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A B S T R A C T

Safety instrumented systems are frequently deployed to reduce the risk associated with industrial activities, such
as those in the oil and gas industry. A key requirement for safety-instrumented systems in standards like IEC
61508 and IEC 61511, is that the safety functions and their equipment must fulfill the requirements of a given
safety integrity level. A safety integrity level formulates a maximum tolerated probability of failure on demand,
which must be confirmed in design as well as follow-up phases. The equipment's failure rates are important
inputs to this analysis, and these figures assumed from design must be re-estimated and verified based on the
operational experiences with the equipment at the specific facility. A thorough review of reported failures from
six Norwegian onshore and offshore oil and gas facilities indicates that equipment of similar type experience
different failure rates and different distribution of the occurrence of failure modes. Some attempts have been
made to identify the underlying influencing factors that can explain the differences, however, so far the utili-
zation of data-driven methods have not been fully explored. The purpose of this paper is two-fold:1) demonstrate
how data-driven methods, i.e. principal component analysis and partial least squares regression, can be used to
identify important influencing factors, and 2) propose a framework for predicting the failure rates based on the
reported failures. The framework is illustrated with a case study based on the data collected from the six fa-
cilities.

1. Introduction

Safety instrumented systems (SISs) are frequently used to reduce the
risks associated with industrial activities in many industries, e.g. at
process and nuclear power plants, and at oil and gas facilities (Rausand,
2014). A SIS is characterized as a system that relies on electrical/
electronic/programmable electronic (E/E/PE) technologies to detect
abnormal situations. SISs perform one or more safety instrumented
functions (SIFs) to protect the equipment under control (EUC) against
the occurrence of hazardous events (IEC61511, 2016). An industrial
facility usually is equipped with several SISs, such as process shutdown
(PSD) system to stop production in case of process upsets, and emer-
gency shutdown (ESD) system to reduce the escalation of uncontrolled
events like leakages by depressurizing and removing electrical ignition
sources. A SIS generally consists of three main subsystems: sensor(s)
(e.g. level transmitters, gas detectors, and push buttons), logic solver(s)
(e.g. programmable logic controller and industrial computer) and final
element(s) (e.g. shutdown valves, and circuit breakers). As illustrated in
Fig. 1, the sensors detect possible abnormal situations, and the logic

solvers activate, and the final elements take actions according to the
sensor inputs.

The standards for SISs, e.g. IEC 61508 and IEC 61511, state that the
SIFs performed by SISs must fulfill the requirements of specified safety
integrity levels (SILs) (IEC61508, 2010; IEC61511, 2016). Each SIL
defines the maximum tolerated (average) probability of failure on de-
mands (PFD). The PFD of a SIF must be estimated in design, using
generic (often field-based) failure rates or those provided by manu-
facturers, and then re-estimated in operation using reported failures
from the facilities where the SIF is installed (Rausand, 2014). A failure
rate is defined as an average frequency of failure, i.e. a number of
failures per unit of time (ISO14224, 2006). Failure rates can generally
be classified into three groups: generic, manufacturer-provided and
user-provided failure rates, depending on how they have been derived
(Rausand, 2014).

In oil and gas industry, Generic failure rates for SIS equipment per-
forming SIFs are presented in databases and handbooks, like Offshore
and Onshore Reliability Data (OREDA, 2015), Safety Equipment Re-
liability (EXDIA, 2007) and Reliability Data for Safety Instrumented
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Systems (PDS data handbook1) (SINTEF, 2013a). OREDA databases and
handbooks rely on failures reported in operation from multiple oper-
ating companies, while e.g. PDS data handbook relies on a combination
of OREDA data, expert judgment, and manufacturer information.
Generic failure rates are mainly applied in reliability analysis during the
design phase before the designers have decided on what equipment to
purchase. Manufacturer-provided data is meanwhile based on analyses of
specific products, laboratory testing and collected data, typically during
the warranty period. It is often seen that manufacturer-provided failure
rates are lower than what is experienced in operation (SINTEF, 2013b).
User-provided failure rates are based on aggregated time in service and
the number of reported failures at one or more specific facilities owned
by the same operating company. The standards and regulations, such as
IEC61508, IEC 61511, ISO 14224 and GL070, have given certain re-
quirements with respect to the failure rates (GL070, 2004; IEC61508,
2010; IEC61511, 2016; ISO14224, 2006). IEC 61508 states that the
failure rates used in a reliability analysis should have at least a con-
fidence level of 70% (IEC61508, 2010). The uncertainty of the esti-
mated failure rates is required in OREDA to be presented as a 90%
confidence interval with a lower limit and an upper limit (OREDA,
2015). In order to fulfill 90% confidence, a guideline proposed by
SINTEF2 suggests that operational hours times the number of failures
should exceed 3 106 hours (Hauge and Lundteigen, 2008). In addition,
when the upper 95% percentile is approximately three times the mean
value or lower, we may use the estimated failure rates based on op-
erational experience (Hauge and Lundteigen, 2008). In this context,
many oil and gas facilities invest time and resources to record failures to
obtain estimated failure rates.

A number of methods can be applied to estimate failure rates. In
many applications, failure rates are estimated as the maximum like-
lihood estimators (i.e. the total number of failures divided by the ag-
gregated time in service) (OREDA, 2015). Estimation of the failure rates
should also consider specific operational conditions (IEC61508, 2010).
Different models are suggested to analyze the impact of various op-
erational conditions from one facility to another. Physical models
considering physical laws like Arrhenius's law, Voltage acceleration and

Gunn's law, are used to estimate failure rates (Foucher et al., 2002;
Ratkowsky et al., 1982). MIL-HDBK-217 (MIL-HDBK-217F, 1995),
Telcordia SR-332 (TelcordiaSR-332, 2001) and IEC 61709 (IEC61709,
2017) propose analytical failure functions of parameters, e.g. tem-
perature, humidity, stress, voltage or electrical intensity. Statistical
models can use operational data to investigate the trends of failure
rates, such as Cox models (proportional hazards model) and Bayesian
models (Becker and Camarinopoulos, 1990; Cox, 1972; Elsayed and
Chan, 1990; Kutyłowska, 2015; Newby, 1994). Brissaud suggests a way
to predict failure rates with consideration of the influences from design,
manufacture or installation etc. (Brissaud et al., 2010). A similar
method is suggested by Vatn, taking into account the effects of im-
plementation of risk reduction measures in the prediction (Vatn, 2006).
It is noticed that the physical models for estimating failure rates require
well-known knowledge about physical mechanism leading to the fail-
ures. In this paper, in order to develop a general model, the prediction
of failure rates is only based on statistical models.

Most statistical models mentioned above rely on the data for a large
group of equipment. The items within a group are assumed to have
similar functions and the same failure rates, however, their design (e.g.
measuring principle), location, and environment can be different.
SINTEF has previously performed a study where it was documented
that similar equipment experienced varied failure rates even if the
operating environment is the same (Håbrekke et al., 2017). The study
has shown that shutdown valves with flow medium gas and hydro-
carbon (HC) liquid experience different failure rates. It was also showed
that the failure mode, i.e. the type of failure, was influenced by certain
parameters. For example, the occurrence of the failure mode “fail to

Nomenclature

SIS safety instrumented system
PSD process shutdown
ESD emergency shutdown
FTO fail to open
LCP leakage in closed position
DOP delayed operation
OTH other
PCA principal component analysis
PLSR partial least squares regression
DD dangerous detected
DU dangerous undetected
PC principal component
SIF safety instrumented function
SIL safety integrity level
GLM generalized linear model
Cox proportional hazards model
HC hydrocarbon
T score matrix

P, Q loading matrix
X explanatory variable
V eigen value
Y response variable
E F F~, ~, ~* residuals from decomposition
NIPALS nonlinear iterative PLS algorithm

DU,i failure rate of DU failure, corresponding to failure mode i
ij weight of influencing factor j, corresponding to failure

mode i
ij score of influencing factor j, corresponding to failure mode

i
DU
* predicted failure rate

LT level transmitter
PSV pressure safety valve
DU_YES revealed DU failure
DU_NO no revealed DU failure
PDS reliability data for safety instrumented system
SAR safety analysis report
P&ID process and instrument diagram
SRS safety requirement specification

Fig. 1. Role and general configuration of SIFs.

1 PDS forum is a co-operation between 20 participating companies, including
oil companies, drilling contractors, engineering companies, consultants, safety
system manufacturers and researchers, with a special interest in SISs, see www.
sintef.no/pds.

2 SINTEF: An independent Norwegian research organization (https://www.
sintef.no/en/).
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open” (FTO) for the same valves were strongly affected by the tem-
perature of the medium flowing through the valves. The term sig-
nificant influencing factors were thus introduced for those factors (e.g.
design, operating environment, failure mode) with the strongest effects
on the failure rates. These factors have been analyzed by using tradi-
tional statistical models, however, data-driven methods could also be
suitable (Håbrekke et al., 2018). In this paper, data-driven methods
refer to the quantitative methods of identifying the correlations based
on amounts of data, such as principal component analysis (PCA) and
partial least squares regression (PLSR). Those data-driven models based
on experienced data are now proposed to be incorporated with the
traditional statistical models to predict failure failures of SIS equipment
for new facilities in the design phase.

The purpose of this paper is to study the application of data-driven
models for failure rate estimation. More specifically, the objectives are
to: 1) demonstrate how data-driven methods, i.e. PCA and PLSR, can be
used to identify significant influencing factors for the specific failures of
SISs, and 2) propose a framework for predicting the failure rates based
on the identified factors. The framework is illustrated with a case study
from data collected at six Norwegian onshore and offshore oil and gas
facilities. The framework is developed for SIS equipment, but can also
be applied for other systems or equipment.

The rest of the paper is organized as follows: Section 2 gives some
theoretical basis related to predictions of failure rates. Section 3 depicts
a framework for prediction of failure rates. Section 4 illustrates the
application of the proposed framework based on the data from six
different oil and gas facilities. Finally, some conclusions and ideas for
further work are discussed.

2. Theoretical basis

This section presents some selected definitions and concepts relating
to failures as well as failure rate prediction and elaborates the basic
principles of data-driven methods for identifying influencing factors.

2.1. Definitions of the failures

According to IEC 50(191), a failure is defined as “the termination of
the ability of an item to perform a required function” (IEC60050, 1990).
An item may refer to a system, subsystem, voted group or channel and
component. IEC 61508 splits the failures of SISs into four groups
(IEC61508, 2010): dangerous detected (DD) failures, dangerous un-
detected (DU), safe and no part/no effect failures. Both DD and DU
failures are dangerous failures that are critical for the functionality of
equipment. The difference between DD and DU failures lies in how the
two types of failures are revealed. DU failures are latent and only re-
vealed upon real demands, periodic tests, or inspections occasionally,
while DD failures are revealed by automatic diagnostics once they
occur. Since DU failures cannot be detected immediately and may not
be fixed until e.g. the next periodic test, these failures contribute the
most to the unavailability of SIS equipment. Hence, DU failures are of
concern in most reliability studies and also in this paper.

Other important terms in this paper include “time to failure”, “failure
cause”, “detection methods” and “failure mode”. Time to failure is often

referred to as the time elapsing from when the item is put into operation
until it fails for the first time (Rausand and Høyland, 2004). By time to
DU failure we mean the time when the item is put into operation until a
DU failure on it is revealed. Failure causes include circumstances as-
sociated with design, manufacture installation, use and maintenance
that have led to a failure (IEC60050, 1990). Detection methods are used
to describe how the failures are discovered (IEC61508, 2010). A failure
mode is a possible state description of a faulty item, which tells how the
inability is observed (Rausand, 2014).

2.2. Influencing factors

Estimation of DU failure rates from operation are often based on
generic data and/or user-provided data. In addition, influencing factors
that may affect the failure rates should be considered for prediction of
failure rates, but it is not mandatory in all generic and user-provided
data. Influencing factors are defined as the internal and external parts
of a system which act on its reliability or failures (Brissaud et al., 2010).
The term of influencing factor is more general than failures causes, and
it relates to the indirect explanatory factors, for example, equipment
attributes (e.g. sizes, types), operational environment (e.g. temperature,
pressure, loads), manufacture activities (e.g. manufacturers, proce-
dures), facility (e.g. location) and maintenance (e.g. test interval) and
the activities of the end-user (e.g. general safety culture) (Brissaud
et al., 2010; Rausand, 2014). Significant influencing factors are the
factors whose effects are the most influencing on the failure rates. Each
influencing factor can be broken down into several subcategories. The
effects of influencing factors may relate to failure rates. For example,
high temperature may lead to a higher frequency of the failures com-
pared to low temperatures.

2.3. Data-driven models for identifying significant influencing factors

In previous analyses of influencing factors, Cox models and gen-
eralized linear model (GLM) have been used (Håbrekke et al., 2018).
Both of the two models assume underlying failure distributions. For
example, GLM is based on binomial distributions, where only two
possible states of equipment are considered. A major advantage of these
models is the ability to describe the analytical correlations between
influencing factors and failure probability. However, both models re-
quire high quality data for representing simple statistical correlations,
and they are sensitive to the number of factors. When a number of
influencing factors are involved with complex interaction and non-
linearity, Cox and GLM models may not be suitable.

More flexible models, such as those data-driven models, can be al-
ternatives. PCA and PLSR are therefore introduced to investigate the
correlation between many factors simultaneously. These models enable
us to extract the most important information in order to understand the
correlations that may exist between factors. PCA and PLSR have been
applied for root cause identification, fault detection, and quality mon-
itoring in many cases (Li et al., 2016; Qin, 2012; Tidriri et al., 2016).
Here we will adopt them for understanding the essential relationships
between the influencing factors and DU failures. Details regarding PCA
and PLSR are found in the Appendix.

Fig. 2. Framework for predicting failure rates.
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3. Framework of failure rate prediction

In this section, we propose a framework to predict failure rates of
SIS equipment at a new facility based on experiences from comparable
facilities. The framework clarifies the correlations between operational
data and influencing factors, and thereby provides more preciseness in
failure rates prediction for selected equipment. As illustrated in Fig. 2,
the framework consists of three main steps: 1) data-collection, in-
cluding a selection of equipment, collection, and pre-processing data; 2)
identification of significant influencing factors to find out hidden cor-
relations; and 3) failure rates prediction by determining the weights
and scores of the factors.

3.1. Step 1: data-collection

The purpose of this step is to collect and interpret, classify and clean
data. It is required to collect data concerning both failures and influ-
encing factors. The failure data were obtained from failure notifications
and maintenance records, ranging from time to DU failure, failure
causes, and failure modes to detection methods. The data reflecting the
states of influencing factors were related to equipment attributes, op-
erational environment and maintenance activities, etc. Equipment at-
tributes are used to describe equipment relating to manufacturer's data
and design characteristics.

To limit the scope of the analysis, experts from manufacturers, oil
and gas facilities and engineering companies within the PDS project
have suggested some typical types of SIS equipment relevant for ana-
lysis. The selected groups of equipment should be accompanied by
sufficient data to obtain the required statistical confidence. The re-
commendation is limited to four groups: shutdown valves (i.e. ESD and
PSD valves), process safety valves (PSVs3), level transmitters (LTs), and
gas detectors. In terms of their safety functions, shutdown valves can
close and isolate related segments on demands, PSVs can be open on a
predefined setpoint to relief pressure, LTs measure the level in a vessel
or tank, and gas detectors discover the presence of gas and initiate an
alarm at specified concentrations.

To assure the quality of the data, pre-processing of data is needed.
Each failure maintenance notifications is reviewed and classified ac-
cording to failure causes, failure modes, and detection methods. The
failures were registered by operators and maintenance personnel, in-
cluding both random hardware failures and systematic failures. It is
suggested that systematic failures can be in failure rates estimations
(SINTEF, 2013a). However, some reoccurring failures due to specific
problems, such as icing problems and hydrate design problems have
been removed to avoid invalid the impacts on the overall results. Such
problems at one facility may not necessarily occur at other facilities.
The classifications of equipment are predefined according to the sug-
gestions of the experts. For example, the valves whose diameters are
less than one inch are categorized into a separated group, since they are
normally water-based and low-risk valves. Some assumptions are ne-
cessary in case of lack of data, for example, the valves installed in one
particular system are assumed to share the same medium as the flow
medium within the valves is not given.

3.2. Step 2: identification of significant influencing factors

The purpose of this step is to investigate the correlations between
failures and influencing factors, and to identify significant influencing
factors based on the data-driven models. Significant influencing factors
are referred to as the factors that highly affect the performance of
equipment.

PCA has been selected to identify gross correlations in data, and give
an overview of the distribution of the DU failures, correlations between
DU failures (e.g. occurrence of DU failures, failure modes) and influ-
encing factors (e.g. equipment attributes, maintenance, environmental
factors). As shown in Fig. 3, PLSR is applied to find quantitative cor-
relations between equipment performances (e.g. time to DU failure) and
the same influencing factors. PCA models are concerned with the oc-
currence of DU failures and failure modes, while PLSR models are
mainly related to time to DU failure. Both models contribute to the
identification of significant influencing factors, and investigate more on
the correlations between failures and factors.

3.3. Step 3: failure rates prediction

The purpose of this step is to predict failure rates of SIS equipment
at a new facility based on experiences from comparable facilities. A
user-provided failure rate for DU failures is denoted as DU. This failure
rate can be split into i groups according to different failure modes:

= + …+ iDU DU,1 DU,2 DU, (1)

where iDU, is the failure rate according to the failure mode i.
= …j k( 1,2 )ij denotes the weight of the significant influencing factor j,

meaning its importance to the failure rates iDU, . The weight ij can be
determined based on either the analysis in step 2, such as regression
coefficients and correlation analysis or the experience from the experts.

Then, the score ij for the influencing factors can be determined by
comparing the new conditions and existing conditions. The scores re-
present the impact of the significant influencing factors. For example,
when = 1ij , the influencing factor j is supposed to be in the medium
state according to failure rates DU i, . When > 1ij , the impact from
influencing factor j is more hostile than the existing condition. When

< 1ij , the impact is considered more benign than the existing condi-
tion. Similar studies have been discussed by many authors (Brissaud
et al., 2010; Rausand, 2014; Vatn, 2006). The predicted failure rates are
then estimated by:

= ij ij iDU DU, (2)

Failure rates are then obtained by using Equations (1) and (2).

4. Case study

In this section, a case study is used to illustrate the proposed fra-
mework for the prediction of failure rates. The content of this paper is
based on the works of the PDS project. We focus on the shutdown valves
and use the analysis of equipment attributes as examples. Other influ-
encing factors like the operational activities of the end-user or main-
tenances, may also have important influences on the failure rates.

4.1. Step 1: data-collection

The data stem from the six offshore and onshore facilities in the
Norwegian oil and gas industry, involving 12788 equipment items and
more than 13000 failures. A number of influencing factors can be taken
into account, but we mainly focus on equipment attributes here since
they are demonstrated important in explaining the variance of experi-
enced reliability performance of the SIS equipment.

The data regarding the failures and equipment attributes is derived
from maintenance notifications, work orders and relevant documenta-
tion, such as safety requirement specifications (SRSs), process and in-
strument diagrams (P&IDs), safety manuals and safety analysis reports
(SARs) and manufacturer specifications. Discussions with technical
advisors and process engineers have also been included. For example,
the flow medium for shutdown valves in the separation and stabiliza-
tion system has been checked in P&ID manually and discussed with the
experts. Some failure records are illustrated in Table 1. Shutdown

3 PSVs are non-instrumented equipment, but they are considered for the data
collection since some reliability handbooks for SIS include data for such
equipment.
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valves mainly have three types of DU failure: fail to close (FTC), leakage
in closed position (LCP), and delayed operation (DOP) (ISO14224,
2006).

Table 2 and Table 3 present a summary of the failure data and
equipment attributes. The equipment attributes, i.e. manufacturers,
size, flow medium and type of the shutdown valves, are included in the
analysis.

Table 4 illustrates an example of the shutdown valves used in data
analysis. For example, No. 1 valve has survived and No. 4 valve has
failed during the surveillance time.

4.2. Step 2: identification of significant influencing factors

PCA and PLSR are possible methods to identify significant influen-
cing factors for shutdown valves in this section. The results are visua-
lized by the software called “The Unscrambler X”, but it should be
noted that similar analyses can also be realized in Matlab or R.

Each possible influencing factor is defined as a variable. The sam-
ples here are shutdown valves, which are distributed in the variable
space. By application of PCA, a set of possibly correlated variables are
converted into a set of linear uncorrelated variables. Then, the di-
mension of the multivariate variables is reduced to principal compo-
nents (PCs) with a minimal loss of information. The samples are pro-
jected by using PCs with the largest explained variance. Fig. 4 shows the
correction loadings plot. The explained variance now tells us how much
information attribute to each of the PCs when high dimensional space is
converted to low dimensional space. In Fig. 4, PC1 contains 12% of the
variance and the PC2 contains 10% of the variance. The loading plot is
used to understand the correlation between the variables, as illustrated
in Fig. 4. “DU_NO” stands for a situation where DU failures are not

revealed, while “DU_YES” stands for a situation where DU failures are
revealed during surveillance time. There is a distinction between
“DU_NO” and “DU_YES” along PC2. The valves with DU failures are
allocated in third and fourth quadrants, illustrating the distribution of
DU failures. The score plot indicates how the samples are distributed
along with PCs. By comparing Figs. 4 and 5, we can recognize the
correlation between the grouped influencing factors and DU failures. In
Fig. 5, the extremely large and large valves are also distributed in the
third and fourth quadrants, meaning they are more likely to be subject
to DU failures than the rest of the valves. The valves with gas and
chemical flow medium are more exposed to DU failures compared to
the other valves.

By introducing failure modes, e.g. DOP, FTC, LCP, in the analysis,
the variance of PC1 and PC2 rises to 17% and 14% respectively. As
shown in Fig. 6, failure mode DOP is close to “extreme” and “gas”,
meaning that the failure mode DOP and extreme large-sized valves with
gas flow medium are clustered. This implies that these valves are more
exposed to DU failures with the failure mode DOP.

Fig. 7 and Fig. 8 show the analysis results from the PLSR analysis.
The predicted plot is used to describe the correlations between time to
DU failure and the influencing factors. R-squared gives the goodness-of-
fit of the model. Time to DU failure is poorly predicted in Fig. 7 since R-
squared is rather small and there is a big deviance between predicted
regression lines (red validation line and blue calibration line) and target
line (black reference line). Fig. 8 illustrates the weight regression
coefficients providing information about the importance of the influ-
encing factors. The influencing factors with a large regression coeffi-
cient play an important role in the regression model. In this case, some
influencing factors like size (e.g. extremely large), flow medium (e.g.
water, multiphase) and type of valves (e.g. ball and gate) can still be

Fig. 3. Flowchart for identifying significant influencing factors.

Table 1
Examples of failure notifications.

Comp. Notification Functional loc. Failure mode Detection method Description Comments

PSD valve * * FTC Proof test The valve fails under function test Valve went to 40% opening at closing. Rust actuator and
spring.

ESD valve * * DOP On-demand Error of feedback The too long closing time during the function test
PSD valve * * DOP Proof test Check opening and closing time for

valve
Closing time is 56 s

… … … … … …

Table 2
Failure data for the four groups of equipment.

Equipment Group No. of equipment Total operational time (hours) No. of DU failures Experienced failure rates (per 106 hours)

Shutdown valves 1646 3.7 107 292 7.9
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found as significant with respect to the failure rates.
To sum up, we conclude that in our case study DU failures are

correlated with the most significant influencing factors, e.g. size and
flow medium. Extremely large-size and flow medium (i.e. gas) are cri-
tical for some particular failure modes like DOP. That is why the two
influencing factors, i.e. size and flow medium are mainly concerned in
the following subsection.

4.3. Step 3: failure rates prediction

Based on operational experiences, we intend to predict failure rates
of the shutdown valves installed a new facility. The user-provided
failure rates in our case study are based on 1646 shutdown valves and
292 DU failures in total. The failures rate is estimated as the maximum
likelihood estimator by 7.9 10 6. The corresponding confidence interval
is given by [7.2 10 , 8.9 10 ].6 6 Table 5 lists the DU failures and asso-
ciated rates l per failure mode for the shutdown valves.

As discussed in the previous section, two significant influencing
factors need to be taken into account in predicting failure rates, i.e. size
and flow medium of the valves. The weight ij reflects the influence on
failure rates from each influencing factor according to the failure
modes, which is determined by experts based on the analysis results
from PCA and PLSR. The score ij is determined by comparing new
conditions and existing conditions. The relevant assumptions and pre-
diction results are shown in Table 6. Due to changes in operational
conditions, the failure rate can be calculated by Eq. (1) and Eq. (2) and
the predicted failure rate decrease by 5% to 8.8 per 106hour, lower than
the predicted result by using Brissaud's method (9.3 per 10 hour6 ) under
the same assumptions. The difference between the two predicted results
can be explained by obtaining more information about correlations
between significant influencing factors and the failure modes from the

Table 3
Equipment attributes for the shutdown valves.

Type Ball Controls flow by rotating a perforated and pivoting ball, poor methanol resistance in O-rings and deposits.
Gate Opens and closes by lifting or putting a gate out/down of the path of the fluid. Precipitation and abrasion are typical problems.
Butterfly Regulates or isolates flow by a damper.
Others Other types, e.g. globe valves

Size Small-sized 0–1 inch
Medium-sized 1–3 inches
Large-sized 3–18 inches
Extreme large-sized > 18 inches

Flow medium HC liquid Oil and condensate (hydrocarbon) liquid
Diesel Diesel fuel.
Chemical Chemical medium in chemical injection system e.g. H2S, Oxygen and some in methanol injection system e.g. 90% MEG with 10% water
Multiphase A mixture of different flow medium, e.g. a mixture of hydrocarbon, water, and sand
Water Freshwater with normal temperature and produced water with high temperature
Seawater Used for a fire water system and is characterized by salt
Gas HC gas or HC vapor in gas compression and re-injection systems, gas treatment systems, gas export metering systems, heating medium

systems, etc.
Manufacturer Manufacturers E.g. P, B … (anonymized)

Table 4
Examples for the analyses.

No. Time (hours) DU Failures Type Dimension Flow
Medium

Manufacturer

1 96456 DU_NO Ball Large HC Liquid P
2 96456 DU_NO Ball Medium Others P
3 96456 DU_NO Ball Large Others B
4 624 DU_YES Ball Large Others P
5 96456 DU_NO Ball Medium Gas B
… … … … … … …

Note: '' DU_YES '' – DU failures are revealed and '' DU_NO '' – No DU failure is
revealed.

Fig. 4. Correlation loading plot for the first and second PCs in PCA.
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PCA and PLSR analysis. It is illustrated that changes in the influencing
factors may affect some specific failure modes, rather than all failure
modes. Thus, it is more reasonably to predict failure rates for the spe-
cific failure modes of the shutdown valves.

5. Conclusions, discussions and further work

The main contribution of this paper is the proposed framework for
identifying influencing factors and predicting failure rates of SIS
equipment. The framework combines data-driven models i.e. PCA and

PLSR, and statistical models for predictions of failure rates. The
methods help us to identify the most important significant influencing
factors on failure rates, and to decide on the weights and scores of
identified influencing factors based on the analysis results from PCA
and PLSR.

Such a framework has been illustrated with a case study involving
operational experiences reported for the shutdown valves at six oil and
gas facilities. The results suggest that the size and the flow medium
through the valves are the most significant influencing factors. The case
study also illustrates how the framework is utilized to predict the failure

Fig. 5. Score plot of the first and second PCs in PCA.

Fig. 6. Correlation loading plot of the valves in PCA with failure modes.
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rates for equipment at a new facility. It can be the basis for reliability
improvement programs, optimizing maintenance programs and sug-
gesting subcategories within equipment groups. Prediction of failure
rates is the start of risk assessment and the calculation of PFD
(Famuyiro, 2018).

Many factors will affect the accuracy of the analysis. The biggest
challenge comes from the quality of data, such as lack of data, missing
information. Another limitation is the choice of predefined categories
for equipment (i.e. attributes) and failures (e.g. failure modes). The
selection of these categories strongly depends on the experts’ opinion
and the information available in the data. The data applied in the case
study to identify significant influencing factors is restricted to time to
DU failure. This time may be underestimated since DU failures are not
revealed immediately. Constant failure rates are also assumed in this
paper, which only applies to the failures during the useful life period of
operation. Thus, we have disregarded any changes in failure rates

during early life and end-of-life.
Further research should involve the comparisons of the effects of

different significant influencing factors on various SIS equipment
groups to mitigate DU failures. It is relevant to study other influences,

Fig. 7. Predicted plot of the shutdown valves in PLSR.

Fig. 8. Weighted regression coefficients of the influencing factors in PLSR.

Table 5
Failure distributions and corresponding failure rates.

Failure mode No. of DU Weights Failure rates iDU, (per 106 hour)

DOP 152 52.0% 4.1
FTC 101 34.6% 2.7
LCP 16 5.5% 0.4
OTH∗ 23 7.9% 0.6

Total 292 100% 7.9

Note∗: OTH represents other failure modes and unknown failure modes.
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such as installation, maintenance and general safety culture, on the
prediction of failure rates. Root cause analysis could also be in-
corporated in the proposed framework from the beginning of the
quantification of influencing factors. Other alternative methods, like
dynamic principal component analysis and or machine learning, can be
considered and their effectiveness needs to be analyzed. Development
of a guide for failure rate prediction is also required from an end-users
perspective, including validation of predicted values with experienced
failure rates. Another issue to be considered is to perform analyses to
predict dynamic failure rates in the operation.
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Appendix

PCA

PCA is based on the statistic model proposed by Pearson and Hotelling (Hotelling, 1933; Jolliffe, 2011; Pearson, 1901). Such a method can reduce
the dimensionality of multivariate to principal components (PCs) with minimal loss of information. In the context of this paper, PCA is used to reduce
the dimensionality of the influencing factors, so that significant influencing factors are retained and essential correlation is analyzed more easily.

Influencing factors are defined as the explanatory variables and expressed as = …X X X X[ , , ]n
T

1 2 . Assume m samples of equipment that describe
the observed situation relating to various influencing factors and the states of DU failures. ‘1’ represents a situation where a DU failure is detected,
whereas ‘0’ represents that there is no DU failures. The matrix X is decomposed into a score matrix T= …t t t[ , , ]n1 2 and a loading matrix P:

= +X TP ẼT (3)

where Ẽ denotes the residual matrix. The score T shows how the DU failures are distributed and how they project along the orthogonal PCs. The
loading P reflects the correlations between PCs. Then, the covariance matrix can be expressed as:

=S X X
N

1
1

T
(4)

The Eigen-decomposition is performed on S to obtain loading matrix P. The Eigenvalues V are denoted as:

= …V [ , ]l1 2 (5)

Then, the ith eigenvalue i, relates to the ith column of the score matrix T:

= t
n

t1
1 i

T
i i (6)

The highest eigenvalues represent the PCs with the most information and the measurement of the residuals is conducted to contain less cov-
ariance.

PLSR

Similarly, PLSR decomposes X and Ymatrices into bilinear structure models consisting of scores and loading matrices. The influencing factors are
defined as the explanatory variable expressed by = …X X X X[ , , ]n

T
1 2 . The response variables = …Y Y Y Y[ , , ]n

T
1 2 represents here the time to DU

failures. X and Y project from high dimensional spaces to low-dimensional spaces as follows:

= +X TP ẼT (7)

= +Y TQ F̃T (8)

where = …T t t t[ , , ]l1 2 are the score vectors, = …P p p p[ , , ]l1 2 and Q = …q q q[ , , ]l1 2 are the loading for X and Y. Ẽ and F̃ are PLS residuals corre-
sponding to X and Y. The loading weights of P and Q reflect the correlations between X and Y with the purpose of prediction. Then, the PLSR mode
can be rewritten as:

= +U T Ff ( ) ˜ (9)

Table 6
Comparison of the distribution for subcategories.

Brissaud's method Proposed method in this paper

DU(per 106 hours) Significant Influencing
factors

j j DU i, (per 106

hours)

Failure mode DU i, (per 106

hours)
Significant influencing
factors

ij ij DU i, (per 106 hours)

7.9 Size 0.6 1.5 7.1 FTC 4.1 – – – 4.1
Flow medium 0.4 0.7 2.2 DOP 2.7 Size 0.6 1.5 3.2

Flow medium 0.4 0.7 0.4

LCP 0.4 – – – 0.4
OTH 0.6 – – – 0.6

Prediction 9.3 8.8
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where U is a matrix that represents score vectors when Y projects to T . F̃ denotes the combined residuals from the decomposition. In this study, the
nonlinear iterative PLS (NIPALS) algorithm is used. Once all significant components are extracted, the model can then be used to predict new data
using the following relationship:

= + = +Y TQ F XB F˜ ˜T (10)

where B denotes a matrix of regression coefficients. More details of PLS algorithms can be found in the studies introduced by Geladi and Kowalski
(1986) and Hoskuldsson (Höskuldsson, 1988).
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