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MODELS FOR DENSE MULTILANE VEHICULAR TRAFFIC\ast 

HELGE HOLDEN\dagger AND NILS HENRIK RISEBRO\ddagger 

Abstract. We study vehicular traffic on a road with multiple lanes and dense, unidirectional
traffic following the traditional Lighthill--Whitham--Richards model where the velocity in each lane
depends only on the density in the same lane. The model assumes that the tendency of drivers to
change to a neighboring lane is proportional to the difference in velocity between the lanes. The model
allows for an arbitrary number of lanes, each with its distinct velocity function. The resulting model
is a well-posed weakly coupled system of hyperbolic conservation laws with a Lipschitz continuous
source. We show several relevant bounds for solutions of this model that are not valid for general
weakly coupled systems. Furthermore, by taking an appropriately scaled limit as the number of
lanes increases, we derive a model describing a continuum of lanes, and show that the N -lane model
converges to a weak solution of the continuum model.

Key words. Lighthill--Whitham--Richards model, multilane traffic flow, continuum limit

AMS subject classifications. 35L60, 35L65, 35L67, 82B21

DOI. 10.1137/19M124318X

1. Introduction. The Lighthill--Whitham--Richards (LWR) model for unidirec-
tional traffic on a single road (see [16, 19]) reads

(1.1) ut + (uv(u))x = 0,

where u = u(t, x) denotes the density of vehicles at the position x and time t, and
v = v(u) is a given velocity function. The LWR model expresses conservation of
vehicles and is a well-established model for dense unidirectional single lane vehicular
traffic on a homogeneous road without exits and entries. Furthermore, it serves as
the standard textbook example to gain intuition regarding the behavior of solutions
of scalar one-dimensional hyperbolic conservation laws; see, e.g., [13].

Given the importance of vehicular traffic modeling in modern society, it is no won-
der that the LWR model has been generalized to describe several important scenarios
in dense traffic flow. Indeed, ``traffic hydrodynamics"" has become a research field in
its own right, where the flow of vehicles is modeled by conservation laws or balance
equations. In the general context, the LWR model is the simplest model among the
many hydrodynamic traffic models. Among the other models often used is the Aw--
Rascle model [1], which is a system of conservation laws where the velocity v is not
a given function of u, but satisfies a second conservation law. It is thus considerably
more complicated than the simple LWR model. For a general introduction to how
conservation laws are used in traffic modeling, see [12, 4] and the many references
therein.
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In this paper we introduce a new model for multilane dense vehicular traffic where
the underlying model for each lane remains the LWR model. Our basic assumption is
that drivers prefer to drive faster, and that the tendency of a vehicle to change lanes is
proportional to the difference in velocity between neighboring lanes. If (1.1) describes
the density of vehicles in a particular lane, the multilane behavior is described by a
source term, accounting for lane changes. The result is thus a system of weakly
coupled scalar conservation laws.

More precisely, consider two lanes denoted 1 and 2. The model we study reads

\partial tu1 + \partial x(u1v1(u1)) =  - S(u1, u2),
\partial tu2 + \partial x(u2v2(u2)) = S(u1, u2),

where the change of lanes is codified in

S(u1, u2) = K(v2(u2) - v1(u1)) \cdot 

\Biggl\{ 
u1 v2(u2) \geq v1(u1),

u2 v2(u2) < v1(u1),

where K is a constant of proportionality. Here ui denotes the density in lane i.
The system constitutes a weakly coupled 2\times 2 system of one-dimensional hyperbolic
conservation laws, and there is ample theory available for systems of this type; see
section 2. The system readily generalizes to an arbitrary number of lanes; see section
3. We show that the general system with N lanes has a unique entropy solution, and
that the solution is well posed in the sense that one has a surprising L1 stability,

N\sum 
i=1

\| ui(t) - \=ui(t)\| L1(\BbbR ) \leq 
N\sum 
i=1

\| ui,0  - \=ui,0\| L1(\BbbR ) ,

for two solutions ui and \=ui; see Theorems 3.2 and 3.3. Note that the L1 stability does
not hold, in general, for systems of balance laws, that is, hyperbolic conservation laws
with source.

The model invites considering the continuum limit where the number of lanes
increases to infinity. We organize the parallel lanes along the x-axis, and measure the
distance between the lanes along the y-axis. The distance between the lanes is scaled
as \Delta y = 1/N , where N denotes the number of lanes. For simplicity we assume that
the velocity function is given by vi(u) =  - k(yi)g(u) for all u \in [0, 1], where yi = i\Delta y,
and  - g(u) is the velocity function. We scale the function such that g(0) =  - 1 and
g(1) = 0.

We consider given initial data u0 : \BbbR \times [0, 1] \rightarrow [0, 1], where the initial data for
lane i is ui,0, given by (4.21) and with solution ui. We interpolate this function to
u\Delta y where u\Delta y : [0,\infty )\times \BbbR \times [0, 1] \rightarrow [0, 1]. We assume that k is smooth and positive
with k\prime (0) = k\prime (1) = 0. In Theorem 4.2 we show, provided the constant K scales as
1/\Delta y2, that u\Delta y \rightarrow u where u is a weak solution of

(1.2)

\left\{     
ut + kf(u)x + (k\prime f(u))y = (kugy)y ,

g(u)y| y=0,1 = 0,

u| t=0 = u0,

where the flux function f is defined as f(u) = uv(u). This equation is an interesting
anisotropic and degenerate parabolic equation with nontrivial boundary conditions in
the y-direction.
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There is a plethora of approaches to the modeling of multilane dense traffic. See
[17] for an early approach, and consult [18] for a survey up to 2010 of various models for
lane changing. Microscopic models based on kinetic theory are studied in [14, 15]. A
macroscopic model derived from individual behavior can be found in [6]. A multilane
model where the focus is on the total vehicle density across all lanes is analyzed in
[5]. A rather different approach is taken in [7], where traffic is studied as a two-
dimensional flow problem, and in [8, 9] the analysis is extended to the second-order
Aw--Rascle model and a hybrid stochastic kinetic model, respectively. The approach
in [3] is more similar to the analysis presented here, however, with a different source
term.

The novel model we present here is conceptually simple, captures an essential
aspect of lane changing, while at the same time allowing for a rigorous mathematical
treatment.

One could, of course, let the lanes have finite length. This would entail prescribing
boundary conditions for each lane. Boundary conditions for scalar conservation laws
are (by now) well understood, though quite technical; see, e.g., the pioneering paper
[2]. Therefore, we have chosen to work with lanes of infinite length in this paper.

The rest of this paper is organized as follows: In section 2 we detail the two-lane
case, and show that ui \in [0, 1] is an invariant region. In section 3 we state the N -
lane model, and prove a number of estimates on the solution. Finally, in section 4,
we study the limit as N \rightarrow \infty . Analogously to the analysis of numerical schemes
for degenerate parabolic equations, we establish enough estimates on the solution,
enabling us to conclude that a limit exists, and that this limit is a weak solution of
a degenerate convection-diffusion equation. All sections are illustrated by numerical
examples.

2. A continuum model for two-lane vehicular traffic. Consider a road
with two lanes, each with its own velocity function. The lanes are homogeneous, and
traffic on the road is unidirectional. We assume that the vehicular traffic is dense,
allowing for a continuum formulation. Let ui and vi = vi(ui) denote the density and
velocity, respectively, in lane i.

In this paper we focus on the interaction between the two lanes. We assume that
drivers prefer to drive in the faster lane, and the tendency of a vehicle to change lanes
is proportional to the difference in velocity. Thus the flow from lane 1 to lane 2 equals

S(u1, u2) = K(v2(u2) - v1(u1)) \cdot 

\Biggl\{ 
u1 v2(u2) \geq v1(u1),

u2 v2(u2) < v1(u1),

= K
\Bigl[ 
(v2(u2) - v1(u1))

+
u1  - (v2(u2) - v1(u1))

 - 
u2

\Bigr] 
,(2.1)

where K is a constant, (a)+ = max \{ a, 0\} and (a) - =  - min \{ a, 0\} . The flow from
lane 2 to lane 1 equals  - S(u1, u2). The classical LWR model implies the following
model describing the two-lane traffic:

\partial tu1 + \partial x(u1v1(u1)) =  - S(u1, u2),(2.2a)

\partial tu2 + \partial x(u2v2(u2)) = S(u1, u2),(2.2b)

where x is the position along the road and t denotes time. This 2 \times 2 system of
hyperbolic conservation laws is weakly coupled with a Lipschitz continuous source
term.

D
ow

nl
oa

de
d 

12
/1

2/
19

 to
 1

29
.2

40
.2

22
.5

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

MULTILANE VEHICULAR TRAFFIC 3697

The velocities vi = vi(ui) are strictly decreasing positive functions, and we assume
that they are scaled such that v1(1) = v2(1) = 0. For simplicity, we scale space and
time such that K = 1.

It is well known that this system, in general, only allows for weak solutions ui \in 
L1(\BbbR )\cap BV (\BbbR ), the set of integrable functions of finite total variation; see, e.g., [13].
Furthermore, the issue of uniqueness of the solution is nontrivial and one needs to
require that the solution satisfies an entropy condition.

Definition 2.1. Let vi = vi(ui) be strictly decreasing positive functions such that
v1(1) = v2(1) = 0. Assume that ui,0 \in L1([0, 1])\cap BV ([0, 1]) for i = 1, 2. We say that
u = \{ u1, u2\} , where ui \in C([0,\infty );L1(\BbbR )) with ui(t, \cdot ) \in BV (\BbbR ) for t \in [0,\infty ) for
i = 1, 2 is a weak solution of (2.2) with initial data ui,0 if\int \infty 

0

\int 
\BbbR 

\bigl( 
u1\varphi t + u1v1(u1)\varphi x  - S(u1, u2)\varphi 

\bigr) 
dxdt+

\int 
\BbbR 
u1,0\varphi | t=0 dx = 0,\int \infty 

0

\int 
\BbbR 

\bigl( 
u2\varphi t + u2v2(u2)\varphi x + S(u1, u2)\varphi 

\bigr) 
dxdt+

\int 
\BbbR 
u2,0\varphi | t=0 dx = 0

for all compactly supported test functions \varphi \in C\infty 
0 ([0,\infty )\times \BbbR ).

The solution is called an entropy solution if\int \infty 

0

\int 
\BbbR 

\bigl( 
\eta (u1)\varphi t + q1(u1)\varphi x

\bigr) 
dxdt+

\int 
\BbbR 
\eta (u1,0)\varphi | t=0 dx

\geq 
\int \infty 

0

\int 
\BbbR 
\eta \prime (u1)\varphi S(u1, u2) dxdt,(2.3a)\int \infty 

0

\int 
\BbbR 

\bigl( 
\eta (u2)\varphi t + q2(u2)\varphi x

\bigr) 
dxdt+

\int 
\BbbR 
\eta (u2,0)\varphi | t=0 dx

\geq  - 
\int \infty 

0

\int 
\BbbR 
\eta \prime (u2)\varphi S(u1, u2) dxdt(2.3b)

for all twice differentiable convex functions \eta where qi satisfies q\prime i(u) = \eta \prime (u)f \prime i(u)
with fi(u) = uvi(u), and for all compactly supported nonnegative test functions \varphi \in 
C\infty 

0 ([0,\infty )\times \BbbR ), \varphi \geq 0.

Remark 2.2. By a density argument it suffices that (2.3) holds for \eta of the form
\eta (u) = | u - k| for all constants k \in \BbbR ; see [13, Remark 2.1]. In that case qi(u) =
sign (u - k) (fi(u) - fi(k)).

Remark 2.3. The existence and uniqueness of entropy solutions to (2.2) follows
by Theorem 3.2.

Throughout the paper, we will use the following notation:

(2.4) a\pm =
1

2

\bigl( 
| a| \pm a

\bigr) 
, H(a) = 1[0,\infty )(a),

where 1M is the indicator (characteristic) function of a set M . Note that

0 \leq a\pm \leq | a| , | a| = a+ + a - , a = a+  - a - , a+a - = 0, (\mp a) - = (\pm a)+,
H(x) +H( - x) = 1, (x+)\prime = H(x), (x - )\prime =  - H( - x), x \not = 0.

We shall also employ the convention that C denotes a ``generic"" finite positive con-
stant, independent of critical parameters, whose actual value may change from one
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occurrence to the next. Similarly, we use C\alpha to denote a positive function C\alpha < \infty 
for \alpha <\infty .

This model (2.2) has the natural invariant region u \in [0, 1]. This is the content
of the following lemma.

Lemma 2.4. Let u = \{ u1, u2\} be an entropy solution in the sense of Defini-
tion 2.1, with initial data ui,0 for i = 1, 2. If ui,0(x) \in [0, 1] for almost all x and
i = 1, 2, then ui(t, x) \in [0, 1] for almost all x and for t > 0.

Proof. To show that ui \geq 0 if ui,0 \geq 0, we use the entropy \eta (u) = u - . Then

\partial t(ui)
 - + \partial xq

 - 
i (ui) \leq ( - 1)i+1H( - ui)S(u1, u2)

in \scrD \prime for i = 1, 2. We use a nonnegative test function \varphi (x, t) \approx 1[0,\tau ] to find that\int 
\BbbR 
(ui(\tau , x))

 - dx \leq 
\int 
\BbbR 
(ui,0(x))

 - dx+ ( - 1)i+1

\int \tau 

0

\int 
\BbbR 
H( - ui)S(u1, u2) dxdt.

Adding these two equations and using that (ui,0)
 - = 0, we get\int 

\BbbR 
(u1(\tau , x))

 - + (u2(\tau , x))
 - dx \leq 

\int \tau 

0

\int 
\BbbR 
r(u1, u2) dxdt,

with
r(u1, u2) = S(u1, u2)(H( - u1) - H( - u2)).

We have that

r(u1, u2)

=

\left\{           
0, u1 < 0 and u2 < 0,

0, u1 > 0 and u2 > 0,

 - 
\Bigl[ 
(v2(u2) - v1(u1))

+
u1  - (v2(u2) - v1(u1))

 - 
u2

\Bigr] 
, u2 \leq 0 < u1,\Bigl[ 

(v2(u2) - v1(u1))
+
u1  - (v2(u2) - v1(u1))

 - 
u2

\Bigr] 
, u1 \leq 0 < u2,

\leq 

\left\{         
0, u1 < 0 and u2 < 0,

0, u1 > 0 and u2 > 0,

 - (v2(u2) - v1(u1))
+
u1, u2 \leq 0 < u1,

 - (v2(u2) - v1(u1))
 - 
u2, u1 \leq 0 < u2,

\leq 0.

Hence ui(\tau , x) \geq 0 for almost all x.
Similarly, by using the convex entropy \eta (u) = (u - 1)+ we get

\partial t(ui  - 1)+ + \partial xq
+
i (ui) \leq ( - 1)iH(ui  - 1)S(u1, u2)

in \scrD \prime , the set of distributions. By the same argument as before, we arrive at\int 
\BbbR 

\bigl[ 
(u1(\tau , x) - 1)+ + (u2(\tau , x) - 1)+

\bigr] 
dx \leq 

\int \tau 

0

\int 
\BbbR 
r(u1, u2) dxdt,

with
r(u1, u2) = S(u1, u2) (H(u2  - 1) - H(u1  - 1)) .
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We have that

r(u1, u2)

=

\left\{           
0, u1 < 1 and u2 < 1,

0, u1 > 1 and u2 > 1,

 - 
\Bigl[ 
(v2(u2) - v1(u1))

+
u1  - (v2(u2) - v1(u1))

 - 
u2

\Bigr] 
, u2 \leq 1 < u1,\Bigl[ 

(v2(u2) - v1(u1))
+
u1  - (v2(u2) - v1(u1))

 - 
u2

\Bigr] 
, u1 \leq 1 < u2,

=

\left\{         
0, u1 < 1 and u2 < 1,

0, u1 > 1 and u2 > 1,

 - (v2(u2) - v1(u1))
+
u1, u2 \leq 1 < u1,

 - (v2(u2) - v1(u1))
 - 
u2, u1 \leq 1 < u2,

\leq 0

if u1 and u2 are nonnegative. Here we used that v(u) < 0 if u > 1.

Remark 2.5. There are also other invariant regions for this equation. If

v2 (u2,0(x)) \geq v1 (u1,0(x)) ,

then
v2 (u2(t, x)) \geq v1 (u1(t, x))

for t > 0. This can be shown using similar arguments that are used in the proof of
Lemma 2.4.

2.1. An example. We finish our discussion of the two-lane case by exhibiting
an example. The velocities on the two roads are

(2.5) v1(u) = 1.5(1 - u) and v2(u) = 2.5(1 - u),

and the initial data

(2.6) u1,0(x) = u2,0(x) = sin2(\pi x/2).

Of course, we do not have entropy solutions in closed form, so instead we use a nu-
merical approximation generated by the Engquist--Osher scheme with 800 grid points
and periodic boundary conditions in the interval [0, 2]. Figure 1 shows the computed
solution at t = 0.375, t = 0.75, t = 1.125, and t = 1.5. For comparison, we have also
included the single lane model with the (average of v1 and v2) speed v(u) = 2(1 - u).
We see that there is the expected change of lanes to the faster lane, and that a shock
builds up in the fast lane to the left of the shock in the slow lane.

3. Multilane model. The model (2.2) can be generalized to an arbitrary num-
ber of lanes. Consider a road with N lanes. Traffic is unidirectional and dense. Each
lane has its specific velocity function vi depending only on the density in that lane;
thus vi = vi(ui), where ui is the density in lane i.

Assume that drivers prefer to drive in the faster lane, and this tendency increases
with the velocity difference with adjacent lanes. Thus the flow from lane i to lane
i+ 1 equals

Si(ui, ui+1) =
\Bigl[ 
(vi+1(ui+1) - vi(ui))

+
ui  - (vi+1(ui+1) - vi(ui))

 - 
ui+1

\Bigr] 
,
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Fig. 1. The computed solutions of (2.2) with v1 and v2 given by (2.5) and initial data given
by (2.6).

where we have taken the constant K equal for all lanes, and furthermore scaled time
such that this constant of proportionality is one. We then get, in the analogous
manner to the derivation of (2.2), that

(3.1) \partial tui + \partial x (uivi(ui)) = Si - 1(ui - 1, ui) - Si(ui, ui+1), i = 1, . . . , N,

coupled with the boundary conditions

(3.2) S0(u0, u1) = SN (uN , uN+1) = 0.

Definition 3.1. Let vi = vi(ui) be Lipschitz continuous functions, and assume
that ui,0 \in L1(\BbbR ) \cap L\infty (\BbbR ) for i = 1, . . . , N . We say that u = \{ ui\} i with ui \in 
C([0,\infty );L1(\BbbR )) is a weak solution of (3.1) with initial data ui,0 if\int \infty 

0

\int 
\BbbR 

\bigl( 
ui\varphi t + u1vi(ui)\varphi x + (Si(ui, ui+1) - Si - 1(ui - 1, ui))\varphi 

\bigr) 
dxdt

+

\int 
\BbbR 
ui,0\varphi | t=0 dx = 0, i = 1, . . . , N,

for all compactly supported test functions \varphi \in C\infty ([0,\infty )\times \BbbR ).
It is an entropy solution if

(3.3)

\int \infty 

0

\int 
\BbbR 

\bigl( 
\eta (ui)\varphi t + qi(ui)\varphi x

\bigr) 
dxdt+

\int 
\BbbR 
\eta (ui,0)\varphi | t=0 dx

\geq 
\int \infty 

0

\int 
\BbbR 
\eta \prime (ui) (Si(ui, ui+1) - Si - 1(ui - 1, ui))\varphi dxdt, i = 1, . . . , N,
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for all convex functions \eta , and for all nonnegative test functions \varphi \in C\infty 
0 ([0,\infty )\times \BbbR ).

Here qi is defined by q\prime i(u) = \eta \prime (u)f \prime i(u) with fi(u) = uvi(u).

The well posedness of the system of equations (3.1) is ensured by the following
general theorem from [11]; see also [10].

Theorem 3.2 (see [10, Theorem 3.13]). Assume that vi and ui,0 are as in Defi-

nition 3.1. Then there exists a unique entropy solution u = \{ ui\} Ni=1. Furthermore, if

\=u = \{ \=ui\} Ni=1 is another entropy solution with initial data \{ \=ui,0\} Ni=1, then

(3.4)

N\sum 
i=1

\| ui(t, \cdot ) - \=ui(t, \cdot )\| L1(\BbbR )

\leq 
\surd 
N exp

\biggl( 
2N sup

i
\| Si\| Lip t

\biggr) N\sum 
i=1

\| ui,0  - \=ui,0\| L1(\BbbR ) .

A fundamental property of hyperbolic conservation law is the L1 contractivity of
solutions in the sense that the spatial L1-norm of the difference between two entropy
solutions at a specific time does not increase in time. This property is, in general,
lost for weakly coupled systems, or for scalar conservation laws with a source. The
general bound (3.4) does not imply L1 contractivity. However, for system (3.1), the
special form of the source yields L1 contractivity for the whole solution, as the next
theorem shows.

Theorem 3.3. Consider two entropy solutions u = \{ ui\} Ni=1 and \=u = \{ \=ui\} Ni=1 of
(3.1) with initial data u0 = \{ ui,0\} and \=u0 = \{ \=ui,0\} , respectively. Then we have

(3.5)

N\sum 
i=1

\int 
\BbbR 
| ui(x, t) - \=ui(x, t)| dx \leq 

N\sum 
i=1

\int 
\BbbR 
| ui,0(x) - \=ui,0(x)| dx.

Proof. By using Kru\v zkov's doubling of variables technique we get

\partial t | ui  - \=ui| + \partial x [sign (ui  - \=ui) (fi(ui) - fi(\=ui))]

\leq  - sign (ui  - \=ui) [Si(ui, ui+1) - Si(\=ui, \=ui+1) - (Si - 1(ui - 1, ui) - Si - 1(\=ui - 1, \=ui))]

in \scrD \prime . Subtracting the equation for ui and adding the equation for \=ui we arrive at

\partial t(ui  - \=ui)
+ + \partial x [H(ui  - \=ui) (fi(ui) - fi(\=ui))]

\leq  - H(ui  - \=ui) [Si(ui, ui+1) - Si(\=ui, \=ui+1) - (Si - 1(ui - 1, ui) - Si - 1(\=ui - 1, \=ui))]

in \scrD \prime . Now let \omega \varepsilon be a standard Friedrichs mollifier in one variable, and let \psi \varepsilon (x) be
a smooth function with compact support satisfying

\psi \varepsilon (x) = \psi \varepsilon ( - x), 0 \leq \psi \varepsilon (x) \leq 1,

\psi \varepsilon (x) = 1 for | x| < 1/\varepsilon , \psi \varepsilon (x) = 0 for | x| > 2/\varepsilon , and | \psi \prime 
\varepsilon (x)| \leq 2\varepsilon .

As a test function, choose

\varphi \varepsilon (x, t) =
\bigl( 
\omega \varepsilon \ast 1[0,\tau ](t)

\bigr) 
\psi \varepsilon (x),
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where \ast denotes convolution. Then pass to the limit \varepsilon \downarrow 0 to infer that

(3.6)

\int 
\BbbR 
(ui(x, \tau ) - \=ui(x, \tau ))

+
dx

\leq 
\int 
\BbbR 
(ui(x, 0) - \=ui(x, 0))

+
dx+

\int \tau 

0

\int 
\BbbR 
H (ui  - \=ui)

\times [Si - 1(ui - 1, ui) - Si - 1(\=ui - 1, \=ui) - (Si(ui, ui+1) - Si(\=ui, \=ui+1))] dxdt.

Recall that
Si(a, b) = (vi+1(b) - vi(a))

+
a - (vi+1(b) - vi(a))

 - 
b.

Now

\partial Si

\partial a
= (vi+1(b) - vi(a))

+

 - (H (vi+1(b) - vi(a)) a+H ( - (vi+1(b) - vi(a))) b) v
\prime 
i(a) \geq 0

and

\partial Si

\partial b
=  - (vi+1(b) - vi(a))

 - 

+ (H (vi+1(b) - vi(a)) a+H ( - (vi+1(b) - vi(a))) b) v
\prime 
i+1(b)

\leq 0.

So if ui > \=ui,

Si - 1(ui - 1, ui) - Si - 1(\=ui - 1, \=ui) - (Si(ui, ui+1) - Si(\=ui, \=ui+1))

\leq Si - 1(ui - 1, \=ui) - Si - 1(\=ui - 1, \=ui) - (Si(ui, ui+1) - Si(ui, \=ui+1))

\leq cmax \{ ui - 1, \=ui - 1\} (ui - 1  - \=ui - 1)
+
+ cmax \{ ui+1, \=ui+1\} (ui+1  - \=ui+1)

+

\leq c
\Bigl[ 
(ui - 1  - \=ui - 1)

+
+ (ui+1  - \=ui+1)

+
\Bigr] 
,

since ui and \=ui are in [0, 1], and where 0 < c < | v\prime i| . Therefore,

N\sum 
i=1

H (ui  - \=ui) [Si - 1(ui - 1, ui) - Si - 1(\=ui - 1, \=ui) - (Si(ui, ui+1) - Si(\=ui, \=ui+1))]

\leq 2c
N\sum 
i=1

(ui  - \=ui)
+
.

Define

\Theta (t) =

\int 
\BbbR 

N\sum 
i=1

(ui(x, t) - \=ui(x, t))
+
dx;

then (3.6) and the above inequality imply that

\Theta (T ) \leq \Theta (0) + 2c

\int t

0

\Theta (t) dt.

Gronwall's inequality then implies that

\Theta (T ) \leq \Theta (0)e2cT .
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Thus if \Theta (0) = 0, i.e., ui,0(x) \leq \=ui,0(x) for a.e. x, then \Theta (T ) = 0 for T > 0, i.e.,
ui(x, T ) \leq \=ui(x, T ) for a.e. x.

By the Crandall--Tartar lemma [13, Lemma 2.13], this implies L1 contractivity;
i.e., if u and \=u are entropy solutions to (3.1) with initial data u0 and \=u0, then (3.5)
holds for t > 0.

One way to enforce the boundary conditions (3.2) is to define u0(x, t) = u1(t, x),
v0(u) = v1(u), uN+1(x, t) = uN (x, t), and vN+1(u) = vN (u). Henceforth we will use
this convention.

Corollary 3.4. Let u = \{ ui\} Ni=1 be a solution of (3.1) with initial data u0 =

\{ ui,0\} Ni=1, in the sense of Definition 3.1. Then we have

(3.7)

N - 1\sum 
i=1

\| ui+1( \cdot , t) - ui( \cdot , t)\| L1(\BbbR ) \leq 
N - 1\sum 
i=1

\| ui+1,0  - ui,0\| L1(\BbbR ) .

Furthermore, we have

(3.8)

N\sum 
i=1

| ui( \cdot , t)| BV (\BbbR ) \leq 
N\sum 
i=1

| ui,0| BV (\BbbR ) .

In addition,

(3.9)

N\sum 
i=1

\| ui( \cdot , t+ h) - ui( \cdot , t)\| L1(\BbbR ) \leq 
N\sum 
i=1

\| ui( \cdot , h) - ui( \cdot , 0)\| L1(\BbbR ) .

Proof. Setting \=ui,0 = ui+1,0 in Theorem 3.3 for i = 1, . . . , N yields (3.7). Simi-
larly, defining \=ui,0(x) = ui,0(x+ h), using (3.5), and sending h to zero gives (3.8). To
obtain time continuity we define \=ui.0(x) = ui(x, h), to get (3.9).

We also note the following useful estimates. Define fi(u) = uvi(u) and \Delta  - 
i ai =

ai  - ai - 1, divide (3.9) by h, and let h \downarrow 0 to find that
(3.10)

N\sum 
i=1

\bigm\| \bigm\| fi(ui)x  - \Delta  - Si(ui, ui+1)
\bigm\| \bigm\| 
L1(\BbbR ) \leq 

N\sum 
i=1

\bigm\| \bigm\| fi(ui,0)x  - \Delta  - Si(ui,0, ui+1,0)
\bigm\| \bigm\| 
L1(\BbbR ) .

If we assume that the quantity on the left is bounded by C, then we get

(3.11)

N\sum 
i=1

\| ui( \cdot , t+ h) - ui( \cdot , t)\| L1(\BbbR ) \leq Ch.

Furthermore, we have the useful observation

(3.12)

N\sum 
i=1

\bigm\| \bigm\| \Delta  - Si((ui, ui+1)( \cdot , t))
\bigm\| \bigm\| 
L1(\BbbR ) \leq C +

N\sum 
i=1

| fi(ui,0)| BV (\BbbR ) .

3.1. An example. We also include here an example. For i = 1, . . . , 8 we set
ui,0(x) = sin2(\pi x/2) and define

(3.13) vi(u) = ki(1 - u), ki =
13

12
+
i - 1

4
, i = 1, . . . , 8.
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Also, in this case the depicted solutions were calculated with the Engquist--Osher
scheme with 800 grid points and periodic boundary conditions in the interval [0, 2].
Figure 2 shows the computed solutions at t = 0.375, t = 0.75, t = 1.125, and t = 1.5.
We see the expected change of lanes to the faster lanes, and that a shock builds up
in the faster lanes to the left of the slower lanes.

Fig. 2. The solution of (3.1) with N = 8, and vi given by (3.13). Upper left: t = 0.38. Upper
right: t = 0.75. Lower left: t = 1.12. Lower right t = 1.50.

4. Infinitely many lanes---the continuum limit. It is natural, at least math-
ematically, to consider the case where the lanes increase in number while at the same
time get closer. Our aim in this section is therefore to investigate limit as N \rightarrow \infty in
the system in the previous section.

To this end we let (the number of lanes)N be a positive integer and set \Delta y = 1/N .
Let yi = (i  - 1/2)\Delta y for i = 1, . . . , N . We shall also use the ``divided difference""
notation

D\pm ai = \pm ai\pm 1  - ai
\Delta y

.

For simplicity, we restrict our presentation to the case where vi(u) =  - k(yi)g(u),
where g is a differentiable function with g\prime (u) > 0, g(0) =  - 1, and g(1) = 0. Define
f(u) =  - ug(u). Throughout we will use the notation fi = f(ui), gi = g(ui), and
ki = k(yi). Now we reintroduce the scaling constant K in (2.1), and set K = \kappa /\Delta y2.
For the reader's convenience we set \kappa = 1. Thus, for i = 1, . . . , N , ui is the unique
entropy (in the sense of Definition 3.1) solution of the balance equation

(4.1) \partial tui + ki\partial xf(ui) =
1

\Delta y2
[Si - 1(ui - 1, ui) - Si(ui, ui+1)] ,
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with the boundary conditions

u0 = u1, uN+1 = uN , k0 = k1, and kN+1 = kN .

It is also useful to define the function u\Delta y(t, x, y) by

(4.2) u\Delta y(t, x, y) =

\Biggl\{ 
ui(t, x) if y \in [yj - 1/2, yj+1/2), i = 1, . . . , N  - 1,

uN (t, x) if y \in [yN - 1/2, 1].

Next we shall show that the family \{ u\Delta y\} \Delta y=1/N , N \in \BbbN , is compact, and that the

limit is a weak solution to (1.2), in the sense of the following definition.

Definition 4.1. Set \Omega = \BbbR \times [0, 1] and \Omega T = [0, T ] \times \Omega . Let k = k(y) be as
above, in particular k\prime (0) = k\prime (1) = 0. We say that u \in C([0,\infty );L1(\Omega )), such that
uuy \in L2(\Omega T ), is a weak solution to

\left\{     
ut + kf(u)x + (k\prime f(u))y = (kugy)y , t > 0, (x, y) \in \BbbR \times (0, 1),

g(u)y = 0, x \in \BbbR , y = 0, y = 1,

u(0, x, y) = u0(x, y), (x, y) \in \BbbR \times (0, 1),

if for all test functions \varphi \in C\infty 
0 (\Omega T ),\int 

\Omega T

\bigl( 
u\varphi t + kf(u)\varphi x + k\prime f(u)\varphi y

\bigr) 
dydxdt =

\int 
\Pi T

\int 1

0

kug\prime (u)uy\varphi y dydxdt

+

\int 
\Omega 

u(T, x, y)\varphi (T, x, y) dxdy  - 
\int 
\Omega 

u0\varphi (0, x, y) dxdy.

The next theorem is the main result of this section.

Theorem 4.2. Let k \in C2([0, 1]) such that k\prime (0) = k\prime (1) = 0, and k(y) > 0 for
all y \in [0, 1], and assume that g = g(u) is a strictly increasing differentiable function
such that g(0) =  - 1 and g(1) = 0.

Assume that u0 \in L1(\Omega ) \cap BV (\Omega ), and let u\Delta y be defined as in (4.2) where ui
solves (4.1) for i = 1, . . . , N .

Then there exists a sequence Nj \rightarrow \infty and correspondingly \Delta yj = 1/Nj \rightarrow 0 such
that the sequence of solutions

\bigl\{ 
u\Delta yj

\bigr\} \infty 
j=1

has a limit, i.e.,

u = lim
j\rightarrow \infty 

u\Delta yj
in C([0,\infty );L1(\Omega )).

The limit u is a weak solution according to Definition 4.1.
We also have the regularity estimate

(4.3)
\bigm\| \bigm\| u2(y1) - u2(y2)

\bigm\| \bigm\| 2
L2([0,T ]\times \BbbR ) \leq C | y1  - y2| , y1, y2 \in [0, 1].

Proof. We first show compactness by a series of estimates, and then proceed to
show that any limit is a weak solution.
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The right-hand side of (4.1) equals

1

\Delta y2
(Si - 1  - Si) = uiD

+D - (kigi) +D+ui
\bigl( 
D+kigi

\bigr) +  - D - ui
\bigl( 
D - kigi

\bigr)  - \underbrace{}  \underbrace{}  
bi

= D+
\bigl( 
uiD

 - (kigi)
\bigr) 
 - D+uiD

 - kigi

+D+ui
\bigl( 
D+kigi

\bigr) +  - D - ui
\bigl( 
D - kigi

\bigr)  - 
= D+

\bigl( 
uiD

 - (kigi)
\bigr) 
+\Delta +

i ui
\bigl( 
D+kigi

\bigr)  -  - D - ui
\bigl( 
D - kigi

\bigr)  - 
= D+

\bigl( 
uiD

 - (kigi)
\bigr) 
+\Delta y D - 

\Bigl( 
(D+ui)

\bigl( 
D+kigi

\bigr)  - \Bigr) 
.(4.4)

Thus (4.1) reads

(4.5) \partial tui + ki\partial xf(ui) = D+
\bigl( 
uiD

 - (kigi)
\bigr) 
+\Delta y D - 

\Bigl( 
(D+ui)

\bigl( 
D+kigi

\bigr)  - \Bigr) 
for i = 1, . . . , N , and we have the boundary values

(4.6) D - (k1g1) = D+(kNgN ) = 0.

Remark 4.3. Observe that the above term bi is an upwind discretization of the
transport term corresponding to auy, with a = (kg)y.

Similarly to (4.4), we also get the expression

(4.7)
1

\Delta y2
(Si - 1  - Si) = D - \bigl( uiD+ (kigi)

\bigr) 
+\Delta yD - 

\Bigl( 
(D+ui)

\bigl( 
D+kigi

\bigr) +\Bigr) 
.

Recall (3.3) with \eta (u) = u2/2 and \varphi an approximation to 1[0,T ]. That gives

1

2

\int 
\BbbR 
(ui(x, T ))

2 dx

\leq 1

2

\int 
\BbbR 
(ui,0(x))

2 dx

+

\int 
\Pi T

\Bigl( 
uiD

+
\bigl( 
uiD

 - (kigi)
\bigr) 
+\Delta y uiD

 - 
\Bigl( 
D+ui

\bigl( 
D+kigi

\bigr)  - \Bigr) \Bigr) 
dxdt,

where \Pi T = [0, T ]\times \BbbR . We can sum this for i = 1, . . . , N , multiply with \Delta y, and do
a summation by parts to get

(4.8)
1

2
\Delta y

N\sum 
i=1

\int 
\BbbR 
(ui(x, T ))

2 dx

+\Delta y

N\sum 
i=1

\int 
\Pi T

uiD
 - (kigi)D

 - ui dxdt+\Delta y2
N\sum 
i=1

\int 
\Pi T

\bigl( 
D+kigi

\bigr)  - \bigl( 
D+ui

\bigr) 2
dxdt

\leq 1

2
\Delta y

N\sum 
i=1

\int 
\BbbR 
(ui,0(x))

2 dx.

It will be useful to lower bound the last two terms on the left-hand side.
Recall first that

(4.9) 0 \leq ui \leq 1,
\bigm| \bigm| D+ki

\bigm| \bigm| \leq C, and \Delta y

N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| D+ui
\bigm| \bigm| dxdt \leq C
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for some constant C independent of \Delta y. Using this and the fact that maxu\in [0,1] | g(u)| 
is bounded, as well as

(4.10) \Delta y
\bigm| \bigm| D\pm ui

\bigm| \bigm| \leq C,

we have that

\Delta y2
N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| giD+ki
\bigm| \bigm| \bigl( D+ui

\bigr) 2
dxdt \leq C\Delta y2

N\sum 
i=1

\int 
\Pi T

\bigl( 
D+ui

\bigr) 2
dxdt

\leq C\Delta y

N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| D+ui
\bigm| \bigm| dxdt \leq C.(4.11)

Furthermore, note that the same argument yields

(4.12) \Delta y

N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| uigi - 1(D
 - ki)(D

 - ui)
\bigm| \bigm| dxdt \leq C\Delta y

N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| D - ui
\bigm| \bigm| dxdt \leq C.

Observe that
D+kigi = ki+1D

+gi + giD
+ki,

and then use the inequality (a+ b) - \geq a -  - | b| . Thus, since g\prime > 0,\bigl( 
D+kigi

\bigr)  - \bigl( 
D+ui

\bigr) 2 \geq ki+1

\bigl( 
D+gi

\bigr)  - 
(D+ui)

2  - 
\bigm| \bigm| giD+ki

\bigm| \bigm| \bigl( D+ui
\bigr) 2

\geq c
\bigl( 
(D+ui)

 - \bigr) 3  - \bigm| \bigm| giD+ki
\bigm| \bigm| \bigl( D+ui

\bigr) 2
,

where 0 < c \leq mini ki minu g
\prime (u). Similarly,

D - (kigi) = kiD
 - gi + gi - 1D

 - ki,

and therefore,

uiD
 - (kigi)(D

 - ui) \geq kiui(D
 - gi)(D

 - ui) - 
\bigm| \bigm| uigi - 1(D

 - ki)(D
 - ui)

\bigm| \bigm| .
Note that due to the monotonicity of g we have for some \~u between ui and u1 - 1,

kiuiD
 - giD

 - ui = kiuig
\prime (\~u)(D - ui)

2 \geq cui(D
 - ui)

2 \geq 0.

We can now estimate the last two terms of the left-hand side of (4.8) from below.
More precisely,

c\Delta y2
N\sum 
i=1

\int 
\Pi T

\bigl( 
(D+ui)

 - \bigr) 3 dxdt - \Delta y2
N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| giD+ki
\bigm| \bigm| \bigl( D+ui

\bigr) 2
dxdt

+ c\Delta y

N\sum 
i=1

\int 
\Pi T

ui
\bigl( 
D - ui

\bigr) 2
dxdt - \Delta y

N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| uigi - 1D
 - kiD

 - ui
\bigm| \bigm| dxdt

\leq \Delta y2
N\sum 
i=1

\int 
\Pi T

\bigl( 
D+kigi

\bigr)  - \bigl( 
D+ui

\bigr) 2
dxdt+\Delta y

N\sum 
i=1

\int 
\Pi T

uiD
 - (kigi)D

 - ui dxdt

\leq 1

2
\Delta y

N\sum 
i=1

\int 
\BbbR 
(ui(x, T ))

2 dx+\Delta y2
N\sum 
i=1

\int 
\Pi T

\bigl( 
D+kigi

\bigr)  - \bigl( 
\Delta +

i ui
\bigr) 2
dxdt
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+\Delta y

N\sum 
i=1

\int 
\Pi T

uiD
 - (kigi)D

 - ui dxdt

\leq 1

2
\Delta y

N\sum 
i=1

\int 
\BbbR 
(ui,0(x))

2 dx,

which we can rewrite as

c\Delta y2
N\sum 
i=1

\int 
\Pi T

\bigl( 
(D+ui)

 - \bigr) 3 dxdt+ c\Delta y

N\sum 
i=1

\int 
\Pi T

ui
\bigl( 
D - ui

\bigr) 2
dxdt

\leq 1

2
\Delta y

N\sum 
i=1

\int 
\BbbR 
(ui,0(x))

2 dx+\Delta y2
N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| giD+ki
\bigm| \bigm| \bigl( D+ui

\bigr) 2
dxdt

+\Delta y

N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| uigi - 1(D
 - ki)(D

 - ui)
\bigm| \bigm| dxdt

+\Delta y

N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| uigi - 1(D
 - ki)(D

 - ui)
\bigm| \bigm| dxdt

\leq C,

using (4.11) and (4.12).
This implies that

(4.13) \Delta y2
N\sum 
i=1

\int 
\Pi T

\bigl( 
(D+ui)

 - \bigr) 3 dxdt \leq C

and

(4.14) \Delta y

N\sum 
i=1

\int 
\Pi T

ui
\bigl( 
D - ui

\bigr) 2
dxdt \leq C.

Observe that by (4.10), (4.13) follows from (4.14), viz.

\Delta y2
N\sum 
i=1

\int 
\Pi T

\bigl( 
(D+ui)

 - \bigr) 3 dxdt \leq \Delta y

N\sum 
i=1

\int 
\Pi T

ui
\bigl( 
D - ui

\bigr) 2
dxdt \leq C.

By the same procedure, starting with (4.5) but using the alternate form (4.7) of the
right-hand side, we arrive at the bounds

(4.15) \Delta y2
N\sum 
i=1

\int 
\Pi T

\bigl( 
(D+ui)

+
\bigr) 3
dxdt \leq C

and

(4.16) \Delta y

N\sum 
i=1

\int 
\Pi T

ui
\bigl( 
D+ui

\bigr) 2
dxdt \leq C.

Combining the two bounds (4.13) and (4.15) we get

(4.17) \Delta y2
N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| D+ui
\bigm| \bigm| 3 dxdt \leq C.
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In a similar manner, we find

(4.18) \Delta y2
N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| D - ui
\bigm| \bigm| 3 dxdt \leq C.

The other two bounds, (4.14) and (4.16), can be used for a continuity estimate.
Write ui - 1/2 = (ui + ui - 1)/2 and compute for \ell \geq m

1

2

\bigm| \bigm| u2\ell  - u2m
\bigm| \bigm| = \Delta y

2

\bigm| \bigm| \bigm| \bigm| \bigm| 
\ell \sum 

i=m+1

D - u2i

\bigm| \bigm| \bigm| \bigm| \bigm| 
= \Delta y

\bigm| \bigm| \bigm| \bigm| \bigm| 
\ell \sum 

i=m+1

ui - 1/2D
 - ui

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

\Biggl( 
\Delta y

\ell \sum 
i=m+1

ui - 1/2

\Biggr) 1/2\Biggl( 
\Delta y

\ell \sum 
i=m+1

ui - 1/2

\bigl( 
D - ui

\bigr) 2\Biggr) 1/2

\leq 
\sqrt{} 

\Delta y(\ell  - m)

\Biggl( 
\Delta y

2

N\sum 
i=1

ui
\bigl( 
(D - ui)

2 + (D+ui)
2
\bigr) \Biggr) 1/2

.

Squaring and integrating over [0, T ]\times \BbbR gives

(4.19)

\int 
\Pi T

\bigl( 
u2\ell  - u2m

\bigr) 2
dxdt \leq C(\ell  - m)\Delta y, \ell \geq m.

By direct computations we have that

1

2
D - u2i = ui - 1/2D

 - ui = uiD
 - ui  - 

\Delta y

2

\bigl( 
D - ui

\bigr) 2
,

which gives

\bigl( 
uiD

 - ui
\bigr) 2

=
1

4

\bigl( 
D - u2i

\bigr) 2
+\Delta yui

\bigl( 
D - ui

\bigr) 3  - \Delta y2

4

\bigl( 
D - ui

\bigr) 4
\leq 1

4

\bigl( 
D - u2i

\bigr) 2
+\Delta y

\bigm| \bigm| D - ui
\bigm| \bigm| 3 .

Multiplying with \Delta y, summing over i, and integrating in x, t gives the bound, using
(4.19) with m = i - 1, \ell = i, and (4.18),

(4.20) \Delta y

N\sum 
i=1

\int 
\Pi T

\bigl( 
uiD

 - ui
\bigr) 2
dxdt \leq C.

Note that this also follows from (4.14), using that ui \in [0, 1].

Convergence. We assume that u0 : \BbbR \times [0, 1] \rightarrow \BbbR is such that 0 \leq u0(x, y) \leq 1
and that u0 \in L1 \cap BV . Now we assume that the initial data ui,0 is such that there
is a function u0(x, y) such that

(4.21) ui,0(x) =
1

\Delta y

\int yi+1/2

yi - 1/2

u0(x, y) dy \in L1(\BbbR ) for i = 1, . . . , N,
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where \Delta y = 1/N and yi - 1/2 = (i  - 1)\Delta y. Furthermore, 0 \leq u0(x, y) \leq 1. Since
u0 \in BV (\BbbR \times [0, 1]),

\Delta y

N\sum 
i=1

| ui,0| BV (\BbbR ) +\Delta y

\int 
\BbbR 

N\sum 
i=1

\bigm| \bigm| D\pm ui,0
\bigm| \bigm| dx \leq C

for some constant C which is independent of \Delta y. For convenience, we have set
u0,0 = u0,1 and u0,N+1 = u0,N .

We assume that k \in C1([0, 1]) is given, such that k\prime (0) = k\prime (1) = 0, and k(y) > 0
for y \in [0, 1]. Define ki = k(yi). Let ui(t, x) be the entropy solutions to (4.5) with
the boundary conditions

D - k1 = D+kN = 0, D - u1 = D+uN = 0,

which actually is a special case of (4.6). Then we define

u\Delta y(t, x, y) = ui(t, x) for y \in [yi - 1/2, yi+1/2),

for i = 1, . . . , N  - 1 and u\Delta y(t, x, y) = uN (t, x) if y \in [yN - 1/2, 1]. We have that
0 \leq u\Delta y(t, x, y) \leq 1, \| u\Delta y(t, \cdot , \cdot )\| L1(\BbbR \times [0,1]) = \| u0\| L1(\BbbR \times [0,1]), and, using the bounds

(3.7) and (3.8), \| u\Delta y(t, \cdot , \cdot )\| BV (\BbbR \times [0,1]) \leq C, where C is independent of \Delta y. Fur-

thermore, using (4.19),

\| u\Delta y(t, \cdot , \cdot ) - u\Delta y(s, \cdot , \cdot )\| L1(\BbbR \times [0,1]) \leq C | t - s| ,

where C is independent of \Delta y. This is sufficient to conclude that there are a function
u \in C([0,\infty );L1(\BbbR \times [0, 1])) and a sequence \{ \Delta yj\} \infty j=0, \Delta yj \rightarrow 0 as j \rightarrow \infty , such that

u = lim
j\rightarrow \infty 

u\Delta yj
in C([0,\infty );L1(\BbbR \times [0, 1])).

Furthermore, we have thatD - u\Delta yj \rightharpoonup uy; therefore, u\Delta yjD
 - u\Delta yj \rightharpoonup uuy. The bound

(4.20) ensures that uuy \in L2([0, T ]\times \BbbR \times [0, 1]).
The aim is now to show that the limit u is a weak solution in the above sense.

Since ui is a weak solution of (4.5), we have\int 
\Pi T

\bigl( 
ui\varphi t + kifi\varphi x  - D+

\bigl( 
(D - ki)fi

\bigr) 
\varphi 
\bigr) 
dxdt(4.22)

=  - 
\int 
\Pi T

D+
\bigl( 
ki - 1uiD

 - gi
\bigr) 
\varphi dxdt(4.23)

 - \Delta y

\int 
\Pi T

D - 
\Bigl( 
D+ui

\bigl( 
D+kigi

\bigr)  - \Bigr) 
\varphi dxdt(4.24)

+

\int 
\BbbR 
ui(T, x)\varphi (T, x) dxdy  - 

\int 
\BbbR 
ui,0\varphi (0, x) dx(4.25)

for i = 1, . . . , N . We use \varphi = \varphi i, where

\varphi i(t, x) =
1

\Delta y

\int yi+1/2

yi - 1/2

\varphi (t, x, y) dy

for a suitable test function \varphi . Next, we multiply with \Delta y and sum over i = 1, . . . , N
and do a summation by parts on the terms which have D\pm (\cdot \cdot \cdot ). This will give us
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the weak formulation for u\Delta y. For simplicity we assume that \Delta y = \Delta yj , so that the
whole sequence converges. Term by term we get

\Delta y

N\sum 
i=1

(4.22) = \Delta y

N\sum 
i=1

\int 
\Pi T

\bigl( 
ui\varphi 

i
t + kifi\varphi 

i
x + (D - ki)fiD

 - \varphi i
\bigr) 
dxdt

 - \rightarrow 
\int 
\Pi T

\Bigl( \int 1

0

u\varphi t + kf\varphi x + k\prime f\varphi y dy
\Bigr) 
dxdt

as \Delta y \rightarrow 0.
Turning to (4.23), we have that

D - gi = g\prime (\~ui - 1/2)D
 - ui = g\prime (ui)D

 - ui + g\prime \prime (\xi i - 1/2)(ui  - \~ui - 1/2)D
 - ui,

where \~ui - 1/2 is between ui and ui - 1 and \xi i - 1/2 is between ui and \~ui - 1/2. Therefore,

\Delta y

N\sum 
i=1

(4.23) = \Delta y

N\sum 
i=1

\int 
\Pi T

ki - 1uig
\prime (ui)D

 - uiD
 - \varphi i dxdt

+\Delta y

N\sum 
i=1

\int 
\Pi T

ki - 1uig
\prime \prime (\xi i - 1/2)

\bigl( 
ui  - \~ui - 1/2

\bigr) 
D - uiD

 - \varphi i dxdt.(4.26)

The last term here vanishes as \Delta y \rightarrow 0 since

| (4.26)| \leq C\Delta y2
N\sum 
i=1

\int 
\Pi T

ui
\bigl( 
D - ui

\bigr) 2 \bigm| \bigm| D - \varphi i
\bigm| \bigm| dxdt

\leq C\Delta y,

where we used (4.14). Hence

\Delta y

N\sum 
i=1

(4.23)  - \rightarrow 
\int 
\Omega T

kug\prime (u)uy\varphi y dydxdt

as \Delta y \rightarrow 0.
Now for (4.24), we have

\Delta y

\bigm| \bigm| \bigm| \bigm| \bigm| 
N\sum 
i=1

(4.24)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \Delta y2
N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| \Delta +
i ui
\bigm| \bigm| \bigl( ki - 1

\bigm| \bigm| D+gi
\bigm| \bigm| + | gi| 

\bigm| \bigm| D+ki
\bigm| \bigm| \bigr) \bigm| \bigm| D+\varphi i

\bigm| \bigm| dxdt
\leq C\Delta y

\Biggl( 
\Delta y

N\sum 
i=1

\int 
\Pi T

\bigl( 
D+ui

\bigr) 2
dxdt+\Delta y

N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| D+ui
\bigm| \bigm| dxdt\Biggr) 

\leq C\Delta y

\Biggl( 
\Delta y

N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| D+ui
\bigm| \bigm| dxdt\Biggr) 1/2\Biggl( 

\Delta y

N\sum 
i=1

\int 
\Pi T

\bigm| \bigm| D+ui
\bigm| \bigm| 3 dxdt\Biggr) 1/2

+ C\Delta y

\leq C\Delta y

\biggl( 
1\surd 
\Delta y

+ 1

\biggr) 
,

using (4.9), (4.17), and interpolation between L1 and L3. Thus \Delta y
\bigm| \bigm| \sum N

i=1 (4.24)
\bigm| \bigm| \rightarrow 0

as \Delta y \rightarrow 0.
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It is straightforward to show that

\Delta y

N\sum 
i=1

(4.25)  - \rightarrow 
\int 
\Omega 

u(T, x, y)\varphi (T, x, y) dydx - 
\int 
\Omega 

u0(x, y)\varphi (0, x, y) dydx.

Hence, the limit u is a weak solution.

Remark 4.4. The arguments in this section would also hold if one replaced the
conservation laws on the left side of (3.1) with a numerical scheme for a scalar conser-
vation law using a monotone numerical flux function consistent with uivi(ui). Then
one could derive the analogous bounds to show the convergence to a weak solution as
was done here.

4.1. An example. To illustrate the continuum limit, we have tested the ``same""
initial value problem as in sections 2.1 and 3.1. The relevant data are

u0(x, y) = sin2(\pi x/2), x \in \BbbR , y \in (0, 1),

and

(4.27) k(y) = 1 + 2y, y \in (0, 1), v(y, u) = k(y)(1 - u).

We have used \Delta y = 1/60 (i.e., 60 lanes) and solved (4.1) using the Engquist--Osher
scheme with 800 grid points and periodic boundary conditions in the interval [0, 2].
Figure 3 shows the computed density u at four different times. We observe that
Figures 1 and 2 are ``discretizations"" of the same problem. To obtain Figure 1 we
used N = 2, and to obtain Figure 2 we used N = 8. Hence all three figures can be
viewed as picturing approximations of the same function.

Fig. 3. The solution of (4.1) with N = 60, and v(y, u) given by (4.27). Upper left: t = 0.375.
Upper right: t = 0.75. Lower left: t = 1.125. Lower right: t = 1.5.
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