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A B S T R A C T

Reliable design codes are of great importance when constructing new civil engineering concepts such as floating
bridges. Previously only a scarce number of floating bridges have been built in rough wave conditions and only
limited knowledge of the extreme environmental conditions and the associated extreme response exists. To form
a better design basis an increased understanding of the sensitivity in the structural response towards changes in
short-crested sea parameters is needed. Furthermore, acquiring the necessary accuracy in simulated extreme
response is often a computationally expensive endeavour and the number of simulations needed is often based
on experience. The present study investigates the wave-induced short-term extreme response of a simplified end-
anchored floating bridge concept for several wave environments with a return period of 100 years. The study
includes convergence of the coefficient of variation for the extreme response for different realization lengths as
well as number of realizations. The sensitivity in the structural response towards different main wave directions
and spreading exponents is investigated and includes both transverse and vertical displacement response spectra
and extreme Von Mises stress in the bridge girder cross-section. The extreme response is based on an accuracy of
2% in the coefficient of variation equivalent to 40 3-h realizations and a low sensitivity in the response is found
for natural occurring spreading exponents and for main wave directions within 15° from beam sea.

1. Introduction

The Norwegian Public Roads Administration (NPRA) is currently
undertaking a large infrastructure project involving floating bridge
structures over their wide and deep fjords. The fjords are up to 1300m
deep, 6000m wide and located in the western part of Norway exposing
the structures to rough wind and wave conditions from the North Sea.
These extreme conditions make it important to understand the struc-
tural response and their sensitivity to changes in the wave environment.
Stochastic wave loading processes and their application in stochastic
response of floating bridges has been a research topic since the late
1970s and the structural response of a short (less than 1500m) curved
floating bridge with continuous pontoons was thoroughly investigated
in the late 1970s and the 1980s [1–6] when construction of the
Bergsøysund Bridge and the Nordhordland Bridge was under way. The
studies included both time domain and frequency domain analyses and
included regular waves, irregular long-crested waves and short-crested
waves. Sigbjörnsson [2] described an explicit representation of the
short-crested behaviour of waves in the frequency domain. Coherency

functions were used to show the correlation between wave loads as a
function of the spreading exponent and the spatial coordinates, based
on previous research by Borgman [7]. Langen and Sigbjörnsson [3]
applied the directional wave spectrum in time domain and concluded
that a design using long-crested waves would yield unreasonably con-
servative results, whereas for short-crested waves a low sensitivity was
found in the response towards changes within naturally occurring
spreading exponent values. Hutchison [8] showed that a logical con-
sistency existed between the two principal methods existing at the time
for describing the dynamic response from short-crested waves, i.e. su-
perposition of long-crested waves and an explicit representation of the
short-crested behaviour of the incident wave field such as the one de-
scribed by Sigbjörnsson [2]. Another method to give an explicit re-
presentation of the wave field mentioned by Hutchison was the use of
an empirical spacial correlation factor described by Hartz and Georgiadis
as a reduction factor for the time series of nodal wave forces in a nu-
merical analysis [8]. Langen and Leira [4–6] carried out several studies
on the probabilistic design of the short floating bridge structure fo-
cusing on the bending moments and pre-tension force in the bridge
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cross-section. The studies found that the correlation between the
bending moments was important to take into account and that it was
dependent on the peak period in the wave spectrum. In more recent
years Villoria [9] found a lower influence in the response from changes
in the spreading exponent and the wave spectrum shape than from
changes in the wave direction and wave period for a long (more than
4000m) straight and a curved floating pontoon bridge.

For many engineering purposes the design wave parameters are
taken as valid inputs but as Moan et al. [10] describes, generally for
marine structures the extreme response is very sensitive to the amount
of data available to represent the long-term variability of the wave
conditions. Bitner-Gregersen et al. [11] noted that some epistemic
(knowledge based) uncertainties related to environmental descriptions
of wind and waves exists, such as non-stationarity, sampling variability
and directionality of wind and waves. A comparison of three metocean
databases is described in Bitner-Gregersen et al. and the difference in
the significant wave height and the zero-crossing period for return
periods of 100 years was found to be over 5 m and 4 s, respectively.
Another issue argued by Bitner-Gregersen et al. is the frequency-de-
pendent behaviour of the directional spreading in in-situ measure-
ments. Other uncertainties related to in-situ measurements are pointed
out by Kvåle and Øiseth [12] who describes the differences in identi-
fication methods for characterizing the wave field based on simulated
data. They conducted a comparison of two identification methods using
three different sensor layouts and found clear differences in the
methods for the sensor layouts they used. These uncertainties all relate
to the design wave environment and a thorough understanding of the
sensitivity in the extreme floating bridge response is needed in order to
quantify the importance of these uncertainties.

The extreme response for long floating bridge structures is a topic
touched upon in recent years. Giske et al. [13] have compared the
environmental contour method with the full long-term extreme method
for a long double-curved floating pontoon bridge and found that it can
give a rough estimate of the real long-term extreme response. Giske
et al. also compared a new Inverse Second Order Reliability Method
(ISORM) described in [14] to the full long-term extreme method and
found it to give a high accuracy in the long-term extreme response.
Øiseth et al. [15] compared the Average Conditional Exceedance Rates
(ACER) method described in [16] to the Gumbel method for the ex-
treme response for a short curved floating pontoon bridge and found
that the ACER method had a significantly narrower confidence interval,
introducing less uncertainty in the estimation of the extreme response.
Xu et al. [17] compared two short-term extreme methods based on the
ACER method to a full long-term extreme method for a single-span
suspension bridge and found the extreme load effects from the full long-
term extreme method to be 14% higher.

With the rough wave conditions at the Bjørnafjord and the de-
scribed uncertainties in the estimation of the wave parameters, it is
important to understand the structural response and the effect of
changes in these parameters on the extreme response. The current
paper presents an extensive numerical study of the extreme response for
a long end-anchored floating pontoon bridge with emphasis on the
needed simulation length and number of realizations in order to
achieve the necessary accuracy and a parametric study of the extreme
response based on the main wave direction and the spreading exponent
for short-crested sea. To the knowledge of the authors, all previous
studies on the sensitivity of the extreme response to the wave direc-
tionality has either been conducted in frequency domain or on a few
short time domain simulations. In the present paper it is the first time a
numerical parameter study is based on an extensive amount of time
domain simulations for each changed parameter and will help solidify
the understanding of their effect on the extreme response of a long
floating bridge. As part of the extensive time domain calculations the
dependency of the accuracy in the short-term extreme prediction to-
wards the simulation length and the number of realizations has been
investigated for the general floating bridge structure to be used as a

reference for future investigations of the extreme response.

2. Description of the floating bridge concept

The floating bridge modelled in the present study is a simplification
of the Bjørnafjord end-anchored floating bridge concept described by
COWI [18]. The simplified concept seen in Fig. 1 consists of a double-
symmetric twin-box cross-section bridge girder at roughly 15m height,
covering roughly 4360m of roadline and has a curvature of 5000m in
the horizontal plane. The bridge girder is connected to 21 floating
pontoons every 197m with two circular columns. The pontoons are the
only part of the bridge in contact with the water and the bridge girder is
connected to the shore at each end of the bridge, modelled as fixed
connections. The bridge girder and the columns are modelled as single
equivalent beams in the numerical model with the cross-sectional
properties listed in Table 1.

The pontoons all consist of the same geometry, draft and hydro-
dynamic coefficients. Looking at a pontoon from above, the geometry is
made up of two half circles with a rectangle in between, see Fig. 2. The
total length is 68 m, the total width is 28m and the height is 14.5 m
with a draft of 8.8m found from static equilibrium. For all the pontoons
surge follows the global x-axis and sway follows the global y-axis as
shown in Fig. 2. Throughout this paper indices one to six for hydro-
dynamic coefficients indicate surge, sway, heave, roll, pitch and yaw
accordingly. Table 2 lists the properties of the pontoon. Based on the
bridge girder mass in Table 1 and the pontoon mass and displacement
in Table 2 the static equilibrium can be verified.

3. Methodology

The aim of the paper is two-fold: (1) to find the required realization
length and number of realizations to achieve a reliable accuracy in the
extreme response and (2) to describe the effect of changing short-
crested sea parameters on the extreme response. In the following a
description is given of the numerical model as well as the assumptions
made in order to calculate the stresses in the bridge girder from the
internal forces given as output in the numerical model. Later on the
choice of parameters to be changed in the parametric study is argued
and finally a description is given of how the extreme response is esti-
mated and how the necessary accuracy is achieved.

Fig. 1. Numerical model of the end-anchored floating bridge.

Table 1
Single equivalent beam cross-section properties [18]. The notations EIy and EIz
refer to the bending stiffness about the weak and strong axis, respectively, and
the notation EA refer to the axial stiffness. Similarly the notations GIx and rx
refer to the torsional stiffness and the radius of gyration, respectively.

Property Unit Girder Column

Mass [ton/m] 2.67E+01 1.60E+01
rx [m] 2.02E+01 1.84E+01
EA [kN] 3.87E+08 3.68E+08
EIy [kNm2] 2.76E+09 2.92E+09
EIz [kNm2] 1.56E+11 1.29E+11
GIx [kNm2/rad] 6.10E+10 5.07E+10
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3.1. Numerical model

The numerical model of the floating bridge is developed in the
coupled hydro-elastic code SIMO-RIFLEX [19,20]. The structural
system is idealized using the Finite Element Method (FEM) with the
bridge girder and the columns modelled as Euler-Bernoulli beams and
the pontoons as 6 degrees of freedom (DOF) nodes with hydrodynamic
mass, stiffness and damping properties. The bridge girder is fixed at
each end in all DOF. The mesh of the model is made up of girder ele-
ments of roughly 5m and column elements of roughly 3m lengths,
resulting in a total of roughly 950 beam elements in the model. The
hybrid frequency- and time domain model is utilized in the code to set
up the equation of motion commonly known as the Cummin's equation
[21,22].
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Here, Mjk, Djk and Kjk are the structural mass-, damping-, and stiff-
ness matrix, respectively, and Cjk is the hydrostatic stiffness matrix. The
hydrodynamic added mass = +∞A ω A a ω( ) ( )jk jk jk is here divided into a
frequency-independent part ∞Ajk corresponding to the added mass at
infinite frequency and a frequency-dependent term ajk(ω). The same
goes for the hydrodynamic damping = +∞B ω B b ω( ) ( )jk jk jk . The nota-
tion ω here refers to angular frequency. The indices are defined ac-
cording to the body-fixed coordinate system with j=1, 2, . . . signifying
surge, sway and so forth. The wave excitation force q t( )j

exc is a combi-
nation of the Froude-Krylov force and the diffraction force from solving
the diffraction problem and is equivalent to the first order wave force
q t( )j

(1) . The displacement and its time derivatives are symbolized with
uk(t), u t˙ ( )k and u t¨ ( )k with t referring to time and τ representing the time

lag in the convolution within the “memory” time tmem. The hydro-
dynamic frequency-dependent added mass and damping found by sol-
ving the radiation problem are included in Eq. (1) through the re-
tardation function kjk(t).
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Here i is the imaginary unit. The retardation function kjk(t)= 0 for
t < 0 due to causality and kjk(t)→ 0 for t→∞. The last term in Eq. (2)
is derived by expanding the complex notation, removing the odd parts
of the equation and applying the causality property. The frequency-
independent damping ∞Bjk is zero since physically no waves are gener-
ated when the structure is oscillating at infinite frequency.

3.1.1. Modelling the first order wave load
The sea surface elevation consists of wind-generated waves ap-

proximated as a stationary and homogeneous random field. The wind-
generated waves are described by a directional wave spectrum Sζ(ω, θ)
approximated as the product of the unidirectional wave spectrum Sζ(ω)
and the directional spreading function Dζ(θ). The JONSWAP [23] wave
spectrum in Eq. (3) is applied in the analysis.
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The spectral parameters α and β are, for North Sea projects, often
defined as = −−α H T γ5.061 [1 0.287 ln( )]s p

2 4 and β=0.07 for ω≤ωp or
β=0.09 for ω > ωp, respectively. g is the gravitational acceleration
and the remaining variables are the peak angular frequency ωp, the
peakedness parameter γ and the significant wave height Hs. The di-
rectional spreading function is given in Eq. (4) where θ is the wave
direction, θ0 is the main wave direction, s is the spreading exponent and
Γ(·) is the Gamma function.
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The first order wave force is generated by Monte Carlo simulation
using fast Fourier transformations (FFT) of the real partR(·) of the first
order wave force transfer function H ω θ( , )j m n

(1) and the wave spectrum
Sζ(ωm).
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Where km is the wave number, εnm is the random phase angle and φHjnm
(1)

is the phase angle.
The JONSWAP wave spectrum is used to describe the wave eleva-

tion with the parameters listed in Table 4. These parameters represents
the preliminary wave condition at the Bjørnafjord for a 100-year return
period [18]. The main wave direction follows the compass notations
illustrated to the right in Fig. 2.

The hydrodynamic properties of the pontoon are found using the
Boundary Element Method software Wadam [24]. With the extreme
wave conditions located inside the Bjørnafjord the design wave height
and wave period are still relatively small in comparison to the pontoon
dimensions. For these specific wave conditions and pontoon geometry
the structure is classified as a large structure with mainly diffraction
loads being important. Utilizing the concept of double-symmetry the
panel model used is one quarter of the pontoon. The panel model is
given a general mesh size of 0.4m resulting in a total of 5450 panel
elements. The wave directions used are going from 90° to 180° with a 5°

Fig. 2. Pontoon panel model and body-fixed coordinate system (left) and
compass notation of wave directions and global coordinate system (right).

Table 2
Pontoon properties [18].

Property Unit Value

Mass [ton] 1.03E+04
Roll inertia [tonm2] 4.93E+06
Pitch inertia [tonm2] 1.21E+06
Yaw inertia [tonm2] 5.47E+06
COG from waterline [m] −2.53E+00
Displacement [ton] 1.57E+04
Roll water plane stiffness [kNm/rad] 5.33E+06
Pitch water plane stiffness [kNm/rad] 6.18E+05
Heave stiffness [kN/m] 1.75E+04
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resolution following the notation in Fig. 2. Similarly the wave fre-
quencies are between 2π/1000 to 6π rad/s with varying frequency step
(from Δω=2π/100 at the lowest frequencies, to Δω=2π at the
highest frequencies) in order to represent the hydrodynamic coeffi-
cients sufficiently. Fig. 3 illustrates the hydrodynamic properties of the
pontoon. Noticeable information from Fig. 3 is the variation in the first
order wave force transfer function for heave H ω θ| ( , )|3

(1) within the
frequency range of the wave spectrum for different wave directions.

In the hydrodynamic analysis of the pontoon the stiffness of the
bridge superstructure is not taken into account. The solution of the
classic radiation problem and diffraction problem does not depend on
the pontoon stiffness and will not affect the hydrodynamic coefficients
or the first order wave load transfer function. The first order motion
transfer function, however, is affected but is not used in the estimation
of the wave loads or the general response of the bridge. Instead the
stiffness of the bridge superstructure is taken into account in the time
domain analysis carried out in SIMO-RIFLEX. In other words, here the
hydro-elasticity is only influencing the motions and responses, not the
hydrodynamic coefficients in the model. The influence on motions may
become more important when considering second order loads, but that
is out of the scope of the present paper.

The option of modelling the wave loads as functions of spatial co-
ordinates is built into the code. However, the correlation of the wave
elevation at the different pontoon locations is significantly influenced
by the irregular behaviour and the wave spreading. For short-crested
beam sea the correlation is insignificant as pointed out by Kvåle et al.
[25]. The almost non-existing correlation suggests that the wave forces
acting on the pontoons could instead have been modelled as 21 in-
dependent wave loads.

In practice, the relative dimensions of the pontoons compared to the
distance between them will govern whether the interaction effects
should be accounted for or not. A simple estimation for hydrodynamic
interaction between two ships is described in Xiang [26]. Based on this
simplified estimation the interaction effects are assumed to be negli-
gible for the present case study. Other studies have been made on
floating bridges accounting for the hydrodynamic interaction effects

such as Xiang et al. [27] and Seif and Inoue [28].

3.1.2. Tidal variation
The tidal variation is± 0.75m from the mean sea level. An ex-

pected increase in the mean sea level of 0.8m is expected in the future
due to climate change [29]. Any effects of the tidal variations are as-
sumed to be a static effect and for this reason is neglected in the present
study.

3.1.3. Note on using single equivalent beams
Both the bridge girder and the connection between the bridge girder

and each pontoon are modelled as equivalent single beams with the
cross-section properties listed in Table 1. When extracting the internal
forces in the post-processing the effect of local stresses is neglected. For
instance the stresses in the weld between the bridge girder and each
column is not considered when calculating the stresses in the bridge
girder.

3.1.4. Structural damping
In the numerical model the structural damping is applied globally

using Rayleigh damping. The mass and stiffness proportional damping
coefficients are 0.01208 and 0.03061, respectively, resulting in a
damping ratio between 0.02 and 0.03 within the frequency range of the
wave spectrum. With a damping ratio of less than 0.02 for standard civil
engineering structures the chosen damping ratio is on the un-con-
servative side. However, given the simplifications already listed, the
present study is not focused on the correct modelling of the bridge but
rather on the sensitivity of the extreme response towards the short-
crested sea parameters. Furthermore, the choice of the increased
damping ratio can be argued by the exclusion of other damping effects
such as the viscous drag on the pontoons and the aerodynamic damping
from wind. For instance, Wang et al. [30] showed that for a floating
multi-span suspension bridge the aerodynamic damping from the wind
significantly dampened the wave-induced response.

In the present study the Rayleigh damping applied with the men-
tioned coefficients is furthermore of low influence to the response due

Fig. 3. Hydrodynamic coefficients following the body-fixed coordinate system of the pontoon with wave direction notation according to Fig. 2, i.e. waves from 90°
and 180° follow sway and surge in the body-fixed coordinate system, respectively.
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to the large amount of potential hydrodynamic damping stemming
from the pontoons.

3.1.5. Solution procedures
The theory of the FEM is well established and hence only a general

description of the solution procedures are given in the current section.
For more details, the reader is referred to [20,31–33]. The solution u(t)
to the global system, i.e. the response time history, is first found based
on a Newmark time step integration procedure and a Newton-Raphson
iteration within each time step. The internal forces and moments at
each time step are then found using the theory of virtual work using the
global displacements and rotations at the end nodes of each individual
beam element in the system together with the stress-strain relationships
and the element interpolation functions. As an example, the internal
weak axis bending moment My is found through the following in-
tegration over the initial element length L0.

∫=M N κEI dxy L z
T

y y,xx
0 (6)

Where Nz
T
,xx is the transpose of the vector of second derivatives with

respect to the longitudinal direction x of the cubic interpolation func-
tions for the transverse displacement z for a beam element. The re-
maining quantities κy and EIy refer to the curvature and the bending
stiffness around the y-axis, respectively.

Static equilibrium is obtained using an incremental loading of the
static forces in the system. At each incremental step the Newton-
Raphson iterative procedure is used to find convergence [20].

For solving the standard eigenvalue problem SIMO-RIFLEX uses the
iterative Lanczos Method. The build-in procedure makes use of the
hydrostatic stiffness and the hydrodynamic added mass at infinite fre-
quency for the pontoons in the solution. Table 3 lists a manual pseudo-
procedure used in order to take into account the frequency-dependent
added mass in the solution.

Stability of the time-domain solution is obtained by specifying a
ramping time of 10 s and a time step of 0.05 s based on an initial
convergence study.

3.2. Parametric study

A parametric study is carried out in order to investigate the sensi-
tivity of the response to the different naturally occurring spreading
exponents and main wave directions.

3.2.1. Load cases for short-crested sea
A total of 12 load cases are specified for the parametric study listed

in Table 4. They are made up of two main groups with different
spreading exponents for normal occurring short-crested sea. For each
group the main wave direction is changed. Due to a strong linear re-
lationship between the response and the wave height a constant

significant wave height is specified in the study. The peak period of the
wave spectrum is also kept constant in the current study, although
Larssen et al. [34] has shown that the peak period has a significant
effect on the probability of failure for a curved submerged floating tube
bridge (SFTB). While the significance of the peak period for the re-
sponse most probably is transferable to a floating pontoon bridge the
parameter has been kept constant due to time considerations.

3.2.2. Estimating Von Mises stress in bridge girder
From the global analysis only internal forces are extracted from the

numerical model. In the post-processing of the results the internal
forces are used as input to calculate the Von Mises stress σ t( )v in the
bridge girder. Fig. 4 illustrates the basic assumptions made in order to
estimate the Von Mises stress. One such assumption is the shear forces
and torsional moments being divided equally among the two boxes in
the twin-box cross-section. The second assumption is that the shear flow
from the torsional force follows the contour of each box cross-section.
This assumption is based on Damkilde [35] stating that the torsional
shear flow is constant over a closed thin-walled cross-section. With the
assumed distribution of the internal forces Eq. (7) is used to calculate
the Von Mises stress at each time step t.

= + ± ±σ t σ t τ t τ t τ t( ) ( ) 3( ( ) ( ) ( ))v xx
2

xy xz xx
2 (7)

Here σxx(t) is the normal stress, τxy(t) and τxz(t) are the shear stress
from the horizontal and vertical shear force Sy(t) and Sz(t), respectively.
The torsional shear stress τxx(t) is associated with the torsional moment
Mx(t). The sign convention used depends on the direction of the shear
flow as illustrated in Fig. 4.

The normal stress is found using Eq. (8) with the internal forces
being the effective tension Te(t), the weak axis bending moment My(t)
and the strong axis bending moment Mz(t). The total cross-sectional
area of the twin-box cross-section is given by Ax and the notations y and
z are the distance between the neutral axes of the twin-box cross-section
and the point in question. The second moment of area Iy and Iz of the
twin-box girder are around the two neutral axes indicated by the index.

= + −σ t T t
A

M t z
I

M t y
I

( ) ( ) ( ) ( )e

x

y

y

z

z
xx
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The shear stresses τxy(t) and τxz(t) in the local y and z direction,
respectively, are found using Eqs. (9) and (10) for points located yd or zd
from the neutral axes. In the case of calculating τxz(t) at the point zd
from the neutral axis Ā is the area of the cross-section from the point to
the top of the box as illustrated in Fig. 4. Similarly z̄ is the centroid of
that given area measured from the neutral axis. The torsional shear
stress τxx(t) is given by Eq. (11) with tw being the thickness of the girder
wall at the point of interest and Ac is the enclosed area of a single box
girder.
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=τ t
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Table 3
Manual pseudo procedure for solving the standard eigenvalue problem when
accounting for frequency-dependent added mass.

INPUT N, A(ω), tolerance
Solve − + =∞K ω M A ψ[ ( )] 02

Store the first N natural angular frequencies as ωn

FOR n=1 to N
ωout=ωn

diff = tolerance + 1
WHILE diff > tolerance

ωin=ωout

Solve − + =K ω M A ω ψ[ ( ( ))] 02 in
Store the n’th natural angular frequency as ωout

diff = −ω ω| |in out
END
Store ωout as ω *n

END

Table 4
Load cases used in the parametric study. First order wave loads are applied with
the chosen JONSWAP parameters Hs=3.0 m, Tp=6.0 s and γ=3.3 based on
the wave conditions at the Bjørnafjord for a 100-year return period [18].

Load case Spreading Wave direction Load case Spreading Wave direction

LC1.1 2 90° LC2.1 10 90°
LC1.2 2 95° LC2.2 10 95°
LC1.3 2 100° LC2.3 10 100°
LC1.4 2 105° LC2.4 10 105°
LC1.5 2 120° LC2.5 10 120°
LC1.6 2 150° LC2.6 10 150°
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The six critical points in the bridge girder cross-section are PWT, PWS,
PWB, PET, PES and PEB with the first index being E or W for eastern or
western box. Similarly the second index is T, S or B short for top, side or
bottom. The locations of the six critical points are shown in Fig. 4.

3.2.3. Extreme response prediction
Extreme response prediction of a structural system is dependent on

the characteristics of the stochastic load and the (non)-linearity of the
structural system. With only first order Gaussian waves acting on a
linear structural system, the structural response can be considered
Gaussian in nature with the local maxima of the time series following a
Rice distribution (Rayleigh distribution for narrow-banded processes)
and the largest maxima for several statistically independent realizations
will hence follow a Gumbel distribution asymptotically. An initial in-
vestigation has been conducted with several regular wave scenarios
with changing wave height in order to see if the structural response is

linear. Even though SIMO-RIFLEX include non-linear behaviour such as
geometric stiffness in the solution algorithm, the relationship between
the wave height and the dynamic structural response was found to be
linear. It then follows that the extreme response should follow a
Gumbel distribution.

The extreme response is estimated using a short-term method ac-
cording to recommendations given in Spidsøe and Karunakaran [36].
For a single realization of the response a Weibull distribution is fitted to
the global maxima as recommended by Farnes and Moan [37] using the
method of matching statistical moments. In order to predict the extreme
response from extrapolation of the Weibull distribution a good fit to the
global maxima in the upper tail is necessary. This is generally achieved
using a threshold to avoid over representation of small maxima in the
fitting procedure. The threshold is an empirical value and as pointed
out by Fu et al. [38] can have a significant effect on the shape of the
Weibull distribution. Using a threshold equal to the mean value of the
time series the Weibull fits well to the global maxima as illustrated in
Fig. 5.

Based on the number of global maxima Nm in the time series and the
Weibull location parameter δ, scaling factor λ and shape factor υ an
estimate of the extrapolated extreme μXe is calculated.

= + ⎡
⎣

+ ⎤
⎦

−μ δ λ N
υ

N(ln( )) 0.57722 (ln( ))X m υ m
υ

υ
1 1

e (12)

Based on Nr realizations the average extrapolated extreme μX̄e and the
corresponding standard deviation σX̄e and coefficient of variation
(c.o.v.) CXe are found.

∑=
=

μ
N

μ¯ 1 ( )X
r i

N

X i
1

e

r

e (13)

Fig. 4. Bridge girder cross-section with critical points and assumed stress distribution for calculating cross-sectional stresses. All measurements are in mm.

Fig. 5. Fit of a Weibull distribution to the global maxima Von Mises stress in
point PET at AX23 for LC1.1 from a single 3-h realization.
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For load case LC1.1 the largest average extrapolated extreme of the
Von Mises stress is observed to be in point PET at axis AX23 on the
bridge. Here a comparison of the c.o.v. of the average extrapolated ex-
treme is performed for three sets of 100 realizations, each with the
realization length of 1 h, 2 h and 3 h, respectively. In Fig. 6 the c.o.v. of
the average extrapolated extremes is presented as a function of the rea-
lization length and the number of realizations. These results show that
one will obtain a c.o.v. of less than 4% for even the shortest realization
length using roughly 10 realizations. For a 3 h realization length 10
realizations give a c.o.v. of approximately 2.5% while 40 realizations
give less than 2%. This is thought to be an acceptable level of accuracy.
The Type I extreme value distributions obtained from the fitted Weibull
parameters from 2 sets of 40 realizations are compared to the sample
extremes as well as a Gumbel distribution fitted to the 100 sample ex-
tremes in Fig. 7. Based on the −log(− log(·)) values of the cumulative
distribution functions denoted with Fx the two Type I distributions
based on 40 independent 3 h realizations both show a good fit and will
be used in the following parametric study for each load case listed in
Table 4.

4. Results and discussion

4.1. Modal properties

Table 5 lists the natural frequencies of the structure with modes
3–30 in the range of the 100-year wave spectrum applied in the para-
metric study. Many of the active natural periods are within 0.1 s of each
other, making the floating bridge a complex structural system. Fig. 8
shows the transverse and vertical displacements of the corresponding
modeshapes when accounting for the frequency-dependent added mass,
which have a significant effect on the weak and strong axis bending
moment in the bridge girder. With the structural system being strongly

linear the response is expected to be a superposition of the mode shapes
and the Von Mises stress will in turn be affected by the contributions
from the bending moments to the normal stress at the critical points of
the girder cross-section. It should be noted that the modeshapes when
not accounting for the frequency-dependent added mass show the same
shape with insignificant differences. The corresponding frequencies,
however, are slightly different.

4.2. Parametric study

In the following sections the sensitivity towards the main wave di-
rection and the spreading exponent is summarized for the transverse
and vertical displacement response spectra, the extreme Von Mises
stress and the correlation between the weak and strong axis bending
moment.

4.2.1. Effect on displacement response spectra
Based on the time series of the transverse and vertical displacement

at each axis the corresponding response spectra, S2(ω) and S3(ω) re-
spectively, are found through a fast Fourier transformation (FFT) of the
auto-correlation function of the said time series. This is done using
WAFO [39] and the average of all 40 response spectra is used as the
representative response spectrum for each load case. Although the re-
sponse spectra are slightly different along the bridge the response
spectra at the midspan illustrates the general effect at each pontoon.
Figs. 9 and 10 show the changes in S2(ω) and S3(ω), respectively, to-
wards the main wave direction and the spreading exponent for the
midspan at AX12.

As a general observation, a low sensitivity in both response spectra
towards the spreading exponent persists. The energy in S3(ω) is only
affected by the spreading exponent for main wave directions between
90° (beam sea) and 105°. Similarly, a low sensitivity towards the main
wave direction is observed between beam sea and 105°. However,
significant changes in S3(ω) are observed for main wave directions
larger than 105°.

Fig. 9 illustrates the changes in S3(ω) for changing main wave di-
rection and spreading exponent. Two main peaks are present corre-
sponding to mode 21 and 22 of the structure (first peak) and the peak
period Tp of the wave spectrum (second peak). Although a slight shift is
observed for the first peak this is too small to conclude anything about
the relationship with the modeshapes. The first peak is significantly
larger than the second peak and no peak is visible around mode 29.
Instead a significant increase in the spectra around mode 26 is present
for 150° even though the transverse displacement of this said mode is
almost non-existing for AX12.

Fig. 6. C.o.v. of average extrapolated extremes vs simulation length and number
of samples for Von Mises stress in point PET at AX23 for LC1.1.

Fig. 7. Fit of sample extreme Von Mises stress in point PET at AX23 for LC1.1 to
the Gumbel distribution. They are compared to two Gumbel distributions ob-
tained from fitted Weibull distributions.

Table 5
Eigenvalues of the floating bridge structure when accounting for frequency-
dependent added mass (ω*n ) and when not (ωn). The corresponding modeshapes
are of the same shape with insignificant differences.

Mode ωn ω *n Mode ωn ω *n
n [rad/s] [rad/s] n [rad/s] [rad/s]

1 0.133 0.126 16 0.732 0.780
2 0.232 0.220 17 0.750 0.801
3 0.396 0.372 18 0.773 0.826
4 0.441 0.409 19 0.799 0.854
5 0.671 0.620 20 0.828 0.887
6 0.685 0.726 21 0.861 0.899
7 0.685 0.726 22 0.896 0.918
8 0.686 0.726 23 0.910 0.922
9 0.686 0.727 24 0.920 0.957
10 0.687 0.728 25 0.929 0.992
11 0.690 0.731 26 0.960 1.023
12 0.693 0.735 27 0.985 1.048
13 0.699 0.741 28 1.000 1.064
14 0.707 0.751 29 1.229 1.257
15 0.718 0.764 30 1.393 1.438
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A low sensitivity in S3(ω) towards the main wave directions be-
tween 90° and 150° is illustrated in Fig. 10. For these cases the spectra
show a peak around mode 14 and 16 as well as at the peak corre-
sponding to Tp and mode 28. A significant increase in the overall energy
is observed for main wave directions 120° and 150° and especially for
the most short-crested seas does the peak at Tp become more dominant.
This behaviour is most likely related to the strong directional de-
pendency in the first order wave force transfer function for heave

H ω θ| ( , )|3
(1) seen in Fig. 3. For frequencies between 2π/10 and 2π/4

rad/s corresponding to the frequencies within the applied wave spec-
trum the values for 150° are up to four times larger than the values for
90° (sway). In general, larger heave wave forces are present for direc-
tions closer to 180° (surge). A notable feature in S3(ω) is the significant
relative increase in the peak at Tp for a main wave direction of 150° and
although the larger heave force explains the general energy increase the
first order wave transfer function for heave at 150° is only twice that for

Fig. 8. Transverse and vertical displacement of the floating bridge modes based on exact added mass.

Fig. 9. Transverse response spectra of the bridge girder at the midspan AX12 for all load cases with different [s, θ0] values.
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heave at 90°. Remseth et al. [40] has described the principal effect of
spacial resonance for a straight SFTB using regular long-crested waves
at angles slightly different from beam sea. For a given regular wave
with the frequency ω8 corresponding to the natural frequency of the 8th
mode of the SFTB propagating at a specific angle Θ to the bridge normal
as shown in Fig. 11 the distance LΘ between the wave crests hitting the
SFTB coincide with the peaks of the 8th modeshape of the structure and
thereby amplifying the resonance effect. This effect is thought to be
present in S3(ω) at the midspan of the floating bridge in the current
study, although it is difficult to verify systematically due to the many
closely spaced natural periods of the structure and the neglected
damping in the procedure to obtain said natural periods. Exposing the
structure to long-crested regular waves at different wave directions
with a wave period corresponding to a specific modeshape might work
for low modes but in this case study the relevant modes are between 19
and 30. Furthermore, the strong directional dependency in the first

order wave load transfer functions will add further uncertainty to the
results.

4.2.2. Effect on bending moment correlation
The weak and strong axis bending moments are generally important

factors in the design of floating bridges as pointed out by e.g. Leira and
Langen [6]. For the current structure the correlation coefficient ρMyMz

between the weak and strong axis bending moments is calculated for
each realization within each load case listed in Table 4. The sensitivity

Fig. 10. Vertical response spectra of the bridge girder at the midspan AX12 for all load cases with different [s, θ0] values.

Fig. 11. Parallel wave crests propagating at an angle Θ from the normal of a
straight bridge [40].

Fig. 12. Sensitivity in correlation of weak and strong axis bending moment to
main wave direction and spreading exponent at specific points in the bridge.

Table 6
Largest average extrapolated extreme Von Mises stress and their corresponding
location in the bridge girder

Load case Axis Point Mean Std C.o.v.
[MPa] [MPa] [%]

LC1.1 AX23 PET 371.9 4.1 1.1
LC1.2 AX23 PET 372.2 3.6 1.0
LC1.3 AX23 PET 374.0 3.7 1.0
LC1.4 AX23 PET 375.7 4.4 1.2
LC1.5 AX23 PET 383.3 5.6 1.5
LC1.6 AX23 PET 404.7 6.0 1.5
LC2.1 AX23 PET 364.9 4.0 1.1
LC2.2 AX23 PET 365.7 4.5 1.2
LC2.3 AX23 PET 366.3 3.4 0.9
LC2.4 AX23 PET 365.8 3.7 1.0
LC2.5 AX23 PET 373.2 6.0 1.6
LC2.6 AX23 PET 408.0 6.6 1.6

Fig. 13. Sensitivity in the average extrapolated extreme Von Mises stress in point
PET towards the main wave direction and the spreading exponent.
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towards changes in main wave direction and spreading exponent for the
average correlation coefficient at the midspan and each end of the
bridge is shown in Fig. 12. The correlation coefficient remains within
10% and seem to depend slightly on changes of both main wave di-
rection and spreading exponent, although for main wave direction 90°
and up to 105° the sensitivity towards the main wave direction is in-
significant.

4.2.3. Effect on extreme Von Mises stress
The Von Mises stress is evaluated at all six points shown in Fig. 4

and the value of the largest occurring average extrapolated extreme Von
Mises stress for each load case is listed in Table 6 together with their
corresponding location in the bridge. For all load cases the most critical
point is in point PET at AX23 in the bridge. The sensitivity in the re-
sponse at this location is illustrated in Fig. 13 for changing main wave
direction and spreading exponent showing that the average extrapolated
extremes are within 10% for all load cases, except at AX12 for main
wave direction 150° which is 20% larger. A relatively low sensitivity
towards the spreading exponent is observed, although larger values are
found for the most short-crested load cases. Similarly the main wave
direction only has a measurable effect on the response for 120° and up.
The observation of a low sensitivity towards the spreading exponent is
supported by other studies made by Langen and Sigbjörnsson [3] who
investigated the effect of short-crested sea in the design of a floating
pontoon bridge.

In general PET is found to be the most critical point in the cross-
section for all load cases and at all axes along the bridge, except for
AX20, AX21 and AX22 where PWT is the most critical. Fig. 14 illustrates
the average contributions to the sample extreme Von Mises stress in
point PET at AX1, AX12 and AX23 for changing main wave directions
and spreading exponents. The squared normal stress σxx

2 is the main
contributor to the squared Von Mises stress σv

2 with at least 65% at the
bridge abutments and up to 85% at the middle of the bridge. On
average the largest contributor to the normal stress is the stress from
the weak axis bending moment σmy, which is responsible for roughly
80% of the normal stress at the two ends and up to 90% for the middle
of the bridge.

5. Conclusion

A numerical study of the extreme wave-induced response for a long
end-anchored floating bridge has been presented based on a short-term
extreme method with a wave environment having a return period of
100 years.

The accuracy of the short-term extreme response method is in-
vestigated based on three sets of 100 realizations with realization

lengths of 1 h, 2 h and 3 h, respectively. The coefficient of variation
(c.o.v.) of the average extrapolated extremes from fitting Weibull dis-
tributions to realization maxima show clear dependency on both rea-
lization length and number of realizations. A chosen accuracy of less
than 2% in the c.o.v. is achieved using 40 3-h realizations.

An extensive parametric study has been performed based on 40 3-h
realizations for 12 different wave environments accounting for chan-
ging main wave direction and spreading exponent. A low sensitivity
towards the spreading exponent is observed in the average extrapolated
extreme Von Mises stress of the bridge girder and based on structural
symmetry changes in the main wave direction are insignificant for di-
rections within 15° from beam sea. The transverse and vertical response
spectra show a similar behaviour, except for main wave directions more
than 15° from beam sea where a significant change is observed. This
effect is thought to be linked to spatial resonance described by Remseth
et al. [40], although, the high structural complexity with several im-
portant natural periods within 0.1 s of each other makes it difficult to
verify.
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