
Enhancing Usage Control for Performance:
An Architecture for Systems of Systems

Vasileios Gkioulos1, Athanasios Rizos2,3, Christina Michailidou2,3, Paolo Mori2,
Andrea Saracino2

1 Norwegian University of Science and Technology,
Department of Information Security and Communication Technology, Norway

vasileios.gkioulos@ntnu.no
2 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy

name.surname@iit.cnr.it
3 University of Pisa, Pisa, Italy

Abstract. The distributiveness and heterogeneity of today’s systems of systems,
such as the Internet of Things (IoT), on-line banking systems, and contempo-
rary emergency information systems, require the integration of access and usage
control mechanisms, for managing the right of access both to the correspond-
ing services, and the plethora of information that is generated in a daily basis.
Usage Control (UCON) is such a mechanism, allowing the fine-grained policy
based management of system resources, based on dynamic monitoring and eval-
uation of object, subject, and environmental attributes. Yet, as we presented in
an earlier article, a number of improvements can be introduced to the standard
model regarding its resilience on active attacks, the simplification of the policy
writing, but also in terms of run-time efficiency and scalability. In this article,
we present an enhanced usage control architecture, that was developed for tack-
ling the aforementioned issues. In order to achieve that, a dynamic role allocation
system will be added to the existing architecture, alongside with a service group-
ing functionality which will be based on attribute aggregation. This is structured
in accordance to a risk-based framework, which has been developed in order to
aggregate the risk values that the individual attributes encapsulate into a unified
risk value. These architectural enhancements are utilized in order to improve the
resilience, scalability, and run-time efficiency of the existing model.

Keywords: Access Control · Internet of Things · Security Architecture · Systems
of Systems · Usage Control.

1 Introduction

Modern interconnected systems of systems, require scalable and efficient security mech-
anisms, for controlling a very large number of access requests in a future with billions of
heterogeneous devices connected to the Internet. The evaluation of requests for access
to certain pieces of information and services commonly relies on dedicated policies [9],
which incorporate object, subject, and environmental attributes. Such policies are based
on predefined rules, while access control is a process by which use of system resources
is regulated according to a security policy and is permitted only by authorized entities



2 Authors Suppressed Due to Excessive Length

(users, programs, processes, or other systems) according to that policy [15]. A multi-
tude of access control policies can be defined, corresponding to distinct criteria for what
should be allowed and what not [13].

As presented in detail in our earlier study [3], a limitation of access control is that
the access request is only checked once, at the initiation, which highlights the lack of
capabilities related to checking alterations on the values of attributes during a session
so as to re-evaluate the conformance to the policy. This type of continuous control is a
feature that Usage Control (UCON) [6] can provide. UCON enhances Attribute-Based
Access Control (ABAC) models [2] in two novel aspects [11]: continuity of control,
and mutability of attributes. Continuity of control is the evaluation of access decisions
not only at request time, but also when the requester executes access rights on the re-
source. Further, mutability of attributes means that if changes occur in attribute values
while a session is in progress, and the security policy is not satisfied anymore, UCON
can revoke the access, terminating the usage of the resources [16]. Yet, the examined
environments carry inherent limitations in terms of both computational and communi-
cations capacity. Accordingly, corresponding optimizations must be implemented to the
original UCON design, seeking to maintain operational efficiency at run-time, but also
further security objectives related to resilience. Such optimizations must be initially in-
tegrated architecturally, and further enhanced within the components of the deployed
policy based management systems.

In this article, we build on the results of the aforementioned articles in order to
mitigate the limitations of the original UCON which have been presented earlier [3].
Namely, the current UCON architecture, requires the complete re-evaluation of ac-
cess permissions per user-asset-session triplet, both at the initiation and at runtime.
This, have been experimentally proven in the aforementioned articles to require ex-
cessive computational resources, especially as the users, assets, sessions and policy
attributes increase. Accordingly, we describe the developed architectural optimizations
to the original UCON, seeking to positively affect run time efficiency, scalability, and
resilience against active attacks. In order to achieve that, a service group functionality is
introduced to the existing model alongside with a dynamic role allocation sub-system,
both based on risk aggregation. Thus, the right of access will be granted to a user, based
on his allocated role for each group of services and not for one service at a time. The
integrated optimizations improve the performance of the model, while increasing its re-
silience by allowing the mitigation of specific types of active attacks that are based on
request flooding.

Architectures of this nature can be described in three abstraction levels, maintaining
consistency and completeness. These levels are the (i) architectural model and compo-
nents, (ii) protocol and interface, and (iii) implementation. In this article, we present and
discuss the suggested architecture in all three levels (see section 3), highlighting the in-
tegrated optimizations to the original UCON and the corresponding affects. The rest of
this paper is organized as follows: In section 2, we report related work and background
information on the existing UCON mechanisms. Section 3 describes the developed ar-
chitecture in the aforementioned abstraction levels. Further, section 4 presents our ini-
tial results from a small-scale test-case based validation, while Section 5 concludes by



Enhancing Usage Control for Performance: An Architecture for Systems of Systems 3

proposing future directions which stem from our preliminary work and validation re-
sults.

2 Background and Related Work

In this section we will review the theoretical background of the most commonly used
access control models, the Role-Based Access Control (RBAC), the Attribute-Based
Access Control (ABAC) and the Usage Control. Furthermore, we provide a brief ex-
planation of the risk-based aggregation process, which will be used in the upcoming
sections of this study.

2.1 RBAC - ABAC

Role-Based Access Control (RBAC) is a widespread approach for regulating the access
to information and resources [14]. The principal idea of this model is that a set of roles
is created based on the application environment, where as an example, these roles can
arise from the hierarchy of an organization or a company. Each subject is assigned to a
role, depending on which, he/she also is entitled to a set of privileges. Hence, subjects
that are higher in the hierarchy have the possibility to perform more actions over the
resources, whilst subjects belonging in the base of the hierarchy have limited access.
The RBAC model can be characterized as flexible, since subjects can be reassigned to
roles if needed and also privileges can be given to roles or taken from them considering
the current state of the application environment. Another positive aspect of this model
is that subjects can be also organized in groups based on their role or some common
characteristics, while each group has its own permissions. As an example, a group can
be the IT department of a company with permissions to modify user-names/passwords,
but no permissions on changing data related to the salary of the employees.

Notwithstanding the benefits in efficiency [10], RBAC also comes with a certain
amount of limitations. The inability to take into account time and location constraints,
and the fact that in order to change the privileges of a user the role must be also changed,
are a only a few examples commonly discussed in bibliography. Thus, to overcome
these limitations, a new model came to fill the gap. Attribute-based Access Control
(ABAC) [4] considers many different attributes related both to the subject and the ob-
ject, in order to grant or deny access to a resource. The sets of attributes that can be
evaluated by ABAC include both static attributes such as the name or the role of a sub-
ject, and dynamic such as the current position of the subject, the time of the day, the
age etc. The right of access is regulated by the security policy, which is defined in ac-
cordance to the attributes that need to be evaluated and their permitted ranges. Policies
of this type can be expressed in formal languages such as XML [2].

The proposed enhancements in the existing UCON model, arise by the combination
of the benefits provided by these two approaches, where attribute based aggregation
is utilized both for subject roles and object groups. Consequently, these aggregated
values are incorporated within the predefined security policies, reducing the required
resources for policy evaluation and accordingly increasing the scalability potential of
such deployments.



4 Authors Suppressed Due to Excessive Length

2.2 Usage Control

The original UCON model is based on the ABAC model. It introduces mutable at-
tributes and new decision factors besides authorizations; these are obligations and con-
ditions. Mutable attributes represent features of subjects, objects, and environment that
can change their values as a consequence of the system’s operation [11]. Since mu-
table attributes change their values during the usage of an object, the UCON model
allows the definition of policies which are evaluated both at the initiation and during
a session. In particular, a UCON policy consists of three components: authorizations,
conditions and obligations. Authorizations are predicates which evaluate subject and
object attributes, and also the actions that the subject requested to perform on the ob-
ject. Obligations are predicates which define requirements that must be fulfilled before
the access (Pre-Obligations), or that must be continuously fulfilled while the access is in
progress (Ongoing-Obligations). Finally, conditions are requirements that evaluate the
attributes of the environment. The continuous evaluation of the policy when the access
is in progress aims at interrupting the access when the execution right is no more valid,
in order to reduce the risk of misuse of resources.

Hence, in UCON it is crucial to be able to continuously retrieve the updated values
of the mutable attributes, in order to perform the run-time evaluation and promptly
react to the changes by revoking access when necessary. The main blocks of UCON
are the Usage Control System (UCS) surrounded by the Controlled Systems and the
Attribute Environment. The Controlled Systems are those components on which the
UCON policy can be enforced. Each Controlled System communicates with the UCS
issuing the request to access a resource by performing a specific operation on it. For
more information about UCON, readers can refer to [6].

Earlier studies on UCON, highlight that in large-scale heterogeneous systems, such
as an IoT application [5], the number of attributes can grow exponentially, increasing
the demand for resources but also limiting scalability, and run-time efficiency. Accord-
ingly, in this article, enhancements presented have been developed, towards mitigating
these limitations and improving the operation of UCON under such constraints.

2.3 Risk aggregation

Large-scale applications create a challenging field in regard to access and usage control.
The number of the attributes which need to be evaluated grows continuously and hence,
the possibility of mistakes and conflicts during the policy development increases. There-
fore, a model has been proposed earlier [8], which considers the risk level that each
attribute encapsulates, and aggregates these values for policy decisions. For example,
if a subject wants to access a classified document and the policy takes into account the
role of the subject, then it is possible to assign different level of risk to different roles,
e.g the administrator of the system comes with a low level of risk while a new-hired
employee with a high level of risk.

The aforementioned model is a qualitative risk model for systems that make use
of UCON, and its goal is to aggregate the risk values of the attributes into one single
value, that will characterize the total risk of a given request. In order to achieve the
aggregation, the model exploits the Analytic Hierarchy Process (AHP) [12]. Having the



Enhancing Usage Control for Performance: An Architecture for Systems of Systems 5

total risk value the security administrator has the possibility to define policies which are
based only on this value or, as it will be explained later in this section, policies of any
other granularity level. In order to make the functionality of the model clearer a set of
definitions must be given [8].

– Full Policy: A policy considering the attributes as they are extracted when acquiring
the attribute values but not yet aggregated.

– RA-Policy: A risk aware policy is a policy which is written by considering the risk
level of aggregated attributes. It has generally a smaller number of attributes with
respect to the correspondent Full-Policy, hence it is easier to define and evaluate.

– Initial Request: A generated request enriched with the related attributes extracted.
– Aggregated Request: A request automatically computed by our framework, starting

from an initial request, translating it to the aggregation level required by the current
RA-Policy.

Fig. 1. Total Risk Reverse Tree [8]

The framework is based on a reverse tree structure which is depicted in Figure 1. The
total risk value, which was calculated by the aggregation of the attributes’ risk values,
forms the root of the tree. The upper levels consist of several blocks which represent
groups of attributes that are related to each other. For example, a possible group could
be the attributes related to environmental factors, such as the location or the time of the
request. The leaves of the tree represent the attributes that participate in the Full Policy,
whilst the Total Risk value is the one being considered by the RA-Policy.

As stated above, the method used for the aggregation of the risk values of the at-
tributes is the AHP. This method demands the definition of three elements: the goal, the
criteria and the alternatives. Regarding the risk-aware model the goal is to characterize
the total risk of the given request, the criteria are the various attributes and the alter-
natives are the possible risk levels (i.e. Low Risk, Medium Risk, High Risk). A set of
comparison matrices is created, where an expert on the specific field of the usage con-
trol application environment, defines a level of preference among the criteria, stating by
this way the relevance of each criterion with respect to the goal.



6 Authors Suppressed Due to Excessive Length

A comparison matrix is N ×N, where N is the number of the alternatives. Each
element of the matrix takes a value in the interval [1,...,9] which defines the importance
of an element in comparison with another one. Let us consider the previous example
of accessing a classified document. Regarding the attribute of the role of the subject,
it is reasonable to assume that the administrator of the system can be assigned with a
lower level of risk than a new employee. The comparison matrix which represents this
statement is shown in Table 1. The meaning of this matrix is that if the value of the role
is the administrator then the value of Low Risk is considered to be 7 times more relevant
than the Medium and 9 times more relevant than the High or Unacceptable Risk. On the
contrary, if the value of the role is new employee then the High Risk alternative will be
valued more than the others as shown in Table 2.

Table 1. Comparison Matrix of the alternatives for the administrator

Administrator Low Medium High Unacceptable
Low 1 7 9 9
Medium 1/7 1 3 5
High 1/9 1/3 1 1
Unacceptable 1/9 1/5 1 1

Table 2. Comparison Matrix of the alternatives for new employee

New Employee Low Medium High Unacceptable
Low 1 1/4 1/9 1/9

Medium 4 1 1/9 1/9

High 9 9 1 1
Unacceptable 9 9 1 1

Finally, regarding the integration of the risk-aware framework to UCON, there is no
need for any modification of the original model. The only requirement is the addition
of a set of PIPs, which will acquire the risk values from the AHP blocks. The proposed
architecture is shown in Figure 2, where the attributes are grouped into two sets. Each
one of the sets will be aggregated using AHP and the results of these aggregations will
be the input to a final AHP problem which will compute the single total risk value.

Having this architecture, it is also possible to define policies of different granularity
levels, although it must be noted that excessive aggregation levels can affect the ex-
pressivity of the policy, as discussed earlier [8]. For example, a policy can be defined
by using only the single value of total risk, such as ”Subject can access object if the
total risk of the request is at most medium”, or combine this value with attributes either
coming directly from the AMs or coming as outcome from any AHP block, such as
”Subject can access object if the total risk is at most medium and the time of the request
is within the working hours” or ”Subject can access object if the total risk is low and



Enhancing Usage Control for Performance: An Architecture for Systems of Systems 7

Fig. 2. Risk aware UCON architecture [8]

the risk of the environmental group of attributes is medium”. Thus, this model is totally
configurable and adjustable to the requirements of the application environment.

3 The Proposed Architecture

In this section, we present the architecture for enhancing the UCON model, in two
abstraction levels, namely: (i) the architectural model and its components, (ii) proto-
col and interface. The aim of this architectural enhancement is to improve the existing
UCON model in terms of performance and efficiency. To this end, a service group
functionality has been introduced in the current architecture. Alongside the dynamic
user role allocation, this functionality gives the possibility for a faster access evaluation
and response. Policy attributes are aggregated integrating criticality and risk metrics,
allowing for the mapping of service groups but also for the allocation of distinct roles
across these groups to every subject. Accordingly, the extraction of the service groups
and the current user role (for each group) at run-time is achieved by the Group Handler,
and in accordance to the current attribute values. For example, considering that an ap-
plication environment consists of ten services, the architecture for the enforcement of
UCON policies proposed in [7], has to evaluate the subject’s request for each one of
them. On the contrary, the proposed architecture, after grouping the services, will grant
access to these groups in accordance to the predefined policies, and the dynamically al-
located user roles, which are independently calculated for each group. Hence, if a user
has access to a group, in accordance to his role for this group, and makes a request for
a service belonging in this group the evaluation will be faster, improving the run-time
efficiency.



8 Authors Suppressed Due to Excessive Length

3.1 The Architectural Model and its Components

The suggested architecture remains unaltered in comparison to the one proposed in
[7], which was based on U-XACML [1], with the exception of the introduction of a
Group Handler (GH) as an internal sub-component of the Context Handler (CH), for the
purpose of providing high-level compatibility with prior studies and implementations.
The components of the architecture and their interconnections are presented in figure
3. The actions used by the PEP to interact with the UCS in order to perform an access
request, a start/end of usage of resources are the same as in the UCON model described
earlier. The same applies for the actions used by the UCS to interact with the PEP in
order to revoke access when needed.

Fig. 3. The proposed architectural model.

The proposed architecture consists of six distinct components. The discrete services
provided by these components are:

1. PEP-Policy Enforcement Point: The PEP enforces usage control policies by me-
diating requests from the subscribers to the UCS, and enforcing the corresponding
policy decisions. The PEP incorporates functionalities which ensure that no sub-
scriber can register (or remain registered) to a service, without the continuous en-
forcement of the corresponding usage control policies. Further, the PEP is respon-
sible for the appropriate translation of subscription requests and decisions among
the subscribers and the UCS. The communication between the PEP and the UCS is
performed via the following actions:
TryAccess: Request by the PEP to the UCS to perform an action or access on a
resource. The UCS will respond with a Permit or Deny decision.
StartAccess: This is the actual start of using the service requested. There is again
evaluation from the PDP and after an affirmative response from the UCS the session
actually starts.



Enhancing Usage Control for Performance: An Architecture for Systems of Systems 9

EndAccess: This action is invoked when the usage of the resource terminates by a
request of the PEP to the UCS.
RevokeAccess: If a mutable attribute changes its value and a violation of the pol-
icy occurs, the access has to be revoked. UCS informs the PEP that this session is
revoked.
A detailed description of the previous interactions can be found in [7].

2. SM-Session Manager: The SM is a database of the ongoing sessions. Accordingly,
this component is crucial for the (i) session initiation process, (ii) re-evaluation of
active sessions process, and (iii) protection against active DoS (Denial of Service)
attacks that are based on request flooding. In particular, a new entry, called Tryac-
cess entry, is created in the SM database every time the initiation of a new access is
permitted, as a result of a successful TryAccess. As soon as a StartAccess action is
received, the TryAccess entry is updated to ActiveSession entry.

3. CH-Context Handler: The CH operates as the controller of the other components,
and is responsible for the management and supervision of the session initiation and
session re-evaluation processes.

– GH-Group Handler: This sub-component of the CH is responsible for the
computation of both the service groups and subscriber roles that correspond
to a session, in accordance with the risk aggregation model describer earlier,
where the aggregated values of the corresponding attributes, are mapped into
such roles and groups. In respect to the services, this computation can be done
apriori and in the simplest form integrated as a Look up Table, although the GH
can also incorporate the capacity for empirical environmental observation for
dynamic service group management at run-time. As for the computation of the
user roles, this is done at runtime in two occasions, the initiation of a session
for a specific service group and the re-evaluation of access for a specific service
group, but not on a per-session basis as in the original model.

4. PIP-Policy Information Point: The PIP is the entity which retrieves policy specific
attributes from the operational environment, and provides them to the UCS upon
request from the CH.

5. PAP-Policy Administration Point: The PAP is the entity which is utilized by the
system administrators for the development and integration of policies. Moreover,
the PAP is in charge of providing the proper policy when necessary.

6. PDP-Policy Decision Point: The PDP is the entity, which is responsible for the
evaluation of the policy upon request from the CH, and the computation of pertinent
decisions.

3.2 Protocol and Interface

In this subsection we provide the sequence diagrams for the session initiation and re-
evaluation processes, discussing the operations and providing corresponding examples.
For the rest of this Section Consecutive steps refer to Figures 4 and 5, which provide the
sequence diagrams during the initiation and operation phases in the following scenarios.

1. Session establishment: Consecutive steps: 1-3-4-5:
In the initial steps of every session establishment request, the PEP translates the



10 Authors Suppressed Due to Excessive Length

Fig. 4. Initiation phase-Sequence diagram.

request into a TryAcceess message towards the CH, which includes the unique
identifier (Service ID) of the service that the subscriber requests access to. Conse-
quently, the CH extracts the service group which corresponds to the given identifier,
in accordance with the service grouping established during deployment, based on
the risk aggregation method described earlier. Furthermore, the CH seeks to estab-
lish whether the subscriber has initiated similar request for this service, by querying
the SM for active TryAccess entries. Provided that the SM replies negatively, there-
fore this request is not part of an active DoS attack, in step-3 the CH requests from
the SM a notification about active sessions for the examined subscriber within the
same service group. Given that no such sessions are identified, in step-4 the CH



Enhancing Usage Control for Performance: An Architecture for Systems of Systems 11

Fig. 5. Operation phase-Sequence diagram.

retrieves the required attributes from the PIP, extracts the subscriber’s role that cor-
responds to the examined service group, and requests a policy evaluation from the
PDP, based on the service group and extracted subscriber role. Further, in step-5,
given that the permission is granted, the CH requests from the SM to initiate a
corresponding session and send a permission notification to the dedicated PEP.

2. Denial of Service avoidance: Consecutive steps: 1-2:
In this scenario the activities executed for step-1 are identical with those described
for the session establishment scenario. Yet, given that the SM reports that TryAc-
cess entries are still active for the same subscriber-service pair, (i.e. the time to live
has not expired) this request is recognised as part of a DoS-Request-flooding attack,
and the request is immediately denied in step-2. This improves the resilience of the
usage control architecture, in comparison to the original UCON [7].

3. Initial session denial: Consecutive steps: 1-3-4-6:
In this scenario the activities executed for step-1, step-3, and step-4 are identical
with those described for the session establishment scenario. Yet, given that the re-
quest is evaluated as ”Deny” by the PDP, the PEP is notified accordingly by the
CH. It must be noted that in this scenario, the TryAccess entry in the SM remains
active for the corresponding time to live, leading to the previously described Denial
of Service avoidance scenario, if an identical request is delivered within this time
to live.



12 Authors Suppressed Due to Excessive Length

4. Request for the same service group: Consecutive steps:1-3-7:
In this scenario the activities executed for step-1 and step-3 are identical with those
described for the session establishment scenario. Yet, given that the requesting sub-
scriber has and active/permitted session for the examined service group, the CH
immediately evaluates the request as ”allow” notifying the corresponding PEP in
step-7. This improves both the efficiency and scalability of the usage control archi-
tecture, in comparison to the original UCON.

5. No attribute change: Consecutive steps: 8-9:
During the session re-evaluation phase, the CH requests the ActiveSessions entry
from the SM. Accordingly, the CH requests from the SM the specific information
for the first-in-queue session. Based on these information, and the timely values of
the corresponding attributes from the PIP, the role of the subscriber is re-evaluated.
Given that the role has not been changed, no further action is taken and the CH
proceeds to the next-in-queue session, as described in step-9.

6. Attribute change with permission: Consecutive steps: 8-10-12
In this scenario the activities executed for step-8 are identical with those described
for the No attribute change scenario. Given that a change occurred in the sub-
scriber’s role, the CH requests and new access evaluation from the PDP, in step-10,
and updates the corresponding session entry of the SM in step-12, given that per-
mission is granted by the PDP.

7. Attribute change with denial: Consecutive steps: 8-10-11
In this scenario the activities executed for step-8 and step-10 are identical with
those described for the Attribute change with permission scenario. Yet, given that
the policy evaluation result by the PDP is Deny, the session in the SM is closed and
the corresponding PEP is notified, as described in step-11.

4 Test Case

The test case which has been utilized for the initial evaluation of the proposed archi-
tecture, and its comparison with the original UCON, is presented in figure 6. The test
case refers to the cloud service deployment of a state owned airport operator, which
is distinguished between a global deployment (with three groups of services, whose
instances are available across all the managed airports) and a local deployment (with
three groups of services in dedicated local instances per airport). The grouping of the
services is achieved utilizing the developed risk aggregation method which has been
presented in section 2. A set of object, subject, and environmental attributes have been
defined for the definition of the corresponding policies, while four distinct types (roles)
of users have also been established in accordance to the aforementioned risk aggrega-
tion method.

In this section we present the results from one of the executed scenarios within this
test case. In this, one of the operators’ employees registers and seeks to obtain access for
services S1, S2, and S3 of service group 1G. We executed the registration process for
this scenario with the original UCON, and the Enhanced-UCON architecture presented
in this article, for policies with 1, 5, 10, 15, 20, 25, 30, 35, and 40 attributes. Each test
was conducted for ten repetitions, and the average times for the evaluation are presented



Enhancing Usage Control for Performance: An Architecture for Systems of Systems 13

Fig. 6. Exemplified test case scenario.

in table 3 and figure 7. The table presents the elapsed time, in milliseconds, for each of
the services, the total time, and the percentage of improvement. The test environment
for this scenario was a virtual machine installing Ubuntu 16.04 64 bit, equipped with an
Intel i7-6700HQ with 8 cores enabled, 8 GB DDR4 RAM.

Fig. 7. Results of the executed tests

The results highlight a significant improvement in terms of run-time efficiency, as
both the number of micro-services and attributes (incorporated within the security pol-
icy) increase. This improvement is not affected by the type or complexity of the service
towards which the access request is directed, as the services belong to the same group,



14 Authors Suppressed Due to Excessive Length

Table 3. Results of the executed tests

Number of
attributes

1 5 10 15 20 25 30 35 40

Original UCON-times in milliseconds (ms)
1st service 141.1 175.3 210.6 256.9 291.2 322.9 367.5 415 493.9
2nd service 56.6 76.9 105.6 134.8 153 211.8 245.7 256.3 318.8
3rd service 48.1 77.6 96.1 132.1 162.4 185.6 211.3 242 294.7
Total time 247.8 331.9 414 525.5 608.9 721.9 827.3 915.7 1110.4

Enhanced UCON-times in milliseconds (ms)
1st service 142.7 179 223.4 259 303.1 335.2 368.3 394.8 487.6
2nd service 16.7 17.8 23.4 30.1 34 37.3 57.2 63.3 64.7
3rd service 14.4 19.4 28.2 24.2 24.1 48.9 33 44.3 65.5
Total time 175.4 216.9 277.1 315.3 362.5 422.2 461.1 504.2 618.9

Optimization percentage-%
1st service 1.134 2.111 6.078 0.817 4.087 3.809 0.218 -4.867 -1.276
2nd service -70.495 -76.853 -77.841 -77.671 -77.778 -82.389 -76.720 -75.302 -79.705
3rd service -70.062 -75.000 -70.656 -81.681 -85.160 -73.653 -84.382 -81.694 -77.774
Total -29.217 -34.649 -33.068 -40.000 -40.466 -41.515 -44.264 -44.938 -44.263

for which the users role remain unaltered. A small degradation is noticeable for the
initial service registration in low attribute policies, but this is quickly replaced by sig-
nificant improvement of up to approximately 85%. In total the average performance,
across all tests and repetitions, decreases by 1.346% for the first service, while for the
second it improves by 77.195%, and for the third by 77.785%. The overall average
improvement for three services, across all tests and repetitions, has been 39.154%.

5 Conclusion

In this study an Enhanced-Usage CONtrol (E-UCON) architecture is proposed, where
the standard functionality of the model is extended in order to support groups of ser-
vices and users. This extension aims to improve the model in terms of performance and
run-time efficiency, but also to provide the scalability required from the application do-
main. The mentioned improvements, result from the fact that the right of access will be
assigned to user roles towards groups of services and not only in one service at a time,
which reduces the evaluation time and the computational requirements. Furthermore,
the proposed architecture improves the standard model in terms of security, as it gives
the possibility of recognizing and preventing active attacks, such as specific types of
Denial of Service based on request flooding. Finally, in this paper a method of simpli-
fying the writing of security policies through the aggregation of the risk values related
to individual attributes, is also integrated in the Usage Control model.

The experiments show that the aforementioned enhancements result in significant
improvements in performance and evaluation time, especially in realistic deployments
with multiple micro-services governed by complex or semi-complex policies. As future
work, we intent to develop an extended and heterogeneous test-bed for experimenta-
tion, which will be utilized in order to evaluate the performance of the proposed model



Enhancing Usage Control for Performance: An Architecture for Systems of Systems 15

in different and more demanding use cases. Moreover, further enhancements will be in-
tegrated and tested within E-UCON, initially related to (i) credential management, (ii)
trust, and (iii) task delegation.

Acknowledgments. This work has been partially funded by EU Funded project H2020
NeCS, GA #675320.

References

1. Maurizio Colombo, Aliaksandr Lazouski, Fabio Martinelli, and Paolo Mori. A proposal on
enhancing XACML with continuous usage control features. In Grids, P2P and Services
Computing, pages 133–146. Springer US, 2010.

2. Sabrina De Capitani di Vimercati, Pierangela Samarati, and Sushil Jajodia. Policies, Models,
and Languages for Access Control. In Proceedings of the 4th International Conference on
Databases in Networked Information Systems, DNIS’05, pages 225–237, Berlin, Heidelberg,
2005. Springer-Verlag.

3. Vasileios Gkioulos, Athanasios Rizos, Christina Michailidou, Fabio Martinelli, and Paolo
Mori. Enhancing Usage Control for Performance: A Proposal for Systems of Systems. To
Appear. In The International Conference on High Performance Computing and Simulation
(HPCS 2018), 2018.

4. Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J Lang, Margaret M
Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, and Karen Scarfone. Guide to
attribute based access control (ABAC) definition and considerations. National Institute of
Standards and Technology (NIST) Special Publication, 800(162), 2013.

5. Antonio La Marra, Fabio Martinelli, Paolo Mori, Athanasios Rizos, and Andrea Saracino.
Improving MQTT by Inclusion of Usage Control. In Proceedings of the 10th International
Conference on Security, Privacy and Anonymity in Computation, Communication and Stor-
age (SpaCCS), SpaCCS ’17, 2017.

6. Aliaksandr Lazouski, Fabio Martinelli, and Paolo Mori. Survey: Usage Control in Computer
Security: A Survey. Comput. Sci. Rev., 4(2):81–99, May 2010.

7. Aliaksandr Lazouski, Fabio Martinelli, Paolo Mori, and Andrea Saracino. Stateful Data
Usage Control for Android Mobile Devices. International Journal of Information Security,
pages 1–25, 2016.

8. Fabio Martinelli, Christina Michailidou, Paolo Mori, and Andrea Saracino. Too Long, did
not Enforce: A Qualitative Hierarchical Risk-Aware Data Usage Control Model for Complex
Policies in Distributed Environments. In Proceedings of the 4th ACM Workshop on Cyber-
Physical System Security, CPSS@AsiaCCS 2018, Incheon, Republic of Korea, June 04-08,
2018, pages 27–37, 2018.

9. B. Moore, E. Ellesson, J. Strassner, and A. Westerinen. RFC 3060: Policy Core Information
Model – Version 1 Specification, February 2001.

10. Alan C OConnor and Ross J Loomis. 2010 economic nalysis of role-based access control.
NIST, Gaithersburg, MD, 20899, 2010.

11. Jaehong Park and Ravi Sandhu. The UCONabc Usage Control Model. ACM Trans. Inf. Syst.
Secur., 7(1):128–174, February 2004.

12. R.W. Saaty. The analytic hierarchy process - what it is and how it is used. Mathematical
Modelling, 9(3):161 – 176, 1987.

13. Pierangela Samarati and Sabrina Capitani de Vimercati. Access Control: Policies, Models,
and Mechanisms, pages 137–196. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.



16 Authors Suppressed Due to Excessive Length

14. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-Based
Access Control Models. Computer, 29(2):38–47, February 1996.

15. R. Shirey. RFC 4949: Internet Security Glossary – Version 2, August 2007.
16. Xinwen Zhang, Francesco Parisi-Presicce, Ravi Sandhu, and Jaehong Park. Formal Model

and Policy Specification of Usage Control. ACM Trans. Inf. Syst. Secur., 8(4):351–387,
November 2005.


