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Abstract  
 

Objective: The genetic component of ankylosing spondylitis (AS) development is 

~90%. Of the known heritability, ~20% is explained by HLA-B27, and 113 identified 

AS-associated SNPs account for ~7.4%. The objectives were to construct a weighted 

genetic risk score (wGRS) using currently known genome-wide susceptibility SNPs, 

and evaluate its predictive ability for AS in the Norwegian population-based Nord-

Trøndelag Health Study (HUNT). 

Methods: AS cases (n=164) and controls (n=49,032) were from the second (1995-

1997) and third (2006-2008) waves of the HUNT study, to which the entire adult 

population of the northern region of Trøndelag was invited. A wGRS based on 110 

SNPs weighted by published odds ratios for AS was constructed, representing each 

person’s carriage of all risk variants. Logistic regression models including the wGRS 

alone or in combination with HLA-B27 carrier state and other adjustment variables 

(gender, age, smoking, body mass index, and hypertension) were developed. 

Discrimination among models was compared using area-under-the-curve (AUC). 

Results: The wGRS was associated with AS (OR: 1.7; 95% CI: 1.4-2.1), but showed 

low discrimination (AUC: 0.62 (0.58-0.67)). HLA-B27 was significantly associated 

with AS (OR: 50(32-81), showing high discrimination (AUC: 0.88 (0.85-0.90)). 

Combining the wGRS and HLA-B27 improved prediction (AUC: 0.90 (0.87-0.92)), 

p<0.001 vs. wGRS alone, p<0.01 vs. HLA-B27 alone). Further inclusion of 

adjustment variables gave a small improvement (AUC: 0.91 (0.89-0.94), P=0.03). 

Conclusion: Prediction in a population-based setting based on all currently known 

AS susceptibility SNPs was better than HLA-B27 carrier state alone, although the 

improvement was small and of uncertain clinical value.   

(248 words) 
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Introduction 

Spondylarthritis (SpA) refers to a group of immune-mediated inflammatory 

rheumatic diseases showing common genetic and clinical features. Ankylosing 

spondylitis (AS) is an axial SpA characterized by structural changes in the sacroiliac 

joints (1) and spine (2). AS is associated with disability and reduced quality of life 

(3). The prevalence is estimated to 23.8 per 10,000 persons in Europe (4).  

 

The etiology of AS is only partly understood. The genetic component of AS 

development is estimated from twin studies to be around 90% (5), which is higher 

than in other rheumatic diseases such as rheumatoid arthritis (6). About 20% of the 

known heritability for AS is attributed to HLA-B27 and about 7.4% to 113 SNPs 

found in association studies (7). Thus, approximately 60% of the heritability is 

probably determined by as yet unmapped variants.  

 

A genetic risk score (GRS) is a multi-locus profile of genetic risk, which may be 

used to study complex diseases in population health research (8). GRS models could 

help earlier identification of people at increased risk of developing the disease, 

potentially permitting prevention or earlier treatment. Such models may also be 

developed to estimate the probability of the disease outcome on the population level 

(9). The hypothesis for the present study was that despite the current knowledge 

regarding almost 30% of the heritability for AS, disease prediction on a population 

level would be imprecise. We further hypothesized that inclusion of non-genetic 

variables would give a significant improvement of prediction. 

 

The aims of the current study were to construct a genetic risk score based on 

validated single-nucleotide polymorphisms (SNPs) from the most comprehensive 
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association study on AS to date (7), and to evaluate its predictive ability for AS in 

combination with relevant non-genetic variables in a population-based setting with 

data from the Nord-Trøndelag Health Study (HUNT). Finally, we wanted to evaluate 

whether addition of validated SNPs for AS from other studies could improve 

prediction.  

 

Patients and methods 

In HUNT, the entire adult population (≥20 yrs) of the northern region of Trøndelag 

(previously, Nord-Trøndelag county) in Norway was invited to participate. Data 

were collected from participants through questionnaires, interviews, clinical 

examinations, and blood sampling (10). The present study is based on data from the 

second (HUNT2; 1995-1997) and third (HUNT3; 2006-2008) HUNT surveys (10). 

Figure 1 summarizes the inclusion of participants. AS in HUNT2 and HUNT3 was 

diagnosed using the Modified New York Criteria (11), as part of the ongoing 

HuLARS study (Hunt Longitudinal Ankylosing spondylitis and Rheumatoid 

arthritis Study) (12). Cases for whom the diagnosis was not reliably established, and 

those diagnosed with psoriatic arthritis, juvenile inflammatory arthritis, or other 

inflammatory arthritis were excluded. Some clinical data were not sufficient for an 

accurate diagnosis of non-radiographic axial SpA, so these cases were excluded and 

AS was defined as the phenotype of interest.   

 

The HUNT study was approved by the Regional Committee for Medical and Health 

Research Ethics (REK), the Norwegian Data Inspectorate, and the National 

Directorate of Health. All participants gave written informed consent, and the study 
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was performed in accordance with the Helsinki declaration. The HuLARS study was 

approved by REK (REK Midt 2009/661), and the Norwegian Data Inspectorate. 

 

Genotyping and imputation 

SNPs analyzed in our study were genotyped utilizing the HumanCoreExome arrays 

from Illumina Inc. (HumanCoreExome12 v1.0, HumanCoreExome12 v1.1 and UM 

HUNT Biobank v1.0). Genotyping was performed at the NTNU Genomics core 

facility, Trondheim, Norway. Further details including quality control have been 

given previously (13). Imputation was performed using Minimac3 (v2.0.1, 

http://genome.sph.umich.edu/wiki/Minimac3) (14). Only samples of recent 

European ancestry were used, defined as samples falling into an ellipsoid 

exclusively spanning European populations of the Human Genome Diversity Project 

reference panel (15). A merged reference panel was constructed by combining the 

Haplotype Reference Consortium panel (release version 1.1) (16) and a reference 

panel from 2,202 whole-genome sequenced HUNT study participants. 

 

Risk scores and statistical analysis 

Genetic risk variants for AS were identified from English-language literature 

available on PubMed until 27.05.2018 that reported SNPs from large case-control 

studies in Caucasians. Inclusion criteria were that the association to AS was 

confirmed in a meta-study, in several independent studies, or documented both in a 

discovery and validation cohort. We included the most recent and comprehensive 

GWAS meta-study for five chronic inflammatory diseases including AS (7), which 

used a combination of a subset-based statistical approach to achieve genome-wide 

significance (p<5*10-8), and Bonferroni-correction for the actual number of linkage 
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disequilibrium-independent markers analyzed. For SNPs from other studies, we set 

the p-value for inclusion at p<5*10-6 and performed a sensitivity analysis using 

p<5*10-8. In total, we had access to 148 previously identified susceptibility SNPs for 

AS from five studies (Supplement). This included 110 SNPs from the mentioned 

GWAS meta-study (7), denoted as “GWAS SNPs” in the following text, and 38 

from other studies (denoted as “additional SNPs”, Supplement). First, the 110 

GWAS SNPs were used to construct a weighted genetic risk score (hereafter denoted 

wGRS110) by the addition of risk alleles and weighting by the natural logarithm of 

the published OR, representing each person’s carriage of all risk variants. HLA-B27 

carrier state (positive/negative) was not included in the score but was used as a 

separate variable, based on the genotypes of rs4349859.  

 

Second, an additional weighted genetic risk score from a reduced set of the 

additional 38 SNPs was constructed (hereafter denoted wGRS15) (Supplement). To 

this end, linkage disequilibrium was evaluated of those SNPs on each chromosome 

fulfilling the initial p-value criterion (p<5*10-6) using LDlink 

(https://analysistools.nci.nih.gov/LDlink/). 19 SNPs closely linked to other SNPs 

(defined as r2>0.8) were first removed by the following selection strategy: In case of 

close linkage of additional SNPs with GWAS SNPs, the additional SNPs were 

omitted. In case of close linkage among the additional SNPs, we kept the non-linked 

SNPs with the highest OR for the association with AS. The biggest possible SNP set 

was selected, and finally consisted of 15 SNPs that were used to calculate the 

wGRS15 (Supplement). For the sensitivity analysis with a risk score based on 

genome-wide significance, the same strategy was used and resulted in a selection of 
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8 SNPs that were not closely linked. These were included in the wGRS8. All three 

wGRS were used as continuous variables in logistic regression modelling. 

 

Baseline information on sex, age (age <=30 or >60 years; versus age >30 or <=60 

years), smoking (current, former, or never smoker), body mass index (BMI), and 

hypertension was used as adjustment variables in the logistic regression analysis. 

BMI was calculated as weight (kg)/height (m)2. Hypertension was defined as either a 

“yes” response to the question “Are you using medication for high blood pressure”, 

or measurement of systolic blood pressure ≥140 mmHg and/or diastolic blood 

pressure ≥90 mmHg. An additional indicator variable denoting whether the 

individual’s baseline data were recorded at HUNT2 or HUNT3 (i.e. the first of these 

waves the person participated in) was also included in the models. Linearity of logits 

was evaluated by plots. The Hosmer-Lemeshow test was used to evaluate model fit, 

and the area (AUC) under the receiver operating characteristics (ROC) curve was 

used to assess discrimination. The Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) were employed to compare the fit of alternative models. 

For the best model, the point on the ROC curve with the highest sensitivity and 

specificity was calculated using the Youden index. The sensitivity, specificity, and 

positive and negative predictive values (PPV and NPV) using this point as a cut-off 

were then calculated. Data were analyzed using Stata (version 14.1, StataCorp, 

College Station, Texas, USA). Data are given as mean±SD or OR (95% CI) unless 

otherwise stated. P-values <0.05 were considered statistically significant. 

 

The main analysis was performed on a dataset that was complete for adjustment 

variables (Figure 1). Several models were constructed: Models 1 and 2 were models 
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containing either wGRS110 or HLA-B27 alone, respectively. Model 3 included both 

wGRS110 and HLA-B27. Models 4 and 5 included wGRS110, HLA-B27, and 

adjustment variables (gender, age, smoking, BMI, and hypertension), and model 5 

further included wGRS15. An alternative model 5 exchanged wGRS15 with 

wGRS8.  

 

Additionally, two sensitivity analyses were performed using a similar modelling 

approach. The first of these sensitivity analyses was done following multiple 

imputation of adjustment variables to account for missing data, using chained 

equations (n=50 datasets) and assuming missing at random. The second sensitivity 

analysis was performed after removal of all participants who showed a 2nd degree or 

closer family relationship (Figure 1) to account for potential relationship bias. In the 

second sensitivity analysis, kinship coefficients were estimated using KING with a 

cutoff at estimated kinship coefficient 0.0884, which corresponds to the upper bound 

of 2nd degree relatives (http://people.virginia.edu/~wc9c/KING).  A set prioritizing 

AS cases was selected by preferably omitting controls where possible. The final set 

comprised 147 AS cases and 13,052 controls.  

 

Results 

Table 1 summarizes baseline characteristics of the study participants.  

The wGRS110 ranged from 10.93 to 17.29. The median wGRS110 was 14.60 

(interquartile range (IQR): 14.11-15.08) in AS cases and 14.26 (IQR: 13.73-14.78) 

in the controls. 

There was substantial overlap in the wGRS110 distribution between cases and 

controls (Figure 2).  
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Table 2 summarizes the five logistic regression models from the main analysis. 

The Hosmer-Lemeshow test showed good fit for all models. wGRS110 was 

significantly associated with AS (model 1, OR=1.7 (1.4-2.1) for one unit increase, 

p<0.001). However, the discriminative ability of this model was low (Figure 3). 

HLA-B27 showed the highest OR, whether as single explanatory variable (model 2, 

OR=50; 95% CI: 32-81) or with other predictors (models 3-5). All models including 

HLA-B27 had high discriminatory ability with AUC >0.88 (Figure 3). The model 

combining wGRS110 and HLA-B27 (model 3) had a higher AUC compared to the 

univariate models with either wGRS110 (p<0.001) or HLA-B27 (p<0.01). Further 

inclusion of adjustment variables (age, gender, smoking, BMI, and hypertension) to 

the model including wGRS110 and HLA-B27 significantly improved the 

discriminative ability (model 4, p=0.03 vs. model 3). Further addition of wGRS15 to 

model 4 did not improve the discriminative ability (model 5, p=0.54 vs. model 4, 

Table 2 and Figure 3). However, wGRS15 was a significant variable when included 

in models without wGRS110, whether alone (OR=1.64(1.17-2.31)) or together with 

HLA-B27 and the adjustment variables (OR=1.74(1.24-2.46)). AIC and BIC values 

for models 1-5 are summarized in Figure 3. Based on the combined AIC and BIC 

values, model 4 including wGRS110, HLA-B27, and adjustment variables was the 

most parsimonious model with best fit. The results were essentially unchanged when 

wGRS8 (Supplement) was used instead of wGRS15 (data not shown). When the 

point on the ROC curve for model 4 with highest sensitivity (88%) and specificity 

(88%) was used as cut-off for a positive vs. negative test for AS, the NPV was 100% 

and the PPV was 2.3%. 
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After repeating the analyses following imputation of missing data for the adjustment 

variables in the first sensitivity analysis, most results were very similar (Table S1). 

A notable difference was that wGRS15 was significant when included in model 5 

(OR 1.5(1.1-2.1), p=0.024). Following removal of participants to select a dataset 

without 2nd degree or closer family relationships in the second sensitivity analysis 

(n=13,199) there were very small changes from the original analysis (Table S2).  

 

Discussion 

In this large population-based study of AS cases and non-AS controls, high 

discriminatory ability was seen with HLA-B27 and even higher when a wGRS based 

on most of the currently known risk SNPs for AS was also considered. 

Unsurprisingly, the discriminatory capacity of the wGRS alone was much lower than 

the HLA-B27 carrier state. Prediction was slightly improved by addition of 

adjustment variables, reaching an AUC of 0.91 for the multivariable model.  

 

The results are in accordance with the high genetic component of AS development 

as well as the relative attribution of the known heritability for HLA-B27 and the 

other previously identified SNPs, respectively (7). In the main analysis, addition of a 

wGRS based on 15 further validated risk SNPs (wGRS15) gave no improvement 

even if this score was significantly associated with AS as a single predictor. 

However, in the sensitivity analysis following imputation of missing adjustment 

variables, wGRS15 gave a significant contribution to overall prediction. This may be 

due to increased power with inclusion of more AS cases. The study therefore 

suggests that the large proportion of undetermined genetic risk variants may play a 

substantial role for prediction. For better prediction, it seems like discovery and 

inclusion of many more genetic risk variants, or the use of more efficient statistical 
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approaches such as genome-wide risk score development would be necessary. 

Furthermore, inclusion of information on rare variants, copy number variants, 

epigenetic factors, other demographic factors, and interactions terms may be 

required.   

 

A risk score-based predictive model for AS in a South Korean study used HLA-B27, 

three copy number variants, and one SNP, and found higher specificity and accuracy 

compared to the HLA-B27 only model (17). The authors reported an AUC of 0.98 

and 0.95 for the construction and validation datasets of the final model, respectively. 

This is higher than for our models. However, the two studies have major differences: 

They are based on populations with different ethnicities (East Asian vs. Caucasian) 

with their distinctive genetic compositions, and the studied type of variations 

differed (copy number variants and SNP). The present study was performed in a 

population-based setting with a less selected control group, which may reduce bias. 

We also included a larger number of risk SNPs, as well as demographic and clinical 

data. 

 

A potential source of error in the present study could be relatedness among 

participants. However, there were small changes in the OR after removal of close 

relatives, demonstrating that relatedness had very little impact on the predictive 

ability of the wGRS. This suggests that even for a disease with substantial 

heritability, it may not be necessary to account for kinship when testing the 

predictive ability of a wGRS, and that removal of close relatives may lead to 

unnecessary loss of cases.  
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The aim of our study was not to develop a clinical prediction model for AS. 

Although AUC is a measure of sensitivity and specificity of the disease, the clinical 

population-level outcome is influenced by the disease prevalence and heritability 

(18). The models in the current study had relatively high AUC of up to 0.91. 

However, due to the low AS prevalence in Europe (4), the current models would not 

be useful on an individual level because the PPV (i.e. the probability of having AS 

given a high score) was very low. This is in accordance with a previous study 

showing that genetic data did not perform better than clinical data in back pain 

patients with suspected axial SpA (19). On the other hand, a negative test based on 

model 4 had an excellent NPV. Even so, we find that a genetic risk score with a 

higher PPV should be sought for before such a test is included in clinical practice for 

population screening.  

 

To our knowledge, this is the largest general population-based study yet conducted 

to test the predictive ability of a genetic risk prediction model for AS in the 

Caucasian population. Several studies have been performed with other aims, among 

them a prediction of AS radiographic severity (20), response to TNF-α blocking 

therapy in AS (21), and prediction of cardiovascular events among those with AS 

(22). The number of AS cases in our cohort was too low to investigate such research 

questions.  

 

The pathogenesis of AS is still not well elucidated. A previous study from HUNT 

showed significant associations of present smoking, hypertension, and younger age, 

but not of BMI, with the incidence of AS (23). In our study, inclusion of adjustment 

variables in addition to HLA-B27 and wGRS110, significantly improved prediction, 
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probably mostly due to statistical adjustment for imbalances in age and gender 

between cases and controls. The increase in AUC was numerically small, however, 

again underscoring the importance of the strong genetic component of AS. It would 

have been interesting to test potential model improvement from inclusion of AS-

related variables like disease activity scores or the patients’ own evaluation. Such 

variables were not available, and rarely are in a population-based study, especially 

for controls.  

 

Risk variants found in GWAS are not necessarily causative. Previous research has 

shown that weighted risk scores are relatively robust to the influence from non-

causative SNPs, regardless of the strength of linkage disequilibrium they have to 

causative SNPs (24). Furthermore, the main aim of risk prediction is to reach a high 

predictive power, and to increase the validity and robustness of model predictions. 

This does not necessitate inclusion only of causal associations (9). 

 

The study has some limitations. Despite efforts to ascertain the AS diagnoses in 

HUNT (12), there could be false positive or false negative cases, which would 

reduce predictive accuracy. There is also a potential for selection bias of participants 

in HUNT. Our models were not validated in another cohort. Furthermore, genetic 

predictive medicine is in its infancy and has several ethical challenges when used in 

individuals because of the complicated disease mechanisms. We also cannot exclude 

that a comparable risk score based on SNPs associated with the risk for AS in other 

populations or ethnicities may perform better due to different genotype frequencies 

and phenotypic effect sizes (25). The high frequency of women among the new AS 

cases in HUNT3 may be due to an increased awareness of AS not only as a disease 
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in men, as well as selection bias to HUNT because a relatively lower proportion of 

the invited young men than young women participated (12).  

 

In conclusion, prediction in a population-based setting based on all currently known 

AS susceptibility SNPs was better than HLA-B27 alone, although the improvement 

was not major and of uncertain clinical value. 
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Figure Legends 

Figure 1: Participant inclusion  

Inclusion of participants for risk prediction models for ankylosing spondylitis (AS) 

in the population-based HUNT study in the Nord-Trøndelag area, Norway.  

HUNT2 and HUNT3 are two waves of HUNT, conducted in 1995-1997 and 2006-

2008, respectively. 

 

Figure 2: Risk score distribution in AS cases and controls 

Distributions of weighted genetic risk score wGRS110 based on 110 susceptibility 

SNPs for ankylosing spondylitis (AS) reported in (7). 

 

Figure 3: Discrimination by logistic regression models 

Area under receiver operating characteristics curves for five models. Model 1: risk 

score for 110 ankylosing spondylitis (AS) susceptibility SNPs (wGRS110) only; 

Model 2: HLA-B27 (positive/negative) only; Model 3: wGRS110 and HLA-B27; 

Model 4: wGRS110, HLA-B27, and adjustment variables (age, gender, smoking, 

body mass index, hypertension); Model 5: wGRS110, HLA-B27, risk score for 15 

additional AS susceptibility SNPs (wGRS15) and adjustment variables as in model 

4. AUC: area under the curve with 95% confidence interval in parenthesis. Akaike 

(AIC) and Bayesian (BIC) information criteria for models shown. 
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Table 1. Baseline characteristics of study participants 
 HUNT2 (n=39,782) HUNT3 (n=9,414)1 
 AS cases 

(n=142) 
Controls 
(n=39,640) 

AS cases 
(n=22) 

Controls 
(n=9,392) 

HLA-B27, % positive  88.7 12.5 81.8 12.6 
Age, mean ± SD  41.9±11.1 47.4±17.2 43±10.6 40.4±14.8 
Women, % 37 53 64 53 
Smoking, % 
   Never smoker 
   Previous smoker 
   Current smoker 

 
40 
28 
32 

 
45 
23 
32 

 
54 
23 
23 

 
52 
25 
23 

Body mass index (kg/m2), mean ± SD 26.3±4.2 26.2±4.1 27.2±5 26.6±4.7 
Hypertension, % 35 40 27 22 

AS: ankylosing spondylitis; HUNT: Nord-Trøndelag Health Study, wave 2 or 3  
1Novel participants who did not participate in HUNT2   
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Table 2. Logistic regression models for weighted genetic risk scores (wGRS) for AS1 

Model wGRS1102 
(OR(95%CI);  
P-value) 
 

wGRS152 

 (OR(95%CI);  
P-value) 

HLA-B27 
(OR(95%CI);  
P-value) 

Male gender 

(OR(95%CI); 
 P-value) 

Age3 

(OR(95%CI);  
P-value) 

Model 1 
 

1.7(1.4-2.1); <0.001 - - - - 

Model 2 
 

- - 50(32-81); <0.001 - - 

Model 3 

 
1.8(1.4-2.2); <0.001 - 51(32-81); <0.001 - - 

Model 44 
 

1.8(1.4-2.1); <0.001 - 51(32-82); <0.001 1.7(1.2-2.3); 0.002 3.3(2.2-4.9); <0.001 

Model 54 
 

1.7(1.4-2.1); <0.001 1.4(1.0-2.0); 0.068 52(32-82); <0.001 1.7(1.2-2.3); 0.002 3.3(2.2-4.9); <0.001 

1 164 ankylosing spondylitis (AS) cases and 49,032 controls  

2 wGRS110 and wGRS15 are weighted genetic risk scores for AS, based on 110 and 15 risk SNPs, respectively 

3 Baseline age (age <=30 or >60 years versus age >30 or <=60 years) 

4 Models were also adjusted for baseline smoking (current, former, or never smoker), body mass index, and hypertension 

- Variable was not included in the mode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

Figure 1 



23 
 

Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

Figure 3 
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Supplement 
Genetic variations reported in the genome-wide meta-study (1) that were not included 

in wGRS110:  

• Lack of access to genetic data: rs201014116  

• Non-SNP variations: rs11306716; rs11363316; rs5743293; rs67025039 

Fifteen SNPs showing association with AS reported from four additional studies that 

were used to construct wGRS15: 

• SNPs from Reference 2: rs17765610; rs1801274; rs12615545; rs1128905; 

rs1250550; rs11065898; rs75301646; rs35164067 

• SNPs from Reference 3: rs6534639 

• SNPs from Reference 4: rs4389526; rs10440635; rs378108 

• SNPs from Reference 5: rs2310173; rs27434; rs2242944 

Eight SNPs showing association with AS that were used to create wGRS8: 

• Seven SNPs were shared with wGRS15 (bold in the list above). The remaining SNP 
(rs4640621) was from reference 2. 
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Table S1. Logistic regression models for weighted genetic risk scores (wGRS) for AS after imputation of missing adjustment variables1 

Model wGRS1102 

(OR(95%CI);  
P-value) 
 

wGRS152 
(OR(95%CI);  
P-value) 

HLA-B27 
(OR(95%CI); 
P-value) 

Male gender 

(OR(95%CI);  
P-value) 

Age3 

(OR(95%CI);  
P-value) 

Model 1 
 

1.7(1.4-2.1); <0.001 - - - - 

Model 2 
 

- - 48(31-74); <0.001 - - 

Model 3 
 

1.7(1.4-2.1); <0.001 - 48(31-75); <0.001 - - 

Model 44 
 

1.7(1.4-2.1); <0.001 - 49(32-76); <0.001 1.8(1.3-2.4); <0.001 3.6(2.5-5.3); <0.001 

Model 54 
 

1.6(1.3-2.0); <0.001 1.5(1.1-2.1); 0.024 49(32-76); <0.001 1.8(1.3-2.4); 0.001 3.6(2.5-5.3); <0.001 

1 181 ankylosing spondylitis (AS) cases and 55,586 controls  

2 wGRS110 and wGRS15 are weighted genetic risk scores for AS, based on 110 and 15 risk SNPs, respectively 

3 Baseline age (age <=30 or >60 years versus age >30 or <=60 years) 

4 Models were also adjusted for baseline smoking (current, former, or never smoker), body mass index, and hypertension 

- Variable was not included in the model 
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Table S2. Logistic regression models for weighted genetic risk scores (wGRS) for AS after removal of related participants (2nd degree or 
closer family relationship)1 

Model wGRS1102  
(OR(95%CI);  
P-value) 
 

wGRS152 
(OR(95%CI);  
P-value) 

HLA-B27 
(OR(95%CI);  
P-value) 

Male gender 

(OR(95%CI);  
P-value) 

Age3 

(OR(95%CI);  
P-value) 

Model 1 
 

1.7(1.4-2.1); <0.001 - - - - 

Model 2 
 

- - 47(29-76); <0.001 - - 

Model 3 
 

1.7(1.4-2.1); <0.001 - 47(29-76); <0.001 - - 

Model 44 
 

1.7(1.3-2.1); <0.001 - 48(29-78); <0.001 1.7(1.2-2.5); 0.002 3.4(2.1-5.4); <0.001 

Model 54 
 

1.6(1.3-2.0); <0.001 1.2(0.8-1.8); 0.3 48(29-77); <0.001 1.8(1.2-2.5); 0.002 3.4(2.1-5.4); <0.001 

1 147 ankylosing spondylitis (AS) cases and 13,052 controls 

2 wGRS110 and wGRS15 are weighted genetic risk scores for AS, based on 110 and 15 risk SNPs, respectively 

3 Baseline age (age <=30 or >60 years versus age >30 or <=60 years) 

4 Models were also adjusted for baseline smoking (current, former, or never smoker), body mass index, and hypertension 

- Variable was not included in the model 

 


