0 pu, Q = 0 pu (no load);

e Case 2: P=0.5 pu, Q = 0.5 pu;

e Case 3: P=0.5 pu, Q =-0.5 pu;

o Case 4: P =0.9 pu, Q = 0.4359 pu (rated load).

In all cases, the simulation starts at rated stator voltage. In
order to observe transient behavior, a step of +5% is applied
to the reference of the AVR at time ¢ = 17 seconds. The initial
states of the SM are calculated using the Machine Initialization
tool from SPS in order to avoid loss of synchronism. However,
initial states of ODW and KF are all zero, so it is necessary
some seconds of simulation to achieve steady state. This also
demonstrates the KF robustness to wrong initial conditions and
large transients.

In addition, the following noise power density (IN,) sce-
narios are used for each simulation case: no noise N, = 0,
standard noise N, = 107'% W/Hz, high noise N, = 107°
W/Hz.

Table II benchmarks the proposed KF against the SPS SM
by presenting the goodness of fit between the two models using

the normalized mean square error (NMSE) as cost function.
The latter is defined as:

|res — ||

|zrer — mean(zrey)

NMSE =1-— E (11)
where || indicates the Euclidean or L? norm of a vector. NMSE
costs vary between —oo (bad fit) to 1 (perfect fit).

Below follow some remarks about the results:

e« NMSE of vg and ig are very low in case 1 (no load)
because their values tend to zero and, since the noise
power is constant, the signal-to-noise ratio (SNR) is
extremely low. This makes NMSE measurement not
relevant for these cases, so they are excluded from the
standard deviation (std dev) calculation.

o The mean correlation between KF and SPS for all vari-
ables except ¢p is close to unity in the no noise scenario.
This shows the two models are nearly equivalent;

« The KF does not compensate saturation effects for ip.
Saturation changes the value of L,q, which is the main
component of the zero and pole of ip transfer function
in the ODW, as shown in eq. (9). The variation of
L,q makes the state transition function non linear, and
improper for a KF to handle;

o The KF effectively compensates saturation effects for
Vg, 1y in the no and standard noise scenarios. As expected,
performance is degraded in the high noise scenario due
to a lower SNR;

o The low standard deviation between all cases indicates
the correlation is not sensitive to the load conditions;

¢ Also in the standard noise scenario, correlation between
KF and SPS is relatively close to unity and with small
standard deviation, expect for ip;

o As expected, the performance of ODW with saturation
and noise is degraded, but it is fairly improved by the
KF;

o The performance of the KF gets better in the high noise
scenario when the load increases, because the SNR also
improves;

IV. ALGORITHM FOR PARAMETER ESTIMATION

Eq. (1) shows that, in matricial form, a synchronous ma-
chine can be reduced to an impedance with a resistive part
Rgm and an inductive part Lgy,. Given this model structure
and the set of process signal vqqofpQ,idqorpq, the goal is
to estimate the elements of matrices Rsm, Lsm. So, the only
piece left is defining an approximation or error criterion.

The literature has some accounts of error criteria for param-
eter identification of synchronous machines, such as extended
Kalman filter (EKF) [31], Levenberg—Marquardt algorithm
[14], recursive least squares (RLS) [15], [16], Prony method
[17], among others.

In this paper, the error criterion used is the RLS. The main
reasons for this choice are: 1) RLS is readily available in the
System Identification Toolbox of Simulink; 2) near real-time
execution is possible with RLS due to its recursive nature and
low computational effort when compared to other methods.



TABLE II
NMSE VALUES FOR ALL SIMULATION CASES AND NOISE SCENARIOS
WITH SATURATION

Variable Casel Case2 Case3 Cased4 Mean Std dev
No noise scenario
vq KF 1.000 1.000 1.000 1.000 1.000  9.93e-10
vg KF 1.000 1.000 1.000 1.000 1.000  2.39e-09
iy KF 1.000 1.000 1.000 1.000 1.000  8.56e-06
ip ODW 0.609 0.637 0.997 0.975 0.804  2.10e-01
ip KF 0.612 0.620 0.995 0.964 0.798  2.11e-01
ig ODW 1.000 1.000 1.000 1.000 1.000  6.43e-08
ig KF -437 0.995 1.000 0.999 0.998  2.66e-03
Standard noise scenario
vq KF -489 0.954 0.996 0.984 0.978  2.18e-02
vg KF 0.996 0.994 0.988 0.988 0.991  4.13e-03
iy KF 0.999 1.000 0.995 0.999 0.998  2.34e-03
ip ODW 0.448 0.431 0.907 0.753 0.635  2.34e-01
ip KF 0.559 0.551 0.965 0.889 0.741  2.17e-01
ig ODW -5263 0.859 0.991 0.932 0.927  6.63e-02
ig KF -2305 0.945 0.997 0.975 0.972  2.59e-02
High noise scenario
vq KF -4890 0.540 0.963 0.844 0.782  2.18e-01
vg KF 0.961 0.937 0.884 0.876 0915 4.13e-02
iy KF 0.988 0.995 0.946 0.994 0.981  2.33e-02
ip ODW -1.005 -1.437 0.096 -1.253  -0.900 6.87e-01
ip KF 0.066 -0.080 0.692 0.211 0.222  3.35e-01
ig ODW  -52633 -0.414 0.909 0.321 0.272  6.63e-01
ig KF -19133 0.496 0.968 0.759 0.741  2.37e-01

This is essential when considering direct implementation in an
existing intelligent electronic devices (IEDs) or phasor mea-
surement units (PMUs); 3) benchmarks exist in the literature
for comparison of results.

Considering simultaneous estimation of the 13 parameters
of the synchronous machine with RLS estimation generates
poor results [16], simplifications are required. Thus, steady-

state is assumed, i.e. —tidqofDQ = 0. Therefore, parameters
from matrix Ry, can %e estimated using RLS, but not Lgy,.
However, notice that 4 out of 8 parameters from Lgj, are also
present in Ry,

Another practical assumption is the stator resistance R
should not be estimated in rows 1 and 2 of matrix Rgmai.
The arguments for this assumption are: 1) R is not used
for the calculation of any standard parameter of the SM
[2, section 4.2]; 2) R in pu is usually two to three orders
of magnitude smaller than other parameters in these rows
(wLg,wLgq,wly,wle,), what makes a reliable estimation
challenging [32].

Considering all assumptions above, eq. (1) can be re-
arranged into:

12)

vrLs = —RRrLsiaqorpq

where VRLs = [vd —Riqg vg—Rig v9 —-vy 0 O]T

and
wlLg wlLaq

—CULd _WLad _WLad

. R+ 3RN
RRris = Ry

Rp
Rq

Notice that in vrLs, the stator voltages vq, v, are compen-
sated with the voltage drops in the stator resistance Rigq, Rig.
Also R + 3Ry is estimated in the third row. In summary,
eq. (1) is only re-arranged to avoid the estimation of R
individually, as this parameter is not useful to calculate the
standard parameters (table III). Moreover, its use for condition
monitoring is compromised because it cannot be estimated
reliably.

The leakage reactances lf,Ip,lg are not estimated by the
RLS algorithm. Hence, they are assumed constants for calcu-
lation of standard parameters. This is a reasonable assumption
considering they represent a flux path through air and are less
affected by saturation or temperature changes.

Finally, the steady-state condition is detected in run-time
by monitoring that the damper windings currents are below a
certain level, as those flow only in transient conditions. Fine
tuning in the field of this threshold might be required for
better performance, according to the noise level, measurement
accuracy and precision of each power plant.

TABLE III
STANDARD PARAMETERS OF A SALIENT-POLE SYNCHRONOUS MACHINE
AS DEFINED IN [2, SECTION 4.2]

Parameter  Definition
Xa w(Laa + 1)
L l L
T ad t fy ad + 1D
Ry Rp
1 L dll 1 Ladll
T —(p+ —"")+ —(Ip+ ——
d Y ) TRy L)
1 Laaly
T l 2 L l
do T(;()RfRD(DJrLad“!‘lf)( ad +1y)
1 Laglil Lyl
Té/ . (lD+ adlltf )(lf+ adll )
T/R;Rp Ladli + Laals + Uly Loa +1
TI
X Xat
T
)
N T
Xq w(Lag +11)
T M
q R
Q
Lggl
XY w(ly + —24°9
Laq + lQ

A. Parameter estimation validation

For validation of the parameter estimator, the simulation file
runs at exactly the same conditions as described in sec. III-A.
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Fig. 4. Overview of the proposed parameter identification procedure

The output of the KF is fed into six RLS estimators, i.e. one
for each line of Rrrs, as seen in fig. 4. The estimators use
a memory time of 3 seconds and sampling frequency of 400
Hz. Results are evaluated measuring the error in percentage
from values in table I.

Table IV present a summary of these evaluations. Results are
shown before and after the AVR step in order to demonstrate
the effectiveness of the steady-state detection and robustness of
the procedure to transient effects. Below follow some remarks
about these results:

o The proposed procedure estimates parameters of the SPS
SM machine with relative small percentage deviations,
whose values are in line with those reported in the
literature [16];

o The low standard deviation between all cases indicates
the estimation is not sensitive to the load connected to
the machine;

« Noise power has small influence in the quality of the
parameter estimation;

o The strategy to disable and reset the RLS algorithm dur-
ing transients is successful, as results are similar before
and after the AVR step. No instability is observed in the
estimated parameters for all cases and noise scenarios,
also for long time simulations of 300 seconds in all noise
scenarios (not included in the results for sake of brevity);

e The error of wlL4,wL,q estimations is considerable due
to the saturation effect. However, there is no direct
correlation between the amplitude of this deviation and
the saturation level, as one would expect. This fact is
clearly seen in case 3, which has the largest errors, but
the smallest field current from all cases.

+ Noise power continues to have small influence on the
quality of the parameter estimation even with errors in
the model caused by saturation. This seems to be an ad-
vantage of the KF over other filtering techniques reported
in the literature [15], [16], but must be corroborated with
experimental results.

V. DISCUSSIONS AND CONCLUSIONS

The focus of this paper was the investigation and imple-
mentation of a procedure for reliable parameter identification
for salient pole synchronous machines that can be used for
condition monitoring, online assessment of the power grid, and
adaptive control. Focus is given to a procedure that can: 1) run
with the machine online, and without taking it out of service,
performing difficult and time-consuming tests or involving
large perturbations; 2) use common measurements available in
a power plant without installing additional transducers in the
machine; 3) be robust to noise and deviations in measurements
caused by uncertainty of instruments or effects not included
in the model.

In order to achieve that, a KF was implemented to filter
and correct measurements using prior knowledge about the
synchronous machine model and its parameters. Validation of
the KF shows good correlation with the SM model available in
SPS. The results also demonstrates the correlation is sensitive
to saturation effects, but is insensitive to the load condition.
The goodness of fit is maintained under a “standard” noise
scenario. As one would expect, performance degrades in the
”high” noise scenario, specially when the signal-to-noise ratio
(SNR) is extremely low.

Outputs of the KF are then fed into a RLS algorithm
that is able to reliably identify 8 out of 13 parameters from
the SM: R+ 3Rn, Ry, Rp, Rg,wLq,wLqq,wLq,wleq. The
parameters not being estimated are: R, Lo + 3Ly, Iy, Ip, g,
in which R, Ly + 3Ly are not relevant for calculation of
standard parameters and the leakage reactances l¢,lp,lg can
be assumed as constants. Simulations show relatively small
percentage deviations from the datasheet values, and are in line
with those reported in the literature [16]. Besides, the estimator
developed in this paper is largely insensitive to noise and load
conditions, which may be considered a valuable contribution
if corroborated with experimental results.

One limitation of this work is not including saturation
effects in the model. Results show the KF effectively compen-



TABLE IV

PERCENTAGE ERRORS IN THE LAST 5 SECONDS OF ESTIMATION USING DATA SHEET VALUES AS BASELINE - BEFORE AND AFTER THE STEP

Param. Case 1 Case 2 Case 3 Case 4
mean std dev mean std dev mean std dev mean std dev
before after  before  after ‘ before after  before  after ‘ before after  before  after ‘ before after  before  after
No noise scenario
wLyg 0.00 0.00 0.00  0.00 -1.63  -0.90 0.00  0.00 -4.04  -4.03 0.00 0.01 -3.26  -2.96 0.00  0.00
wlq 0.26  -0.01 0.00  0.00 -0.87 -0.97 0.03  0.01 -0.22  -0.26 0.01  0.00 -0.79  -0.85 0.02  0.00
R+ 3RN 0.00 0.00 0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00  0.00
wLgq -0.08  -3.51 0.01  0.01 3.26 1.84 0.00  0.00 5.17 5.17 0.01 0.01 5.20 4.76 0.00  0.00
Ry 0.52 0.02 0.10  0.00 0.00 -0.04 0.00 0.01 0.00 -0.33 0.00 0.09 0.00 -0.07 0.00 0.02
Rp -0.01 0.00 0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00  0.00
wlagq 0.02 0.00 0.00  0.00 -0.02 0.00 0.00  0.00 -0.02 0.00 0.00  0.00 -0.02 0.00 0.00  0.00
Rq 0.00 0.00 0.00  0.00 -0.02  -0.02 0.00  0.00 -0.02 0.00 0.00  0.00 -0.02  -0.01 0.00  0.00
T(;O -0.54  -1.65 0.10  0.00 1.51 0.89 0.00 0.01 2.40 2.73 0.00 0.08 241 2.28 0.00 0.02
T(; -0.34  -0.05 0.10  0.00 -0.61  -0.66 0.02  0.02 -0.12 0.17 0.01  0.09 -0.53  -0.53 0.01  0.02
Té’o -0.03  -1.60 0.00  0.00 1.44 0.82 0.00  0.00 2.27 2.28 0.00  0.00 2.28 2.09 0.00  0.00
T(;’ 1.01  -0.16 0.02  0.01 -3.63 -4.19 0.13  0.04 -0.69  -0.96 0.04  0.00 -3.20  -3.57 0.07  0.02
lei 0.35 -1.65 0.01  0.01 0.03 -0.81 0.05 0.02 1.98 1.88 0.01  0.00 1.03 0.70 0.03 0.01
X(’i’ 141 -0.22 0.02 0.02 -497 -5.74 0.18  0.06 -097 -1.34 0.06  0.00 -439 -4.89 0.10  0.02
Té() 0.02 0.00 0.00  0.00 0.01 0.02 0.00  0.00 0.01 0.00 0.00  0.00 0.01 0.01 0.00  0.00
Xrlzl 0.64 -0.03 0.01  0.01 232 -2.63 0.08 0.03 -0.54  -0.70 0.03  0.00 -2.09 -2.30 0.05 0.01
Standard noise scenario
wLyg -0.02  -0.01 0.00  0.00 -1.64  -091 0.00  0.00 -4.04  -4.04 0.00 0.01 -3.26 297 0.00  0.00
wlyg 0.22  -0.02 0.01 0.01 -0.88  -0.97 0.03  0.01 -0.22  -0.26 0.01  0.00 -0.79  -0.85 0.02  0.00
R+ 3RN -0.06  -0.04 0.06 0.03 -0.02  -0.03 0.04 0.03 -0.02  -0.03 0.04 0.03 -0.02  -0.03 0.04  0.03
wlgqg -0.08  -3.51 0.01  0.01 3.25 1.84 0.00  0.00 5.17 5.17 0.00 0.01 5.20 4.76 0.00  0.00
Ry 0.41 0.12 0.08  0.02 -0.03 0.01 0.01  0.01 -0.08 -0.22 0.02  0.09 -0.03  -0.03 0.01  0.02
Rp -0.03  -0.01 0.00  0.00 -0.01  -0.01 0.00 0.00 -0.01  -0.02 0.00  0.00 -0.01  -0.01 0.00  0.00
wlagq 0.03 0.00 0.00  0.00 -0.01 0.01 0.00  0.00 -0.01 0.01 0.00  0.00 0.00 0.01 0.00  0.00
Rq -0.01 0.00 0.00  0.00 -0.03  -0.02 0.00  0.00 -0.03  -0.01 0.00  0.00 -0.03  -0.02 0.00  0.00
Téo -0.43 -1.74 0.08  0.02 1.54 0.85 0.01  0.01 2.48 2.62 0.02  0.09 2.44 2.23 0.01 0.02
Tc’l -0.27  -0.15 0.08  0.02 -0.58 -0.71 0.03  0.02 -0.04 0.05 0.03  0.09 -0.52  -0.58 0.02  0.02
Té’o -0.02  -1.59 0.00  0.00 145 0.83 0.00  0.00 2.28 2.29 0.00  0.00 2.29 2.10 0.00  0.00
Tél 0.85 -0.22 0.04 0.02 -3.68  -4.21 0.14  0.04 -0.71  -0.96 0.05  0.00 -3.27  -3.61 0.09 0.02
X(’i 029 -1.68 0.02 0.01 0.00 -0.82 0.06  0.02 1.97 1.87 0.02  0.00 0.99 0.68 0.03  0.01
Xé’ 1.15  -0.31 0.06 0.04 -5.06 -5.78 0.20  0.06 -1.01  -1.36 0.07 0.01 -4.50 -4.95 0.12  0.03
Tég 0.03 0.01 0.00  0.00 0.02 0.03 0.00  0.00 0.02 0.01 0.00  0.00 0.03 0.03 0.00  0.00
thz/ 0.53  -0.07 0.02 0.02 235  -2.65 0.09 0.03 -0.56  -0.71 0.03  0.00 2,13 -2.32 0.05 0.01
High noise scenario

wLyg -0.19  -0.11 0.04 0.03 -1.70  -0.97 0.02  0.02 -4.08 -4.06 0.01 0.01 -3.31  -3.01 0.01  0.01
wlyg 0.01 -0.13 0.05 0.03 -091 -0.97 0.03 0.01 -0.22  -0.25 0.01  0.00 -0.81 -0.85 0.02  0.00
R+ 3RN -0.62  -0.39 0.56 0.34 -0.16  -0.31 041 0.33 -0.16  -0.34 041 033 -0.23  -0.33 041 0.32
wlgqg -0.07  -3.50 0.01  0.01 3.22 1.81 0.01 0.01 5.15 5.15 0.00  0.00 5.17 473 0.01  0.01
Ry 0.24 0.32 0.06 0.06 -0.11 0.11 0.03 0.03 -0.27 0.03 0.08 0.11 -0.09 0.06 0.03 0.03
Rp -0.18  -0.09 0.03  0.02 -0.11  -0.09 0.02  0.02 -0.13  -0.11 0.03  0.03 -0.12 -0.09 0.02  0.02
wlagq 0.11 0.04 0.01 0.01 0.11 0.11 0.03 0.03 0.05 0.05 0.01 0.01 0.15 0.13 0.03 0.03
Rq -0.06  -0.03 0.01 0.01 -0.08  -0.07 0.01  0.01 -0.07  -0.04 0.01 0.01 -0.10  -0.08 0.02  0.02
Téo -0.26  -1.93 0.06  0.05 1.61 0.74 0.04  0.03 2.67 2.37 0.08 0.11 2.49 2.14 0.03 0.03
Té -0.30  -0.46 0.04 0.05 -0.61 -0.87 0.07 0.04 0.10 -0.22 0.09 0.12 -0.58 -0.75 0.06  0.05
T(% 0.14  -1.51 0.03  0.02 1.54 0.89 0.02  0.02 2.40 2.37 0.03  0.03 2.38 2.17 0.02  0.02
T(;’ -0.22  -0.74 0.22 0.15 -421  -4.52 0.22  0.11 -0.87 -1.05 0.07  0.02 -390 -4.01 0.19 0.11
X(’i -0.19  -1.92 0.10  0.07 -0.25  -0.98 0.10  0.05 1.85 1.79 0.04 0.02 0.71 0.48 0.08  0.06
Xé’ -0.55 -1.16 035 024 -5.89  -6.30 0.33  0.17 -1.40  -1.61 0.14  0.07 -5.47  -5.59 0.28 0.18
T(;’O 0.13 0.06 0.02  0.01 0.16 0.14 0.03 0.03 0.10 0.08 0.02  0.02 0.20 0.17 0.04 0.04
Xé’ -0.22  -044 0.15 0.11 270  -2.86 0.14  0.07 -0.72  -0.81 0.06 0.03 254 -2.59 0.12  0.08




sates saturation for vg,iy. However, saturation considerably
affects the estimation error of wl,,; and the measurement of
ip provided by the ODW, whose zeros and poles are directly
affected by L,q. Surprisingly, there is no direct correlation
between the amplitude of this deviation and the saturation
level. This fact that is clearly seen in results of case 3, which
has the largest errors for wl4, wL,q, but the lowest saturation
level.

Therefore, saturation effects must be considered and in-
cluded in future work. An alternative for that would be using
an extended or unscented KF, which can handle non linear
state transition functions, and compensate the value of L,q4
dynamically [19]. Alternatively, a more advanced non linear
model of the machine including saturation in its derivation can
be used [33], [34].

Despite current limitations, results are promising and, when
validated experimentally, the proposed procedure can already
be used for practical condition monitoring applications, such
as detection of broken damper winding, turn-to-turn short
circuit and air-gap eccentricity. Another possibility is using
the proposed procedure to calculate standard parameters in
multiple load conditions based on measurements from existing
protection IEDs, without the use of special test equipment.
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