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A B S T R A C T

A model for distorting the yield surface by flattening the part in the reverse of the loading direction, is suggested. As the basis for the distortion, the
model applies a pair of second-order back-stress tensors of similar type as in kinematic hardening models. The yield-surface formulation provides a
flattening and shrinkage of a given first-order homogeneous yield surface in the reverse directions of the back-stress tensors. The mathematical
formulation is based on similar ideas as the HAH (homogeneous yield function-based anisotropic hardening) model, for which the calibration of the
equivalent stress-strain curve is independent of the Bauschinger part of the model. Severe mathematical and numerical challenges of the HAH model
are pointed out, but are avoided in the new model. Furthermore, the yield surface doesn't have to contain the origin, and the r-value is conserved in
stress reversals.

1. Introduction

The Bauschinger effect is present in many commercial alloys and a continuum plasticity description requires stress asymmetry
between forward and reverse loading. In general, this can be achieved by, shifting the yield surface (kinematic hardening) by a
second order back-stress tensor, by rotations of the yield surface, by an asymmetrically distorted yield surface, or by the combination
of the three.

Yield-surface distortions can be caused by different physical mechanisms and occur at a variety of strain scales. in polycrystal
metals, the smallest strain scales correspond to the elasto-plastic transition. The initial, true yield surface can be carefully measured
close to the first, initial plastic deformation and is significantly smaller than the conventional yield surface, which is based on strains
measured at larger deviations from elasticity. For example, the initial yield surface for a well-annealed commercially pure aluminum
was found to be isotropic, between the von Mises and Tresca yield surfaces, measured by Khan et al. (2010).

With increasing strain, into the elasto-plastic transition, the true yield surface develops a nose in the loading direction and
becomes flattened in the reverse direction. At strains corresponding to the end of the elastoplastic transition, the tip of the nose of this
yield surface touches the conventional yield surface, which is measured in proportional load in different directions up to this strain.
Hence, this conventional yield surface is an envelope of such true distorted yield surfaces. Such polycrystal behavior was predicted by
the Taylor-Lin crystal-plasticity model explaining this composite effect due to the combination of plastically and elastically loaded
grains during small strains (Lin and Ito, 1965). Several attempts have been made to formulate continuum plasticity models for the
nose and flattening type of shape change of the yield surface, mainly based on distorting the quadratic von Mises yield surface, in
particular related to predicting ratcheting phenomena, see Rokhgireh et al. (2017) for a recent review.

The J2-corner theory was developed to describe the evolution of the nose/corner in the loading direction, (Storen and Rice, 1975).
However, being based on the deformation theory of plasticity, which relates the final stress state to the total plastic strain, the J2-
corner theory is limited to cases of proportional loading and not general applicable in a simulation software. Instead, Simo (1987)
suggested to model this phenomenon by a non-associated flow rule and the flow theory. This approach has been further developed by
(Kuroda and Tvergaard, 2001; Yoshida, 2017; Yoshida and Tsuchimoto, 2018). The basic idea of these models is to apply the
conventional yield surface, being regarded as an envelope, which in terms of the crystal plasticity theory corresponds to the limit
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where slip is initiated in all grains. This yield surface is undistorted, and the effect of the noses of the yield surfaces within are
accounted for by a non-associated flow rule. Note that except for the model by Simo (1987), associated flow is reached when the
stress mode remains unchanged for a few percent strain, hence the conventional yield surface with associated flow can be regarded as
an asymptotic approximation that works well in many applications to deal with the nose in the forward loading direction. However,
the abovementioned non-associated flow rules (or more detailed crystal plasticity calculations) make an important difference during
complex strain-path changes and has a considerable effect on buckling strength predictions, as shown by e.g. Ronning et al. (2010)
using the model by Simo (1987). In finite-element model simulations of formability limits, as well as buckling loads, the imperfection
sensitivity can be reduced using these non-associative formulations. The non-associated flow rules can be applied in combination
with kinematic hardening and a conventional yield surface.

Yield-surface distortions, and in particular flattening in the reverse loading direction, occur also at larger strain scales, due to
various internal stresses. The sources for the internal stresses may be elastic inclusions, several phases in the material, microstructure
heterogeneities, etc. The most established continuum models to capture these effects are the combination of isotropic and kinematic
hardening models. The basis for most models are the Prager model (Prager, 1949), the Ziegler model (Ziegler, 1959) and the
Armstrong-Frederick model (Armstrong and Frederick, 1966; Frederick and Armstrong, 2007) with further developments by
Chaboche (1986) and others. The theory for isotropic, kinematic, and directional distortional hardening with quadratic yield surfaces
is formulated and discussed within the framework of thermodynamics, see (Feigenbaum and Dafalias, 2007, 2008).

In the general case, the back stress might be larger than the isotropic part of the stress, i.e. the center of the shifted yield surface
doesn't have to contain the origin in the stress space. The kinematic hardening models have been successfully applied to e.g. spring-
back calculations and cyclic loads, for reviews, see (Chaboche, 2008; Wagoner et al., 2013; Zhu et al., 2012). Note, that in spring-back
calculations effects due to the nose of the true yield surface are not playing any important role in the forward-backward type of strain-
path change. However, the flattening in the reverse direction of the loading is very important to account for, even in the early elasto-
plastic transition. This can be done by kinematic hardening models. Often an expansion involving several back-stress tensors is
applied to account for various mechanisms occurring at different strain scales. The focus here, however, is not on the advanced
refinements towards applications, but rather on the basic idea and model equations.

Barlat et al. (2011) suggested the homogeneous yield-function based anisotropic hardening (HAH) model, which applies a locally
distorted yield surface as an alternative to kinematic hardening. The HAH model captures the softening response of reverse strain
paths by a yield-surface distortion that compresses and flattens the part of the yield surface in the direction reversely to the loading-
stress direction. Unlike the kinematic hardening models, the distortion doesn't affect the forward stress direction and the surrounding
part of the yield surface, hence the equivalent stress-strain curve can be calibrated independently of the reverse stress behavior. The
HAH model has been successfully applied for spring-back predictions, e.g. (Badr et al., 2017; Choi et al., 2016, 2018; Fu et al., 2017;
Lee et al., 2018; Manopulo et al., 2017) but also for more advanced strain-path change models, e.g. (Barlat et al., 2013, 2014; Ha
et al., 2013; He et al., 2018; Liao et al., 2017a, 2017b; Qin et al., 2017, 2018; Vincze et al., 2013).

The direction of the local yield-surface distortions in the HAH model is controlled by a second-order deviatoric tensor with a non-
zero, constant length. Consequently, an ambiguity exists by that its initial direction must be specified. It was pointed out by Barlat
et al. (2011), that from a pragmatic point of view, this problem can in most cases be solved by choosing its direction equal to the
direction of the first plastic strain rate occurring in the simulation. However, in complex simulations, where the strain path may be
changed early, this can cause minor spurious behavior.

A second mathematical issue was recently pointed out by Qin et al. (2018) and is more severe. It comes from the way the HAH
model distinguishes forward and backward directions for the second order microstructural memory tensor. In the mathematical limit
where the angle between the deviatoric stress tensors before and after the strain-path change approaches the orthogonal stress
direction, either from a larger or smaller angle, two different solutions for the (transient) work hardening rate exist. Hence, the
further work-hardening rate is discontinuous across this orthogonal discontinuity. Qin et al. (2018) reported this behavior for the case
of a commercially pure aluminum with permanent softening behavior. However, as will be explained in the current work, it exists
even for the simplest case studied by Barlat et al. (2011). This is not only causing non-physical stress-strain behavior, but it is also a
source for numerical convergence problems.

Unlike the kinematic-hardening model, the stress-space origin always must be located inside the yield surface by the HAH model.
Hence, the strongest possible Bauschinger effect occurs towards the limiting case with zero reverse yield stress. Consequently, to-
wards this limit, the transition between the flattened and the undistorted parts of the yield surface develops into a sharp edge, i.e. two
corners in a corresponding two-dimensional yield-surface normal-stress section. The sharpness of these corners depends primarily on
the magnitude of the Bauschinger effect and less on the yield-surface exponent.

Despite the mathematical issues, the HAHmodel is an important contribution to the continuum plasticity theories. The new model
developed in this work, follows the same basic ideas and is designed to combine the best parts of the HAH model and the kinematic
hardening models. It is based on back-stress tensors and the yield surface is formulated mathematically to avoid a singularity when
the magnitude of the back-stress tensor vanishes. The mathematical issues of the HAH model are avoided by applying a pair of two
adjoint back-stress tensors evolving together. The new model ensures that the r-value is unaltered in Bauschinger tests. Permanent
softening after stress reversals and transient hardening during the stress reversal transient are also modelled based on the back-stress
tensors, but as a modification of the isotropic hardening, as suggested by Manik et al. (2015). The new model is compared to the HAH
model and the kinematic hardening model for selected cases. Selected examples are calculated and discussed, but to keep the notation
simple and clear, small-strain theory notation is used, and elastic strains are not accounted for in the examples.
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2. Established models

2.1. Kinematic hardening

Kinematic hardening occurs by that the yield surface, ( ), is shifted by the second-order back-stress tensor X. Here is the stress
tensor. The adopted model is a combined isotropic and kinematic hardening formulation, firstly introduced by Armstrong and
Frederick (Armstrong and Frederick, 1966; Frederick and Armstrong, 2007) and subsequently modified by Chaboche (1986).

=X( ) (1)

Here ¯ (¯) is the equivalent isotropic hardening and ¯ is the equivalent accumulated plastic strain. The total stress in a tensile test will
consist of contributions both from the isotropic yield surface expansion and from the kinematic back stress. Associated flow is
assumed, hence

=Dp (2)

Here denotes the stress gradient, i.e. / ij, and Dp denotes the plastic rate-of-deformation tensor. Since the yield function (1) is
homogeneous of order one, = p̄, where p is the equivalent plastic strain rate.

In the original paper (Armstrong and Frederick, 1966; Frederick and Armstrong, 2007) the direction of the stress tensor, denoted
X is following the direction of Dp, i.e. at a given proportional strain path these two tensors will be aligned. This can be formulated as
follows:

=
+( )d

dt

XX D X X( )X 2
3 p p p

p (3)

For an undeformed material the initial condition is X 0. In this model the back stress will remain deviatoric. For application of
an isotropic yield surfaces for a tensile test, and for steady back-stress solutions, =d dtX/ 0 , the tensile stress equals + X¯ ¯11

tensile .
More general cases can be obtained with X ( )p . The other parameter p controls the strain increment of the reversal transients.

One interesting special case is when X̄ remains proportional to the equivalent stress ( )p . Then, only one proportionality con-
stant is required to describe the back-stress attractor in Eq. (3). In a reversed strain path subsequent to a tensile test, the compression
stress X11

comp . Then if = g11
comp

11
tensile, where g is chosen as the proportionality constant, = +X g g¯ / ¯ (1 )/(1 ), and this

special case of Eq. (3) can be formulated.

=
+ +( )d

dt
X D X Xg

g g
1
1

4
3(1 ) p p p

p (4)

Note for the strainrate-space based formulations, where X is attracted by Dp, that with a non-isotropic material with r-value
different from unity, the r-value of a tensile test pre-strained in uniaxial compression, will have a different instant r-value than a
tensile test without the Bauschinger prestrain.

An alternative that preserves the r-value in Bauschinger tests, is a stress-space based formulation of Eq. (3), where the direction of
the back-stress tensor, X, is following the direction of the deviatoric stress tensor =S I tr( )/3, where I denotes the second order
identity tensor:

=d
dt
X S X X( )X

p
p

(5)

Also in this model formulation, the back stress remains deviatoric. Since the back-stress tensor and the deviatoric stress tensor are
parallel during proportional load in the stress-space formulation, the interpretation of X̄ (¯) as the stress contribution from the back
stress to a solution for a tensile test in the equivalent direction with =d dtX/ 0, holds also for anisotropic yield surfaces in this case.

When X̄ is proportional to the equivalent stress, ¯ , the special case of the stress-space formulation (5) can be formulated

= +d
dt
X S X X( )g

g
1
1

p
p

(6)

Here the parameter g has the same interpretation ( / )11
compr.

11
tensile as in the strainrate-space based formulation (4).

The strainrate-space and the stress-space based formulations, as given her, give similar results using the same parameters, but are
strictly identical for all strain paths, only in combination with a von Mises yield surface. Both models can be generalized by applying
multiple back-stress tensors, e.g. the stress-space formulation then can be written as

=X X
i

i
(7)

=d
dt
X S X X( )i

X
i i

i
p

i

(8)
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Here Xi are constants interpreted as saturation levels of the equivalent back stress contributions and ī controls how large equivalent
plastic strain each component needs to saturate.

2.2. The HAH model

The HAH model, as suggested by Barlat et al. (2011), modifies a given homogeneous yield surface ( ) of degree one. The
resulting total yield function is written

= + < > + < > =g gh h( ) ( 2 ( 1) : ˆ 2 ( 1) : ˆ )q q q q q q q
1 2

q
1

(9)

Here the McCaulay brackets are used, i.e. < > = = +x x x xmax ( , 0) ( )1
2 . The second-order deviatoric tensor, ĥ, has to be initialized

with length =ĥ| | 3/8. During monotonic loading it will align with the deviatoric stress-tensor direction. In a tensile-compression test
with ĥ pointing in the deviatoric tensile-stress direction, the parameter g1 corresponds to the ratio between the forward tensile yield
stress with and without distortion of the stable yield surface, while the parameter g2 corresponds to the ratio between the reverse
compression stress with and without distortion. Associated flow is assumed, hence

=Dp (10)

Since the yield function (9) is homogeneous of order one, = p, where p is the plastic strain rate.
The second order deviatoric tensor ĥ describes a memory of the previous loading directions. An evolution equation that preserves

h| ˆ | is required and the following one was given by Barlat et al. (2011):

=
<

( )
( )

d
dt
h S h S h S h

S h S h S h

ˆ ˆ ( : ˆ ) , : ˆ 0

ˆ ( : ˆ ) , : ˆ 0

k

k
S

S

6
4

8
3 p

6
4

8
3 p (11)

The attractor for the evolution of the tensor ĥ in Eq. (11) is parallel with the deviatoric stress tensor S. Since ĥ is normal to the
yield surface facet (linear plane in the stress space), it means that the orientations of the facets during proportional load become
radial in the deviatoric stress space. Because of this, the facet orientation will always correspond to that the r-value of a tensile test
pre-strained in uniaxial compression, will have an instant r-value equal to unity, regardless the r-value prescribed by the steady yield
surface. Hence the regularized yield surface, Eq. (9), will result in an r-value in-between these two, but closer to unity.

Additional evolution equations are formulated for the parameters g1 and g2 describing the magnitudes of the yield surface dis-
tortions in the forward and backward directions of ĥ.

=
<( )

( )dg
dt

k k g

k

S h

S h

, : ˆ 0

, : ˆ 0g g
g

1
2

(0)
3 1 p

1 p
4 1

1 (12)

=
<

( )
( )

dg
dt

k

k k g

S h

S h

, : ˆ 0

, : ˆ 0

g g
g2

1 p

2
(0)

3 2 pY

3 2
2

(13)

=
<

dg
dt k k g

S h
S h

0, : ˆ 0
( ) , : ˆ 0

3

5 4 3 p (14)

=
<

dg
dt

k k g S h
S h

( ) , : ˆ 0
0, : ˆ 0

4 5 4 4 p

(15)

The parameters g3 and g4 are internal variables that enables the model to capture permanent softening behavior. The initial
conditions are = = = =g g g g 11 2 3 4 .

3. The new model

A new formulation is suggested as a mathematically and conceptually simpler alternative than the HAH model, combining best
parts of the HAH model and the kinematic hardening models. The basic construction is similar to the HAH model, being based on a
regularized combination of the stable, undistorted part of the yield surface, ( ), which is any homogeneous yield functions of degree
one, and two additional facets. The distortion and its magnitude are controlled by two second order tensors, which conveniently can
be modelled by similar models as in classical kinematic hardening models.
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3.1. The yield function

The main idea of the new yield-surface construction is to assure that the reverse yield stress is similar as with a kinematic-
hardening model with a back-stress tensor X, but by a distortion of the yield surface rather than by shifting it by kinematic hardening.
In the kinematic hardening model, the back-stress tensor X represents a memory of the recent deformation history and is part of the
mathematical description of the current yield surface. The current magnitude and direction of X can be a result of any loading
history, but only its current magnitude and direction matters. The further construction of the model is based on an equivalent history
of proportional loading leading to X. At the end of this fictive proportional predeformation, the stress would correspond to the
forward proportional yield stress point XF on the shifted kinematic hardening yield surface, =X( ) ¯kin, in Fig. 1. This uniquely
defines, XF for any given back stress X.

Next, assume the same shape of the yield surface, ( ), but instead with isotropic hardening, and that the same equivalent
preloading resulted in the same stress XF . In this case, the inscribed, smaller kinematic-hardening yield surface in Fig. 1 will touch
the same forward stress point XF as the isotropic yield surface.

Finally, a distortion of this larger isotropic yield surface is constructed, as shown in Fig. 1. Near the stress point XF (which is
defined by X ) there is no yield surface distortion. In the reverse stress direction, one finds the backward stress point XB (which is also
defined by X ) on the kinematic hardening yield surface. The new model is constructed to distort the yield surface, so that it exactly
goes through XB. Furthermore, in this point the normal direction of the distorted yield surface is opposite of the normal direction in

XF .
Similar as for the HAH model, the yield surface will be constructed as a regularized combination of the undistorted (envelope)

yield surface =( ) and two planes (facets) in the stress space. The undistorted yield surface is assumed to be homogeneous of
degree one, i.e. = k(k ) ( ), for any scalar k. The two planes are controlled by the two back-stress tensors X1 and X2, which
represent a memory of the previous loading. During monotonic loading, one of the back-stress tensors, say X1, will be active and try to
catch up and align with the direction of the deviatoric stress tensor S, while X2 then will be passive and shrink towards the origin.
However, in general cases the yield surface is distorted by each tensors X1 and X2 independently.

Firstly, the case of only one back stress tensor X1 corresponding to an equivalent forward monotonic prestress XF, will be
explained. The deviatoric part SXF of the forward yield stress XF is then found in the X1 direction in the -plane. Since the
undistorted yield surface is pressure independent, = =S( ) ( )XF XF , and = =X XS( ) ( )XF 1 XF 1 kin, corresponding to

=X X1 in Fig. 1. The normal direction of the yield surface at XF is given by the gradient ( )XF . For the pressure-independent,
homogeneous yield surface of degree one, = S X( ) ( ) ( )XF XF 1 . Here =X( ) / ij1 , at = Xij 1ij. Knowing XF and

( )XF , the tangent plane in Fig. 1 can be calculated. It will be identical for both the isotropic and the kinematic yield surface. The
kinematic-hardening yield surface in Fig. 1 has the same shape but is shifted in the XF direction due to the back-stress tensor =X X1
in Fig. 1b. Note that the center of the kinematic-hardening yield surface in the shown 11 22 section in Fig. 1a, then equals

XX I1 133 .
In the reverse direction of XF, the yield stress corresponding to the kinematic-hardening yield surface, equals = X2XB 1 XF,

and the normal direction of the tangent plane of the yield surface at this point is = =X S X( ) ( ) ( ) ( )XB 1 XF XF 1 .
The corresponding tangent plane running through XB, can mathematically be expressed:

Fig. 1. The kinematic-hardening yield surface =X( ) kin and a corresponding undistorted yield surface, =( ) , touching the same stress
point, XF , in a forward monotonic preloading direction and their common yield surface normal direction n X( )XF . The 11 22 section is
shown in a), including the tangent plane through XF . Also, this plane is shown shifted, so that it touches the kinematic yield surface in its reverse,
backward stress direction XB, as described by Eq. (16). The yield surface of the new model with =X X1 in Eq. (18), is shown, i.e. a regularization of
the undistorted yield surface and this shifted tangent plane. In b) the same three yield surfaces are compared in the -plane.
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< > =X X X
X X

( ) (2 ): ( )
| ( ): |

1 1 1

1 1 (16)

The new yield surface will be a regularized combination of two tangent planes for X1 and X2, as described by Eq. (16) for the case
of X1, and the stable homogeneous yield surface, ( ). The resulting yield criterion is formally given similar as Eq (9) by

=( ) 0 (17)

The regularization of the stable yield surface and the two tangent planes is made by the following mathematical formulation of the
yield function ( ):

= + < > + < >f fX X 2X : X
X X

X X X X
X X

( ) ( ( )) ( ) ( ) ( ) ( )
( ):

( ) ( ) (2 ): ( )
( ):

p
p p

1 1
1

1

1 1
2

2 2 2

2 2

p
1

(18)

=
< >

f X
X

( ) 1
2 ( ) p

1,2
1,2

(19)

It is assumed that the back-stress tensors X1 and X2 are deviatoric, and for a material in the undeformed condition, their initial
conditions will be =X X 01 2 . The regularization of the stable yield surface and the two facets is mainly controlled by the reg-
ularization exponent p.

In the regularization of the facet described by Eq. (16) and the undistorted yield surface , the resulting yield surface will be the
innermost one, except where the two regularized yield surfaces overlap or intersect, e.g. forming corners. The corners will be rounded
and thereby the regularized yield surface will here locally be inside both the facet and the undistorted yield surface . In cases where
X1,2 vanishes, the regularized yield surface will be affected in the reverse direction of X1,2, something that is not desired by the model.
The coefficient f X( )1,2 in Eq. (19) is included to assure that the yield surface distortion caused by X1,2 completely vanishes when
X 01,2 , where X1,2 is either X1 or X2. The coefficient is obtained by demanding that =( )XB , utilizing that at this stress,

= =X X( ) (2 ) (2 ( )/ 1)XB 1,2 XF 1,2 .
As for the HAH model, associated flow is assumed as described by eq. (10). However, unlike the HAH yield function in Eq. (9), the

total regularized yield function in Eq. (18) is not homogeneous of order one. Hence, in general cases, ¯p. Similar as for the HAH-
model, the regularization of the two facets and the stable yield surface , as described by Eq. (17-19), ensures a convex yield surface
. Note also, that alternatively, to account for corner effects, a non-associated yield criterion, e.g. by (Yoshida, 2017), can be applied
instead of Eq. (10), but this will not be focus here.

3.2. Evolution of the microstructural tensors

In classical kinematic hardening models, the yield surface is shifted using only 1 s-order back-stress tensor. To obtain a similar
behavior by the distortions of the yield surface by two facets, two back-stress tensors are applied, one in the forward and one in the
backward direction. However, in monotonic strain paths, only one of them will be active and will then evolve in the same manner as
in kinematic hardening models. The other one will simultaneously decay towards zero magnitude. The two kinematic back-stress
tensors are suggested to follow two coupled differential equations in a stress-space formulation:

=
>

d
dt
X S X S X

S X S X

,

,

S X X

X

1
( )

p 1 2

p 1 2

X
X 1 1

p

1
p (20)

=
<d

dt
X S X S X

S X S X

,

,

S X X

X

2
( )

p 2 1

p 2 1

X
X 2 2

p

2
p (21)

The function X̄ (¯) and the parameter p have the same interpretations and similar but not identical calibrations as in the
kinematic hardening model, Eq. (5). In this model, the two back-stress tensors will remain deviatoric.

In Eqs. (20-21), the cases of monotonic deformation will develop a back stress by one of the back-stress tensors X1 or X2. This one
will be parallel with the deviatoric stress, while the other one will remain zero. When starting from an annealed material, i.e. with

=X X 01 2 , the evolving tensor will be X1 due to that initially then S X S X1 2 . If the stress S is suddenly changed, the one
amongst X1 and X2 that is closest will start evolving towards the direction of S, while the other one will start shrinking towards zero.

The special case, for which the X̄ is proportional to ¯ , is of interest for comparison with the HAH model. Then, in the solution for
an isotropic tensile test with =X 02 and =d dtX / 01 , the tensile stress = ¯11

tensile , and the compression stress in a reversed strain path
equals = X¯ 2 ¯11

comp. . Hence if = g11
comp.

11
tensile, then =X g¯ / ¯ (1 )/2. This special case can be formulated by substituting into Eqs.

(20) and (21):

=
+

X
X

g
g

¯
¯ ¯

1
1 (22)
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In applications, several back-stress tensors are sometimes adequate for a good description of the material behavior. The evolution
Eqs. (20-21) for X1 and X2 can be generalized to a series as follows:

= =X X X X,i
i

i
i

1 1 2 2 (23)

=
>

d
dt
X S X S X

S X S X

,

,

i i i

i i

S X X

X

1

( )
p 1 2

p 1 2

Xi

Xi
i i

p
i

i

pi

1 1

1

(24)

=
<d

dt
X S X S X

S X S X

, | | | |

, | | | |

i
S X X

2
i

1
i

X
2
i

1
i

2

( )
p

p

Xi

Xi
i i

i

i

i

2 2

p

2

p (25)

Now, X i may not be functions but must be parameters, similar as i
p.

3.3. Isotropic hardening, permanent softening and reversed-stress transients

Transient hardening and permanent softening occurring after reverse strain paths may be modelled through modifying the work
hardening of the equivalent stress. Following the models suggested by Manik et al. (2015), the equivalent stress is split into three
contributions.

= + +R R R¯ r
p

r
t (26)

Here R is the path-independent isotropic hardening, commonly modelled as a function R (¯ )p of the equivalent plastic strain. The
following relation will be applied here:

= +KR ( )n
p 0 (27)

Here K , 0 and n are constants to be calibrated.
The second term, Rr

p adds a negative contribution that leads to permanent softening of ¯ due to reduced work hardening during
the strain-reversal transient. The last term, Rr

t, is a positive, transient hardening contribution to the isotropic stress ¯ and contributes
only during strain-reversal transients. The following models are adapted from Manik et al. (2015).

= < + >dR
dt

k S X X: ( )r
p

r
1 2 p (28)

=
< + >dR

dt
RS X X: ( )q

r
t 1 2 r

t

r
p

r

(29)

Here kr and qr and r are constants. The mechanisms described by Eqns. (28) and (29) are believed to be caused by changes in the
microstructure during the transient. Hence, in cases where the rapid variation is captured by X1

(1) and X2
(1) it sometimes may be better

that < + >S X X: ( )1 2 is replaced by < + >S X X: ( )1
(2)

2
(2) in Eqns. (28) and (29), corresponding to the specific microstructural me-

chanism described by this second expansion term.

4. Results and discussion

With prestrains by tensile tests in the x1 direction, the yield surface in the 11 22 section will be shifted or distorted as shown in
Fig. 2, where the isotropic Hosford/Hersey yield surface is applied as the steady yield surface.

= + +( ) 1
2

1
2

1
2

a a a
1 2 1 3 2 3

a
1

(30)

Here i, i = 1,2,3 are the principal stresses. An exponent =a 6 is applied in Fig. 2. All yield surfaces have the same tensile stress point
in common, and with increasing back stress the size of the kinematic-hardening yield surface (given by ¯ ) decreases. For the HAH
model and the new model, however, the part around the tensile direction of the yield surface, remains unaltered, while the reverse
part is flattened and softened. Unless otherwise specified, the isotropic yield surface by Eq. (30) with =a 6 will be used throughout
the examples.

The orientation of the flattening plane for the considered tensile pre-strain mode in Fig. 2, happens to be equal for the HAH model
and for the new model. However, the orientation of the HAH facet will always be radial in the deviatoric stress space, hence for a
general, proportional stress path, these planes will have equal orientation by the two models only with the von Mises yield surface. In
the new model the plane will be prescribed by the yield surface tangent plane as explained in Fig. 1. Note, that a simplified version of
the new model with radial orientation of the plane facets as in the HAH model, can easily be obtained by replacing all X( )i by Xi in
Eq. (18).
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The distortion by the HAH model is limited by that the origin in the stress space must be inside the yield surface. Therefore, with
increasing magnitude of the Bauschinger effect, the yield surface develops sharp corners due to the regularization. The roundness of
these corners at the two ends of the flattened part of the yield surface, as seen in the 11 22 section in Fig. 2, decreases mainly with
increasing magnitude of the Bauschinger effect and is only to a small extent controlled by the yield-surface regularization exponent q
in Eq. (9).

On the other hand, the new yield-surface formulation is not limited to contain the origin in the elastic region. Furthermore, the
roundness of the introduced corners of the flattened parts of the yield surfaces in Fig. 2 is controlled solely by the yield-surface
regularization exponent p in Eq. (18), in a similar way as the roundness of the biaxial stress corner in the 11 22 section of the of the
Hosford/Hersey yield surface in Eq. (30) is controlled by the yield-surface exponent a. It will not introduce new challenges in
iterations and stability in numerical elasto-plastic implementations. Hence, the new model is well suited for implementations into
simulation software.

4.1. Reversed stress direction

In the paper introducing the HAH model (Barlat et al., 2011), they tested the model for the “generic” case. The HAH-model
parameters are listed in Table 1, along with calibrated parameters for the kinematic hardening model and the new model. The
resulting compression-tensile curve is shown in Fig. 3. Note that in this special case, the result is independent of the yield surface
regularization exponent, both for the HAH model (q) and for the new model p( ).

The shape of the stress-strain curve during the transient work hardening after the stress reversal in Fig. 3 is very similar for the
HAH model and the kinematic hardening model, whereas the new model has a straighter hardening curve during this transient.
Because the kinematic hardening term adds a stress contribution directly to 11, and since X11 increases fast at small strains, the
prediction of a higher stress during the initial part of the prestrain by the kinematic hardening model could not be avoided in the
calibration of the work hardening parameters of Eq. (27). The isotropic hardening coefficient n is in this case chosen as large as can be
justified, i.e. =n 1, which gives linear isotropic hardening. The shape of the stress-strain curve in this initial part could be improved
by introducing several back-stress tensors X i( ), but for the sake of simplicity, only one term is included in this calibration. This
illustrates an important advantage of the HAH model and of the new model, where the calibration of the forward tensile-test work
hardening is independent of the calibration of model parameters controlling the Bauschinger effect.

Note, that if the yield surface is anisotropic with an r-value different from unity, then the flattened reverse part of the HAH yield
surface corresponds to an instant r-value close to unity, when the stress direction abruptly is reversed, from uniaxial compression to
tensile mode. The total, regularized yield surface will then give r 1, where the flattened part is dominating the shape of the yield
surface.

On the other hand, neither the new model nor the kinematic hardening as formulated in the stress space, will change the r-value.
However, when formulated in the strainrate space Eqns. (3)-(4), the kinematic hardening model will change the r-value significantly,
even during proportional loading. A calculation was made for the same compression-tension test as in Fig. 3 with the “generic”

Fig. 2. Yield surfaces for pre-deformation in the tensile direction with similar reversed stress for the three models based on the isotropic undistorted
yield surface ( =a 6). For the new model and =X 02 and = =X X 0.25, 0.375, 0.495, 0.6111 11 and 0.75, respectively. For the HAH model =g 12 and

=g 0.5, 0.251 and 0.1, respectively.
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calibration but using the Hill48 yield surface with planar isotropy in the 11 22 plane and normal anisotropy. The Hill48 yield
surface can then be written

=
+

+ + + + + +
r

r r( ) 1
1

( ( ) ( ) ( ) 2(2 1)( )))11 22
2

33 22
2

11 33
2

12
2

23
2

13
2 1

2

(31)

The calculations of the r-value evolution for the compression-tensile test are compared in Fig. 4a for the different models, using
r= 4 in Eq. (31). Note that the r-value is here defined as =r D D| / |p22 p33 , so it is well defined also for the uniaxial compression mode.
For the given model the strainrate-space based formulation of the kinematic hardening model saturates at =r 2.8 due to the non-
radial direction of the back-stress tensor in the deviatoric stress space. The resulting shifts of the yield surfaces after the prestrain can
be compared in Fig. 4b for the strainrate and stress-space based kinematic hardening models, amongst which the stress-space based
one retains the r-value. The HAH-model keeps the r-value equal to 4 during the initial proportional loading, since the stress then
remains at the undistorted part of the yield surface. However, right after the strain reversal, the flattened part of the yield surface
dominates, and the instant r-value reaches almost unity, due to the radial orientation of the flattened facet. As seen in Fig. 4b, this
direction is clearly different from the one by the new model, which doesn't alter the r-value. As the flattened part expands, the
undistorted yield surface takes more and more over, and the r-value gradually changes back to the undistorted yield surface with

=r 4.
Fig. 5 shows the yield surface evolution in the π-plane for the HAH model subsequent to the same reverse strain-path change as in

Fig. 3. Note, the asymmetry between the slower flattening in the positive 11 prestrain direction as compared to the faster expansion in

Table 1
Calibrated model parameters for the cases considered: “generic” from Barlat et al. (2011), “TWIP” from Choi et al. (2018) and “AA1200” from Manik
et al. (2015).

New model

Parameter K 0 n p g p X̄ (1) X̄ (2)
p
(1)

p
(2) kr qr r

Units MPa – – – – – MPa MPa – – – – –
Generic 500 0.01 0.25 2 0.3 0.0085 – – – – – – –
TWIP 2349.9 0.167 0.502 2(6) 0.35 0.0047 – – – – 250 – –
AA1200 138 2.4E-4 0.32 2 – – 3.5 4.0 0.0012 0.065 250 5 0.01

HAH model

Parameter K 0 n q k k1 k2 k3 k4 k5

Unit MPa – – – – – – – – –

Generic 500 0.01 0.25 2 30 60 15 0.2 1 0
TWIP 2349.9 0.167 0.502 2 30 100 120 0.45 0.6 1

Kinematic hardening model

Parameter K 0 n g p

Unit MPa – – – –
Generic 303.8 0.52 1 0.3 0.017

Fig. 3. Comparison of tensile-compression test predictions for a stress-reversal at = 0.1vM , applying the three models for the “generic” case based
on the isotropic undistorted yield surface ( =a 6).
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the opposite compression direction.
The corresponding yield-surface evolution by the new model is shown in Fig. 6 for three different yield-surface regularization

exponents =p 2, 4 and 6. Unlike the HAH surface, the flattening of the prestrain direction and the expansion of the opposite second
loading direction happen at quite similar speeds, hence it appears as if the yield surface is shifted in this direction during the reversal
transient, almost like in the kinematic hardening model, but undistorted in the orthogonal directions.

Right after the prestrain, the yield surface with regularization exponent =p 6, is close to the HAH model with exponent =q 2 for
this particular case. As discussed above, the sharpness of the corners at the borders of the HAH flattened part, will depend on the
magnitude of the yield surface distortion, as seen in Fig. 5. On the other hand, the corresponding corners of the distorted yield
surfaces with the new model in Fig. 6 becomes rounder with decreasing exponent p.

4.2. Orthogonal change of the stress direction

A stress-path change can be measured as the angle S S S Sarccos( : /(| | | |)1(0) (1) (0) ( ) between the deviatoric stress tensors S(0) before
and S(1) after an abrupt change of loading, see Barlat et al. (2011). It is of interest to see the consequences of the model in the
orthogonal °90 directions in the stress space. Some materials have pronounced transient behavior when the loading direction is
abruptly changed into orthogonal directions, which requires dedicated model terms for e.g. cross hardening. Then, from a practical

Fig. 4. Compression-tension test with a stress-reversal at = 0.1vM , applying the models for the “generic” case. The Hill48 quadratic yield surface is
applied as the undistorted with planar isotropy and normal anisotropy (r= 4) in the x x1 2 plane. In a) the r-value evolutions, = D Dr | / |p22 p33 , are
compared, while in b) the yield surfaces are shown at the end of the first strain path, = 0.1vM .

Fig. 5. Yield surface evolution for the HAH model applying the isotropic undistorted yield surface ( =a 6), after the stress reversal at = 0.1vM for
the “generic” case in Fig. 3. The von Mises strains of each yield surface are indicated.
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point of view, contributions from the terms in the model that are dedicated to take care of the Bauschinger type of behavior, are
undesired, unless they describe the orthogonal transients without the need of additional terms. For a material without orthogonal
transients, one does not want undesired effects to occur in this portion of the stress space. Without specific experimental observations,
one rather wants as little as possible to change here, as compared to the isotropic yield surface.

Fig. 7 compares the results for the considered models for an orthogonal stress-path change. Tensile loading in the 11 direction is
followed by a biaxial loading, for which =11

1
2 22 in the positive quadrant of the yield surface. The calibrations of the model

parameters are the same as for the generic case in Fig. 3 for the reversed path.
Firstly, it is noted that the HAH model has two different solutions in this limit, obtained if the stress-path angle is infinitesimally

larger or smaller than °90 , respectively. This type of mathematical issue for the HAH model was recently reported by Qin et al. (2018)
for a more complex case, involving permanent softening. However, it occurs even in this simple “generic” case, taken from Barlat
et al. (2011). Amongst the two solutions, the one approaching the °90 limit from below will in most cases be the desired one that does
not change the yield surface in the orthogonal portions of the preloading direction. The other one introduces work softening during a
strain transient, before approaching the isotropic yield surface solution at larger strains. Anyhow, it is conceptually undesired to have
this type of discontinuity in the work-hardening behavior for neighboring stress paths, and it will cause numerical problems in finite
element implementations.

The reason for the spurious ambiguity in the HAH model for the °90 stress-path change can be seen from Fig. 8 showing the HAH
yield surfaces corresponding to the stress path in Fig. 7. After the abrupt stress-path change, the flattened part of the yield surface

Fig. 6. Yield surface evolution for the new model applying the isotropic undistorted yield surface ( =a 6), after the stress reversal at = 0.1vM . The
von Mises strain of each yield surface is indicated. a) The “generic” case in Fig. 3 b) the “generic” case but with =p 4 and 6 (dotted lines).

Fig. 7. Comparison of orthogonal stress-path change at = 0.1vM , from a tensile test in the x1 direction to biaxial stress with =11
1
2 22, for the three

models for the generic case with the isotropic undistorted yield surface ( =a 6). In this limit two solutions exist for the HAH model.
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rotates as dictated by the rotation of the second order tensor ĥ. In the °90 limit, the part that is flattened in the reverse direction of
the pre-deformation load starts vanishing by rapid expansion in this direction, while flattening of the yield surface starts in the
opposite direction. This increasingly flattened part rotates clockwise during the stress-path change. In the °+90 limit, however, the
flattening in the direction of the reverse of the preload stress direction does not vanish but rotates counter clockwise towards the
reverse of the new loading direction during the subsequent straining. The temporary softening seen in the stress-strain curve in Fig. 7
occurs while the flattened part rotates through the °90 loading direction and vanishes when the expansion of the flattened part
reaches the undistorted yield surface.

In Fig. 7 the solution with the new model and =p 6, provides very similar stress strain curve as the °90 HAH curve in Fig. 8, and
the influence of the yield-surface distortion is very small. With a lower exponent, =p 2, the solution is between the kinematic
hardening and the °90 HAH curve. As seen in Fig. 9, the yield surface of the new model, corresponding to the stress path in Fig. 7, is
not rotating much, but the flattened part developed during the prestrain, expands, while the yield surface is flattened in the reverse
direction of the new stress path. This is due to the mutual exchange of the roles of the two back-stress tensors X1 and X2. The sharper
corner of the yield surface with =p 6 ensures that in this case, the orthogonal direction is little influenced by the flattened part.

Note that the new model applies a somehow similar switch as the HAH model in the evolution of X1 and X2 in eqs. (20) and (21).
However, two mechanisms are different than in the HAH model. Firstly, the discontinuity in the evolution of the back-stress tensors
X1 and X2 doesn't occur at orthogonal stress paths, but at smaller stress-path changes, when =S X S X1 2 . After monotonic

Fig. 8. Yield surface evolution for the HAH model subsequent to a) °90 and b) °+90 stress-path change at = 0.1vM for the generic case in Fig. 7 with
the isotropic undistorted yield surface ( =a 6). The von Mises strains of each yield surface are indicated.

Fig. 9. Yield surface evolution for the new model after the 90 stress-path change at = 0.1vM . The von Mises strain strains are indicated. a) The
“generic” case for the stress path in Fig. 7 with the isotropic undistorted yield surface ( =a 6), b) same, but =p 6.
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preloading the discontinuity in the further work hardening will occur in directions closer to the preloading direction, safely in the
undistorted part of the yield surface. Hence the solution is not influenced in single, abrupt stress-path changes.

Secondly, the rotation of the yield surface is different. Unlike the HAH model, the flattened part of the yield surface will always
rotate away from the new stress path. In theory, it may be rare occasions during complex loading histories, while both X1 and X2 are
nonzero, that the transient work hardening rates at certain stress points at the yield surface (where X1 and X2 change roles), are
slightly discontinuous for neighboring stress points. However, since the flattened part of the yield surface in the new loading mode
always rotates out of this region, the transient difference between the two subsequent work hardening behaviors will be very small.
This will occur very seldom and near the undistorted part of the yield surface, hence with a significantly smaller magnitude than with
the HAH model. In practice, this seems unlikely to cause numerical issues. Further applications and testing of the model are required
to tell.

In Fig. 10 the translation of the yield surface by the kinematic hardening model (stress-space based) is shown for the same case of
orthogonal stress-path change as in Fig. 7. The stress direction corresponding to the new stress direction will be significantly affected
by the shift, resulting in the transient stress-strain behavior in Fig. 7.

Fig. 10. Yield surface evolution for the kinematic hardening model (stress-space based) after the °90 stress-path change at = 0.1vM for the generic
case in Fig. 7 with the isotropic undistorted yield surface ( =a 6). The von Mises strains are indicated.

Fig. 11. Stress-reversal at = 0.1vM in a compression-tensile test of a TWIP steel. The HAH model calibration taken from Choi et al. (2018) compared
to the calibration of the new model, both cases with the isotropic undistorted yield surface ( =a 6).
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4.3. Permanent softening

An example of a calibration of the parameters of the HAH-model with permanent softening for a TWIP steel is taken from Choi
et al. (2018). A calibration of the new model was made for the same case, and the resulting stress-strain curves are compared in
Fig. 11 for a compression-tensile test, for which the compression prestrain = 0.1vM . The calibrated parameters of the two models are
listed in Table 1. The permanent softening is enabled in the HAH model by modifying the amount of the distortions by evolving g3 and
g4 in Eqs. (14-15). The new model, on the other hand, imposes an isotropic work softening term Rr

p to the isotropic stress (26) during
the transient as prescribed by Eq. (28). In both cases the permanent softening can be well captured.

An orthogonal stress-path change from a tensile test in the x1 direction to biaxial stress with =11
1
2 22 was also calculated with the

TWIP calibrations for the two models. As explained by Qin et al. (2018), the HAH model has two solutions in this limit, and stress
evolution for both cases are shown in Fig. 12. The HAH solution, for which the °90 limit is reached from below, the stress-strain curve
is not affected by the local yield surface distortion but remains similar as with the isotropic yield surface. The new model predicts this
same solution with the highest regularization coefficient =p 6, while the distortion is contributing with a small amount of the reverse

Fig. 12. Orthogonal stress-path change at = 0.1vM , from a tensile test in the x1 direction to biaxial stress with =11
1
2 22 for a TWIP steel. The HAH

model calibration taken from Choi et al. (2018) compared to the calibration of the new model, both with the isotropic undistorted yield surface
( =a 6). In this limit two solutions exist for the HAH model.

Fig. 13. Calculations with the new model and isotropic undistorted yield surface ( =a 8) of stress-reversals at = 0.02 and 0.044vM in a compression-
tensile test of an AA1200 commercially pure aluminum alloy. The experimental data (grey lines) are taken from Manik et al. (2015).
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softening with =p 2. The other HAH solution, for which the °90 limit is reached from above, however, results in permanent softening
that is rotated into the orthogonal stress path and causing transient softening similar as reported by Qin et al. (2018).

The commercially pure aluminum experiences a surprisingly complex Bauschinger behavior. Stress-strain curves for an AA1200
alloy by Manik et al. (2015) were calibrated and demonstrate the capability of the new model in Fig. 13. The parameters are given in
Table 1. In this case the isotropic reverse stress term Rr

t contributes during the transient according to Eq. (29). In addition, the
isotropic work softening term Rr

p evolves during the transient according to Eq. (28) and reduces the isotropic stress (26) permanently.
Note that in this calibration two terms are used for the back-stress tensors, for which < + >S X X: ( )1 2 is replaced by
< + >S X X: ( )1

(2)
2
(2) in Eqns. (28) and (29), i.e. the slowest responding back-stress tensor is controlling the permanent softening. In a

similar manner as by the model by Manik et al. (2015), the complex Bauschinger behavior can then be well reproduced by the new
model.

5. Conclusions

A new model has been formulated as an alternative to the kinematic hardening models and to the HAH model, for dealing with
Bauschinger behavior. The new model avoids the mathematical ambiguity in orthogonal stress-path changes and the sharp corners
with large Bauschinger effects in the HAH model. The roundness of the corners in the new model is controlled solely by the yield-
surface regularization exponents. As in the kinematic hardening models, the yield surface can be located outside the origin of the
stress space. The suggested model is well suited for implementations into simulations software. Permanent hardening and complex
transient hardening during the Bauschinger transient are covered by modifying the isotropic hardening by the aid of the back-stress
tensors, as have been demonstrated for selected examples of a TWIP steel and a commercial pure aluminum alloy.
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