
A verifiable shuffle for the GSW cryptosystem
Martin Strand

Department of Mathematical Sciences, NTNU
martin.strand@ntnu.no

Abstract
This paper provides the first verifiable shuffle specifically for fully homo-
morphic schemes. A verifiable shuffle is a way to ensure that if a node
receives and sends encrypted lists, the content will be the same, even
though no adversary can trace individual list items through the node.
Shuffles are useful in e-voting, traffic routing and other applications.

We build our shuffle on the ideas and techniques of Groth’s 2010 shuf-
fle, but make necessary modifications for a less ideal setting where the
randomness and ciphertexts admit no group structure.

The protocol relies heavily on the properties of the so-called gadget
matrices, so we have included a detailed introduction to these.

Keywords: verifiable shuffle, fully homomorphic encryption, post-
quantum

1 Introduction
A verifiable shuffle is used to prove that two sets of ciphertexts will decrypt to
the same values, but without revealing how the sets relate. Such shuffles are
well-known for group homomorphic schemes, and are still being developed and
improved. Today, shuffles are particularly useful in e-voting and mixnets, in
order to make it hard to correlate the input and the output of a node.

Fully homomorphic encryption has also been suggested as a useful primitive
for both e-voting and private network routing. Complex voting systems in
particular can take advantage of the features of fully homomorphic encryption,
but the FHE toolbox is still missing a number of useful protocols. Recent
development have brought shuffling for FHE within reach.

Our result starts from Groth’s 2010 shuffle [10], which uses an idea from
Neff [14]. A polynomial (X − x1)(X − x2) · · · (X − xn) is obviously unchanged
when the roots are permuted. One can then ask the prover to evaluate the
polynomial at random points. The probability of two nonidentical polynomi-
als evaluating to the same value at a random point is negligible. While later
development have resulted in even more efficient protocols, Groth’s 2010 ap-
proach has the advantage of simplicity and that there are few compromises: the

1



protocol satisfies a standard soundness condition and it is honest-verifier zero
knowledge. We return to the details in Section 2.

The polynomial mentioned above is hidden in a subprotocol which is used to
prove correctness of a shuffle of known content. The subprotocol is completely
independent of the encryption scheme, and uses only a homomorphic commit-
ment scheme. It is important to note that the commitment scheme need only
be homomorphic with respect to a single operation. We return to the selection
of such schemes. The protocol is then completed by binding the secret data –
which we want to prove the claim for – to the known content for which one can
prove the relation.

Groth’s protocol depends crucially on the fact that some group homomorphic
schemes are homomorphic both with respect to the message and the randomness.
For instance, the product of two ElGamal ciphertexts with messages m1 and
m2 and randomness r1 and r2, will be a new ciphertext encrypting m1m2 using
r1+r2 as randomness. Generally, a necessary requirement for the original shuffle
is that the equation

Enc(m0 ⊕M m1; r0 ⊕R r1) = Enc(m0; r0)⊕C Enc(m1; r1).

holds, where ⊕M, ⊕R and ⊕C are the algebraic operations used in the message,
randomness and ciphertext groups respectively. Note that r1 ⊕ r2 is an equally
likely randomness as either r1 or r2.

The noise-based homomorphic schemes do not satisfy the above require-
ments, since the ciphertext spaces usually are far from being groups at all. The
reason is the noise management; even sufficiently many additions will eventually
make the ciphertext decrypt to the wrong value, there need not be an identity
element, and associativity may not hold, especially for multiplication in com-
bination with noise management techniques. In fact, the Gentry-Sahai-Waters
scheme even exploits this property to minimise the noise growth [9].

Furthermore, the homomorphic property does in general not hold concur-
rently for the messages and the randomisers. It can, however, be possible to
compute the noise after an operation for certain simple cases. We show that
the abelian group requirement is not necessary, so that a variant of the original
protocol is secure also for a noise-based homomorphic scheme.

The final issue is to take advantage of the quantum security of the lattice
based encryption schemes, and then make the protocol future-proof. The secrecy
requirements for verifiable shuffles is long-term, while soundness is only short-
term. This allows us to achieve security against a potential future quantum
adversary using a perfectly hiding commitment scheme, since the computational
binding property is only necessary until the proof has been verified.

However, using a lattice based commitment scheme by Baum et al. [3], we
can also clear the protocol completely of classic cryptography.

1.1 A naive approach
Recall the polynomial (X−x1)(X−x2) · · · (X−xn), where the roots x1, x2, . . . , xn
are the secret data to be shuffled. Assume we have two sets of ciphertexts, say

2



{Ei} and {ei}, and some secret permutation π such that Dec(Ei) = Dec(eπ(i)).
The straightforward approach to shuffling using fully homomorphic encryption
is to compare the two polynomials

P1(X) = (X − e1)(X − e2) · · · (X − en)
P2(X) = (X − E1)(X − E2) · · · (X − En)

by requiring the prover to demonstrate that the ciphertext P2(ei) for one or more
i given by the verifier decrypts to 0. Such proofs exist [3,5], given that the prover
has decryption capabilities. Also, it would be straightforward to verify this
protocol using multilinear maps [7] with their zero-test abilities. However, at the
time of writing, all multilinear map candidates are broken for this application [1].
Additionally, this computation would require a very deep circuit, i.e. high degree
polynomials, which with today’s FHE techniques is forbiddingly expensive.

1.2 Related work
Independently, Costa, Martínez and Morillo [6] have published a shuffle for
lattice based schemes. Their shuffle is based on an idea of Wikström using
permutation matrices. Unfortunately, one cannot guarantee the secrecy of the
shuffle due to lack of circuit privacy for their re-encryption procedure. They
observe that the RLWE scheme is additively homomorphic, and suggest to re-
encrypt by adding an encryption of 0. This idea is sound for group homomorphic
schemes since the randomness is near-uniformly distributed over the group.
With noise-based schemes, the randomness is typically a Gaussian, so decryption
and a following analysis of the noise term can reveal extra information about the
ciphertext. As a consequence, the permutation can leak from the ciphertexts
regardless of the properties of the zero-knowledge protocol for which the authors
provide a proof.

1.3 Our contribution
Our main contribution is the first adaptation of a verifiable shuffle specifically
for a FHE cryptosystem under the assumption of equal noise levels in the input
ciphertexts. The efficiency is mostly affected by the inherent limitations of the
cryptosystem. The assumption can if necessary be met using bootstrapping.

A second contribution is a detailed exposition of the properties of the gadget
matrix, and it is our hope that it can be useful for others who need to work
with the details of the GSW ciphertexts.

1.4 Outline
We have introduced the main ideas here in Section 1. The upcoming section will
in turn describe the concepts we need to build our protocol, such as gadget ma-
trices, the GSW cryptosystem, commitment schemes, zero-knowledge protocols,
and Groth’s original shuffle. Then, in Section 3, we describe our modifications

3



and present the shuffle in full, including a proof of it being a zero-knowledge
argument.

2 Preliminaries
This section introduces the concepts and technical terms needed in this paper
to successfully use the Groth shuffle on GSW ciphertexts. Before we discuss the
cryptosystem, we look at gadget matrices in detail.

Following the the description of GSW, we will discuss commitment schemes,
zero-knowledge proofs and Groth’s verifiable shuffle protocol.

2.1 Gadget matrices
Much of the notation will follow Alperin-Sheriff and Peikert [2]. Assume we
work in a field Zq = Z/qZ, and let ` = dlog2 qe. One can then define the gadget
vector ~g ∈ Z`q as 

1
2
4
...

2`−1


For any a ∈ Zq, it is clear that there exist many vectors ~x ∈ Z`q such that
〈~g, ~x〉 = a. In particular, the vector ~x can be the binary decomposition of a,
with all entries 0 or 1. The binary decomposition is the output of the function
or algorithm denoted ~g −1

det.
Sometimes, we want a random preimage of ~g rather than the binary decom-

position. Let X = {~x | 〈~x,~g〉 = 0}, the set of all preimages of 0. Let ~g −1
rand

denote an algorithm that computes ~g −1
det and samples a value ~x from X, typ-

ically from a Gaussian distribution with a prescribed radius, and outputs the
sum ~g −1

det + ~x.
From now on, we will use subscripts when it is necessary to distinguish

between the two variants of the algorithm. If no subscript is given, then the
discussion applies equally to both.

Next, we can expand the whole process to handle an n-dimensional vector ~a
rather than a single value. Define the sparse matrix

G =


1 . . . 2`−1

1 . . . 2`−1

. . .
1 . . . 2`−1

 ∈ Zn×n`q .

The matrix G is known as the gadget matrix, and the literature often express it
in shorthand as ~g T ⊗ In.

4



The map from Zn`q to Znq induced by the matrix G is not invertible, but it is
easy to find preimages. As with g, the binary decomposition of each coordinate
is a preimage. In line with the literature, let G−1

det denote this function. It is not
linear, since the sum of two binary decompositions need not be all binary again.
The output of G−1 is a right-inverse for the map G, and we can extend it to
Zn×mq by applying G−1 column-wise to some n×m matrix A. As with ~g −1, we
sometimes want random samples, and denote the resulting sampling algorithm
by G−1

rand. We use the notation X ← G−1
rand(A) when we want to indicate that

we sample from some distribution imposed on the algorithm.
The following properties are straightforward to derive from the above con-

struction.

Lemma 1. Assume all operations are modulo some q, and let A ∈ Zn×mq and
λ ∈ Zq be some scalar. Then,

1. G ·G−1(I) = I = In ∈ Zn×nq

2. G ·G−1(A) = A ∈ Zn×mq

3. In particular, G ·G−1(λG) = λG

We get a particularly nice structure when applying the G−1 algorithm on
multiples of G.

Lemma 2. Assume all operations are modulo some q, and let λ ∈ Zq be some
scalar with binary decomposition

∑`−1
i=0 λi2i. Then

G−1
det(λG) =


Λ

Λ
. . .

Λ

 ∈ Zn`×n`q

where

Λ =


λ0 λ`−1 · · · λ1
λ1 λ0 · · · λ2
...

...
. . .

...
λ`−1 λ`−2 · · · λ0

 ∈ Z`×`q

In particular, G−1
det(G) is the n`× n` identity matrix.

The pattern comes from the fact that multiplying by 2 corresponds with
one-step shifts in the binary expression of a number.

One can view G−1
det(λG) as a representation of λ, and consider all represen-

tations as equivalent (modulo the kernel of G). Then the G−1 algorithm is
homomorphic on equivalence classes, which is crucial for the GSW cryptosys-
tem. Recall that linear mappings can be represented by matrices. Consider
the mapping G : Zn`q → Znq given by ~x 7→ G~x. This mapping have several
right-inverses H : Znq → Zn`q such that

(G ◦H)(~x) = GH~x = ~x,

5



so G ◦H = idZn
q
. Fix G−1 as one specific such right-inverse. Then, for all H,

G−1(~x)−H(~x) ∈ kerG.

As explained above, we can expand the map G to Zn`×mq → Zn×mq , and we can
expand the right-inverses as well. By the above relation, for each H we then
get

G−1(A) = HA+BA, G(BA) = 0,

and so for scalars a, b ∈ Zq, we have

G−1(aG)G−1(bG) = (aHG+Ba)(bHG+Bb)
= ab(HGHG+ b−1HGBb + a−1BaHG+ (ab)−1BaBb)
= ab(HIG+ b−1H · 0 + a−1BaHG+ (ab)−1BaBb)
= abHG+B′ (with GB′ = 0)
= G−1(abG) +B′ −Bab.

As a consequence, G−1(aG)G−1(bG) and G−1(abG) can be said to encode the
same scalar ab, but with a difference which lies in the kernel of G. A similar
computation holds for the sum G−1(aG) +G−1(bG).

We can illustrate this with a toy example. Let q = 7, ` = 3 and n = 3. Then

G =

1 2 4 0 0 0 0 0 0
0 0 0 1 2 4 0 0 0
0 0 0 0 0 0 1 2 4

 .

Consider G−1
det(5G) and G−1

det(3G), which will have blocks
[

1 1 0
0 1 1
1 0 1

]
and

[
1 0 1
1 1 0
0 1 1

]
.

Both their sum and product will be
[

2 1 1
1 2 1
1 1 2

]
which contains a 2, something we

cannot avoid since we are computing modulo 7. However, a new encoding of
5 · 3 ≡ 5 + 3 ≡ 1 (mod 7) is just the identity matrix.

This is an effect one has to take into account when computing. Still, it is
certainly so that the different matrices represent the same value. In particular,2 1 1

1 2 1
1 1 2

 =

1 0 0
0 1 0
0 0 1

+

1 1 1
1 1 1
1 1 1

 ,

and note that

(
1 2 4

)
·

1 1 1
1 1 1
1 1 1

 ≡ (0 0 0
)

(mod 7).

In other words, (1, 1, 1) is in the kernel of G.

6



2.2 The GSW cryptosystem and circuit privacy
The 2013 cryptosystem by Gentry, Sahai and Waters (GSW) [9] is based on
hiding the message as an eigenvalue of the ciphertext. The private key is an
approximate eigenvector. For simplicity, we will use the symmetric formulation
by Alperin-Sheriff and Peikert [2], and at the end explain how to make the
scheme public key. Let n be an integer, let q be a modulus and ` = dlog2 qe.
Finally, let χ be a subgaussian distribution (Gaussian with very small tails) over
Z.

Key generation Let ~̄s ← χn−1 coordinate-wise, and output ~s = (~̄s, 1) as the
private key.

Encryption To encrypt a message µ ∈ {0, 1}, choose a random matrix C̄ from
Z(n−1)×m
q , where m = n`, an error vector ~e← χm and set ~b T = ~e T −~̄s T C̄

(mod q). Let

C =
(
C̄
~b T

)
+ µG.

Decryption Given ~s and C, let ~c be the penultimate column of C, and output
0 if 〈~s,~c〉 (mod q) is closer to 0 than 2l−2. Otherwise, output 1.1

Addition Add the matrices C1 and C2.

Multiplication Define C1 � C2 as C1 ·G−1(C2).

The cryptosystem is usually only defined for a binary plaintext space, but the
definition can be modified even up to the large space Zq by modifying the de-
cryption algorithm to extract bits from more columns than the penultimate, and
then building the message from the bits. However, this has a strong negative im-
pact on the noise behaviour. When two ciphertexts encrypting binary messages
are multiplied, the noise grows far less than with previous FHE cryptosystems.
The growth is a function of the encrypted value of the first ciphertext, so larger
plaintext spaces can potentially also give worse noise problems. Nonetheless,
we will have to assume a large message space for our application, in the order
of 160–180 bits, in order to facilitate the scalar multiplications we will perform.
This fact is the main drawback of our work.

The original GSW scheme does not achieve circuit privacy. Informally, this
property guarantees that nobody are able to deduce which circuit output a
given ciphertext. Gentry [8] defined the notion by requiring that an encryption
of an evaluation of a circuit should be indistinguishable from an encryption
of evaluation of the circuit on encrypted data. In other words, evaluate-then-
encrypt should be the same as encrypt-then-evaluate. Bourse et al. [4] provide
a simulation based definition – capturing mostly the same intuition – and prove
that the GSW cryptosystem is circuit private if the multiplication algorithm
is slightly modified and all input ciphertexts have low noise from the same

1See Alperin-Sheriff and Peikert [2] for a justification of this algorithm.

7



distribution. The definitions only differ in that Bourse et al. allow the length
of the circuit to leak.

Alperin-Sheriff and Peikert [2] proposed to use the G−1
rand algorithm instead

of G−1
det for performance reasons. Bourse et al. go one step further, and also add

a matrix which is 0 everywhere except for the bottom row, which constitutes
gaussian shift on the ciphertext,

C1 � C2 = C1G
−1
rand(C2) +

(
0
~y T

)
,

where C1 and C2 are ciphertexts and ~y is a vector drawn from χm. In particular,
one can scale C1 by α by letting C2 = αG. Also note that

(
0
~y T

)
is a valid

encryption of 0. We will use this fact in the upcoming protocol.
Finally, we note that the GSW scheme can be made public-key by publishing

the above
(
C̄
bT

)
as, say, Â and define encryption as

C ← ÂR+ µG,

where R is a random matrix with entries in {−1, 0, 1}.

2.3 Commitment schemes
A commitment scheme is an important tool in protocols. The concept allows a
player to make a binding promise to use certain values, but without revealing
them at the time of the promise. The commitment can later be verified when
the committer reveals the opening information. Formally, a commitment scheme
consists of three algorithms:

KeyGen On input 1`, output a public key pk

Commit On input (pk,m, r), return c.

Verify On input (pk,m, r, c), return accept if c is a valid commitment to m,
otherwise reject.

We say that (m, r) is an opening of c. The key material will normally be omitted
to simplify notation.

Any public key cryptosystem can be turned into a commitment scheme
which is unconditionally binding. Pedersen commitments [15] is an example
of a scheme that is unconditionally hiding and where binding depends on the
discrete logarithm problem being hard. A particularly nice property about the
Pedersen scheme is that it is homomorphic; we have

Commit(m1, r1) · Commit(m2, r2) = Commit(m1 +m2, r1 + r2).

A commitment scheme must satisfy two security properties. The scheme
must be hiding, which means that a commitment to some message m1 is indis-
tinguishable from a commitment to some other message m2. Next, it must be

8



binding, which means that it is hard to find two openings for distinct messages
for a single commitment. At most one of these properties may hold uncondi-
tionally, but both may hold only computationally.

Lately, Baum et al. [3] proposed a new additively homomorphic commit-
ment scheme based on the Ring-SIS problem. This is conjectured to be safe
also against quantum computers. Recall from the introduction that also classi-
cal commitment schemes that are unconditionally hiding and computationally
binding will remain secure and usable until the adversary has quantum com-
puters readily available, since the binding property is only needed during the
protocol execution to provide soundness.

2.4 Zero-knowledge protocols
Zero-knowledge protocols capture the intuition of being able to convince some-
one else about the validity of some claim, but without revealing any other in-
formation.

Definition 1. Let R be a relation, and let (x,w) ∈ R. An honest-verifier
zero-knowledge protocol (P,V) for R is a two-party game between a prover P
on input (x,w) and a verifier V on input x, satisfying

Completeness Whenever (x,w) ∈ R, V accepts.

Soundness If (x,w) /∈ R, then for any P∗, V will only accept with negligible
probability.

Honest-verifier zero knowledge (HVZK) There exists a simulatorM run-
ning in expected polynomial time on input x such that the output is in-
distinguishable from the transcripts of (P,V) run with (x,w) as input to
P.

The w is called a witness for the relation.

If the prover is only given bounded computationally resources, the protocol
is usually called an argument, otherwise we call it a proof. The zero-knowledge
property can be varied by requiring the indistinguishability to hold computa-
tionally, statistically or unconditionally.

The simulator can choose all messages arbitrarily. A proof or argument is
special honest-verifier zero knowledge (SHVZK) if the output of the simulator
is indistinguishable from a real transcript if it has to use truly random messages
as simulated challenges from the verifier (as opposed to being able to choose
such challenges arbitrarily).

To guarantee that a zero-knowledge protocol can be used as a subprotocol
in a larger context, Lindell [11] introduced the notion of witness-extended emu-
lation, which loosely speaking requires that there exists a machine that on basis
of sufficiently many rounds of the protocol (reusing the prover’s commitments)
is able to both output a valid witness for the relation as well as a valid simu-
lated transcript. Our use of this property is limited to noting that the shuffle

9



of known content satisfies it in order for us to be able to use it for our protocol,
so we refer to the original source for details.

2.5 Groth’s shuffle
In 2010, following up on Neff’s idea [14] of proving the validity of a shuffle by
using the fact that a polynomial

∏
(X − xi) is stable under permutation of the

roots xi, Groth presented an efficient, yet conceptually simple shuffle [10]. The
idea is two-fold. First, one uses the polynomial idea to prove that some c is a
commitment to a permutation of messages m1, . . . ,mn. The values are known
by the verifier, but the permutation remains hidden. Next, one binds the secret
data to the known data, and proves that the same permutation is still used.

It is important to note that the shuffle of known content is independent of
the encryption scheme employed in the main protocol, and only requires a group
homomorphic commitment scheme. Later, we can therefore reuse the shuffle of
known content completely, and rely on the following properties [10, Theorem 1].

• The shuffle satisfies special honest-verifier zero knowledge with witness-
extended emulation.

• If the commitment scheme is statistically hiding we get statistical HVZK.

• If the commitment scheme is unconditionally binding we get unconditional
soundness.

Recall that the property of witness-extended emulation guarantees that we can
use the SKC protocol as a building block of the full shuffle.

While the SKC protocol only uses the commitment scheme, the outer pro-
tocol depends heavily on the encryption scheme, in particular rerandomisation
and cancellation of original randomness. Both of these features are less straight-
forward in FHE schemes than in classical group homomorphic schemes, and call
for some modifications to the original protocol.
Remark 1. Groth introduces two security parameters, `e and `s, subject to the
conditions that

• `e must be sufficiently large to make it hard to break soundness, i.e. it
must be hard to predict a challenge of length `e,

• For any a sampled from the uniform distribution on [0, 2`e ] ∩ Z, d and
a+ d, must be statistically indistinguishable whenever d is sampled from
the uniform distribution on [0, 2`e+`s ] ∩ Z, and

• If the commitment space has message space Znq , then 2`e+`s ≤ q.

The second bullet point is to avoid leakage of information whenever a+ d < 2`e

or 2`e+`s ≤ a + d. Notice that we can achieve the same result with smaller
parameters if we employ rejection sampling [12, 13]. The probability of 2`e ≤
a+ d ≤ 2`e+`s is approximately 1− 1

2`s
− 1

2`s+`e
.

10



The third bullet point is to avoid overflow that would require modular re-
ductions. However, Groth notes that “[w]hen the cryptosystem has a message
space where mq = 1 for all messages, this requirement can be waived”.

Concretely, Groth suggests `e = `s = 80 for the interactive variant, and
`e = 160 and `s = 20 if the protocol is made non-interactive using the Fiat-
Shamir heuristic and rejection sampling. We will keep the same parameters for
our protocol.

We reached the above probability by considering the uniform distributions
on X = [0, 2`e ] ∩ Z and Y = [0, 2`e+`s ] ∩ Z, with probability density functions
(PDF) m1(X = k) = 1

2`e
and m2(Y = k) = 1

2`e+`s
. The PDF of Z = X + Y

is then the convolution m3(Z = j) =
∑∞
k=−∞m1(k)m2(j − k). For each j up

to 2`e − 1, there are j + 1 combinations, so we get m3(j) = j+1
22`e+`s

for the first
part. For j between 2`e and 2`e+`s , there are constantly 2`e + 1 combinations,
and it decreases by 1 for each j in the tail that follows, down to j = 22`e+`s ,
which is the greatest value we can sample. From this, we can compute the
cumulative density function F3 at the two points j = 2`e and j = 2`e+`s , which
is approximately 1

2`s
and 1− 1

2`e+`s
, respectively.

3 Verifiable shuffle for GSW
Now we can combine the tools and ideas above to get a verifiable shuffle for
GSW ciphertexts. Let n denote the number of ciphertexts, and recall that `e
and `s denote security parameters for the zero-knowledge protocol. We now
briefly describe the changes that must be made to Groth’s shuffle.

The first part of a shuffle is to permute and rerandomise the ciphertexts.
Given an ElGamal ciphertext (a = gr, b = µhr), a new ciphertext will typically
look like (agr′ , bhr′), and one can easily prove that it is hard to find the correct
correspondence between the old and new set as long as r′ is random. The
fundamental reason is that the randomness of ElGamal forms a group, and that
any rerandomisation is indistinguishable from a fresh encryption.

This is not the case for FHE in general and GSW in particular. The ran-
domness is not bounded, and the Eval algorithm will result in a new ciphertext
with randomness being a function of both the messages and the randomness of
the inputs. We need to employ Bourse et al.’s technique for circuit privacy. Let
the old and new ciphertexts be denoted by {ei} and {Ei}, and the permutation
by π.

Ideally, the shuffling circuit should have all old ciphertexts and the permu-
tation as input, such that all old ciphertexts contribute to each new ciphertext,

Ei =
n∑
j=1

eπ(i)G
−1
rand(δπ(i),jG) +

(
0
~yTi

)
where δa,b is 1 if a = b and 0 otherwise, and ~y is some vector chosen by the
circuit privacy algorithm [4].

11



However, this is causing problems for achieving the completeness property
of the protocol, so we have opted for a simpler version. For each i, sample
Xi ← G−1

rand(G), and let

Ei = eπ(i)Xi +
(

0
~yTi

)
which is sufficient under the condition that all {ei} have the same noise level
and equal-length decryptions. The order is not coincidental. The shuffling
circuit is essentially included in Xi, and this order of multiplication hides it [4].
If necessary, enforce the noise-level condition by bootstrapping the ciphertexts
before shuffling them. Bootstrapping is an deterministic operation which only
requires the public key. Note that one can only measure the noise by using the
decryption key.2

The original protocol was expressed using multiplications. Since we are
using the additive structure of the GSW scheme, we switch from multiplications
and exponentiations to additions and scalar multiplications. This is in itself
a favourable move, as the efficiency of the original protocol was measured in
exponentiations, while additions and scalar multiplications are almost for free
in FHE schemes.

Finally, one of the verifications step in the original protocol involved creat-
ing a ciphertext using randomness provided by the prover. Since we lack the
nice structure on the randomness in the GSW cryptosystem, we need to provide
complete ciphertexts instead of just randomness. This requires us to convince
the verifier that the ciphertext is “innocent”, in the sense that it doesn’t en-
crypt a value that allows the prover to cheat. Fortunately, we can observe that
the ciphertext in question will be all zeros except for the bottom row, which
guarantees that it can only encrypt 0.

The complete protocol follows.

Precomputation Start with fresh ciphertexts {ei} with equal noise levels.
Bootstrap each ciphertext to achieve near-freshness if necessary. Shuffle using
a random permutation π and re-encrypt to get new ciphertexts {Ei}.

Common input Fresh ciphertexts {ei} and shuffled ciphertexts {Ei}.

Private input to P Permutation π, matrices Xi ← G−1
rand(G) and vectors ~y

such that for each i,

Ei = eπ(i)Xi +
(

0
~yTi

)
2An anonymous reviewer pointed out that it is important to ensure that a malicious mix

server cannot mark the ciphertexts, typically by using randomness of different size, resulting
in more noise. This may lead to a DoS attack unless one employ bootstrapping, but should
not compromise secrecy since only the decryption service can measure noise.

12



Protocol

P1 Select randomness r and rd for the commitment scheme, and select n
random values di of length `e + `s.
Let

c← Commit(π(1), . . . , π(n); r)
cd ← Commit(−d1, . . . ,−dn; rd).

Set Di ← G−1
rand(diG), ~yd ← χZm and Ed ←

∑n
i=1EiDi +

(
0
~yT

d

)
Send c, cd and Ed to the verifier.

V1 Return a set of random numbers {ti} of length `e.

P2 Set fi ← tπ(i) + di, compute X ′i such that

X ′π(i) = G−1
det(tπ(i)G)−XiG

−1
det(fiG) +XiDi,

and set Z =
∑n
i=1

((
0
~yT

i

)
G−1

det(fiG)−
(

0
~yT

i

)
Di

)
+
(

0
~yT

d

)
. Cancel if not

2`e ≤ fi ≤ 2`e+`s for all i.
Send {fi}, {X ′i}, Z to the verifier.

P–V Run the shuffle of known content to prove that

cλcdCommit(f1, . . . , fn) =
Commit(λπ(1) + tπ(1), . . . , λπ(n) + tπ(n)),

where λ is a challenge from the verifier.

V2 Verify the following

• The elements c and cd are in the commitment space
• For all i, 2`e ≤ fi ≤ 2`e+`s

• GX ′i = 0 for all i
• The shuffle of known content
• The matrix Z is of the form

(
0
~y T

)
•
∑n
i=1EiG

−1
det(fiG)−

∑n
i=1 ei(G

−1
det(ti) +X ′i)− Ed = Z

Theorem 1. Assume that {ei} is a set of fresh ciphertexts. Then the above
protocol is a special honest-verifier zero-knowledge argument for correctness of
a shuffle of fully homomorphic ciphertexts. If the commitment scheme is statis-
tically binding, then the scheme is an SHVZK proof of a shuffle.

13



Proof. Completeness
As shown in Remark 1, the probability of P aborting is 1

2`s
+ 1

2`e+`s
, which

can be made arbitrarily small with a suitable choice of `s.
We need to check two of the verification equations, the rest is straightfor-

ward. Note that Xi comes from the G−1 algorithm and encodes a 1. By the
discussion in Section 2.1, one can see that X ′π(i) must encode −fi+tπ(i) +di = 0
for all i, hence GX ′i = 0, all i.

Next, we verify that
∑n
i=1EiG

−1
det(fiG)−

∑n
i=1 ei(G

−1
det(ti) +X ′i)−Ed = Z.

This is a tedious, but uncomplicated computation:
n∑
i=1

EiG
−1
det(fiG)−

n∑
i=1

ei(G−1
det(ti) +X ′i)− Ed

=
n∑
i=1

EiG
−1
det(fiG)−

n∑
i=1

eπ(i)(G−1
det(tπ(i)) +X ′π(i))−

n∑
i=1

EiDi +
(

0
yTd

)

=
n∑
i=1

(
eπ(i)Xi +

(
0
yTi

))
G−1

det(fiG)−
n∑
i=1

eπ(i)(G−1
det(tπ(i))

−XiG
−1
det(fiG) +G−1

det(tπ(i)) +XiDi)

−
n∑
i=1

(
eπ(i)Xi +

(
0
yTi

))
Di +

(
0
yTd

)

=
n∑
i=1

eπ(i)
(
Xi(G−1

det(fiG)−G−1
det(fiG) +Di −Di)−G−1

det(tπ(i))

+ G−1
det(tπ(i))

)
+

n∑
i=1

((
0
yTi

)
G−1

det(fiG)−
(

0
yTi

)
Di

)
+
(

0
yTd

)
= Z

Soundness
We need to prove that there exists a permutation π, such that Dec(eπ(i)) =

Dec(Ei) for all 1 ≤ i ≤ n. We can extract the permutation using rewinding,
but we will not extract the matrices Xi used to rerandomise the ciphertexts
(although we can prove that they must exist, and have been generated in an
honest way).

Run the protocol (P∗,V) until the prover outputs a transcript. Due to the
rejection sampling, the prover may try several times. If the verifier would reject
the transcript, we output ⊥. Following the exact same argument as in Groth’s
original proof, we can extract π and {−di} using two valid transcripts [10, p.
562].

Because of the commitment we now know that fi = tπ(i) + di, and since
GX ′i = 0, we know that Dec(X ′i) = 0. Also, we know that Dec(Z) = 0. Recall
that we scale a ciphertext C by computing CG−1(λG), hence if we apply the

14



decryption function to
n∑
i=1

EiG
−1
det(fiG)−

n∑
i=1

ei(G−1
det(ti) +X ′i)− Ed = Z,

we get
n∑
i=1

fiDec(Ei)−
n∑
i=1

(ti + 0)Dec(ei)− Dec(Ed)

=
n∑
i=1

tiDec(Eπ−1(i)) +
n∑
i=1

diDec(Ei)−
n∑
i=1

tiDec(ei)− Dec(Ed)

=
n∑
i=1

ti(Dec(Eπ−1(i))− Dec(ei)) +
n∑
i=1

diDec(Ei)− Dec(Ed)

= Dec(Z) = 0.

Since only one sum depends on {ti}, both sums must be 0 individually. Fur-
thermore, since each ti is unpredictable, each summand must be 0. Hence,
Dec(Eπ−1(i)) = Dec(ei), which we wanted to prove.

Note that we can apply the decryption function without actually being able
to compute it for unknown ciphertexts.

Special honest-verifier zero knowledge
Let π0 and π1 be two permutations, and let C0 and C1 be the corresponding

shuffle circuits. By circuit privacy, the adversary cannot decide whether C0 or
C1 was used to generate {Ei} from {ei}. Hence, the precomputation step does
not leak any information.

To prove that the shuffle itself is HVZK given the challenges, we construct a
simulator whose output will be indistinguishable from a real protocol transcript.
We provide the simulator through a hybrid argument.

Sim I Simulate the shuffle of known content, and select c and cd as random
commitments.

It follows from the properties of the shuffle of known content that Sim I is
indistinguishable from a real transcript.

Sim II Construct a random Z from the same distribution as the original. The
distribution is hard to give explicitly, but does not depend on secret data,
so it can be simulated by choosing the fundamental terms of the sum
independently, and adding. Likewise, choose {X ′i} by choosing {(X̄i, d̄i)}
under the same distributions as the prover would, and some permutation
π̄. Compute {X ′i} by the equation in P2, such that GX ′i = 0 for all i.
Choose {fi} from the sum of the uniform distributions over [0, 2`e ]∩Z and
[0, 2`e+`s ] ∩ Z under the constraint that 2`e ≤ fi ≤ 2`e+`s . Then choose
Ed to fit.

15



The simulated values for Z, {X ′i} and {fi} have the same distribution since
they are computed from the same formulas as the original, but using new (but
identically distributed) random values instead of Xi and π. Then Ed becomes a
valid ciphertext by the homomorphic property of GSW. Circuit privacy makes
a simulated Ed indistinguishable from a real Ed, and the IND-CPA property of
the cryptosystem will finally provide computational SHVZK.

4 Further work
We have presented a verifiable shuffle for fully homomorphic schemes. Shuffling
techniques have evolved further since the protocol we have chosen to forge from,
and we believe it would be interesting to see adaptions of newer shuffles.

Furthermore, Groth’s original shuffle can be used with a large family of
group homomorphic encryption schemes. The result in this paper can only
use the GSW scheme, due to the existence of the efficient and computationally
simple circuit privacy technique. However, one should pick one’s scheme based
on what the application needs, so the shuffling primitive should be available for
more schemes. This requires more research on techniques for circuit privacy.

Finally, it would be interesting to see an implementation of verifiable shuf-
fling for FHE schemes, coupled with a real-life application. Only then will one
be able to see if the parameters and the runtime of the proof will be acceptable.
For instance, we predict that the scheme will be unsuitable for applications
with many shuffles, such as onion routing. However, for elections, where one
can spend minutes or even hours on the process, this protocol may already be
mature.

Acknowledgements The author wishes to thank Jens Groth for his useful
comments to an early version of this manuscript, as well as to the anonymous
reviewers of Voting’18.

References
[1] Martin Albrecht and Alex Davidson. Are graded encoding scheme bro-

ken yet? http://malb.io/are-graded-encoding-schemes-broken-
yet.html, 2017. Accessed 2017-08-30.

[2] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with poly-
nomial error. In Juan A. Garay and Rosario Gennaro, editors, Advances in
Cryptology - CRYPTO 2014, volume 8616 of Lecture Notes in Computer
Science, pages 297–314. Springer, 2014.

[3] Carsten Baum, Ivan Damgård, Sabine Oechsner, and Chris Peikert. Effi-
cient commitments and zero-knowledge protocols from ring-sis with ap-
plications to lattice-based threshold cryptosystems. Cryptology ePrint
Archive, Report 2016/997, 2016. http://eprint.iacr.org/2016/997.

16



[4] Florian Bourse, Rafaël Del Pino, Michele Minelli, and Hoeteck Wee. FHE
circuit privacy almost for free. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology - CRYPTO 2016, volume 9815 of Lecture
Notes in Computer Science, pages 62–89. Springer, 2016.

[5] Christopher Carr, Anamaria Costache, Gareth T. Davies, Kristian Gjøs-
teen, and Martin Strand. Zero-knowledge proof of decryption for FHE
ciphertexts. Cryptology ePrint Archive, Report 2018/026, 2018. https:
//eprint.iacr.org/2018/026.

[6] Núria Costa, Ramiro Martínez, and Paz Morillo. Proof of a shuffle for
lattice-based cryptography (full version). Cryptology ePrint Archive, Re-
port 2017/900, 2017. http://eprint.iacr.org/2017/900.

[7] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In Thomas Johansson and Phong Q. Nguyen, edi-
tors, Advances in Cryptology - EUROCRYPT 2013, volume 7881 of Lecture
Notes in Computer Science, pages 1–17. Springer, 2013.

[8] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stan-
ford University, 2009. crypto.stanford.edu/craig.

[9] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology - CRYPTO 2013. Proceedings, Part I, volume 8042 of Lecture
Notes in Computer Science, pages 75–92. Springer, 2013.

[10] Jens Groth. A verifiable secret shuffle of homomorphic encryptions. J.
Cryptology, 23(4):546–579, 2010.

[11] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party
computation. J. Cryptology, 16(3):143–184, 2003.

[12] Vadim Lyubashevsky. Lattice-based identification schemes secure under
active attacks. In Ronald Cramer, editor, Public Key Cryptography - PKC
2008, volume 4939 of Lecture Notes in Computer Science, pages 162–179.
Springer, 2008.

[13] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice
and factoring-based signatures. In Mitsuru Matsui, editor, Advances in
Cryptology - ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer
Science, pages 598–616. Springer, 2009.

[14] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In
Michael K. Reiter and Pierangela Samarati, editors, CCS 2001, Proceedings
of the 8th ACM Conference on Computer and Communications Security,
pages 116–125. ACM, 2001.

17



[15] Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology
- CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages
129–140. Springer, 1991.

18


