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TOLL-LIGNENDE RESEPTOR 2 UTTRYKK, REGULERING OG SIGNALISERING 
 
Den første responsen mot infeksiøse mikroorganismer er koordinert av det medfødte 
immunforsvaret. Cellene i dette systemet er ansvarlig for det første steget i fjerning av 
mikroorganismer, og modulering av den adaptive immunresponsen. Toll- lignende 
reseptorene (TLR) er en familie på 13 signalreseptorer (TLR1-13) som uttrykkes på 
immunceller som monocytter/makrofager, granulocytter og dendritiske celler. TLRene er 
essensielle i gjenkjenningen av en rekke komponenter fra invaderende mikroorganismer og 
for indusering av inflammatorisk respons mot disse organismene.  
 
Den best karakteriserte TLR er TLR4 som er signalreseptoren for endotoksin (også kalt 
lipopolysakkarid (LPS)). LPS finnes i ytterveggen til Gram- negative bakterier, og er en 
viktig virulensfaktor for Gram- negative bakterieinfeksjoner. TLR2 gjenkjenner Gram- 
positive bakterier, lipoproteiner og lipoteikoinsyre (LTA) som også er uttrykt i celleveggen til 
bakterier. Gjenkjennelse av disse komponentene via TLRene er viktig for at kroppen skal 
oppdage begynnende infeksjoner og sette i gang responsene som er viktig for fjerning av 
infeksjon.  
 
I dette studiet har vi studert TLR2 uttrykk, regulering og signalisering. Vi fant TLR2 uttrykt 
på plasma membranen til immunceller og at reseptoren er oppregulert i respons på svært lave 
konsentrasjoner av stimuli. Vi har også studert uttrykket av TLR2 inni humane monocytter, 
der vi fant TLR2 uttrykt i tidlige og resirkulerende endosomer og samt i lysosomer. 
Reseptorene CD14 og CD36 er vist å fungere som ko-reseptorer for TLR2 og vi viser at disse 
er viktige for at humane monocytter skal kunne internalisere TLR2 liganden LTA, samt 
forsterke TLR2 signalisering. TLR2 og ko-reseptorene CD14 og CD36 er høyt uttrykt på 
plasmamembranen til monocytter. Vi viser videre at signalisering initieres hovedsakelig ved 
binding av ligand til plasmamembranen og er i stor grad uavhengig av internaliseringen av 
LTA. Videre viser vi at TLR2 har en rolle i antigen-presentasjon og initiering av adaptiv 
immunitet.  
 
Vi fant at TLR2 på celleoverflaten oppreguleres i respons på en rekke stimuli. 
Oppreguleringen av TLR2 i respons på lave konsentrasjoner av lipoprotein forsterket 
responsen av sekundære stimuli, noe som samsvarte med oppregulering av TLR2. 
Oppregulering av TLR2 kan derfor være viktig for å forsterke responsen mot lave 
konsentrasjoner av stimuli og for bekjempelse av begynnende infeksjon. I respons på høyere 
konsentrasjoner av prestimuli, ble imidlertid toleranse indusert i respons på sekundær stimuli, 
til tross for oppregulert TLR2. Signalveiene som induserer oppregulering av TLR2 ble derfor 
videre studert. TLRene signaliserer via fire intracellulære signal adaptor molekyler; MAL, 
MyD88, TRIF og TRAM. TLR4 kan signalisere via et MAL/MyD88 avhengig spor, som 
fører til aktivering av transkripsjonsfaktoren NF-κB og induksjon av proinflammatoriske 
cytokiner. TLR4 kan også signalisere via et TRAM/TRIF avhengig spor, som aktiverer 
transkripsjonsfaktoren IRF3 og induserer interferon (IFN)-β. TLR2 har hittil vært kjent å kun 
signalisere via MAL/MyD88 sporet. Vi viser imidlertid at begge sporene regulerer TLR2 
overflateuttrykk på makrofager i respons på TLR4 liganden LPS. Overraskende nok fant vi en 
ny rolle for TRAM/TRIF signalveien i TLR2 signalisering. Denne signalveien var viktig for 
induksjon av chemokinet RANTES (CCL5), men ikke for induksjon av det 
proinflammatoriske cytokinet TNF.  
  
Resultatene i denne avhandlingen gir ny forståelse og innsyn i TLR2 uttrykk, regulering og 
signalisering, som vi mener kan være viktig for utviklingen av vaksiner og 
immunmodulerende medisiner for behandling av akutt- og kronisk inflammasjon. Resultatene 
bidrar også til å øke vår forståelse av hvordan det medfødte immunforsvarets bekjemper 
infeksjoner. 
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ABBREVIATIONS 
Ab  Antibody 

Ag  Antigen 

AP-1  Activator protein 1 

APC  Antigen presenting cell 

ATP  Adenosine triphosphate 

B DNA   Bacterial DNA  

CBP  CREB-binding protein 

CCL5  CC-chemokine ligand 5 

CCR  Chemokine receptor 

CKII  Casein kinase II 

CpG   deoxycytidyl-deoxyguanosine   

CREB  Cyclic-AMP-responsive-element binding protein  

CTL  Cytotoxic T lymphocyte 

DC  Dendritic cell 

DNA  Deoxyribonucleic acid 

ds   Double-stranded  

ER   Endoplasmatic reticulum  

FRAP  Fluorescence recovery after bleaching 

FRET  Fluorescence resonance energy transfer 

FSL-1  Fibroblast-stimulating lipopeptide 1 

GPI  Glycoylphosphatidylinositol 

HCMV  Human cytomegalovirus 

HEK  Human epithelial kidney 

HIV  Human immunodeficiency virus 

HLA  Human leukocyte antigen 

HSP   Heat shock protein  

HSV  Herpes simplex virus 

hToll   Human Toll (also known as TLR4)  

IFN  Interferon 

IFNRI  Interferon receptor I 

IKK  IκBα kinase complex 

IL  Interleukin 

IP-10  Interferon-inducible protein-10 

Ipaf   IL-1β -converting enzyme-protease-activating factor 

IPS   IFN-β promoter stimulator (also known as MAVS/Cardiff/VISA) 

IRAK   Interleukin-1 receptor associated kinase 

IRF  IFN regulatory factor  

ISG15  IFN-stimulated gene 15 

ISGF3  IFN-stimulated gene factor 3 

ISRE  Interferon stimulating response element 

JNK  Jun N-terminal kinase 

LBP  LPS-binding protein 

LPS  Lipopolysaccharide 

LRR  Leucine-rich repeat 

LTA  Lipoteichoic acid  

mAb  Monoclonal antibody 

MAL  Myeloid adapter-like protein (also known as TIRAP) 

MALP-2  Macrophage activating lipopeptide 2 

MAPK   Mitogen-activated protein kinase 

MAPKKK   MAPK kinase kinase 
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MBL   Mannan-binding lectin  

mCD14  Membrane bound CD14 

MDA5   Melanoma differentiation-associated gene 5 

mDC  Myeloid DC 

MEF  Mouse embryonic fibroblast 

MHC  Major histocompatibility complex 

MIP  Macrophage inflammatory protein 

MR   Macrophage-mannose receptor  

MyD88  Myeloid differentiation factor 88/Myeloid differentiation primary response gene 88 

NALP  Nacht domain-, leucine-rich repeat- and PYD-containing protein 

NAP1  NF-kappaB-activating kinase (NAK)-associated protein 1 

NDV  Newcastle disease virus 

NF-κB  Nuclear Factor–κB 

NK  Natural killer cell 

NLR  NOD-like receptor 

NOD   Nucleotide oligomerization domain  

Pam3CysSK4 S-[2,3-Bis(palmitoyloxy)-(2-RS)-propyl]-N-palmitoyl-(R)-Cys-(S)-Ser-(S)-Lys4-OH 

PAMP   Pathogen-associated molecular pattern 

pDC  Plasmacytoid dendritic cell 

PGN  Peptidoglycan 

PI3K  Phosphoinositide-3 kinase 

PMN  Polymorphonuclear 

polyIC   polyinosine-polycytidylic acid  

PRR    Pathogen-recognition receptor  

PYD  pyrin N-terminal homology domain 

R848  Resiquimod 

Rac1  Ras-related C3 botulinum toxin substrate 1 

RANTES  Regulated upon activation, normal T cell expressed and secreted/ CCL-5 

RHD  Rel homology domain 

RIG-1   Retinoic acid Inducible gene-1 

RIP  Receptor interacting protein 

RNA  Ribo nucleic acid 

RSK1  Ribosomal S6 kinase 1 

SARM   Sterile alpha and HEAT-Armadillo motifs containing protein  

sCD14  Soluble CD14 

ss  Single-stranded  

STAT  Signal transduced and activator of transcription 

SV  Sendai virus 

TAB  TAK1 binding protein  

TAK1  TGFß–activated kinase 1 
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TBK1  TANK binding kinase 1 (also known as NAK or T2K) 

TGF  Transforming growth factor 

TH  T helper 

TICAM  TIR-containing adaptor molecule 

TIR  Toll-IL-1 receptor  

TIRAP  TIR domain-containing adaptor protein 

TLR  Toll-like receptor  

TNF  Tumor necrosis factor 

TNFR  TNF receptor 

TRAF  TNFR-associated factor 

TRAM  TRIF-related adapter molecule/TICAM-2 

TRIF TIR-domain containing adaptor inducing protein inducing IFN-β/ TICAM-1 

VRE  Virus-responsive element 
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1. INTRODUCTION 
The immune system is a collection of cellular and humoral components which serve to 

discriminate between self- and non-self and protect the host against invading organisms, as 

well as eradicate malignant and foreign cells. The immune system can be divided into the 

innate and adaptive system. The innate immune system provides the host with an immediate, 

broad, first-line defense against a range of foreign components. Adaptive immunity provides a 

slower, but more specific response, involving clonal expansion of antigen-specific effector 

cells which combat infection and provide immunological memory. Although innate and 

adaptive immunity evolved separately, the efficiency of the overall immune response depends 

on complex interplay and regulation between the two systems. 
 

1.1 PATTERN RECOGNITION RECEPTORS 
The initial response to an invading organism is coordinated by the innate immune system. 

Innate immune signals then play a critical role in initiating and instructing the adaptive 

immunity. The main players in innate immunity are phagocytes, such as neutrophils, 

macrophages and dendritic cells (DCs). These cells discriminate between pathogens and self 

via pathogen-recognition receptors (PRRs); germ-line encoded receptors that play a crucial 

role in the innate host defense. PRRs recognize evolutionary conserved pathogen-associated 

molecular patterns (PAMPs), rare or absent in vertebrates. These patterns have alternatively 

been denoted microbe-associated molecular patterns (MAMPs), since these patterns neither 

define, nor are exclusively derived from pathogens. PRR-mediated recognition of pathogens 

by phagocytes triggers engulfment, killing and digestion of invading microbes, and initiation 

of a cascade of inflammatory responses. The pattern of responses induced by PRRs depends 

on the origin of the PAMP and which PRRs are activated. PRRs are also activated by 

endogenous self-molecules associated with cellular stress and damage of host cells. These 

endogenous stress signals, often termed damage-associated molecular patterns (DAMPs) 

include nucleic acids released from damaged cells, heat shock proteins (HSPs), interferon 

(IFN)-α (an important mediator in host-response to viral infection), CD40-L (a surface 

molecule on activated platelets and activated T cells), and decomposition products of 

hyaluron3. 

 

Secreted PRRs function as opsonins by binding microbes, and promoting activation of the 

complement system and recognition by phagocytes. Secreted PRRs include complement 

receptors, collectins, pentraxin proteins (i.e. serum amyloid) and C-reactive protein.  One of 
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the best characterized secreted PRRs is mannan-binding lectin (MBL), a member of the 

calcium-dependent lectin family, which binds to a wide range of bacteria, viruses, fungi and 

protozoa. The MBL predominantly recognizes certain sugar groups on the surface of 

microorganisms, but also binds phospholipids, nucleic acids and non-glycosylated proteins4. 

 

Endocytic PRRs are expressed on the surface of phagocytes. These receptors efficiently bind 

PAMPs and are an essential part of the clearance of bacteria from circulation by triggering 

internalization of pathogens and targeting these for lysosomal destruction. Examples of 

endocytic PRRs include the macrophage-mannose receptor (MR) and scavenger receptors. 

The MR is a member of the calcium-dependent lectin family which specifically recognizes 

carbohydrates with large numbers of mannoses. The receptor binds both microbial glycans 

and self-glycoproteins and initiates phagocytosis by macrophages.  

 

Signaling PRRs activate signal transduction pathways and induce the expression of a variety 

of immune response genes following PAMP recognition. Signaling PRRs include 

transmembrane and cytoplasmic signaling PRRs.  The cytoplasmic signaling PRRs consist of 

nucleotide oligomerization domain (NOD) -like receptors (NLRs) and the RNA helicases 

retinoic acid inducible gene-1 (RIG-1) and melanoma differentiation-associated gene 5 

(MDA5), while the Toll-like receptor (TLR) family (See Chapter 1.2) are transmembrane 

signaling PRRs.  

 

The best studied NLRs are NOD1 and NOD2. These specifically recognize subcomponents of 

peptidoglycan (PGN)5-7, and induce nuclear factor-κB (NF-κB) activation through recruitment 

and oligomerization of receptor-interacting protein (RIP) 28, 9. Other NLRs include nacht 

domain-, leucine-rich repeat- and PYD-containing protein (NALP)1, NALP3 and interleukin 

(IL) -1β-converting enzyme-protease-activating factor (Ipaf), which all have been implicated 

in the activation of the inflammasomes10-12. Inflammasomes are cytoplasmic multiprotein 

complexes that mediate the activation of the inflammatory caspases-1 and -5 required for the 

cleavage of pro-IL-1β and pro-IL-18 and formation of mature IL-1β and IL-18 for release 11. 

NALP3 is activated by stimuli such as bacterial RNA, bacterial toxins, ATP and uric acid 

crystals13. Ipaf is involved in inflammasome assembly following infection with Salmonella 

typhimurium and is required for cytosolic flagellin to activate caspase-1 and induce IL-1β11, 14-

16.  

 

The RNA helicases RIG-1 and MDA5 are cytoplasmic signaling sensors of double-stranded 

RNA (dsRNA)17, 18. RIG-1 recognizes viruses, such as Newcastle disease virus (NDV), 
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vesicular stomatitis virus (VSV) and Sendai Virus (SV)19, 20, while MDA5 is required for 

picornavirus detection and dsRNA-induced IFN-α production in mouse embryonic fibroblasts 

(MEF)s and myeloid DCs (mDC)s21. Activation of RIG-1 and MDA5 induces recruitment of 

the adapter protein IFN-β promoter stimulator (IPS)-1, activation of the transcription factors 

interferon regulatory factor (IRF) -3 and NF-κB, and subsequent induction of type I IFN22. 
 

1.2 TOLL-LIKE RECEPTORS 
TLRs are transmembrane signaling PRRs which are crucial for immune recognition of a 

number of PAMPs and DAMPs. TLR activation results in the induction of pro-inflammatory 

cytokines (i.e. chemokines and type I IFNs) and upregulation of co-stimulatory molecules; 

important mediators in both innate immunity and in initiation of adaptive responses. 

1.2.1 Discovery 

The Toll gene was first discovered in the fruit fly Drosophila melanogaster by Christiane 

Nüsslein-Volhard and co-workers23, 24. During a screening for lethal zygotic mutations that 

affected embryonic patterning, they came across an extraordinary dominant and ventralized 

phenotype in fly embryos. Upon this discovery Nüsslein-Volhard is said to have exclaimed 

“Toll!”, which means “fantastic” in German slang. The mutated gene thus became known by 

this name. Together with Eric Wieschaus and Edward B. Lewis, she received the Nobel Prize 

in Physiology or Medicine in 1995 for their research on genetic control of embryonic 

development. Jules Hoffman and colleagues later showed that the Toll gene was important for 

the flies’ resistance to fungal infection25. 
 

The first human homolog of the Toll receptor was described by Nomura and colleagues in 

199426, and mapped to chromosome 9q32-33 by Taguchi and colleagues in 199627. In 1997, 

Charles Janeway and Ruslan Medzhitov suggested that the human homolog hToll (now 

known as TLR4) induced activation of NF-κB and induction of proinflammatory cytokines 

and costimulatory molecules28. This was done by constructing a constitutively active 

CD4/hToll chimera, since the Toll ligand was unknown at the time. In 1998, Bruce Beutler 

and colleagues discovered the function of the hToll gene29. They showed that C3H/HeJ mice 

were unresponsive to lipopolysaccharide (LPS) due to a proline to histidine point-mutation at 

proline 712 in the TIR domain of TLR4, identifying TLR4 as a key receptor for LPS, and 

suggesting that other TLRs might detect microbe signature molecules. Shizuo Akira and 

colleagues have later contributed considerably to revealing the functions of the other TLRs 

through the generation of an extensive collection of mice with targeted deletions of TLRs and 

TLR signaling proteins30. 
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1.2.2 Introduction to the TLR family 

Thirteen mammalian TLRs, TLR1-13, have been identified to date31. Different microbial 

structures are recognized by different TLRs (Figure 1). LPS from Gram-negative bacteria is 

recognized by TLR429, 32 (described in Chapter 1.2.5). Gram-positive bacteria activate TLR2, 

while bacterial components, such as lipopeptides and lipoteichoic acid (LTA) are recognized 

by TLR2 in cooperation with TLR1 or TLR633-39 (described in Chapter 1.2.3). Viral and/or 

bacterial nucleic acids are recognized by TLR3, TLR7, TLR8 and TLR9 (described in 

Chapters 1.2.4 and 1.2.7). TLR3 recognizes viral dsRNA and synthetic polyinosine-

polycytidylic acid (polyIC), while viral single-stranded RNA (ssRNA) and the antiviral 

compounds imiquimod and resiquimod (R848) are ligands for TLR7 and TLR840-43. Bacterial 

DNA (B DNA) and the synthetic unmethylated oligonucleotides containing CpG-

dinucleotides (CpG) are recognized by TLR944. TLR5 is activated by flagellin from bacterial 

flagella45. TLR11 recognizes uropathogenic bacteria and a protozoan-derived profilin-like 

protein46,47 (Chapter 1.2.8). The ligands for TLR10, TLR12 and TLR13 are currently 

unknown30 (Chapter 1.2.3 and 1.2.8).  
 

The TLRs are transmembrane proteins that traverse cellular membranes; either the plasma 

membrane or intracellular vacuolar membranes. Their common structure consists of an 

extracellular leucine-rich repeat (LRR) domain and a cytoplasmic domain, sharing homology 

with the mammalian IL-1 receptor48, 49. The LRR domain binds ligands, while the cytoplasmic 

Toll-IL-1 receptor (TIR) domain initiates intracellular signaling pathways through homotypic 

protein-protein interaction with TIR-adapter molecules50. Four TIR-adapter molecules have 

been shown to mediate TLR signaling; myeloid differentiation factor 88 (MyD88), myeloid 

adapter-like protein (MAL), TIR-domain containing adaptor inducing protein inducing IFN-β 

(TRIF) and TRIF-related adapter molecule (TRAM) (Figure 1). In TLR4 signaling MyD88 

and MAL form one pathway, resulting NF-κB activation and production of inflammatory 

cytokines51-56. TRIF and TRAM form the second pathway leading to activation of IRF-3 and 

induction of Type I IFNs57-59. TLR2 signaling utilizes both MAL and MyD88 in a manner 

similar to TLR455, 56, while TLR7/8 and TLR9 require only MyD88 for signaling30. TLR3 

signaling requires TRIF alone, and is the only TLR known to signal in a MyD88-independent 

manner60. A fifth  TIR-adapter SARM (sterile alpha and HEAT-Armadillo motifs containing 

protein) may interact with TRIF and inhibit its function61. However, cells from animals 

deficient in SARM do not display altered TLR signaling62. In contrast, SARM is expressed 

primarily in neurons, where it is shown to mediate stress-induced neuronal toxicity. 
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FIGURE 1: Overview of selected members of the TLR family, their ligands and the TIR-adapters 
they utilize upon activation.   
 

1.2.3 The TLR2 subfamily 

TLR1, TLR2, TLR6 and TLR10 are commonly categorized into the TLR2 subfamily, based 

on chromosomal localization, genomic structure and amino acid sequences. The genes 

encoding TLR1, TLR6 and TLR10 genes are located closely on chromosome 4p14, while tlr2 

maps to 4q3226, 48, 63-65. 
 

TLR2 recognizes Gram-positive bacteria, such as Staphylococcus aureus (S. aureus) and 

Mycobacteria, as well as cell wall components such as LTA, peptidoglycan and 

lipoproteins33-35, 66-68. Additional TLR2 ligands may include zymosan, glycolipids from 

spirochetes, lipoarabinomannan and porins from Neisseria, among others30, 69. TLR2-deficient 

mice fail to respond to purified lipoproteins from Gram-positive bacteria, but are more 

susceptible than wild-type mice to septicemia due to S. aureus, meningitis due to S. 

pneumoniae and L. monocytogenes and infection with M. tuberculosis70-72. An Arg753Gln 

polymorphism in human TLR2 also confers significantly lower responsiveness to bacterial 

lipoproteins derived from M. tuberculosis, B. burgdorferi, and T. pallidum73, 74, and may 

predispose to Staphylococcus infection and tuberculosis susceptibility73-75. The Arg677Trp 

polymorphism in TLR2 is shown to impair activation of NF-κB in response to 
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Mycobacterium leprae and Mycobacterium tuberculosis and may enhance susceptibility to 

leprosy and tuberculosis76. TLR2 has also been implicated in diseases such as rheumatoid 

arthritis  and atherosclerosis50, 75. 
 

The ability of TLR2 to recognize a wide repertoire of ligands is partially explained by 

heterodimerization with TLR1 or TLR6. TLR2/TLR1 heterodimerization occurs in response 

to triacylated lipopeptides, such as Pam3CysSK4
77, 78, as well as in response to Borrelia 

burgdorferi outer surface protein A79. On the other hand, optimal response towards diacylated 

lipopeptides is attained by heterodimerization of TLR2 with TLR637, 80. LTA is also 

recognized by the TLR2/TLR6 heterodimer, supposedly due to the two diacyl chains in the 

molecule39. TLR2 is furthermore shown to mediate cytokine responses towards viral 

components such as the envelope proteins of human cytomegalovirus (HCMV) and Herpes 

Simplex virus (HSV)-1, as well as measles virus hemagglutinin81-83. 

 

The crystal structure of the ectodomain of 

both the human TLR2/TLR1-lipopeptide 

complex and the mouse TLR2-

lipopeptide complex have recently been 

published1 (Figure 2). The ectodomain of 

TLR2 has a three-domain architecture 

consisting of an N-terminal, a central, and 

a C-terminal subdomain with unusual β-

sheet conformations. The lipopeptide-

binding site of TLR2 consists of a large 

internal pocket found on the convex 

region of TLR2, at the border between the 

central and C-terminal domdain. The lipid 

chains of a single Pam3CysSK4 molecule 

mediates the heterodimerization of TLR2 

and TLR1 through insertion of its two 

esterbound lipid chains into the pocket in 

TLR2, while the amide-bound lipid chain 

inserts into a hydrophobic channel in 

TLR1. The lipid-binding channel of 

TLR1 is located in the same unusual 

region as in TLR2. The glycerol 

FIGURE 2: Crystal structure of TLR2/TLR1 in 
complex with Pam3CySK4.  
 
Proposed structure of the ectodomains of TLR2 (blue) and 
TLR1 (green) in complex with the lipopeptide Pam3CysSK4 
(red). The central domains are shown in light green or light 
blue. Disulfide bridges are represented as yellow lines. 
Domains belonging to the TLR1 hybrid proteins are labeled 
with apostrophes. (A) side view; (B) top view (from Kim et 
al, 2007)1. TLR2 and TLR1 were crystallized using the 
Hybrid LRR Technique involving fragments of TLR and 
hagfish were fused a clone of the hagfish Variable 
Lymphocyte Receptors (VLRs)1. 
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backbone of the lipopeptide is placed in a narrow opening formed where the TLR1 and TLR2 

pockets join. An extensive network of hydrogen-bonds, as well as hydrophobic interactions 

between TLR1 and TLR2 further stabilize the heterodimer1. Notably, no lipopeptide was 

observed in complex with only TLR2 or TLR1 alone. 

 

TLR1 and TLR6 share 56% sequence identity. Using the structure of TLR1 as a template Jin 

et al modeled the structure of TLR61. Their analysis suggests that two bulky phenylalanines 

block the potential lipid-binding channel in TLR6. Consequently, tri-acylated lipopeptides 

should not be able to interact with TLR6.  

 

Early studies on leukocytes revealed that TLR2 mRNA is expressed in monocytes, 

polymorphonuclear (PMN) cells and dendritic cells (DC), while TLR1 mRNA is additionally 

expressed in T lymphocytes and NK cells84. Additional studies showed that TLR2 is 

expressed on the cell surface of monocytes and granulocytes, while lymphocytes expressed 

low levels of TLR284, 85. TLR1 is also expressed on the cell surface in monocytes, DC and 

neutrophils78, 86, 87. TLR6 is expressed on the cell surface of monocytes, myeloid DCs (mDC), 

and neutrophils, but not on B, T, or NK cells88. Human TLR10 is expressed in B cells and 

pDC and is shown to homodimerize, as well as heterodimerize with TLR2 and TLR189. 

Ligands for TLR10 remain unknown. TLR10 in mice is truncated and non-functional, 

however, the full gene is presumably expressed in rats89. 

1.2.4 TLR3 

The human tlr3 gene is located at 4q32. TLR3 recognizes dsRNA produced by RNA viruses 

during replication. TLR3 also recognizes the viral dsRNA mimic polyIC. Activation of TLR3 

results in the production of anti-viral cytokines such as IFN-β40. TLR3 is expressed in 

immune cells such as conventional DCs84, 86, 90, natural killer (NK) cells91-93 and mast cells94, 

95. TLR3 expression differs between species, since murine macrophages express TLR340, 96, 

while human macrophages do not84. Other cell types, i.e. fibroblasts and epithelial cells 

express TLR3 as well30, 97. In contrast to TLR2 which is expressed at the cell surface, TLR3 is 

expressed intracellularly in most cells. In dendritic cells TLR3 is expressed in the 

endoplasmatic reticulum (ER) and is recruited to endosomes upon stimulation with dsRNA98. 

1.2.5 TLR4 

The tlr4 gene maps to chromosome 4 in mice99 and to chromosome 9q32-33 in humans48. 

TLR4 is expressed on immune cells, including monocytes, DCs and PMNs84, 100, but is also 
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expressed on a number of other cell types, such as osteoblasts101, endothelial cells102, 103, 

adipocytes104, Kupffer cells105, keratinocytes106, and epithelial cells107, 108.    

 

TLR4, in complex with the small secreted glycoprotein MD-2, recognizes LPS from the outer 

membrane of Gram-negative bacteria29, 32. Soluble CD14 (sCD14) and LPS-binding protein 

(LBP) initially bind LPS and transfer the ligand to membrane bound CD14 (mCD14). mCD14 

further presents LPS to the TLR4/MD-2 signaling complex109-113. MD-2 is responsible for 

binding LPS and is required for TLR4-signaling in response to LPS 114-116. Signaling by the 

TLR4/MD2 complex is believed to predominantly occur at the plasma membrane117, 118. The 

LPS/TLR4/MD-2 complex has further been shown to shuttle between the plasma membrane 

and the Golgi, independent of signaling119. In addition to LPS, TLR4 has been implicated in 

the recognition of taxol and endogenous ligands such as heat shock protein (HSP)60, HSP70, 

the extra domain A of fibronectins, oligosaccharides of hyaluronic acid, heparan sulfate and 

fibrinogen. High concentrations of all these endogenous ligands are, however, required to 

activate TLR4, in contrast to LPS which stimulates TLR4 at nanogram to picogram per 

milliliter concentrations120. 

 

The structure of the murine TLR4-MD-2 

complex in association with the TLR4 

antagonist Eritoran has recently been 

crystallized2. Eritoran, (also called B1287 and 

E5564), is a synthetic molecule developed 

from the lipid A structure of the non-

pathogenic LPS of Rhodobacter spharoides, 

and acts as a strong antagonist of LPS 

signaling121-123.  The crystal structure of the 

TLR4 ectodomain revealed that it has a horse-

shoe-shape similar to that of TLR2. MD-2 was 

first crystallized by Ohto et al 2007, both in its 

native form and in complex with the TLR4 

antagonist lipid IVa124.  The crystal of MD-2 

consists of two separable anti-parallel β-

sheets, permitting the formation of a narrow 

and deep internal pocket, lined with 

hydrophobic residues. The hydrophobic acyl 

chains of lipid IVa and Eritoran fit neatly into 

C D 

FIGURE 3: Crystal structure of TLR4-MD2 
complex.  

(A) and (B) Two views of mouse TLR4-MD-2 
complex. The N-terminal, central, and C-terminal 
domains of TLR4 are colored in blue, cyan, and 
green, respectively. The beta strands of MD-2 are 
shown in pink and red, and the LRR modules of 
TLR4 are numbered. (C) and (D) Two views of the 
proposed three-dimensional TLR4-MD-2 complex. 
Surfaces of TLR4 and MD-2 are gray and magenta, 
respectively. The Phe126 and His155 residues 
important for dimerization are blue. The labels that 
belong to the second TLR4-MD-2 complex are 
marked with apostrophes (from Kim et al, 2007 2).  
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the hydrophobic pocket of MD-2, while the di-glucosamine backbone of the molecules are 

exposed to solvent2, 124. MD-2 binds to the concave surface of the N-terminal and central 

domains of TLR4 in a stable 1:1 complex2. There is no direct interaction between Eritoran 

and TLR4. The interaction between TLR4 and MD-2 is mediated by an extensive network of 

charged-enhanced hydrogen bonds in two patches on TLR4, termed the A patch and B patch, 

which interact with two patches on MD-2, termed the A’ and B’ patch, respectively. Gel 

filtration chromatography and SDS gel electrophoresis suggest that hexa-acylated LPS bound 

TLR4-MD-2 forms a heterotetramer, whereas tetra-acetylated lipids does not2. 

 

An Asp299Gly polymorphism in the ectodomain of TLR4 has been implicated in 

susceptibility to Gram-negative bacterial infections125. A Thr399Ile polymorphism in TLR4, 

as well as the Asp299Gly, have also been associated with increased frequency and severity of 

Gram-negative bacterial infections in septic shock patients126. 

1.2.6 TLR5 

The human tlr5 gene is located at 1q33.348, 64. TLR5 initiates responses to flagellin, a 

monomeric constituent of bacterial flagella45. TLR5 is expressed on monocytes, DCs and 

PMNs84. TLR5 is suggested to play an important role in microbial recognition at mucosal 

surfaces, since TLR5 expression is observed on the basolateral, but not on the apical side of 

both intestinal epithelial cells and lung epithelial cells127, 128. A common stop codon 

polymorphism in the ligand-binding domain of TLR5 has been shown to be associated with 

susceptibility to legionnaires’ disease128.  

1.2.7 The TLR9 subfamily 

TLR7, TLR8 and TLR9 belong to the TLR9-subfamily129. The genes encoding TLR7 and 

TLR8 are located as a tandem on Xp22, while the gene encoding TLR9 maps to 3p21.3130. 

TLR7 and TLR9 are expressed in pDC and B cells, but not in mDC or macrophages in 

humans131-136. In contrast, human TLR8 is expressed on monocytes and mDC, but not on 

pDC135, 137. Murine macrophages, as well as mDC, express both TLR7 and TLR9, while TLR8 

is shown to be non-functional in mice42, 43, 137. Human TLR7 and TLR8 have also been shown 

to be expressed on regulatory CD25+ T cells138.  
 

TLR7, TLR8 and TLR9 are all expressed intracellularly where they trigger signaling in 

endosomal compartments in response to nucleic acids and synthetic analogues. TLR7 

recognizes single-stranded RNA (ssRNA) of both viral origin (e.g. influenza virus, vesicular 

stomatitis virus and HIV-1 genomic RNA) and non-viral origin41, 137, 139. TLR9 recognizes 
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unmethylated bacterial DNA, synthetic CpG44, 140 and dsDNA of viral origin (e.g. from HSV1, 

HSV2 and MCMV)141-144. TLR9 additionally recognizes non-DNA components such as 

hydrophobic heam polymer homozoin which is produced when malaria parasites digest 

hemoglobin145.   
 

Activation of TLR7 and TLR9 in human pDC induces the production of IFN-α and IFN-

regulated cytokines, while activation of TLR8 in monocytes and mDC induces 

proinflammatory cytokines135. Signaling mediated by all members of the TLR9 subfamily is 

completely abrogated in the absence of the TIR-adapter MyD88146. 

1.2.8 TLR11, 12 and 13 

Murine TLR11 has been shown to be expressed in bladder epithelial cells and implicated in 

defense against uropathogenic bacteria46. TLR11 has also been shown to recognize a 

protozoan-derived profilin-like protein47. Humans do not express functional TLR11 and 

human orthologs of TLR12 and TLR13 have not been identified. TLR12 and TLR13 have 

been identified in mice144, however, the ligands of these TLRs are currently unknown.  

 

1.3 TLR SIGNALING PATHWAYS 

TLR dimers presumably exist in a low-affinity complex before ligand binding. Ligand 

binding is suggested to induce a conformational change that brings the two TIR-domains on 

the cytosolic face of each receptor into closer proximity, thereby creating the signaling 

platform necessary for recruitment of adaptor molecules50. TLR signaling is initiated upon 

interaction between intracellular TIR signaling domains on TLRs and the corresponding TIR 

domains on the cytoplasmic adapter molecules; MyD88, MAL, TRIF and TRAM. The TLR 

signaling pathways are commonly divided into MyD88- and the TRIF-dependent signaling146. 

1.3.1 MyD88-dependent signaling 

TLR2/TLR4 signaling 
TLR2 and TLR4 signaling require the bridging adaptor MAL, in addition to MyD88 (Figure 

4). MyD88 contains a C-terminal TIR-domain and an N-terminal death domain. The death 

domain recruits the serine/threonine kinases of the IL-1 receptor associated kinase (IRAK) 

family147, 148. Of these, IRAK1 and IRAK4, have been shown to be involved in TLR–induced 

activation of NF-κB148,149-152. Upon phosphorylation the IRAKs dissociate from MyD88 and 

interact with the E3 ligase TNF receptor-associated factor (TRAF)6. TRAF6 forms a complex 
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with E2 ubiquitin-conjugating enzymes Ubc13 and Uev1A promoting the synthesis of lysine 

63-linked polyubiquitin chains, which in turn activate the MAPK kinase kinase (MAPKKK) 

transforming growth factor ß–activated kinase 1 (TAK1)153 (Figure 4, pathway 1). TAK1 

activates the IκBα kinase complex (IKK) which phosphorylates IκB in complex with NF-κB 

subunits. Phoshorylation of IκB leads to its proteolytic degradation, allowing nuclear 

translocation of NF-κB subunits, which bind the promoters of NF-κB target genes. Activated 

TAK1, in combination with the TAK1 binding proteins (TAB) TAB1, TAB2 and TAB3, can 

additionally phosphorylate the MAP kinase kinases (MKK)3 and MKK6, upstream of p38 

mitogen-activated protein kinase (MAPK) and Jun N-terminal Protein Kinase (JNK)153. 

 

The transcription factor IRF-5 also interacts directly with MyD88 and TRAF6, mediating the 

induction of pro-inflammatory cytokine genes, such as those encoding TNF, IL-6 and IL-

12p40 in response to ligands of TLR4146 (Figure 4, pathway 2). Ligands of TLR5, TLR7 and 

TLR9 also activate this pathway.  

 

TLR7/9 signaling 
TLR7 and TLR9 ligands induce type I IFNs, in addition to proinflammatory cytokines, in a 

MyD88-dependent manner137, 154. Downstream of MyD88, signaling pathways are split into 

NF-κB, IRF-5- and IRF-7-dependent pathways. NF-κB is required for pro-inflammatory gene 

expression and is activated by the same pathway as described above for TLR2/4 (Figure 4, 

pathway 1). It is currently unclear how TLR-mediated signaling diverges from MyD88 and 

engages the IRF-5, IRF-7 and NF-κB pathways. 

 

IRF-5 is also required for the induction of proinflammatory cytokines in response to TLR9 

and TLR7 ligands, but not for type I IFN production155, 156 (Figure 4, pathway 2). IRF-5 

interacts directly with MyD88 and TRAF6. Signaling through TLR7 or TLR9 induces nuclear 

translocation of IRF-5 where it is shown to bind the interferon stimulating response element 

(ISRE) in the promoter of the gene encoding IL12p40 in response to CpG155. IRF-4 negatively 

regulates TLR7/9-mediated induction of proinflammatory cytokines induced by the IRF5-

dependent pathway by competing with IRF5 in binding MyD88157. 

 

IRF-7 is essential for type I IFN gene induction in response to TLR7 and TLR9 ligands in 

plasmacytoid dendritic cells (pDC) (Figure 4, pathway 3)41, 137, 158, 159. IRF-7 activation, as 

well as NF-κB activation, is defective in the absence of MyD88, IRAK4 and TRAF6 in 

response to CpG, suggesting that these molecules are involved in both these pathways160-163. 

In contrast, IRAK1 deficiency results in the loss of IRF-7 activation, without affecting NF-κB 
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activity164. TRAF3 and IKKα are also required for IRF-7 activation and IFN-α induction in 

response to TLR7 and TLR9 ligands165, 166,160 (Figure 4, pathway 3).  

 
 
FIGURE 4: MyD88-dependent TLR signaling.  
An outline of MyD88-dependent signaling pathways utilized by TLR2/1/6, TLR4, and TLR 7/8/9. TLR2 and TLR4 

require MAL as a bridging adapter to recruit MyD88, while TLR7/8/9 recruit MyD88 directly. MyD88 subsequently 

recruits TRAF6 and IRAK4. Pathway (1) is utilized by all TLRs shown. Pathway (2) is activated in response to all 

TLRs shown, except TLR2/6/1. Only TLR7/9 ligands are shown to activate pathway (3) leading to IRF-7 activation. 

(Adapted from Kawai and Akira, 2007146). 

1.3.2 TRIF-dependent signaling 

TLR3 and TLR4 signaling 
TLR3 and TLR4 signal via MyD88-independent pathways, involving the adapter molecule 

TRIF (Figure 5)60. TLR3 recruits TRIF directly to its TIR domain, while TLR4 requires 

TRAM as a bridging adaptor for the recruitment of TRIF57, 58, 167. Activation of the TRIF-

pathway by TLR3 and TLR4 ligands results in activation of the transcription factor IRF-3 and 

subsequent induction of IFN-β and IFN-β-inducible genes and late activation of NF-κB. 

TRIF-dependent activation of IRF-3 involves the noncanonical IκB kinase homologues IKKε 

and TANK binding kinase 1 (TBK1)30, 162, 168-171. TRAF3 has been shown to form a complex 

with TRIF, as well as TBK1, and to positively regulate TRIF-dependent IFN-β gene 

induction165, 166. It is also been reported that NAK-associated protein 1 (NAP1) forms a 
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complex with TRIF and is required for activation of TBK1172. Thus, TRAF3 and NAP1 form 

a complex with TRIF and cooperate to activate TBK1 and, consequently induce IRF-3 

activation156.  

 

TLR3 and TLR4-mediated signaling via TRIF also leads to NF-κB activation through 

recruitment of TRAF6 and RIP1 which further activate the IKK-complex (Figure 5). TRIF-

dependent NF-κB activation additionally depends on TAK1 and IRAK4 in response to LPS 

and polyIC152, 165, 173.  

 
 

FIGURE 5: TRIF-dependent TLR signaling.  
Outline of TRIF-dependent signaling pathways utilized by TLR3 and TLR4.  TLR4 requires TRAM as a bridging 

adapter for recruitment of TRIF, while TLR3 recruits TRIF directly. TRIF subsequently activates NF-κB and IRF-3 by 

separate pathways (Adapted from Kawai and Akira, 2007146). 

1.3.3 Transcription factors 

Transcription factors control gene expression by binding the promoter of target genes and 

allowing RNA polymerase to bind and initiate transcription of the gene. Transcription of 

TLR-mediated induction of proinflammatory cytokines such as TNF requires cooperative 

binding of activating protein 1 (AP-1) and NF-κB to the promoter region of the gene 

encoding TNF. Induction of TLR-mediated induction of Type I interferons such as IFN-β 

requires the additional activation and promoter binding of IRFs.  
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Nuclear Factor -κB 

NF-κB comprises a family of dimeric transcription factors which regulate the expression of a 

vast number of genes involved in immune, stress and antiapoptotic processes. The core 

components of NF-κB signaling are the IKK complex, the IκB inhibitory proteins and the 

NF-κB subunits themselves174. In the uninduced state, IκB inhibitory proteins retain the NF-

κB subunits in the cytoplasm. Upon activation, the IKK complex phosphorylates IκB, leading 

to its proteolytic degredation. Following degradation of IκB, nuclear translocation signals on 

the NF-κB subunits are exposed, resulting in nuclear translocation, where they bind the 

promoters of NF-κB activated genes153. 

 

IκBα is the most extensively studied inhibitory protein. Other IκB proteins include IκBβ, 

IκBγ, IκBε, IκBδ, IκBNS and Bcl-3153, 175. The IKK-complex that phosphorylates IκB 

consists of four essential elements; IKKα, IKKα, NEMO/IKKγ and the recently identified 

ELKS. IKKα and IKKβ are serine/threonine kinases which share high sequence homology 

and are both important for TLR-induced NF-κB activation176. NEMO’s function is unclear, 

but it is suggested to serve as a platform for interaction between IKKα and IKKβ, as well as 

other modulators of NF-κB148, 177. Two IKK-related kinases also play an important role in 

TLR signaling; IKKε (also called IKK-ι) and TBK1 (also called NAK or T2K). IKKε and 

TBK1 exhibit structural similarity to IKKα and IKKβ, but are not part of the classical IKK-

complex178-180. Although several studies have failed to show a direct role of TBK1 in NF-κB 

activation, TBK1-deficient mice display a lethal phenotype that is very similar to that of 

NEMO-/-, IKKβ-/- and RelA-/-deficient mice148, 181-185. The lethality associated with TBK1 

deficiency is furthermore prevented by disruption of TNF receptor I (TNFRI), suggesting that 

TBK1 is required for TNF-dependent activation of NF-κB181. Detailed analysis of TBK1-

deficient MEFs did not reveal an appreciable decrease in TNF-induced NF-κB DNA binding 

activity, however, although TBK1 MEFs did display impaired NF-κB transcriptional 

activity181. 

 

Five NF-κB genes, NF-κB1, NF-κB2, RELA, c-REL, and RELB, encode for the seven NF-

κB proteins p105, p50, p100, p52, p65 (RelA), c-Rel and RelB. p50 and p52 are generated by 

limited proteosomal processing of p105 and p100. All of the NF-κB proteins contain a Rel 

homology domain (RHD) which is approximately 300 amino acids of the N-terminal region. 

The RHD is responsible for NF-κB dimerization, DNA binding and interaction with IκB. All 

NF-κB proteins, except p50 and p52, also contain a transactivational domain found in the C-
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terminal region. p50 and p52 are considered repressors of transcription since they lack this 

domain153.  

 

The seven NF-κB proteins form hetero- and homodimers giving 15 possible dimers. These 

dimers bind a NF-κB DNA binding site with the consensus sequence 5’-GGGRNWYYCC-3’, 

where R is a purine, N is any base, W is an adenine or thymine and Y is a pyrimidine. NF-κB 

target genes are numerous and include a large number of immunomodulatory factors such as 

cytokines and chemokines153.  

 

The NF-κB pathway is further regulated by multiple posttranslational modifications of the 

core components of NF-κB signaling. The most extensively studied NF-κB component is p65 

(RelA) which is the target for a number of modifications which affect NF-κB translocation 

and transcription174. One well studied phosphorylation site is Ser-536 found within the C-

terminal transactivation domain. This site is a target of multiple kinases, including IKKβ, 

IKKα, IKKε and TBK1186-192. Phosphorylation of Ser-536 by the serine/threonine kinase 

RSK1 (ribosomal S6 kinase 1) can also induce IκB-independent NF-κB activation193, 194. Ser-

529, another phosphorylation site in the transactivation domain, is to date only shown to be 

phosphorylated by the kinase Casein Kinase II (CKII)195. Simultaneous phosphorylation of 

multiple serines on p65 may be necessary for optimal activation, but details and level of 

redundancy for phosphorylations are unclear. 
 

Interferon regulatory factors 
The mammalian IRF family comprises nine members; IRF-1, IRF-2, IRF-3, IRF-4 (also 

known as LSIRF, PIP or ISCAT), IRF-5, IRF-6, IRF-7, IRF-8 (also known as ICSBP) and 

IRF-9156. IRF-1, IRF-3, IRF-5 and IRF-7 are positive regulators of the transcription of type I 

IFN genes156, 196, 197. Each IRF contains a well-conserved DNA-binding domain which 

recognizes the consensus ISRE DNA sequence196, 198-200. ISREs are found in the promoters of 

the genes that encode the type I IFNs, as well as in the promoters of many other genes that are 

involved in immunity and oncogenisis156. IFN genes are induced in virus-infected cells, 

mainly as a consequence of transcriptional activation of virus-responsive elements (VREs) 

which are located in the upstream region of the transcription-initiation site of type I IFN 

genes. The VRE of the IFN-β gene contains ISREs, as well as binding sites for NF-κB and 

AP-1156, 197, 201.  

 

IRF-3 and IRF-7, which are highly homologous, are considered key regulators of type I IFN 

gene expression elicited by viruses. Both IRF-3 and IRF-7 reside in the cytosol and are 
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phosphorylated and translocated to the nucleus upon activation. IRF-3 is a potent activator of 

the IFN-β gene, whereas IRF-7 efficiently activates both IFN-α and IFN-β genes202-206. 

Following viral infection IRF-3 is phosphorylated and forms a dimer (either homodimer or a 

heterodimer with IRF-7), enabling it to interact with the co-activators CBP or p300 to form a 

holocomplex202, 203, 207-210. The holocomplex subsequently binds its target sequences in the 

promoter of type I IFN genes and certain chemokine genes, and initiates transcription of these 

genes156. IRF-7 is expressed at low levels in most cells and is strongly induced by type I-IFN-

mediated signaling. The binding of type I IFNs to the type I IFN receptor I (IFNRI) results in 

the activation of a heterotrimeric transcriptional activator known as IFN-stimulated gene 

factor 3 (ISGF3). ISGF3 consists of IRF-9 and signal transduced and activator of transcription 

(STAT) 1 and STAT2, and is responsible for the induction of the IRF-7 gene162, 163, 211. TBK1 

and IKKε have been implicated in the activation of both IRF-3 and IRF-7 in response viral 

infection58, 212. TBK1 functions downstream of TLR3 and TLR4 to activate IRF-3, whereas 

IRF-7 is activated by other protein kinases during TLR7 and TLR9 signaling164, 168, 169, 213. 

 

NF-κB and IRFs cooperatively control the transcription of several cytokine genes. 

Transcription of the IFN-β gene requires the coordinated binding of the transcription factors 

AP-1, NF-κB and homodimers or heterodimers of IRF-3 and IRF-7156, 214, 215. The promoters 

of the RANTES, IP-10 also contain transcription factor binding elements for NF-κB and IRF3 
216, 217. The resultant DNA-bound complex, known as the enhanceosome, is more stable and 

effective at inducing transcription than any of the individual transcription factors on their 

own.  
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1.4 TLR RESPONSES 
Ligand interactions with TLRs induce production of proinflammatory cytokines such as TNF, 

IL-6 and IL-1β and IL-12. Proinflammatory cytokines induced by TLR ligands are 

predominantly mediated by MyD88-dependent signaling pathways. The induction of 

cytokines activates surrounding cells to produce chemokines and adhesion molecules which 

serve to facilitate the passage of leukocytes from circulation into the tissues. IL-8 is a typical 

chemokine which functions as a neutrophil chemoattractant, and also activates neutrophils to 

degranulate and cause tissue damage. Other chemokines induced by TLRs include the CC-

chemokine RANTES (CCL5) and the macrophage inflammatory protein 1 (MIP) MIP-1α and 

MIP-1β. These chemokines have also been implicated in inhibiting viral infection218. 

Activation of TLR7 and TLR9 induces robust IFN-α production in pDCs, while activation of 

TLR3 and TLR4 in mDC induce robust IFN-β production, and induction of IFN-inducible 

genes. Type I IFNs possess antiviral activities, as well as important immune regulatory 

functions, and also serve to link innate and adaptive immune responses219. 

 

TLRs expressed on DC aid the initation of adaptive immune responses. Adaptive immunity is 

triggered when immature dendritic cells residing in local tissue phagocytose exogenous 

antigen (Ag) and TLR ligands, initiating the maturation of DCs. During maturation DC 

produce IFNs, cytokines and chemokines, upregulate co-stimulatory molecules, NK-

activating ligands and MHC, and activate a variety of lymphocytes. The immune response is 

determined by which TLRs are activated219, 220.  DCs activated by TLR9 and TLR7/8 ligands 

yield IL-12, IFNα and induce strong T-helper (TH) 1 and CTL responses in a MyD88-

dependent manner. DCs triggered via TLR3 yield mostly IFNα and also induce TH 1 and CTL 

responses. TLR4 ligands predominantly induce IL-12, some IFNα and yield TH1 responses. 

LPS and polyIC additionally induce upregulation of costimulatory molecules such as CD40, 

CD80 and CD86 in a IFN-β dependent manner, via IFNRI, on macrophages and DC171. TLR2 

ligands in contrast are shown to induce IL-10 production in DCs, suppressing the production 

of proinflammatory cytokines and yielding a TH2/T regulatory response219.  
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2.  AIMS OF STUDY 
The overall aim of this study was to increase basic understanding of TLR2 signaling, 

regulation and trafficking and to unveil new functions of TLR2 in controlling adaptive 

immune responses. Understanding TLR biology is fundamental in order to apply these 

receptors in the development of anti-inflammatory and immune modulating compounds, since 

this requires finding the balance between immune activation and th toxic effects of 

inflammation.  
 

Our initial aim was to study the role of CD14 as a co-receptor for TLR2 and the role of CD14, 

CD36 and other TLRs in response to different TLR2 ligands (Paper I and II). Our next 

objective was to study the subcellular expression of TLR2 and determine the subcellular 

compartments where signaling occurs (Paper II). The finding that TLR2 is highly expressed 

on the plasma membrane and in endocytic structures (Paper II) prompted us to investigate 

whether TLR2 is involved in antigen presentation and in the induction of adaptive immune 

responses (Paper III). An important goal in the following study was to develop and 

characterize a monoclonal antibody against murine TLR2 in order to study TLR2 expression 

and regulation in murine models (Paper IV). The finding that surface expression of TLR2 is a 

sensitive marker for a range of microbial products, and is upregulated independent of MyD88 

in response to LPS and polyIC, prompted us to further investigate TLR signaling pathways 

involved in TLR2 regulation. The regulation of TLR2 protein expression in macrophages 

deficient in important signaling adapter molecules was compared to the regulation of the co-

stimulatory molecule CD86 and the release of TNF and RANTES in response to different 

TLR-ligands, in order to unveil similarities and differences in the signaling pathways 

regulating these different responses (Paper V). In particular our objectives were as follows; 

1) Study subcellular expression and trafficking of TLR2 and colocalization and 

association of TLR2 with co-receptors and other TLRs (Paper I and II). 

2) Study LTA internalization in relation to TLR2 and co-receptors and determine 

whether ligand internalization is required for TLR2-mediated signaling in response to 

LTA (Paper II). 

3) Determine whether TLR2 is involved in antigen presentation and in the induction of 

adaptive immune responses (Paper III). 

4) Develop a monoclonal antibody against murine TLR2 in order to study expression 

and regulation of the receptor in murine models (Paper IV). 

5) Investigate the contribution of different signaling pathways in the regulation of TLR2, 

as well as in the regulation of CD86, TNF and RANTES (Paper V).  
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3.  SUMMARY OF PAPERS 

PAPER I: Binding of Lipopeptide to CD14 induces physical proximity of 
CD14, TLR2 and TLR1 
TLR2 signaling in response to triacylated lipopeptide such as Pam3CysSK4 is mediated by the 

TLR2/TLR1 heterodimer. In this paper we show that pretreatment of monocytes with 

monoclonal antibodies (mAbs) against TLR2 and CD14 inhibited TNF release in response to 

Pam3CysSK4, illustrating that CD14 acts as a co-receptor for TLR2 in response Pam3CysSK4. 

Using FLAG-tagged functional Pam3CysSK4 we observed that CD14, but not TLR2, 

markedly enhanced the binding of Pam3CysSK4 both in human monocytes and transfected 

human epithelial kidney (HEK) cells. Confocal microscopy revealed colocalization between 

Pam3CysSK4 and CD14 and between Pam3CysSK4 and TLR2. Association between TLR2 

and Pam3CysSK4, as well as between CD14 and Pam3CysSK4, was furthermore observed by 

fluorescence resonance energy transfer (FRET). Importantly, FRET was further observed 

between CD14 and TLR2 upon stimulation with Pam3CysSK4, but not in the absence of 

stimuli. This association could further be inhibited by both an anti-TLR2 mAb and unlabeled 

Pam3CysSK4. Combined these results suggest that Pam3CysSK4 induces physical proximity 

between CD14 and TLR2. Fluorescence recovery after bleaching (FRAP) studies further 

showed a decrease in TLR2 mobility upon stimulation with Pam3CysSK4, suggesting that 

TLR2 is target to a low-mobility signaling complex in the plasma membrane upon activation, 

presumably in order to facilitate the association with signaling TIR-adapter molecules. 

 

PAPER II: Internalization and Cellular Trafficking of Lipoteichoic acid 
and Toll- like Receptor 2 in Relation to Signaling; Involvement of CD14 
and CD36. 
In this study we initially explored the signaling, uptake and trafficking pattern of the 

TLR2/TLR6 ligand LTA in relation to expression of TLR2 and its co-receptors CD36 and 

CD14 in human monocytes. We found TLR2 expressed in the plasma membrane, early 

endosomes and in late endosomes/lysosomes, proposing that signaling may occur at the 

plasma membrane, or along the endocytic pathway. We further observed rapid internalization 

of fluorescently labeled LTA in human monocytes, colocalizing with markers for early and 

late endosomes and lysosomes, where we also observed TLR2 expression. We also observed 

LTA in the ER and Golgi network, however, we did not observe TLR2 in these 

compartments. Expression of CD14 markedly enhanced LTA binding to the plasma 

membrane and also enhanced NF-κB activation. Blocking either CD14 or CD36 with 

antibodies inhibited LTA binding, as well as LTA-induced TNF release from monocytes, 
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emphasizing an important role for both molecules in the binding of LTA and in aiding TLR2 

signaling. LTA internalization, but not NF-κB activation, was inhibited in Dynamin-I K44A 

dominant negative transfectants, suggesting that LTA is internalized by receptor-mediated 

endocytosis, but that internalization is not required for signaling. Indeed, immobilizing LTA, 

and thereby inhibiting internalization, enhanced TNF release in monocytes. In summary, these 

results support that LTA signaling preferentially occurs at the plasma membrane, and that 

both CD36 and CD14 are required as co-receptors for TLR2 for optimal signaling to occur. 

 

PAPER III: Link between Innate and Adaptive Immunity: Toll- like 
receptor 2 Internalizes Antigen for Presentation to CD4+ T Cells and 
could be an Efficient Vaccine Target. 
In this paper we further investigated the role of TLR2 as an endocytic receptor and addressed 

whether TLR2 may be involved in the induction of adaptive immune responses. An 

antagonistic TLR2-specific mAb (TL2.1) was used to investigate whether peptides bound to 

TLR2 are presented on major histocompatibility complex class II (MHCII) molecules. We 

found that the TL2.1 mAb was efficiently presented to cloned mouse Cκ-specific HLA-DR4-

restricted human CD4+ T cells by PBMC, monocytes and immature DCs, triggering both 

proliferation and IFNγ release in T cells. TL2.1 induced T cell proliferation 100-1000 times 

higher than that induced by an isotype control or CD62L, showing that only a subset of cell 

surface receptors channel Ag into the MHCII presentation pathway. The presentation of the 

Cκ-epitope derived from the TLR2 specific Ab appeared to be dependent on conventional Ag 

processing since the inhibitors chloroquine, leupeptin and Brefeldin A all intervened with T-

cell proliferation induced by TL2.1. Combined, these results show that antibodies bound to 

TLR2 are processed by the conventional MHCII-pathway, presented to T-cells and induce 

adaptive immune responses. Targeting antigens to TLR2 could consequently be an effective 

strategy for the development of Ab-based vaccines. 

 

PAPER IV: Lipopolysaccharide and Double-stranded RNA Up-regulate 
Toll- like Receptor 2 Independently of Myeloid Differentiation Factor- 88 
In this paper we sought to investigate the mechanisms regulating TLR2 expression. In order 

to study the expression, signaling and regulation of TLR2 in mouse cells, we developed a 

monoclonal antibody (mAb) against mouse TLR2 (named 6C2). Pretreatment of macrophages 

with the TLR2 antibody diminished TNF release in response to lipopeptides and down-

regulated membrane TLR2, suggesting that the mAb has antagonistic properties and that 

crossbinding TLR2 induces down-regulation of the receptor and signal abrogation. Using this 

antibody, we detected TLR2 protein expression on macrophages, neutrophils and dendritic 

cells. Endogenous TLR2 in macrophages localized mostly to the cell membrane, with 
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particular accumulation around phagosomes containing zymosan. We also observed marked 

upregulation of surface TLR2 on macrophages in response to whole bacteria, lipoproteins, 

LPS, polyI:C, R848 and CpG DNA. This upregulation appeared to be a sensitive marker for 

the presence of microbial products since it was induced by very low concentrations of ligand. 

Upregulation of TLR2 in response to stimuli furthermore correlated with increased 

responsiveness towards secondary exposure of lipoprotein, following low concentrations of 

primary lipoprotein challenge. Upregulation of TLR2 may consequently be an important 

mechanism by which the immune system boosts its response to beginning infection. However, 

exposure to larger doses of primary challenge induced a hyporeactive state, despite 

upregulated surface TLR2, suggesting that excessive signaling is blunted down-stream of the 

receptor. Interestingly, we found that LPS- and polyIC-induced upregulation of surface TLR2 

in macrophages was MyD88-independent, while upregulation in response to lipoproteins, 

R848 and CpG DNA was entirely MyD88-dependent.  

 

PAPER V: TIR adapters TRIF and TRAM mediate TLR2-induced Release 
of the Chemokine CCL5  
In this paper we further investigated the signaling pathways involved in the regulation of 

TLR2 expression. In light of Paper IV, we initially investigated whether the TRIF-pathway 

may be responsible for the upregulation of TLR2 in response to LPS, since upregulation of 

TLR2 in response to LPS was normal in MyD88-/- macrophages (Paper IV). We found that 

LPS-triggered upregulation of surface TLR2 was only partially reduced in macrophages from 

TRIF-/-, TRAM-/- or TRIF-/-TRAM-/- mice. This was in contrast to LPS-induced CD86 surface 

expression and RANTES release, which was absent in all these cells. TLR2 upregulation was, 

however, completely abrogated in MyD88-/-TRIF-/- macrophages treated with LPS, showing 

that MyD88 can participate in a response that initially appeared MyD88-independent. 

Surprisingly, we also found that RANTES release was markedly reduced in TRIF-/-, TRAM-/- 

and TRIF-/-TRAM-/- macrophages in response to several TLR2 ligands, despite normal TNF 

release and TLR2 expression in these cells, suggesting a new role of TRIF and TRAM in 

TLR2 signaling. We also found that macrophages from TRIF-/-TRAM-/- mice failed to 

phosphorylate Serine-536 on NF-κB p65 (RelA) normally in response to MALP-2, supporting 

a role for the TRIF/TRAM pathway in TLR2 signaling. We propose that TRIF/TRAM 

signaling may be important for RANTES induction in response to TLR2 ligands, possibly by 

a mechanism involving phosphorylation of Ser-536 on NF-κB p65/RelA. Combined these 

results provide further insight on the contribution of the MyD88- and TRIF- pathways in 

response to different TLR ligands and cross-talk between these pathways during TLR-

mediated signaling.  
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4.  DISCUSSION 

4.1 TLR2 EXPRESSION 

4.1.1 Cell types that express TLR2 

In Paper I and III, we found TLR2 protein expressed on human macrophages, neutrophils 

and dendritic cells. This is in line with previous reports 85. In Paper IV we found that TLR2 is 

expressed on the cell surface of mouse macrophages, neutrophils and dendritic cells, whereas 

CD19+ B-cells stained only weakly for TLR2. Our results indicate that surface expression 

pattern of TLR2 is similar in mice and humans, with macrophages displaying the highest 

expression of TLR2, as shown by others 84, 85. TLR2 ligands have later been shown to activate 

B cells and induce IL-6 and upregulation of MHCII in a T-cell-dependent, and -independent 

manner221, 222. Murine follicular B cells and marginal zone B cells have also been shown to 

respond to TLR2 ligands223. Thus, several types of B cells appear to express functional TLR2, 

although at low levels, compared to macrophages. 

 

TLR2 expression also has been reported in thymic T cells at the mRNA level224. Although we 

did not observe TLR2 expression on the surface of thymic T cells (Paper IV), recent studies 

have shown that TLR2 is expressed on TH1 and TH2 effector cells, as well as on T memory 

cells and regulatory T cells. Murine TH1 have furthermore been shown to respond directly to 

TLR2 ligands in the absence of TCR signaling225. Memory T cells and regulatory T cells also 

respond to stimulation by TLR2 ligands, supporting that these cells express functional 

TLR2226, 227. TLR2 expression is low in resting T cells and is upregulated upon stimulation. 

Upregulation of TLR2 in response to stimuli, which we observed in Paper IV and V, could 

therefore be particularly important in these cells. Low expression of surface TLR2 in resting 

cells may also be more important for restricting inappropriate activation of these cells. 

Whether TLR2 requires the same co-receptors and utilizes the same signaling pathways in T 

cells, as in other immune cell such as macrophages, is unclear. Although T cells do not 

express CD14, bovine δγ T cells have been shown to express functional CD36 which 

participates LTA-induced MIP-1α induction228. In light of your findings that CD36 and CD14 

play similar roles in the response to LTA in human macrophages (Paper II), we speculate 

that CD36 may perhaps substitute CD14 in cells that do not express CD14. Our results in 

human monocytes suggest, however, that blocking either one of these receptors diminishes 

TNF release in response to LTA. 
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4.1.2 Subcellular expression of TLR2 

In Paper II we further investigated the subcellular expression of TLR2 in human monocytes 

and found TLR2 expressed on the plasma membrane, in endosomes, lysosomes and Rab-11-

positive compartments, but not in the Golgi, in contrast to previous reports229. TLR2 is highly 

expressed at the plasma membrane, in likeness with TLR4, but in contrast to TLR3, TLR7/8 

and TLR9. The differences in subcellular TLR expression are presumably due to the nature of 

the components different TLRs recognize. While TLR2 and TLR4, predominantly recognize 

extracellular bacterial components, TLR3, TLR7/8 and TLR9 recognize nucleic acids that are 

released during endosomal degradation of microbes, or released by damaged host cells. The 

expression of TLR2 on the plasma membrane appears to be important for recognition of 

different ligands, indicated by the upregulation of the receptor in response to low 

concentrations of stimuli (Paper II, III, IV and V). Sensitive upregulation in response to low 

concentrations of lipopeptide may also aid in priming macrophages towards secondary stimuli 

(Paper IV). Tolerance is, however, induced in response to high concentrations of primary 

challenge by lipopeptides, despite upregulated TLR2, suggesting that excessive signaling is 

terminated down-stream of the receptor (Paper IV). 

 

In Paper II we observed TLR2 expressed intracellularly in endosomes and lysosomes. We 

also observed that TLR2 mAb bound to surface TLR2 was targeted to the endocytic pathway 

and presented on MHCII molecules (Paper II and III), suggesting a role for TLR2 in the 

endocytic pathway. 

4.2 DOES TLR2 PLAY A ROLE IN PHAGOCYTOSIS? 
Phagocytosis triggers degradation of pathogens and presentation of pathogen-derived peptide 

antigen. The expression pattern of TLR2 suggests that the receptor is involved in endocytosis 

and phagocytosis. In Paper IV we found that TLR2 was recruited to the phagocytic cup 

containing the yeast particle zymosan, confirming previous reports on transfected TLR2230. 

Phagocytosis and cytokine production occurs as seperate processes230, 231, however, implying 

that TLR2 does not primarily function as a phagocytic receptor. TLR2 is instead recruited to 

phagosomes independent of contents, where the receptor aids in the recognition of microbial 

components present in the phagosome80. The cytosolic domain of TLR2 has, however, also 

been shown to complex with molecules implicated in cytoskeletal rearrangement, such as the 

Rho GTPase Rac1 and the p85 subunit of Phosphoinositide-3 kinase (PI3K) in response to 

S.aureus, implying an indirect role for TLR2 in the phagocytic process232, 233. Bone-marrow 

derived dendritic cells have also been shown to increase their endocytic ability upon 

stimulation with a range of TLR ligands, and stimulation also triggers cytokskelatal 
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rearrangement and Ag-presentation in these cells234, further supporting a role for TLRs in 

phagocytosis. Whether TLR stimulation affects phagosome and lysosome fusion remains 

unclear. Although some studies suggest that TLR stimulation has an enhancing effect235, other 

studies showed no effect236, 237. LPS stimulated macrophages have, however, been shown to 

upregulate a large number of genes involved in all stages of phagocytosis238-240, suggesting a 

role for TLRs in phagocytosis. 

 

A role for TLRs in phagosome maturation and antigen presentation has been emphasized by  

the finding that only phagosome cargo containing TLR4 ligands could trigger efficient 

antigen processing and MHCII presentation and activate CD4+ cells, whereas phagosome 

cargo containing apoptotic cells retained MHCII intracellularly241, 242. We have shown that 

TLR2-bound Ab is internalized in endosomes, processed by the MHCII pathway and induces 

proliferation of CD4+ T cells (Paper III). Ab bound to TLR4 is processed and presented in a 

similar manner243. TLR2 may therefore play a similar role as shown for TLR4 in sampling 

phagosome content and triggering effecient processing and MHCII presentation. However, we 

note important differences in TLR2 and TLR4 regulation, trafficking and signaling, 

suggesting that the two receptors also differ in many ways (see Chapter 4.5).  

 

In line with our observations in Paper I, the crystal structure of the ectodomain of TLR2 

suggests that Pam3CysSK4 induces the association of TLR2 and TLR1 and that TLR2 and 

TLR1/TLR6 bind their ligands directly1. We observed, however, that TLR2 bound both 

Pam3CysSK4 and LTA poorly in comparison to CD14 (Paper I and II), although TLR2 was 

completely necessary for signaling in response to these ligands. Our current understanding 

suggests that CD36/CD14 may concentrate TLR2 ligands on the cell surface and transfer the 

compounds to the signaling receptor complex. 

 

4.3 THE ROLE OF CD36 AND CD14 IN TLR2 ACTIVATION?  
We showed in Paper I that CD14 binds the TLR2 ligand Pam3CysSK4. We furthermore show 

FRET between TLR2 and CD14, and TLR1 and CD14 upon stimulation with Pam3CysSK4, 

suggesting that CD14 initially binds Pam3CysSK4 and presents it to the TLR2/TLR1 complex. 

The crystal structure of TLR2 and TLR1 suggests that Pam3CysSK4 binds both TLR2 and 

TLR1, which induces the dimerization of the receptors 1. It remains unclear how CD14 

participates in this TLR2/TLR1 complex and in enhancing the response towards 

Pam3CysSK4, in light of the proposed crystal structure of TLR2/TLR1 ectodomain1. CD14 
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may perhaps bind Pam3CysSK4 in a manner that allows the presentation of the acyl chains to 

TLR2 and TLR1, and thereby facilitate TLR2/TLR1 complex formation. 

 

Although we generally observed upregulation of TLR2 in response to a range of ligands 

(Paper II-IV), we also observed internalization and trafficking of the receptor upon 

stimulation (Paper II, III and IV). The findings in Paper II suggest that CD14 may aid in 

binding LTA to the membrane, where we propose that signaling may occur. CD14 binds a 

range of ligands, including LPS, lipopeptides and LTA111, 112, 244, 245. We and others have 

observed that CD14 also enhances signaling in response to LPS, lipopeptides and LTA 

(Paper I, II and 244,246). CD14 is however a GPI-linked membrane protein, devoid of an 

intracellular portion, and is incapable of inducing signaling on its own247. Nevertheless, CD14 

may enhance signaling by immobilizing ligands on the cell surface, where both TLR2 and 

TLR4, are highly expressed, as suggested in Paper I and II. Alternatively, CD14 may target 

ligands to early endosomes and endocytic pathway where some signaling may occur, as 

suggested for TLR4243. 

 

CD14 is clearly involved in enhancing TLR2 signaling in response to both TLR2/TLR1 and 

TLR2/TLR6 ligands (Paper I and II), but does not appear to discriminate between different 

TLR ligands. The scavanger receptor CD36 has, in contrast, been shown to recognize 

TLR2/TLR6 ligands, but not other TLR ligands171. In Paper II we showed that CD36 is 

involved in both the binding of LTA and in TNF release in human monocytes, in response to 

LTA, but not in response to the TLR2/TLR1 ligand Pam3CysSK4, or LPS. It is unclear how 

TLR2/TLR6 ligands bind both CD36 and CD14, in light of the proposed model of how 

TLR2/TLR6 bind their ligands. It is also puzzling how CD36 recognizes structurally different 

molecules such as MALP-2 and LTA, but discriminates between structurally similar 

molecules like MALP-2 and Pam3CysSK4. CD36 has been suggested to discriminate between 

these molecules by recognizing the diacyl chains present in TLR2/TLR6 ligands. However, 

the proposed model of how TLR2/TLR6 ligands recognize their ligands suggests that these 

acyl chains are inserted into binding pockets in TLR2 and TLR61. How TLR2 and TLR6 

recognize larger ligands such as LTA remains unclear. 

  

The finding that CD36 specifically discriminates between TLR2/6 ligands and TLR2/1 

ligands has somewhat overshadowed the role of CD14 as a co-receptor for TLR2. In Paper II 

we showed, however, that both co-receptors are required for optimal response to LTA, and 

that inhibition of either CD14 or CD36 had a profound effect on TNF release in human 

monocytes in response to LTA. We speculate that CD36 may be required for correct complex 

formation at the plasma membrane or for targeting to lipid rafts, as suggested by Triantafilou 
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et al229. Alternatively, CD36 may be required for targeting LTA to endosomes during 

internalization, as suggested by Stuart et al248. Since CD36 appears to act as a co-receptor for 

TLR2/TLR6 ligands, we speculate that an unknown receptor may play an equivalent role in 

response to TLR2/TLR1 ligands.  

 

TLR2 recognizes a broad range of ligands. Discrimination between TLR2/1 ligands and 

TLR2/6 ligands and other TLR2 ligands, appears to occur at the plasma membrane, since 

TLR2, as well as co-receptors of TLR2, such as CD14, CD36, TLR1, TLR6 and Dectin-1, all 

are expressed at the plasma membrane, or are recruited to the plasma membrane, upon 

stimulation. The number of surface receptors that have been shown to be involved in TLR2- 

signaling in response to different TLR2 ligands is puzzling, since both TLR2/TLR1 ligands 

and TLR2/TLR6 ligands recruit the same TIR-adapters, apparently leading to initiation of the 

same MAL/MyD88 signaling pathway and induction of the same responses. The need to 

discriminate between TLR2 ligands may be required for correct internalization and for correct 

targeting of different TLR2 ligands to different endocytic routes. In Paper III we show that 

peptides bound to TLR2 are processed by the MHCII pathway and induce T cell proliferation. 

Only TLR2 ligands containing peptide moieties, such as lipopeptide and peptidoglycan are, 

however, expected to be presented on MHCII molecules, while TLR2 ligands devoid of 

peptide units, (e.g. LTA) are likely to be processed differently. Indeed, we observed in Paper 

II that the internalization pattern og LTA differs from the internalization of other TLR 

ligands, (e.g. Pam3CysSK4 in Paper I), in that it appears to be targeted to the Golgi and ER, 

presumably by a retrograde pathway.  

 

4.4 WHERE DOES TLR2 SIGNALING OCCUR? 
In Paper III we argue that signaling in response to LTA predominantly occurs at the plasma 

membrane where TLR2 and its co-receptors CD14 and CD36 are highly expressed. 

Upregulation of TLR2 in response to LTA furthermore suggests that signaling may occur at 

the plasma membrane. Expression of the Dynamin I mutant K44A inhibited LTA 

internalization, but did not affect NF-κB activation. Immobilization of LTA on a plastic 

surface, furthermore, enhanced TNF release from monocytes, suggesting that LTA 

internalization is not required for signaling to occur, and that signaling predominantly occurs 

at the plasma membrane. This finding is supported by the findings Triantafilou et al229 and 

Sandor et al78 that show that NF-κB activation can be induced by cross-linking TLR2 and 

TLR1 with TLR2- and TLR1-specific mAb. Stuart et al248, however, claim that LTA 

internalization is required for signaling to occur. Although we cannot exclude that some 
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signaling occurs in early endosomes, we argue on the basis of our findings in Paper II, that 

signaling in response to LTA at least predominantly occurs at the plasma membrane, 

independent of ligand internalization. Notably, TIR-adapter MAL is constitutively expressed 

at the plasma membrane249. Upon stimulation of TLR2 transfected cells with LTA, we also 

observed translocation of MyD88 to the plasma membrane by confocal microscopy (Nilsen, 

Unpublished data), further supporting that TLR2 signaling in response to LTA occurs at the 

plasma membrane.  

 

4.5 DIFFERENCES AND SIMILARITIES BETWEEN TLR2 AND 
TLR4 

Both TLR2 and TLR4 are highly expressed on the plasma membrane, supposedly in order to 

sense extracellular pathogens. TLR4 and TLR2 are, however, also expressed in endocytic 

compartments (Paper II, III and 243), and peptides bound to both TLR2 and TLR4 are 

processed  by the MHCII pathway and induce T cell proliferation (Paper III and 243). TLR2 

and TLR4 ligands furthermore induce upregulation of costimulatory molecules on human 

DCs (Paper III). Although both TLR2 and TLR4 ligands have been reported to upregulate 

CD86 on murine DCs250, 251, we did not observe upregulation of CD86 on macrophages in 

response to TLR2 ligands, although these cells efficiently upregulated co-stimulatory 

molecules in response to LPS (Paper V). These results suggest that both TLR2 and TLR4 are 

involved in Ag-presentation and induction of adaptive immune responses, however, certain 

responses appear to be cell-type specific. 

 

In contrast to surface TLR2, which is rapidly upregulated in response to a range of TLR 

ligands, TLR4 is down-regulated in response to LPS, ubiquitylated and targeted for 

degradation243, 252. TLR2 is not ubiquitylated in the same manner253. In Paper IV we showed 

that TLR2 was rapidly upregulated in response to low doses of Pam3CysSK4, which prime 

macrophages towards secondary stimuli, suggesting that TLR2 upregulation may function as 

a sensitive sensor for infection. Tolerance was, however, induced upon prestimulation with 

higher doses of Pam3CysSK4, despite upregulation of TLR2 (Paper IV), suggesting that 

excessive signaling may be controlled by inhibition of down- stream signaling  pathways, 

rather than by degradation of the signaling receptor. In contrast to TLR2 upregulation, 

Miyake et al showed that TLR4/MD-2 on mouse macrophages is down-regulated in a 

MyD88-dependent manner in response to LPS, using the anti mouse MD-2/TLR4 mAb 

MTS510254. Using a similar mAb (Sa15-21), we observed relatively small changes in MD-

2/TLR4 expression following a similar challenge (Nilsen, Lien, Unpublished data). We 
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conclude that the surface expression of TLR2 on macrophages in general is upregulated upon 

challenge, whereas TLR4 expression is not. 

 

TLR4 and TLR2 ligands, such as LPS and LTA, respectively, share certain similarities with 

regard to structure. CD14 appears to play a similar role in response to both these ligands by 

markedly enhancing the binding of these ligands to the plasma membrane (Paper II and 119, 

255). CD14 may further aid the targeting of the ligands to endocytic pathways. Both LPS and 

LTA were internalized by Dynamin-dependent mechanisms, and both TLR4 and TLR2 have 

been shown to signal from the plasma membrane (Paper II and 243). The internalization 

patterns of the two ligands appear to differ though. While LPS is internalized in vesicular 

structures colocalizing neatly with transferrin243, LTA is rapidly targeted to the Golgi and ER, 

as well as endocytic compartments (Paper II), suggesting that LTA may utilize several 

internalization pathways.  

  

TLR2 heterodimerizes with TLR1 and TLR6 in response to different ligands, while TLR4 

forms heteromers (2x MD-2 and 2x TLR4) in response to LPS. The ability of TLR2 to 

heterodimerize may partially explain the receptors ability to recognize an array of different 

ligands. Both TLR2 and TLR4 require coreceptors for optimal signaling in response to their 

respective ligands. The small glycoprotein MD-2 is a crucial coreceptor for TLR4 in response 

to LPS. However, neither MD-2, nor MD-1 are involved in TLR2 signaling61. The crystal 

structure of TLR2 ectodomain suggests that TLR2 binds Pam3CysSK4 directly1, while the 

crystal structure of TLR4 suggests that there is no direct binding between TLR4 and its 

ligand. In the latter case the ligand binds MD-2, and this complex in turn binds TLR42.  

 

TLR2 recognizes a broad range of structurally different ligands through cooperation with 

other TLRs and co-receptors. Ligation of TLR2, however, results in induction of the same 

MAL/MyD88-dependent signaling pathway. TLR4, in cooperation with MD-2 and CD14 on 

the other hand induces signaling by both the MAL/MyD88 pathway and the TRIF/TRAM 

pathway in response to LPS. The role of CD14 may differ in triggering MyD88 and TRIF-

dependent pathways256. TLR4 consequently induces a broader spectrum of responses in 

macrophages, including proinflammatory cytokines, chemokines, interferons and upregulation 

of costimulatory molecules. Thus, the complexity of TLR2 responses appears to be in ligand 

recognition, while the complexity of TLR4 signaling is reflected by its ability to activate both 

signaling pathways and induce an array of responses upon recognition of the same ligand. 

Although we unravel a new role for the TRIF/TRAM pathway in TLR2 signaling in Paper V, 

this pathway mediated responses by all TLR2 ligands tested (Paper V). An apparent contrast 

lies in the MyD88 utilization for RANTES release following cell stimulation with TLR2 or 
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TLR4 ligands. Lipoprotein stimulation inducing RANTES is completely dependent on both 

TLR2 and MyD88, whereas LPS induction of RANTES is independent of TLR2 and only 

partially reduced in the absence of MyD88. This emphasizes the fact that for TLR2 signaling, 

all responses are MyD88 dependent. 

 

4.6 TLR2 REGULATION AND SIGNALING PATHWAYS 
In Paper IV we hypothesized that TLR2 upregulation primes macrophages in response to low 

levels of prestimuli. Higher amounts of prestimuli induced tolerance towards secondary 

stimulation, despite TLR2 upregulation, suggesting that signal-termination occurs down-

stream of TLR2.  In Paper IV and V we found that surface TLR2 was differentially regulated 

by both the MyD88- and TRIF/TRAM-dependent pathway in response to LPS, since 

upregulation was only abolished in the absence of both TRIF and MyD88 (Figure 6). These 

results are supported by microarray studies showing that TLR2 gene expression is 

differentially regulated by TRIF and MyD88 in response to LPS257.  Notably, the 

TRIF/TRAM signaling branch appeared to be more crucial for correct regulation of TLR2 in 

response to LPS, since the effect of the MAL/MyD88 pathway only became apparent in the 

absence of TRIF and/or TRAM. Upregulation TLR2 may be particularly important in other 

cell types, such as B cells and T cells, which express low levels of TLR2 in resting cells and 

lack CD14 and CD36.  

 

In Paper V we found that upregulation of CD86 and RANTES induction were crucially 

dependent on the TRIF/TRAM pathway in response to LPS. CD86 is upregulated in response 

to LPS in a TRIF-IFNβ-IFNRI dependent manner171 (Figure 6). Surface expressed TLR2 

was, in contrast, only modestly upregulated upon treatment with recombinant IFN-β (Nilsen, 

Unpublished data) compared to the level induced by LPS and MALP-2. These observations 

indicate that mechanisms leading to regulation of CD80/86, TLR4, and TLR2 differ. 

Although CD86 and RANTES are both IFN-inducible proteins, which were regulated 

similarly in response to LPS, we found important differences in the regulation of these genes 

in response to different TLR ligands. CD86 upregulation was only observed in response to 

LPS, polyIC and Sendai virus, but not in response to TLR2 ligands, R848 or CpG in 

macrophages (Paper V and Unpublished data). RANTES was in contrast induced by all these 

ligands in macrophages, suggesting that RANTES and CD86 surface expression are not 

regulated by the same mechanisms. We hypothesize that differences ma may be explained in 

terms of differential dependence on IRF/IFN induction. 
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FIGURE 6: TLR2 regulation and CD86 regulation in response to LPS.  
An outline of signaling pathways leading to upregulation of TLR2 in response to LPS. Both MAL/MyD88 and the 

TRIF/TRAM pathway control the upregulation of surface TLR2 (red arrows), while upregulation of CD86 in 

response to LPS occurs in a TRIF-IFN-β-IFNRI –dependent manner (green arrows). The TRIF/TRAM pathway 

appeared more important for TLR2 upregulation in response to LPS than the MyD88/MAL pathway (thin dotted 

red lines). 

 

Interestingly, we found that TLR2-mediated RANTES induction was dependent on the 

TRIF/TRAM pathway, suggesting a new role for these adapter molecules in TLR2 signaling. 

Notably, we found that TRIF and TRAM are specifically involved in RANTES release, but 

not TNF release. The promoter region of RANTES, as well as IFN-β, contain transcription 

factor binding sites for NF-κB and IRF-3216, 217. LPS induces RANTES and IFN-β by 

activating both NF-κB and IRF-3 in a TRIF/TRAM-dependent manner58. TLR2 ligands fail, 

however, to induce IRF-3 binding to the ISRE of interferon stimulated gene 15 (ISG15) in 

macrophages58, 258 and are poor inducers of type I IFN191, something which may be related to 

lack of TRAF3 recruitment259. In light of the generally lower levels of RANTES induced by 

TLR2 ligands, compared to LPS, we reason that TRIF/TRAM-mediated RANTES induction 

only induces NF-κB binding to the RANTES promoter in response to TLR2 ligands. We 

further speculate that the TRIF/TRAM-mediated induction of RANTES in response to TLR2 

ligands may be dependent on the death-domain kinase RIP-1,  which is shown to be activated 
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by LPS and polyIC in a TRIF-dependent manner, activating NF-κB, but not IRF-3260, 261. The 

TRIF/TRAM-dependent RANTES induction we observed in response to TLR2 ligands could 

therefore possibly utilize the TRIF-RIP-1-NF-κB-pathway (Figure 7). 

 

 
 
FIGURE 7: TRAM and TRIF are involved in TLR2 signaling.  
Proposed signaling pathways leading to RANTES induction in response to TLR2 ligands (blue arrows). The 

TRIF/TRAM pathway, as well as the MAL/MyD88 pathway mediate RANTES induction in response to TLR2 ligands. 

TLR4 signaling leading to RANTES induction is also shown (grey arrows).  

 

In Paper V, we also found that phosphorylation of nuclear p65Ser-536 was impaired in response 

to MALP-2 in TRIF-/-TRAM-/- macrophages, supporting a role for TRIF and TRAM in TLR2-

signaling. This phosphorylation site may possibly be involved in TLR2-mediated RANTES-

induction, although this has yet to be shown. A number of kinases have been reported to 

phosphorlyate p65Ser-536 in addition to IKKβ, including IKKα, IKKε, TBK1 and RSK1. The 

details regarding the kinases involved in TLR2-mediated, TRIF-dependent induction of 

RANTES have yet to be resolved. A number of posttranslational modifications at different 

sites of p65 may likely play a role in this response. In this respect it is highly possible that 

different serine residues may be phosphorylated simultaneously, however, it is unclear if there 

is a redundancy in serine phosphorylations at different sites. 
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Both the TRIF and the MyD88 pathway mediate TLR2-induced RANTES release in 

macrophages (Paper V), in contrast to TNF induction, which is tightly controlled by the 

MyD88-dependent pathway alone.  The reason for this redundancy is unclear. Other cell types 

may, however, rely more heavily on either the one pathway or the other. Our results 

emphasize, however, that a role for TRIF and TRAM in TLR2 signaling should not be 

ignored. The TRIF-pathway may moreover be more prominent in other cell types, such as 

dendritic cells, which are efficient producers of IFNs, or TH1 effector cells, which have 

recently been shown to be directly activated by TLR2 ligands to produce IFN-γ. The 

contribution of TRIF in TLR2 signaling in vivo is currently unknown. Induction of genes by 

both MyD88 and TRIF pathways may be necessary for optimal responses towards certain 

infections.  

 

4.7 TLR2 IN DISEASE PATHOGENISIS AND INFLAMMATION 
TLRs normally sense small amounts of microbial ligands, induce limited local inflammation 

and eliminate and infection, before it becomes systemic. A number of TLR polymorphisms 

have been implicated in infection and sepsis75, 76.  Polymorphisms in TLR2 may predispose to 

Staphylococcus infection and tuberculosis susceptibility73-75, as well as enhance susceptibility 

to leprosy and tuberculosis76. Upregulation of TLR2 in these could consequently serve as a 

means as to boost detection of an initial infection.  

 

Antagonists of TLRs are applicable in the regulation of TLR-mediated inflammation or 

autoimmune status262. Alternative strategies to inhibiting these responses include designing 

TLR interfering molecules or by positively or negatively regulating TIR adapter molecules or 

other TLR signaling molecules220. In Paper IV we developed an antagonistic mAb against 

murine TLR2 which indirectly inhibited TNF release in macrophages in response to 

Pam3CysSK4. An antagonistic antibody against TLR2 could potentially inhibit the initial step 

of systemic inflammation by disrupting the activation of TLR2 by Gram-positive bacteria. 

Another murine TLR2 mAb; T2.5, similar to our 6C2 TLR2 mAb was developed by Meng et 

al263 which presumably directly affects ligand-receptor interactions. This antibody was shown 

to suppress lethality due to septic shock syndrome provoked by Pam3CysSK4 and heat-

inactivated Bacillus subtilis when administered within three hours after infection. The 6C2 

anti-TLR2 mAb we developed in Paper IV also inhibited macrophage stimulation in vitro. 

We did not assess the effect of our 6C2 mAb in vivo, however, we did find that preatreatment 

of macrophages with the antibody down-regulated surface TLR2 in vitro. This mechanism, 

and not direct blocking of ligand binding epitopes, likely explains why the antibody dimished 
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responses to subsequent lipoprotein challenge. Expression, downregulation or blocking TLRs 

could consequently be an approach to inhibiting septic syndrome. However, we note that 

neither antibodies towards LPS, TNF or IL-1 have proven effective in human trials, despite 

their ability to protect mice from septic shock syndrome. Whole bacteria and viruses also 

contain a number of TLR ligands, as well as ligands for other PPRs, suggesting that a number 

of receptors must be blocked in order to inhibit signaling. The rapid response of TLRs 

towards ligands could furthermore limit the therapeutic window for intervention. It has 

therefore been suggested that targeting late mediators of septic shock syndrome may be more 

successful, since this strategy should allow a wider time span for intervention264. TLR 

signaling pathways could alternatively be targeted in order to terminate excessive signaling. 

Our observations in Paper IV and V regarding compensation and redundancy between 

different signaling pathways should however be taken into account when employing such a 

strategy.  

 

4.8 TLR2 AS A BRIDGE TO ADAPTIVE IMMUNITY 
While inhibiting TLR activation is potentially useful in suppressing inflammation and 

autoimmunity, enhancing TLR activation is applicable in immunotherapy in order to enhance 

anti-pathogenic responses during vaccination. TLR2 is broadly expressed on immune cells 

(Paper IV) and activation of TLR2 induces a variety of diverse immune responses depending 

on the cell type in question, making TLR2 an interesting target in drug development.   

4.8.1 Initiation of adaptive immune responses via TLR2 

TLRs influence the differentiation of TH1 and TH2 cells through activation of APC, resulting 

in the generation of lineage specific cytokines. TH1 responses are important in protecting 

against many microbial infections, while TH2 response are implicated in defense against 

parasitic infections and in the pathologies of allergy and asthma265. TLR3, TLR4, TLR7 and 

TLR9 ligands are all important forces in driving TLR-mediated Th1 responses through 

stimulation of IL-12p70 and IFN-γ in DCs266-268. TLR2 stimulation by Pam3CysSK4, in 

contrast, induces IL-10 release in DCs resulting in  a TH2 profile268, 269. The TLR2 ligand FSL-

1 has also been shown to induce IL-10 and TH2 type responses in vivo267. 

 

The expression of co-stimulatory molecules is also required to sustain an adaptive immune 

response. The induction of type I IFN-α/β promotes CD8+ T cell proliferation and survival, 

as well as B cell isotype switching and differentiation270. We observed upregulation of CD86 

on DC in response to TLR2 ligands on human DC (Paper III), however, we did not observe 
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upregulation of surface CD86 on macrophages in response to TLR2 ligands (Paper V), 

suggesting that DC and macrophages respond differently to TLR2 ligands. Notably, both LPS 

and polyIC markedly upregulates surface CD86 in macrophages in a TRIF-dependent manner.  

 

Murine Th1 effector cells have recently been shown to respond directly to TLR2 ligands225, 

inducing IFN-γ production, as well as proliferation and survival of TH1, directly, in the 

absence of TCR signaling. TLR2 stimulation of MyD88 or IRAK4 deficient mice still 

induced p38 and JNK phosphorylation, but did not induce ERK phosphorylation or NF-κB 

nuclear translocation, suggesting the TLR2-mediated signaling pathways in TH1 cells and 

APC differ. In light of our finding that TRIF plays a role in TLR2-induced RANTES (Paper 

V), it is intriguing to speculate that the direct stimulation of TH1 cells may be mediated by 

TRIF.   

 

The upregulation of surface TLR2 observed in Paper IV and V may be particularly important 

on T cells, which normally express low levels of TLR2.  Naïve human T cells have been 

shown to upregulate surface TLR2 in response to anti-T cell receptor antibody and IFN-α. 

These cells also produce cytokines in response to TLR2 ligands. Memory T cells from 

peripheral blood also express TLR2 and produce IFN-α in response to bacterial lipopeptide. 

Proliferation and IFN-γ production was also enhanced upon costimulation with TLR2 ligands 

in combination with IL-2 or IL-15. TLR2 therefore appears to function as a costimulatory 

receptor for antigen-specific T cell development and may participate in the maintenance of T 

cell memory 224.  

4.8.2 TLR2 as a target for vaccine development 

The expression of TLR2 and the role of TLR2 in inducing and shaping adaptive immune 

responses is becoming appreciated with regard to vaccine development. In Paper III we 

showed that targeting Ag by to TLR2 using recombinant Ab, called troy bodies, could be an 

effective strategy for development of Ab based vaccines. Troy bodies are recombinant Ab that 

are specific for APC surface molecules and which carry T cell epitopes as an integral part of 

their constant region271. Targeting TLR2 using Troy bodies induced a specific CD4+ T cell 

response and could allow efficient delivery of antigen to dendritic cells, as well as 

macrophages and B-cells (Paper III). Recent studies have furthermore suggested that both 

TLR2 and CD14 are suitable as targets for delivery of large antigens using vaccibodies. 

Vaccibodies are recombinant antibody-like vaccination vehicles consisting of homodimers of 

an antibody V-region specific for surface molecules on antigen-presenting cells (APC), a 
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linker, and an antigenic unit. TLR2 and CD14-specific vaccibodies have been shown to target 

and deliver large antigens to APC and efficiently induce CD4+T cell responses272. 

 

Chimeras composed of TLR2 ligands such as Pam3CysSK4, MALP-2 and FSL-1 fused to 

tumor antigens have been been suggested as an alternative immune therapy for cancer and 

other diseases 220. These chimera are proposed to enhance Ag-presentation by specifically 

targeting antigens to APC, as well as stimulate cytokine production and upregulation of 

costimulatory molecules in DC. Fused proteins, consisting of TLR5 and TLR7/8 agonists and 

targeted antigens effiently induce anti-pathogenic CTL responses in vivo in animal studies273, 

274. Vaccines consisting of a TLR2 ligand, a TH epitope and a target antigen epitopes 

conferred protection in a Listeria monocytogenes model, as well as in a lung tumor cell 

challenge model275. These chimeras of TLR ligands fused to antigens may therefore be 

suitable for boosting immune responses against infectious diseases and cancer. A specific 

immune response could furthermore potentially be tailored by applying different TLR ligands 

in combination. 
 

The unique ability of TLR2 agonists to stimulate IFN-γ production and proliferation and 

survival of TH1 cells in the absence of TCR signaling could possibly be manipulated in 

immunotherapy to directly activate TH1 cells225. Memory T cells from peripheral blood have 

also been shown to express TLR2 and produce IFN-γ in response to bacterial lipopeptide. 

TLR2 ligands could therefore possibly be applied to enhance maintenance of T cell 

memory224. TLR2 has also been implicated in the regulation of regulatory CD4+CD25+ T 

cells227. Stimulation of these cells with TLR2 ligands enhanced the proliferation of these cells 

and reversed their suppressive activity. Although this effect was transient, TLR2 ligands may 

aid in enhancing immune responses in this manner. 
 

TLR2 ligands could potentially be applied to induce a humoral response directly, since TLR2 

ligands such as Pam3CysSK4 and MALP-2 have been shown to directly activate B cells and 

induce IL-6 and upregulation of MHCII in a T-cell independent manner221, 222. TLR2 ligands, 

as well as TLR4, TLR7 and TLR9 also induce robust proliferation and antibody secretion in 

murine follicular B cells and marginal zone B cells223. TLR2 ligands also induce the 

differentiation and proliferation of B cells276.  
 

TLR2 ligands appear to affect a number of cell-types, and induce a number of different 

responses. Although TLR2 and other TLR ligands appear to hold valuable potential in 

immunotherapy strategies, further research is needed to map the precise mechanisms of TLR 

biology in order to fully apply TLRs therapeutically and avoid the potentially adverse effects 

these ligands may cause. 
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5.  CONCLUSION 
In this study we show that TLR2 is highly expressed on immune cells and that surface TLR2 

is upregulated in response to low concentrations of stimuli. We provide further insight into 

the subcellular expression and trafficking of TLR2, and a role for the co-receptors CD14 and 

CD36 in enhancing TLR2 signaling. We also reveal a role for TLR2 in antigen-presentation 

and in the induction of adaptive immunity. We further provide insight into TLR2 signaling 

and signaling pathways controlling the regulation of TLR2 expression, and describe a new 

role for the TIR-adapters TRIF and TRAM in TLR2 signaling. Combined, these results 

provide further insight into TLR2 expression, regulation and signaling, which we propose 

could be helpful in the development of vaccines and immunomodulatory drugs. Our findings 

also add significantly to our understanding of innate immune responses to infection. 
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AND STRENGTH IN PROFESSIONAL YOUTH SOCCER PLAYERS 
261. Marit Sæbø Indredavik:  MENTAL HEALTH AND CEREBRAL MAGNETIC RESONANCE 

IMAGING IN ADOLESCENTS WITH LOW BIRTH WEIGHT 
262. Ole Johan Kemi:  ON THE CELLULAR BASIS OF AEROBIC FITNESS, INTENSITY-

DEPENDENCE AND TIME-COURSE OF CARDIOMYOCYTE AND ENDOTHELIAL 
ADAPTATIONS TO EXERCISE TRAINING 

263. Eszter Vanky: POLYCYSTIC OVARY SYNDROME – METFORMIN TREATMENT IN 
PREGNANCY 

264. Hild Fjærtoft:  EXTENDED STROKE UNIT SERVICE AND EARLY SUPPORTED 
DISCHARGE.  SHORT AND LONG-TERM EFFECTS   

265. Grete Dyb:  POSTTRAUMATIC STRESS REACTIONS IN CHILDREN AND ADOLESCENTS 
266. Vidar Fykse: SOMATOSTATIN AND THE STOMACH 
267. Kirsti Berg: OXIDATIVE STRESS AND THE ISCHEMIC HEART:  A STUDY IN PATIENTS 

UNDERGOING CORONARY REVASCULARIZATION  
268. Björn Inge Gustafsson:  THE SEROTONIN PRODUCING ENTEROCHROMAFFIN CELL, 

AND EFFECTS OF HYPERSEROTONINEMIA ON HEART AND BONE 
2006 
269. Torstein Baade Rø:  EFFECTS OF BONE MORPHOGENETIC PROTEINS, HEPATOCYTE 

GROWTH FACTOR AND INTERLEUKIN-21 IN MULTIPLE MYELOMA 
270. May-Britt Tessem:  METABOLIC EFFECTS OF ULTRAVIOLET RADIATION ON THE 

ANTERIOR PART OF THE EYE 
271. Anne-Sofie Helvik:  COPING AND EVERYDAY LIFE IN A POPULATION OF ADULTS 

WITH HEARING IMPAIRMENT 
272. Therese Standal:  MULTIPLE MYELOMA:  THE INTERPLAY BETWEEN MALIGNANT 

PLASMA CELLS AND THE BONE MARROW MICROENVIRONMENT 
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ABSTRACT 

Lipoteichoic acid (LTA) is a central inducer of inflammatory responses caused by Gram- positive bacteria, 

such as Staphylococcus aureus (S. aureus), via activation of Toll-like receptor 2 (TLR2). Localization of TLR2 in 

relation to its co-receptors may be important for function. This study explores the signaling, uptake and 

trafficking pattern of LTA in relation to expression of TLR2 and its co-receptors CD36 and CD14 in human 

monocytes. We found TLR2 expressed in early endosomes, late endosomes/lysosomes and in Rab-11-positive 

compartments, but not in the Golgi apparatus or endoplasmic reticulum (ER). Rapid internalization of 

fluorescently labeled LTA was observed in human monocytes, colocalizing with markers for early and late 

endosomes, lysosomes, ER and Golgi network. Blocking CD14 and CD36 with antibodies inhibited LTA-

induced TNF release from monocytes and LTA uptake, emphasizing an important role for both molecules as 

co-receptors for TLR2. Importantly, blocking CD36 did not affect TNF release induced by Pam3CysSK4 or 

LPS. Expression of CD14 markedly enhanced LTA binding to the plasma membrane and also enhanced NF-κB 

activation. LTA internalization, but not NF-κB activation, was inhibited in Dynamin-I K44A dominant negative 

transfectants, suggesting that LTA is internalized by receptor-mediated endocytosis, but that internalization is 

not required for signaling. In fact, immobilizing LTA, and thereby inhibiting internalization, resulted in high 

TNF release from monocytes. Our results suggest that LTA signaling preferentially occurs at the plasma 

membrane, is independent of internalization, and is facilitated by both CD36 and CD14 as co-receptors for 

TLR2. 
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INTRODUCTION 

Both Gram-negative and Gram-positive bacteria, as well as viruses and fungi, induce proinflammatory responses 

that can cause fatal sepsis syndrome [1, 2]. Staphylococcus aureus (S. aureus) is the most commonly isolated 

infectious Gram-positive pathogen, and strains are rapidly becoming resistant to nearly all current antibiotics [3]. 

While lipopolysaccharide (LPS) from Gram-negative bacteria is suggested as a principal inducer of Gram-negative 

septic shock [4, 5], lipoteichoic acid (LTA) may be an equivalent component responsible for septic shock provoked by 

Gram-positive bacteria [6]. 

Toll-like receptors (TLRs) recognize a range of pathogen-associated molecular patterns (PAMPS), such as LPS 

and LTA. TLRs further initiate proinflammatory responses required for clearance of infection, by the same 

mechanisms that potentially cause sepsis [7]. Thirteen mammalian TLRs (TLR1-13), which recognize different 

PAMPs have been identified to date [7]. These are germ-line encoded, transmembrane proteins, consisting of an 

extracellular leucine-rich repeat (LRR) domain, and a cytoplasmic domain sharing homology with the mammalian 

interleukin-1 (IL-1) receptor [8, 9]. A signaling cascade initiated by activation of the TLRs results in translocation of 

the transcription factor nuclear factor kappa-B (NF-κB), which subsequently induces the expression of TNF, IL-1β, 

IL-6 and IL-8 and maturation of antigen presenting cells [10]. While TLR4, in complex with the small secreted 

glycoprotein MD2, recognizes LPS from Gram-negative bacteria [11, 12], TLR2 recognizes a particularly broad range 

of ligands, including Gram-positive bacteria and cell wall components such as LTA, as well as peptidoglycan and 

lipoproteins [13-18]. Additional TLR2 ligands may include zymosan, glycolipids from spirochetes, 

lipoarabinomannan, porins from Neisseria, among others [19]. The ability of TLR2 to recognize such a wide repertoire 

of ligands is partially explained by heterodimerization of TLR2 with TLR1 and TLR6. TLR2/TLR1 heterodimeriztion 

occurs in response to triacetylated lipopeptides, such as Pam3CysSK4 [20, 21], while optimal response towards 

diacetylated lipopeptides is attained by heterodimerization of TLR2 with TLR6 [22, 23]. LTA is recognized by the 

TLR2/TLR6 heterodimer, supposedly due to the two diacyl chains in the molecule [24].  

The monocyte differentiation antigen CD14 is a glycosylphosphatidylinositol (GPI) -linked receptor expressed 

by cells of the monocytic lineage [25, 26]. The receptor is shown to be highly concentrated in lipid raft microdomains 

of these cells [27]. Soluble CD14 (sCD14) and LPS-binding protein (LBP) in serum transfer LPS to membrane bound 

CD14, which further presents LPS to the TLR4/MD2 signaling complex [28-31]. The entire complex has further been 

shown to shuttle between the plasma membrane and the Golgi, independent of signaling, which is believed to 
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predominantly occur at the plasma membrane [32, 33]. CD14 has further been shown to bind lipopeptides and LTA in 

a similar manner [34-36]. The multifunctional B class scavanger receptor CD36 has, however,  also been found to be 

involved in immune responses to TLR2/TLR6 ligands such as LTA, in a manner analogous to CD14 [37]. Whether 

LTA binding to the plasma membrane is sufficient to induce signaling through TLR2, or whether internalization of the 

ligand is required is still under debate. Although some reports support that signaling occurs in lipid rafts, independent 

of ligand internalization [36, 38], other reports show that reduced internalization of both  S. aureus and its component 

LTA, correlated with diminished inflammatory response [39]. The relative role of CD14 and CD36 in response to LTA 

is furthermore in question with regard to whether the co-receptors participate in the same TLR2/TLR6 signaling 

complex, or whether they enhance TLR2-mediated responses independent of one another. 

In this study we explored the uptake and trafficking pattern of LTA from S. aureus, in relation to subcellular 

expression of TLR2 and its co-receptors CD36 and CD14, in human monocytes. We found TLR2 expressed in the 

plasma membrane, endosomes, lysosomes and in Rab11-positive compartments, but not in the Golgi apparatus or the 

ER. LTA rapidly accumulated in early and late endosomes, lysosomes, as well as in the ER and Golgi. Both CD14 and 

CD36 were required for optimal LTA-binding/internalization and TNF release in monocytes. We further found that 

LTA internalization, but not NF-κB activation, was inhibited in Dynamin-I K44A dominant negative transfectants, 

showing that LTA is internalized by receptor-mediated endocytosis, but that internalization is not required for 

signaling. These results support the hypothesis that the main signaling in response to LTA occurs preferentially at the 

plasma membrane, is independent of internalization, and requires both CD36 and CD14 as co-receptors for TLR2. 

 

EXPERIMENTAL PROCEDURES 

Reagents  

Tissue culture medium, trypsin/EDTA, penicillin, streptomycin and PBS were obtained from BioWhittaker 

(Walkersville, MD). Culture medium was supplemented with 2mM L-glutamine and 10 µg/ml ciprofloxacin 

(Cellgro/Mediatech, Herndon, VA or from BioWhittaker). G418 was purchased from Calbiochem (San Diego, CA) 

and Life Technologies (Gaithersburg, MD). Low endotoxin fetal bovine serum (FBS) was purchased from Hyclone 

(Logan, UT) and Integro (Zaandam, The Netherlands). Lipoteichoic acid from S. aureus was prepared by butanol 

extraction as described [16]. The purity of LTA was over 99%, measured by nuclear magnetic resonance and mass 

spectrometry [16]. Endotoxin contamination was minimal (<0.1 pg/µg), measured by negative Limulus amoebocyte 
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lysate assay, QCL-1000, (Charles River Endosafe, Charleston, WV, USA). Fluorescein- (FITC) and Rhodamine- 

conjugated LTA was prepared by sonifying LTA from S. aureus (3 mg) and fluorescein 5-isothiocyanate or 

sulforhodamine Q 5-acid fluoride (4.5 mg) (Fluka, Buchs, Switzerland), dimethyl sulfoxide (2.5 ml) (Wak-Chemie-

Medical GmbH, Steinbach, Germany) and trimethylamine (25 µl) (Acros Organics, Leicestershire, UK) for 10 min, 

and then shaked overnight at 37°C. The mixture was further spun at 7000 g for 90 min at room temperature four times 

in a pyrogen-free centrifugal ultrafilter unit (cut-off 3 kDa, Microsep 3K Centricons, Pall, USA) and additionally 

filtered through a PD-10 desalting column, (Amersham Biosciences, Freiburg, Germany). The yield of labeled LTA 

was determined by phosphate content, measured by the molybdenum blue method; LTA solution (50 µl) was mixed 

with ashing solution [H2SO4 : HClO4 : H2O (556:105: 3339, v:v:v)] (200 µl) and incubated at 145 °C for 2 h. Reducing 

solution [ascorbic acid: ammoniumheptamolybdenum sodium acetate (1: 9, v: v)] (1 ml) was subseqently added prior 

to incubation at 50°C for 2 h. Absorption was measured at 700 nm. Labeling efficiency, calculated as fluorescence 

(560 nm/620 nm) per phosphate content, was ~ 1 molecule rhodamine or fluorescein per LTA. The labeled LTA was 

negative in the Limulus test for Gram-negative endotoxin (<0.1 pg/µg). Lipopolysaccharide (LPS) was from 

Escherichia coli strain O111:B4 and purchased from Invivogen (San Diego, CA). Synthetic Pam3Cys-Ser-Lys4 

(Pam3CysSK4) was purchased from EMC microcollections (Tübingen, Germany). Antibodies used were; anti-TLR2 

(TL2.1) [18], anti-TLR4 (HTA125) purified from hybridoma cells, kindly provided by Dr Kensuke Miyake (Saga 

Medical School, Japan) [40], unconjugated and FITC conjugated anti-CD36 (FA6-152) (Immunotech, France), anti-

CD14 mAbs 3C10 [41], 5C5 [42] and MEM-18 (HyCult Biotechnology, Uden, The Netherlands). Additional 

antibodies used include Mouse IgG and Tricolor (PE-Cy5)-conjugated Goat-anti-Mouse secondary Ab 

(Caltag/Invitrogen, CA), anti-LAMP-1 (R&D Systems, MN), anti-Golgin-97 (CDF4) (Invitrogen, CA), anti-GM130, 

anti-Eea-1 and unconjugated and FITC-conjugated anti-Calnexin and MouseIgG (BD Biosciences, NJ). Alexa-

conjugated antibodies were generated by protein labeling with Alexa 488 (A488), 546 (A546) or 647 (A647) according 

to manufacturer’s instructions (Invitrogen, CA). Alexa 633 (A633) labeled transferrin was purchased from Invitrogen. 

The following expression vectors were used; pcDNA3 (Invitrogen, CA), human CD14 and TLR2-YFP in pcDNA3 

[43], and early endosomal antigen-1 (Eea-1) tagged with green fluorescent protein (GFP) (Eea-1GFP) [44]. pORF9 and 

human CD36 in pORF9 were purchased from Invivogen (San Diego, CA). MD-2 in pEF-BOS was kindly provided by 

Dr Miyake [45]. ERCFP encoding the ER targeting sequence of calreticulin fused to cyan fluorescent protein (CFP) 

(Clontech, CA). Dynamin-I wild-type and Dynamin-I K44A in pcDNA3 were kindly provided by Dr Sandy Schmid 
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(Scripps, USA). Transient transfections were performed using GeneJuiceTM transfection reagent (Novagen, Darmstadt, 

Germany) according to manufacturer’s instructions. 

 

Cells and Cell lines 

Human monocytes were isolated from peripheral blood mononuclear cells (PBMC) by adherence. PBMC were 

seperated from A+ buffycoats (Blood bank, St Olav’s Hospital Trondheim, Norway) using Lymphoprep, as described 

by manufacturer (Axis- Shield, Norway). Monocytes were allowed to adhere in RPMI supplemented with 5 or 10% 

pooled A+ serum (St Olav’s Hospital Trondheim, Norway) for 1 h at 37 °C, 5% CO2, before cells were washed 3 times 

and added fresh medium. Human epithelial kidney 293 (HEK293) cell lines expressing TLR2 or TLR2 in combination 

with CD14 [43] were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% FBS and the 

selection antibiotic G418 (0.5 mg/ml). Untransfected HEK293 cells were cultured in 10%FBS/DMEM. For confocal 

imaging, cells were seeded on 35 mm glass bottom γ-irradiated tissue cell dishes (MatTek Corporation, Ashland, MA). 

Madine Darby Canine Kidney (MDCK) cells stably expressing Eea-1GFP were grown in DMEM supplemented with 

9% FBS, 2 mM glutamine, 25 U/ml penicillin and 25 µg/ml streptomycin at 37 oC, 6% CO2. 

 

Live Microscopy 

Madine Darby Canine Kidney (MDCK) cells stably expressing Eea-1GFP were transiently transfected with the 

TLR2 over night in microwell dishes for microscopy (Mattek, MA), using Lipofectamin according to protocol 

(Invitrogen, CA). Preceding imaging the cells were added microscopy medium, DMEM without phenol red and 

sodium carbonate, supplemented with 3.5 g/L D-glucose to a final concentration of 4.5 g/L; 25 mM HEPES; with 10% 

FBS. Cells were kept on ice for 45 min and then incubated with Alexa 546 conjugated anti-TLR2 mAb TL2.1 on ice 

for an additional 45 min. Image acquisition was performed on an Olympus Fluoview 1000 at 37°C with an Olympus 

PlanApo 60X/1.42 Oil objective. Internalization analysis was carried out with ImageJ software, measuring the 

intensity of conjugated TLR2 as a function of time. 

 

Confocal microscopy of subcellular expression of TLR2 and LTA internalization  

Freshly isolated live monocytes were added fresh RPMI medium supplemented with 0.1% A+ serum incubated 

with LTARhodamine (20 µg/ml) and internalization of the ligand was followed by confocal microscopy at 37 °C for 1 h. 
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Freshly isolated monocytes were either left unstimulated or stimulated with LTARhodamine for 1 h, 37 °C, 8% CO2, prior 

to fixating with 4% para- formaldehyde, 10 min on ice, and then with PEM buffer 10 min at room-temperature (RT). 

Cells were then permeabilized with 50 mM NH4Cl/0.05% BSA/0.05% Saponin, 20 min, RT. Cells were subsequently 

stained in 50 mM NH4Cl/0.05% BSA/0.05% Saponin, 20 min, RT. Cells were also stained with A488 or A647 

conjugated anti-TLR2 and antibodies against early endosome marker Eea-1FITC, lysosome marker anti-LAMP-1A647, 

trans-Golgi marker anti-Golgin-97A647, cis-Golgi marker anti-GM130, anti-CD36FITC, anti-CD14A647 (3C10) or anti-

CD14A488 (5C5). Freshly isolated monocytes were additionally stained intracellularly, as described, with anti-Rab-11, 

and subsequently with secondary antibody Goat-anti-RabbitA647, prior to staining with TL2.1A488. HEK293 cells were 

stained intracellularly after fixing cells with 4% para-formaldehyde for 10 min on ice and permeabilization with 

20%A+/0.1% saponin/PBS for 20 min at RT. Cells were stained in 2%A+/0.1% saponin/PBS for 45 min at RT using 2-

10 µg/ml Ab before cells were washed and added PBS. Cells were observed by confocal microscopy using an Axiovert 

100-M inverted microscope (Zeiss), equipped with an LSM 510 laser scanning unit and a 63X 1.4-NA plan 

Apochromat oil-immersion objective (Zeiss). Appropriate filters were selected for the individual stainings. 

 

LTA binding/internalization studies  

A+ buffycoat from healthy donors (St Olav’s Hospital Trondheim, Norway) was incubated with LTARhodamine Green 

(10 µg/ml) for 45 minutes at 4 °C or at 37 °C, 8% CO2. Incubation at 4 °C should permit LTA binding to receptors on 

the plasma membrane, but delay LTA internalization, while binding and internalization of LTA in monocytes was 

expected to proceed normally at 37 °C. Erythrocytes were lysed with formic acid- based lysis buffer  for 1 min, 

neutralized and fixed using the Coulter Immunoprep Epics Leukocyte preparation system (Coulter, FL). Samples of 

cells were stained with Fluoroscein (FITC) or Phycoerytrin (PE) conjugated monoclonal antibodies (mAb) against 

CD14, CD3 or CD19. Samples were analyzed by flow cytometry and populations were gated by CD14 high expression 

(monocytes), CD14 low expression (granulocytes), and CD3 or CD19 expression (lymphocytes), as well as by size and 

granularity. Gates were subsequently applied to determine LTARhodamine Green internalization in the samples by 

determining median fluorescence of each population. Monocytes were also stimulated by plating cells in sterile 96-

plate wells coated overnight at 4 °C with titrations of LTA or PBS, or stimulated by adding titrations of LTA in 

solution, or medium. Wells were washed 4 times with PBS after coating and prior to addition of cells to remove excess 
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unbound LTA. Cells were stimulated overnight in 1%A+/RPMI at 37 °C, 5% CO2 before supernatant was harvested 

and TNF levels were assessed by ELISA.  

 

Cell staining for flow cytometry  

Freshly islolated monocytes were detached with 0.02% EDTA, fixed with 4% para-formaldehyde and stained 

extracellularly in 1% FBS/ PBS with anti- TLR2A488, CD36FITC, CD14A488 (5C5) or MouseIgGA488/FITC and analyzed by 

flow cytometry. Freshly isolated monocytes were furthermore left unstimulated or stimulated for 16 h with LTA (0.1, 

1, 10, 100 or 1000 ng/ml), prior to staining with anti-TLR2 or MouseIgG and subsequently with secondary Ab Goat-

anti-MouseTricolor, or CD36FITC or MouseIgG FITC, as described. 

 

Luciferase reporter assay 

NF-κB activation was determined by an NF-κB luciferase reporter assay as previously described [43]. Briefly, 

HEK293 cells were transiently transfected with reporter plasmid ELAM-luciferase reporter gene (ELAM-Luc), 

containing a NF-κB dependent portion of the ELAM promoter driving luciferase. Cells were additionally transfected 

with control plasmids pcDNA3 and pORF9 and/or CD36, CD14, TLR2; CD36, CD14 and TLR2 in combination, or 

TLR4, CD14 and MD2 for 24 h. The total amount of each vector was kept constant, by filling up with the appropriate 

control plasmids. Cells were subsequently stimulated with LTA (5 µg/ml) or LPS (100 ng/ml) for 5 h before cells were 

lysed and assayed for luciferase activity as a measure for NF-κB activation.  

 

Blocking studies 

Freshly isolated monocytes were preincubated with MouseIgG, anti-TLR2, anti-CD36, anti-CD14 (MEM-18) or 

anti-TLR4 (10 ug/ml) in RPMI at RT for 30 min and subsequently added LTARhodamine Green (2 µg/ml) for 45 min at 37 

°C. Cells were detached with 0.02% EDTA/PBS, washed and analyzed for LTA binding and internalization by flow 

cytometry. Monocytes were pretreated with optimized concentrations of anti-CD36 (0.5 µg/ml), anti-CD14 (3C10) (10 

µg/ml), a mixture of TL2.1 and TL2.3 (10 µg/ml) or MouseIgG (10 µg/ml) for 45 min, RT, prior to stimulation with 

medium, LTA (10 µg/ml), LPS (20 ng/ml) or Pam3CysSK4 (50 ng/ml) in 1%A+/RPMI for 5 h at 37 °C, 5% CO2 before 

supernatant was harvested and analyzed for TNF by ELISA (R&D Systems, MN).  
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Dynamin-I expression studies 

HEK293-TLR2 cells were transiently transfected with wild- type Dynamin-I or the mutant Dynamin-I K44A, in 

the presence or absence of transfected CD14 for 72 h before cells were incubated with LTARhodamine (2 µg/ml) and 

TransferrinA633 (2 µg/ml) for 30 min at 37 °C and observed by confocal microscopy. HEK-TLR2 cells were transiently 

transfected as described with the ELAM- Luc, and combinations of CD14, and Dynamin-I WT or the mutant 

Dynamin-I K44A and/or control pcDNA3 for 72 h. Cells were subsequently stimulated with medium or LTA (5 

µg/ml) for 5 h, before cells were lysed and analyzed for NF-κB activation. 

 

RESULTS 

Surface TLR2 is rapidly internalized into endosomes and lysosomes 

In order to study TLR2 trafficking, MDCK cells expressing TLR2 and a GFP-tagged early endosomal antigen-1 

(Eea-1GFP), were incubated with the Alexa 546 labeled TLR2 mAb TL2.1 (TL2.1A546).  We observed that TL2.1A546 

bound to the plasma membrane of TLR2 transfected cells (Figure 1 A). We further observed gradual internalization of 

the TL2.1 A546 mAb into Eea-1-positive early endocytic compartments (Figure 1 A and B, Supplementary Video 1), 

followed by maturation as the Eea-1 coat detached (Figure 1 A, Arrow). No binding or internalization was observed 

upon incubation with an isotype control (not shown), demonstrating the specificity of the staining.  

Figure 1 B shows an increase in colocalization of TL2.1A546 and Eea-1GFP within the initial 4 min of incubation, 

while colocalization between TL2.1A546 and lysotrackerGreen began to increase after 10 min of incubation.  Calculations 

from images after 180 min showed that 20-30% of the TLR2 mAb colocalized with the lysosome marker 

LysotrackerGreen after 180 min (images not shown). These results suggest that surface TLR2 traffics along the 

conventional endosomal pathway.  

 

TLR2 is expressed in the plasma membrane, endosomes, lysosomes and Rab-11- positive compartments in 

monocytes 

We further applied confocal microscopy to investigate the intracellular expression of TLR2 in freshly isolated 

monocytes in order to assess the subcellular compartments where LTA- induced signaling could occur.  In line with 

previous studies [46], TLR2 was found to be highly expressed in the plasma membrane of monocytes (Figure 2), as 
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well as in a population of early endosomes (Figure 2 A) and lysosomes (Figure 2 B). Furthermore, we found that 

TLR2 was not expressed in the Golgi network, using antibodies against Golgin-97 (Figure 2 C) and GM130 (not 

shown), which are specific markers for the trans- and cis-Golgi, respectively [47, 48]. TLR2 expression was, however, 

often observed in close proximity to the trans-Golgi network, which led us to examine whether TLR2 was expressed in 

Rab-11 positive compartments. The GTPase Rab-11 localizes to pericentriolar recycling endosomes and trans-Golgi 

and is essential for development of multivesicular body (MVB) endosomal compartments [49-52]. TLR2 colocalized 

with Rab-11 in the perinuclear area (Figure 2 D). These results suggest that TLR2 may also be expressed in recycling 

endosomes and possibly in multivesicular endosomes. Minimal colocalization was observed between TLR2 and the 

ER-marker Calnexin (not shown), showing that TLR2 is not retained in the ER, which is in contrast to other TLRs 

such as TLR3 and TLR9 [53, 54]. 

 

Monocytes efficiently bind and internalize fluorescently labeled LTA and upregulate TLR2  

The ability of leukocyte populations to bind and internalize LTA was assessed by incubating white blood cells 

from healthy human donors with fluorescently labeled LTARhodamine Green at 4 °C or 37 °C. We found that monocytes, as 

well as granulocytes, bound LTA efficiently at 4 °C, while only marginal binding was observed to lymphocytes 

(Figure 3 A). Additional fluorescence was observed at 37 °C, suggesting both binding and internalization of LTA in 

monocytes and granulocytes. Though both monocytes and granulocytes express TLR2, CD36 and CD14 [46, 55, 56],  

monocytes express particularly high levels of all three receptors on the surface (Figure 3 B).  We have previously 

shown that murine macrophages rapidly upregulate TLR2 in response to heat- killed S. aureus [57]. Here we show that 

LTA from S. aureus upregulated surface TLR2 on human monocytes in a dose- dependent manner (Figure 3 C). The 

expression of surface CD36 on monocytes was, however, less affected upon stimulation with LTA and was found to 

be slightly down-regulated at the highest LTA concentration, in contrast to TLR2 (Figure 3 D). 
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LTA is rapidly internalized in tubular endocytic structures and targeted to the trans- Golgi network and the 

ER 

We next investigated whether LTA localized to the same compartments as TLR2 in human monocytes. Using 

fluorescently labeled LTA we observed LTA internalization in live monocytes by confocal microscopy. LTA initially 

bound to the plasma membrane of monocytes and was rapidly internalized (not shown). Figure 4 A shows LTA in 

extensive tubular structures and concentrated in the perinuclear area in monocytes after 20 min of incubation. Confocal 

images and fluorescence intensity profiles of the fluorescently conjugated Ab and LTA showed that LTA was 

localized in the Golgi network (Figure 4 B), in early endosomes (Figure 4 C), as well as in lysosomes (Figure 4 D), 

after 1 h of incubation. LTA localization to LAMP-1 positive vesicles was more apparent at later time points, (2- 6 h), 

(data not shown). Extensive overlay was observed between fluorescent LTA and calnexin staining, particularly in 

close proximity to the nucleus (Figure 4 E), suggesting that LTA localizes to the ER. These results were confirmed in 

HEK293-TLR2 cells transiently expressing the targeting sequence of calreticulin fused to CFP which localizes the 

protein to the ER (ERCFP). Confocal images of these cells with LTARhodamine revealed overlap between LTA and the ER 

marker (Figure 4 F), suggesting that LTA is targeted to the ER upon internalization. Though LTA clearly localized to 

the trans-Golgi network and the ER of monocytes, TLR2 was not expressed in these compartments (Figure 2 C and 

data not shown). Colocalization between LTA and TLR2 was, however, observed in early endosomes and lysosomes 

(not shown). Since LTA requires TLR2 for signaling, the results suggest that signaling may occur at the plasma 

membrane and along the endocytic pathway.  

 

Both CD36 and CD14 enhance TLR2-mediated NF-κB activation in response to LTA  

Both CD36 and CD14 are shown to act as coreceptors for TLR2 in response to LTA [34, 37]. In this experiment 

the role of CD36 and CD14 in response to LTA was compared. HEK293 cells were transiently transfected with CD36, 

CD14, TLR2 or in combination. HEK293 cells were also transiently transfected with TLR4, MD2 and CD14 as a 

control. NFκB-activation in response to LTA was only observed upon expression of TLR2 (Figure 5). Coexpression of 

TLR2 with either CD36 or CD14 enhanced LTA induced NFκB-activation approximately three-fold compared to cells 

expressing TLR2 alone (Figure 5). These results indicate that both CD36 and CD14 function as co-receptors for TLR2 

in response to LTA, and that expression of either co-receptor enhances LTA-induced NFκB-activation markedly. A 

small additive effect on NFκB-activation was observed upon co-expression of both CD36 and CD14 with TLR2 in 
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response to LTA (Figure 5). NFκB- activation was not observed in HEK293 cells transfected with TLR4, CD14 and 

MD2 in response to LTA, though these cells responded normally to LPS (Figure 5), illustrating the purity of the LTA.  

 

CD36 and CD14 colocalize with TLR2 at the plasma membrane in monocytes 

Since both CD36 and CD14 function as coreceptors for TLR2 in response to LTA, we studied the localization of 

these receptors in unstimulated and LTA- stimulated monocytes. Freshly isolated human monocytes were either left 

unstimulated, or incubated with LTARhodamine for 1 h, and then stained for TLR2, CD36 or CD14. Confocal microscopy 

showed that all three receptors were highly expressed in the plasma membrane, as well as in intracellular vesicles 

(Figure 6). TLR2 was also found to colocalize with CD36 (Figure 6 A) and CD14 (Figure 6 C) both at the plasma 

membrane and in internal vesicular structures, that may represent early endosomes and lysomes where TLR2 is 

expressed (Figure 2 A and B). Upon stimulation of monocytes with fluorescent LTA, particularly CD36 (Figure 6 B), 

but also CD14 (Figure 6 D), redistributed to the plasma membrane (Figure 6, profile graphs). LTA was predominantly 

localized in the perinuclear area, and surprisingly little LTA was observed bound to the plasma membrane. However, 

profile graphs of fluorescence intensity in a cross section of the cells show that LTA was often localized in close 

proximity to the plasma membrane (Figure 6 B and D), often overlapping partially with TLR2, CD14 and CD36 at the 

plasma membrane. Thus, it is likely that LTA signaling occurs at the plasma membrane, as well as along the endocytic 

pathway. 

 

Blocking CD14 or CD36 impairs LTA cell association and subsequent TNF release in monocytes 

We further investigated the contribution of TLR2 and its co-receptors CD36 and CD14 in the cell association 

(binding plus internalization) of LTA in freshly isolated human monocytes. Monocytes were pre-treated with 

antibodies against TLR2, CD36 and CD14 prior to incubation with fluorescently labeled LTA. Interestingly, we found 

that cell association of LTA was markedly reduced in cells pretreated with antibodies against either CD36 or CD14, 

while antibodies against TLR2 and TLR4 alone did not affect LTA cell association (Figure 7 A). Thus, both CD14 and 

CD36 play an important role in the cell association of LTA in human monocytes. 

Given the reduction in cell associated LTA in the presence of blocking CD36 and CD14 antibodies, we next 

determined whether inhibiting CD36 and CD14 also had an effect on LTA-induced signaling in monocytes. Indeed, 

inhibition of CD36 was found to markedly reduce TNF release in monocytes in response to LTA, but had no effect on 
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the response to the TLR4 ligand LPS, or the TLR2/TLR1 ligand Pam3CysSK4 (Figure 7 B). Though inhibition of 

TLR2 had no effect on cell association of LTA, inhibition of TLR2 significantly reduced TNF release from monocytes 

in response to LTA, as well as in response to Pam3CysSK4, but not in response to LPS (Figure 7 B). Pretreatment of 

monocytes with anti-CD14 inhibited TNF release in response to LTA, as well as LPS and Pam3CysSK4 (Figure 7 B). 

These results suggest though TLR2 is required for signaling in response to LTA, CD14 and CD36 play a prominent 

role in the LTA cell association, and in LTA-induced signaling in human monocytes. 

 

TLR2 signaling in response to LTA occurs mainly at the plasma membrane, independently of receptor-

mediated endocytosis via Dynamin- I 

Since LTA colocalized with TLR2 both at the plasma membrane and along the endocytic pathway, we further 

examined whether internalization of LTA was necessary for signaling. Monocytes were incubated on LTA- coated 

wells or with LTA added in solution. Immobilization of LTA on a plastic surface should allow binding, but restrict 

internalization of the ligand. Interestingly, we found that immobilizing LTA greatly enhanced TNF release from 

monocytes, compared to cells that received LTA in solution (Figure 8 A). We argue that the prominent effect on TNF 

release from monocytes observed upon immobilizing LTA, shows that signaling predominantly occurs at the plasma 

membrane and does not require internalization of LTA.    

The significance of LTA internalization with regard to signaling was further studied by inhibiting LTA 

internalization. A dominant negative mutant of Dynamin-I (Dynamin-I K44A) inhibits receptor-mediated endocytosis 

by interfering with the function of endogenous Dynamin-I by blocking vesicle internalization before membrane 

scission occurs [58]. The internalization route of LTA was studied in HEK-TLR2 cells, transiently expressing wild-

type Dynamin-I, or the mutant Dynamin-I K44A, in the presence or absence of CD14 expression. Transfected cells 

were incubated with LTARhodamine, as well as with TransferrinAlexa633 as a control for receptor- mediated endocytosis, 

prior to imaging by confocal microscopy (Figure 8 B). Confocal images show that internalization of both LTA and 

transferrin occured in cells expressing wild-type Dynamin-I, but not in cells expressing the mutant Dynamin-I K44A. 

As expected, transferrin bound to the plasma membrane, but was not internalized in the presence of Dynamin-I K44A. 

The mutant Dynamin-I K44A also inhibited LTA uptake in CD14 expressing cells. LTA binding to the plasma 

membrane was, however, only observed in the presence of CD14, where LTA colocalized with transferrin (Figure 8 

B). The results suggest that LTA is internalized by a receptor-mediated mechanism. 
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To assess whether internalization of LTA was necessary for signaling, NF-κB activation was assessed in HEK-

TLR2 cells in the absence or presence of CD14 and in the presence of wild- type Dynamin-I or the mutant K44A 

Dynamin-I. Figure 8 C shows that introduction of CD14 strongly enhanced LTA-induced NF-κB activation, but that 

the Dynamin-I K44A mutant did not affect NF-κB activation, neither in the presence, nor absence of CD14. These 

results show that CD14 enhances signaling by binding LTA to the plasma membrane and that LTA internalization is 

not required for signaling.  

  

DISCUSSION 

In this study we have investigated the mechanistical details of LTA internalization in monocytes. It has been 

suggested that LTA uptake is required for signaling [39], however, this is in contrast with previous reports suggesting 

that TLR2 activation by LTA occurs in lipid rafts in the plasma membrane, independent of LTA internalization [36, 

38]. In this study we examined the intracellular trafficking of LTA in human monocytes using directly labeled LTA. 

We found that monocytes, which express high levels of surface TLR2 and its co-receptors CD14 and CD36 bind and 

internalize LTA efficiently.  

Using a TLR2 specific mAb, we found that TLR2 rapidly traffics from the plasma membrane to early endosomes 

in live cells that over-expressed the receptor. Early endosomes containing TLR2 subsequently matured (Figure 1 A). 

We further observed TLR2 in lysosomes. Though only 20-30% of the TLR2 Ab was observed colocalizing with 

lysotrackerGreen after 3 h, this observation could be due to several factors. Incubation for longer time periods, or during 

stimulation, may have shown more TLR2 in the lysosomes. The fluorochrome bound to the TL2.1 Ab may have 

possibly lost fluorescence in the acidic environment of lysosomes of live cells, or the Ab may have been degraded, 

resulting in the low percentage of TLR2 mAb observed in lysosomes. Though TLR2 has been reported to not be 

ubiquitinylated by the ubiquitin- protein ligase TRIAD3A, in contrast to TLR4 and TLR9 [59], other ligases, for 

instance TRIAD3B, may ubiquitinylate TLR2 and target it for degradation. The TL2.1 mAb used in this study has 

been shown to be presented on MHC class II and induce proliferation of a mouse C -specific human CD4+ T cell clone 

[60], supporting that TLR2 traffics along the classical MHCII- pathway.  

TLR2 was further found to be highly expressed in a population of Eea-1 positive early endosomes and LAMP-1 

positive lysosomes in human monocytes. In contrast to previous reports [36], we did not observe TLR2 in the Golgi 

network in human monocytes, however, we did observe TLR2 in the Golgi network of HEK293 cells overexpressing 



 15

the receptor (data not shown). We interpret these results as characteristic of epithelial cells, or an effect of over-

expression of TLR2. In monocytes, TLR2 colocalized with Rab-11-positive structures localized in close proximity to 

the trans-Golgi network, suggesting that TLR2 is expressed in endosomal recycling compartments. Whether Rab-11 is 

required for LTA internalization and signaling remains to be investigated. 

TLR2 is essential for inflammatory responses towards highly purified LTA [34]. The high amount of TLR2 at the 

plasma membrane, and upregulation of the receptor in response to LTA, supports the notion that TLR2 signaling 

occurs at the plasma membrane. Localization of TLR2 in endosomes and lysosomes, however, suggests that signaling 

may occur in these compartments as well, as shown for TLR4 [61]. Signaling from endosomes/lysosomes also occurs 

for TLR3 [53] and TLR9 [54], though these receptors are recruited to endosomes from the ER. Using directly labeled 

functional LTA we found that LTA was rapidly internalized in characteristic tubular structures, which colocalized with 

markers for ER- and Golgi network, showing that LTA has a uptake and trafficking pattern in phagocytic cells which 

is different from other TLR ligands such as LPS, CpG and polyIC [32, 53, 54, 61]. The colocalization of LTA with 

markers of the ER and the Golgi suggests that it follows a retrograde pathway, possibly resembling the trafficking 

pattern of the plant toxin Ricin and the bacterial toxin Shiga toxin [62]; which follow a retrograde transport to the ER 

[63-66]. While Shiga toxin is shown to be internalized in clathrin-coated pits, Ricin is internalized by Dynamin-, 

clathrin- and caveolea- independent mechanisms [62]. In light of the finding that LTA appears to be targeted to the 

Golgi and ER it would be interesting to compare LTA internalization with Ricin and Shiga toxin.  

Our results demonstrate that LTA was endocytosed in a Dynamin-I dependent manner. Previous reports have 

suggested that LTA is internalized by a lipid raft-dependent pathway [67-69]. Colocalization between LTA and 

transferrin was observed during the initial minutes of endocytosis in HEK293 cells expressing TLR2 (Nilsen, 

Unpublished data). In addition, some colocalization between LTA and Choleratoxin B was seen, predominantly in the 

Golgi network (Nilsen, Unpublished data). These results suggest that LTA may be internalized by both clathrin- and 

caveolea-dependent pathways. Colocalization between LTA and transferrin and Choleratoxin B was, however, only 

partial and the internalization pattern of LTA did not mimic the uptake of LPS, FSL-1 or Pam3CysSK4. These ligands 

are internalized slower than LTA and are seen in endocytic vesicles that clearly colocalize with transferrin [35, 61], 

(Nilsen, Unpublished data). Our findings suggest that LTA may utilize several endocytic pathways, which also has 

been described for CD14-mediated LPS uptake [61, 70].   
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The role of CD36 as a co-receptor for TLR2 in response to LTA has predominantly been studied in the presence of 

CD14 [37, 39], and the contribution of each of these co-receptors has previously not been compared.  In accordance 

with previous reports [34, 39], we found that both CD36 and CD14 enhanced LTA-induced TLR2-mediated NF-κB 

activation in transfected cells. Only a minor additive effect was observed upon coexpression of both receptors in HEK-

TLR2 cells. In monocytes CD36 and CD14 mAbs inhibited both cell association of LTA and TNF release to a similar 

extent (Figure 7). The results suggest that inhibiting either CD14 or CD36 down-regulates binding or internalization of 

LTA, which in turn reduces signaling and the induction of TNF. Consequently, both CD36 and CD14 appear to be 

important in the TLR2 signaling complex in response to LTA. CD36 is, however, specifically involved in 

TLR2/TLR6-mediated responses, but not in TLR2/TLR1-mediated responses, while CD14 is involved in signaling in 

response to LPS and Pam3CysSK4 as well in signaling in response to LTA. 

Expression of CD14 in HEK-TLR2 cells profoundly enhanced both binding of LTA to the plasma membrane and 

the NF-κB activation, suggesting that this co-receptor may upregulate signaling by accumulating LTA at the plasma 

membrane. Furthermore, immobilizing LTA on a plastic surface induced a high level of TNF release in monocytes, 

independent of internalization of the ligand. This appears to be a specific property of LTA, but not LPS or 

Pam3CysSK4
  (Deininger, Unpublished data). Expression of Dynamin-I K44A inhibited LTA internalization, both in 

the absence and presence of CD14, suggesting that LTA is internalized by a receptor- mediated mechanism. 

Expression of Dynamin-I K44A had, however, no significant effect on LTA-induced NF-κB activation, showing that 

binding of LTA to the plasma membrane is sufficient to induce signaling. This finding is in contrast to previous 

reports describing that CD36-mediated internalization of LTA is required for signaling [39]. Though CD36 is shown to 

be necessary for internalization, the presence of CD36 may also be required for formation of the correct receptor 

clustering in response to LTA, or for recruitment of LTA to lipid rafts, as suggested in recent reports [38]. In 

summary, our results show that signaling in response to LTA occurs independent of internalization of the ligand and 

provide further insight into the mechanisms of LTA internalization, trafficking and signaling through TLR2 and its 

coreceptors CD14 and CD36. 
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FIGURE LEGENDS 

 

Figure 1: Surface TLR2 is internalized into endosomes.  A) Confocal images of internalization of TLR2 mAb 

(red) in MDCK cells expressing Eea-1-GFP (green) and TLR2. Images show enlargements of a portion of a 

representative cell at 4 s interval time-points (two top panels). Arrows denote an EEA-1GFP (green) containing TLR2 

mAb (red) that matures and looses the early endosome tag. The full picture of the cell (bottom picture) shows TLR2 

mAb internalization after 612 s. Cells were transiently transfected with TLR2 24 h prior to the experiment using 

Oligofectamine transfection reagent. Cells were kept on ice for 45 min and then incubated with TLR2A546 mAb on 

ice for 45 minutes. Image acquiring was initiated 15 min post incubation. Image acquisition was performed on an 

Olympus Fluoview 1000 at 37°C with an Olympus PlanApo 60X/1.42 Oil objective. B) Plot of relative intensity of 

total TLR2A546 florescence (black) and colocalization of TLR2A546 mAb with Eea-1GFP (green) and lysotrackerGreen 

(red), as a function of time. Internalization analysis was carried out with ImageJ software. Dotted lines denote 

polynomial trendlines. 

 

Figure 2: TLR2 is expressed in the plasma membrane, endosomes, lysosomes and Rab-11- positive 

compartments, but not in the Golgi of monocytes. 

Confocal images of freshly isolated monocytes stained intracellularly with the TLR2 monoclonal antibody TL2.1 

(red) and antibodies against A) early endosome marker Eea-1 (green), B) lysosome marker LAMP-1 (green), C) 

trans-Golgi marker Golgin-97 (green) or D) Rab-11 (green). Overlay of each staining is shown in addition to overlay 

and single tracks of enlargements of two sections, denoted by squares in each image. Profile graphs show 

fluorescence intensity of each color in a cross-section denoted by an arrow in each image (A-D). Images of cells 

shown are representative of the cells observed in each dish, and are representative of three experiments. 

 

Figure 3: Monocytes efficiently bind and internalize LTA and upregulate TLR2. A) Monocytes efficiently bind 

and internalize LTA. A+ buffy coat from healthy donors was incubated with LTARhodamine Green for 45 min at 4 °C or at 

37 °C, 8% CO2. Red blood cells were subsequently lysed and remaining cells were analyzed by flow cytometry to 

determine LTA binding and uptake. Populations were gated by size and granularity and CD14 high expression 

(monocytes), CD14 low expression (granulocytes) and CD3 or CD19 expression (lymphocytes). B)  Monocytes were 
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fixed and stained extracellularly with Ab against TLR2, CD14 and CD36 for 45 min on ice and analyzed by flow 

cytometry.  Monocytes were stimulated with LTA (0, 0.1, 1, 10, 100 or 1000 ng/ml) for 16 h and were subsequently 

stained for surface expression of C) TLR2 or D) CD36, prior to determination of median fluorescence by flow 

cytometry. Results shown are representative of three independent experiments. 

 

Figure 4: LTA is rapidly internalized in tubular structures and targeted to the trans-Golgi network and the 

ER. 

A) Internalization of LTARhodamine (20 µg/ml) (red) in live monocytes after 20 min of incubation at 37 °C. C-F) 

Monocytes incubated with LTARhodamine (red) (20 µg/ml) for 1 h  at 37 °C, 8% CO2, and subsequently fixed and 

stained intracellularly with antibodies against B) Eea-1 (green), C) Golgin97 (green), D) LAMP-1 (green) or E) ER 

marker Calnexin and secondary antibody Goat-anti-mouseA647 (green). Cells were visualized by confocal microscopy. 

Overlay images are shown to the left with enlargements of sections denoted by a square in the overlay image shown 

to the right along with separate tracks of each color. Profile graphs are included showing fluorescence intensity of 

each color in a cross-section denoted by an arrow in each image (B-E). F) Confocal images of live HEK293-TLR2 

cells transiently expressing CFP fused to the targeting sequence of calreticulin (ERCFP), which localizes to the 

endoplasmic reticulum (green), incubated with LTARhodamine (red) (20 µg/ml) for 1hr at 37 °C. Overlay (Over) and 

separate tracks of a new image of the same cell are shown to the right. Images of cells shown are representative of 

the cells observed in each dish, and are representative of three independent experiments. 

 

Figure 5: CD14 and CD36 enhance LTA- induced NF-κB activation mediated by TLR2. A) HEK 293 cells 

transfected with an NF-κB luciferase reporter plasmid and TLR2, or TLR2 in combination with CD36 or/and CD14 

for 24 h were stimulated with LTA (5 µg/ml) or LPS (100 ng/ml) for 5 h at 37 °C, 8% CO2. Cells were subsequently 

lysed and assayed for NF-κB activation. Results shown are representative of three independent experiments. 

 

Figure 6: CD36 and CD14 are expressed at the plasma membrane where they colocalize with TLR2. 

Freshly isolated monocytes incubated with medium (A and C) or LTARhodamine for 1 h (B and D) at 37 °C, 5% CO2, 

and subsequently fixed and stained intracellularly with TLR2 mAb TL2.1A647 (red) and anti-CD36FITC (green) (A and 

B), or TL2.1A647 (red) and anti-CD14A488 (green) (C and D). Staining was observed by confocal microscopy. Overlay 
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images are shown to the left, with enlargements of sections denoted by a square in the overlay image shown to the 

right, along with separate tracks of each color. Profile graphs show fluorescence intensity of cross-sections denoted 

by an arrow in (A-D). 

 

Figure 7: Blocking CD14 or CD36 impairs LTA cell association and subsequent TNF release in monocytes 

A) Monocytes were pretreated with mAb against TLR2, CD36, CD14  or control Ab (10 µg/ml) for 45 min, RT,  

before addition of  LTARhodamine Green  (2 µg/ml) for 45 min at 37 °C, 5% CO2. Cells were subsequently washed and 

analyzed by flow cytometry to assess LTA cell association (binding and internalization). B) Monocytes were 

pretreated with Control Ab or mAb against CD36, CD14 or TLR2 or CD36, CD14 and TLR2 in combination for 45 

min, before cells were stimulated with Medium, LTA (10 µg/ml), Pam3CysSK4 (50 ng/ml) or LPS (20 ng/ml) for 5 h 

at 37 °C, 5% CO2. Supernatant was harvested and analyzed for TNF by ELISA. Results shown are representative of 

three independent experiments. 

 

Figure 8: TLR2 signaling in response to LTA occurs at the plasma membrane, and is not dependent on 

Dynamin-I. 

A) Immobilizing LTA on a plastic surface enhances TNF release in monocytes. Monocytes were stimulated by 

plating cells in wells coated with LTA or PBS, or stimulated by adding LTA or medium in solution. Supernatant was 

harvested after overnight incubation and TNF levels were analyzed by ELISA. Results show average TNF release of 

duplets and are representative of three independent experiments. B) LTA is internalized by a receptor-mediated 

mechanism is inhibited by the Dynamin-I mutant Dynamin-I K44A. Confocal images of HEKTLR2 cells transiently 

expressing wild-type Dynamin-I or the mutant Dynamin-I K44A in the presence and absence of CD14, incubated 

with LTARhodamine (red) or TransferrinA633 (green) for 30 min at 37 °C, 8% CO2 prior to imaging.  The nucleuses of 

cells are outlined in Dynamin-I K44A expressing cells. C) LTA-induced NF-κB activation occurs at the plasma 

membrane, independent of LTA-uptake. HEK293-TLR2 cells were transfected with an NF-κB luciferase reporter 

plasmid and wild- type Dynamin-I or the mutant Dynamin-I K44A, in the presence of control pcDNA3 or CD14. 

Cells were subsequently stimulated with LTA (5 µg/ml) or medium for 6 h, 37 °C, 8% CO2, before cells were lysed 

and assayed for NF-κB activation. Results shown are representative of three experiments.   
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