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Abstract 

Thermoplastics injection molding is a manufacturing process used for mass-production of plastic parts. The process includes four 

main stages during which material used goes through complicated thermo-mechanical changes. In order to make the process more 

controllable and repeatable it is, at first, necessary to understand which parameters are the most important ones. The following 

paper describes how application of statistical feature selection methods, such as Information gain and ReliefF, allows to identify 

which injection molding parameters have a greater influence on the final part quality. The article gives short description of the 

above-mentioned methods and shows what were results of their application on dataset obtained from 160 machine runs, during 

which 41 machine and process parameters were logged.  
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1. Introduction 

Injection molding is an important process for mass 

production of different kinds of plastic parts often with both 

complex geometry and high precision [1]. The process includes 

four main stages: plasticization, injection, cooling and ejection 

[2]. At first, plastic pellets are melted with help of a 

reciprocating screw, afterwards plastic melt is injected into a 

mold with cavity in form of a produced part with help of 

injection pressure, next plastic melt cools down and solidifies 

inside of the mold until it is opened and the part is taken out.  

To achieve high process repeatability and quality of final 

products, it is important to set proper values of machine and 

process parameters in the beginning of the production process 

[3, 4]. Often these parameters are identified using trial and error 

method, which is time and resources consuming [3]. Instead, 

application of intelligent methods, such as Machine Learning 

(ML), for determination of the process parameter values, as 

well as process monitoring and control has been proven useful 

[5]. There are examples of prediction models built with help of 

Artificial Neural Networks (ANN) to predict shrinkage [6], 

flash [7], weight and length [8] and to classify final parts 

quality [5, 9]. In addition, Genetic Algorithm (GA) was used to 

minimize warpage [10], Decision Trees (DT) to predict parts 

quality [9], hybrid ANN/GA to minimize warpage [10] and to 

construct an inverse prediction model of injection molding 

process [11]. However, to apply these methods, it is important 

to have significant amount of data and to understand which 

parameters should and should not be included into a model.  

Feature selection has been proven an effective strategy for 

preprocessing and preparing data for various machine learning 

problems [12]. “Often, pre-processing of the datasets takes 

place for two main reasons: 1) reduction of the size of the 

dataset in order to achieve more efficient analysis, and 2) 

adaptation of the dataset to best suit the selected analysis 

method” [13]. Various studies show that some of the features 
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or parameters can be removed without significant decrease of 

model’s quality [14, 15]. Moreover, if a feature is redundant 

removing it might lead to increase of the model’s quality.  

Feature selection has been an active field of research for 

decades and has been widely applied to many fields such as 

bioinformatics, text mining, intrusion detection and industrial 

applications to name a few [13, 14]. For example, Shao, 

Paynabar [16] are proposing to use k-folds cross validation to 

select important features important for specific manufacturing 

processes and tune parameters for quality monitoring. In [17] 

selection of parameters for prediction model of manufacturing 

lead times is performed using feature selection. Tirkel [18], on 

the other hand, used both manual (human experts) and 

statistical feature selection procedures in order to choose the 

most relevant parameters for cycle time prediction model used 

in water fabrication. Verron, Tiplica [19] present a method 

based on mutual information for selection of the most 

important features used in the fault diagnosis model. The 

following paper, in its turn, describes a process of applying 

Information Gain (InfoGain) and ReliefF feature selection 

algorithms to a dataset, which includes data from 160 injection 

molding machine runs with varied process parameters, where 

each cycle 41 machine and process parameters were logged. 

Feature selection, in this case, is applied to decrease number of 

injection molding parameters included in parts quality 

classification model.  

2. Methodology 

The next steps are proposed to be followed in order to select 

the most relevant parameters to be included in injection molded 

part quality prediction model: 

  Data acquisition. Logging of data from sensors installed in 

the injection molding machine by its manufacturer.  

 Data preprocessing. Necessary preprocessing, that might 

include normalization of data or filtering of outliers. 

 Application of feature selection algorithm. Use of chosen 

feature selection algorithm to score previously acquired 

machine and process parameters to define which of them 

contain more information about the process in general. 

 Review results of the algorithm’s work. Since all of the 

parameters, which are logged from the injection molding 

machine are understandable for a human expert, it is 

suggested to look through results of the feature selection 

algorithm to confirm its results.  

2.1. Experiment 

All of the data used in this study was acquired from sensors 

installed by the machine manufacturer in “ENGEL insert 130” 

vertical injection molding machine with CC300 control unit, no 

additional sensors were used. Focus part was an ISO 527-2 type 

1A dog bone specimen with 170 mm length, 20 mm width and 

4 mm thickness shown on Fig. 1, material used was high-

density polyethylene. 

Design of experiment (DOE) for gathering of parameter 

data was created with help of Latin Hypercube method in 

ModeFRONTIER [20]. DOE consists of 32 different 

combinations of the following parameters: holding pressure, 

holding pressure time, backpressure, cooling time, injection 

speed, screw speed, barrel temperature and temperature of the 

mold. Each combination was launched 5 times, resulting in 160 

machine runs and 160 corresponding data samples. As 

suggested by Scikit-Learn (open source Python programming 

language library for ML methods) “Machine Learning Map” 

[21], it is not recommended to use any of the machine learning 

methods if the amount of data points per parameter, included 

into prediction model, is less than 50. However, described case 

uses number of samples that is in 3.2 times bigger than that. 

Out of these machine runs, 101 were classified as the ones 

resulting in low quality parts and 59 in high quality ones. 

Classification of quality was based on visual inspection of the 

specimens and their weight (if weight was less than specified 

value, the part was classified as low quality). 

In total 41 machine and process parameters were logged 

during each machine run. In addition to 41 logged, parameters 

from the DOE were added resulting in 47 different features in 

total. List of the parameters is provided in Table 1. After 

application of feature selection methods, classification models 

for further prediction of such specimens’ quality were created 

using Artificial Neural Networks and Decision Trees methods. 

More information about this study can be found in [9].  

 

 

Fig. 1. Dog bone specimen. 

Before applying ML, feature selection methods, namely 

Information Gain and ReliefF, were used to understand which 

parameters out of 41 logged are statistically more significant, 

contain more information about the process and are more 

relevant to be included in the quality of injection molded parts 

classification model. These methods were chosen as they often 

show good results when used for further building of 

classification models [13, 22]. 

2.2. Information Gain 

Information Gain is considered a standard 

attribute/parameter quality measure used in classification 

problems. It is defined as amount of information, obtained from 

a parameter for determining class in a classification problem 

[23]. In other words, InfoGain measures how much information 

certain parameter can provide about a class [24]. In the context 

of decision trees it is also sometimes called mutual information.  

To calculate information gain, one must be familiar with a 

concept of entropy, which is defined as the average amount of 

information necessary to determine the outcome among m 

possible outcomes [23]. Another definition is amount of 

uncertainty present in distribution of events of a random 

variable X [25]. As a result, if an event is likely to happen, then 

entropy is low, as there is little uncertainty. To calculate 

entropy equation (1) can be used, where 𝑃(𝑋𝑗) is probability of 

outcome 𝑋𝑗: 

 

𝐻(𝑋) = − ∑ 𝑃(𝑋𝑗)𝑙𝑜𝑔2𝑃(𝑋𝑗)𝑚
𝑗=1  (1) 
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Information gain, on the other hand can be calculated using 

(2), where 𝐻𝐶  is class entropy and 𝐻𝐶|𝐴 is a conditional class 

entropy given the value of attribute/parameter A. 

 

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝐴) = 𝐻𝐶 − 𝐻𝐶|𝐴   (2) 

 

At the same time, 𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝐴)  ≥ 0 and 

max(𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝐴)) = 𝐻𝐶 . In general, information gain is a 

useful measure for deciding whether parameter is relevant to be 

included in a classification model, as it provides numerical 

value of amount of information shared between two random 

variables or gained about one random variable by watching 

another one [12]. However, it also has its drawbacks. If a 

parameter or an attribute used takes large number of different 

values, this attribute has a high mutual information. However, 

in case of classification problems such an attribute is not 

relevant, as it uniquely identifies each separate data sample and 

is unlikely to provide necessary generalization. In addition, 

inclusion of such parameter into a model might lead to 

overfitting. This is why it is a good idea to allow a human 

expert to review results of the algorithm’s work before 

proceeding to a classification model creation. 

When large number of such attributes is present, it is 

recommended to use Information Gain ratio instead, that can 

be calculated using (3), where 𝐻𝐴 is entropy of an attribute A: 

 

𝐺𝑎𝑖𝑛𝑅(𝐴) =  
𝐺𝑎𝑖𝑛(𝐴)

𝐻𝐴
   (3) 

2.3. ReliefF 

Feature selection measures such as Information Gain, Gini 

index, Χ2 statistics, distance measure, etc. “evaluate quality of 

an attribute independently of the context of other attributes” 

[23]. These measures are called myopic measures, as they are 

unable to detect importance of attributes if they have high level 

of interdependency.  

ReliefF, as well as its simpler variant Relief, on the other 

hand, take context of other attributes into account and are able 

to detect relevance of attributes even if they have a strong 

mutual dependence. Basic idea of Relief and ReliefF 

algorithms is hidden in considering not only difference in 

parameters’ values and classes, but also distance between 

examples or data samples. “Distance is calculated in the 

attribute space, therefore similar examples are close to each 

other and dissimilar are far apart” [23]. If similarity of data 

samples is taken into account, the context of other parameters 

is also considered. 

Relief algorithm searches for the nearest example from the 

same class and a nearest example from the opposite class, while 

ReliefF searches for k nearest examples from each class for 

each data sample from a random subset of data samples, and 

then weights contributions of different classes with their prior 

probabilities [23]. The next step is updating quality of each of 

parameters or attributes based on ability of an attribute to 

distinguish examples from different classes. When scoring the 

parameters, diff function is used, equation for calculating 

difference of attribute values for two examples is shown in (4) 

for both discrete and continuous parameter values.  

 

𝑑𝑖𝑓𝑓(𝑖, 𝑡𝑗 , 𝑡𝑘) = {

|𝑣𝑖,𝑗−𝑣𝑖,𝑘|

𝑀𝑎𝑥𝑖−𝑀𝑖𝑛𝑖
, 𝐴𝑖  𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 

0, 𝑣𝑖,𝑗 = 𝑣𝑖,𝑘𝑎𝑛𝑑 𝐴𝑖  𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒  

1, 𝑣𝑖,𝑗 ≠ 𝑣𝑖,𝑘𝑎𝑛𝑑 𝐴𝑖  𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒  

 (4) 

 

Unlike Relief, ReliefF is able to deal with missing and 

incomplete data with help of generalization of 𝑑𝑖𝑓𝑓 function 

for cases when one or both examples have unknown value of 

attribute 𝐴𝑖. In addition, looking for k nearest examples for 

each class instead of one, allows using ReliefF for multi-class 

problems. 𝑅𝑒𝑙𝑖𝑒𝑓𝐹𝑠𝑐𝑜𝑟𝑒  ∈  [−1; 1], however, values that are 

less than zero mean that the attribute is irrelevant. 

3. Discussion and results 

Information Gain and ReliefF are very different feature 

selection methods. The first one is based on entropy, does not 

take into consideration interconnections between attributes and 

might fail to generalize if an attribute used takes large number 

of different values. The second method, on the other hand, is 

based on distance between data samples from different classes 

and thanks to this, considers mutual dependence between 

parameters if it is present and is able to deal with attributes that 

have many different values.  

Both methods were applied to 160 data samples with 47 

machine and process parameters acquired during the above 

described experiment. To apply the methods WEKA software 

(Waikato Environment for Knowledge Analysis) developed by 

Waikato University of New Zealand was used [26]. 

Corresponding attribute scores and ranks assigned to 

parameters by InfoGain and ReliefF feature selection 

algorithms can be seen in Table 1. 

Table 1. InfoGain and ReliefF scores for parameters from the study. 

Parameter name 

Info

Gain 

rank 

InfoGain 

score 

ReliefF 

rank 

ReliefF 

score 

Parts counter 1 0.6694 16 0.0779 

Shot counter 2 0.6694 18 0.0775 

Counter of good parts  3 0.6694 17 0.0779 

Cushion size after holding 

pressure 
4 0.5685 2 0.2266 

Smallest size of cushion 5 0.556 3 0.2242 

Average cushion value 6 0.519 4 0.2113 

Holding pressure (set) 7 0.4778 1 0.2579 

Average temperature in 

zone 2 of nozzle 
8 0.3812 11 0.0932 

Barrel temperature (set) 9 0.2735 10 0.0939 

Injection time 10 0.2312 22 0.047 

Plasticizing number 11 0.2266 20 0.0624 

Screw speed (set) 12 0.1999 9 0.0996 

Maximum screw speed 13 0.1881 15 0.0793 

Specific pressure value at 

switchover 
14 0.1731 21 0.0531 

Plasticizing time 15 0.1263 29 0.0034 

Maximum Speed 16 0.121 7 0.1117 

Tool temperature (set) 17 0.0663 5 0.2039 

Injection work 18 0.0663 24 0.0445 
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Holding pressure time (set) 19 0.0495 8 0.1042 

Injection speed (set) 20 0.0432 14 0.0818 

Machine date 21 0.016 13 0.08625 

Current station (set) 22 0 45 0 

Waiting delay (set) 23 0 31 0 

Last cycle time 24 0 27 0.0123 

Shot volume (set) 25 0 38 0 

Decomposition after 

plasticization time (set) 
26 0 30 0 

Switchover volume (set) 27 0 47 -0.0044 

Switchover time (set) 28 0 44 0 

Backpressure (set) 29 0 6 0.1372 

Maximum injection time 

(set) 
30 0 35 0 

Maximum ejector position 

(set) 
31 0 34 0 

Cooling time (set) 32 0 12 0.0877 

Maximum cushion smallest 

(set) 
33 0 39 0 

Last ejector position 34 0 26 0.0139 

Maximum plasticizing time 

(set) 
35 0 43 0 

Flow number (set) 36 0 42 0 

Last cooling time 37 0 19 0.0673 

Clamping force at 

switchover 
38 0 28 0.0091 

Counter of bad parts 39 0 23 0.0463 

Plasticizing delay time (set) 40 0 32 0 

Minimum injection time 

(set) 
41 0 37 0 

Closing force 42 0 25 0.015 

Ideal cushion value (set) 43 0 33 0 

Injection pressure limit (set) 44 0 36 0 

Minimum ejector position 

(set) 
45 0 41 0 

Minimum plasticizing time 

(set) 
46 0 40 0 

Machine time 47 0 46 0 

 

As it is possible to see from Table 1 there are 26 parameters 

that have zero information gain scores and 16 parameters that 

have zero or negative ReliefF scores. These differences might 

occur due to above-mentioned differences in the algorithms. 

ReliefF, for example, gives a non-zero score to “last cycle 

time”, “backpressure (set)”, “cooling time (set)”, “last ejector 

position”, “closing force”, “clamping force at switchover”, 

“counter of bad parts” and “last cooling time”, while these eight 

parameters have zero information gain scores. Apart from this, 

both methods show similar results and give non-zero scores to 

similar set of machine and process parameters. It is also 

important to mention that some of parameters (for example, 

“shot volume”) that have received zero score from both 

algorithms were remained unchanged during the experiment 

run, and thus were considered irrelevant for classification 

model by the feature selection algorithms. Due to this, it is 

worth noting that depending on data that is processed and 

parameters that are varied, feature selection methods might 

give higher or lower score to certain parameters.  

Results of the InfoGain application were used in [9] and it 

has been shown that models created by both ANN and DT 

“show increase in accuracy after removing features that do not 

contain much information about the process”.  

At first, models based on results of the InfoGain were built. 

26 features that have zero InfoGain score were removed, as 

well as “machine time”, “shot counter”, “counter of good 

parts”, “counter of bad parts”, “parts counter” and “machine 

date” due to their irrelevance. Accuracy of classification 

models trained with help of J48 decision trees algorithm and 

Multilayer Perceptron Artificial Neural Network increased 

from 96,25% (47 features, ANN) and 95,875% (47 features, 

DT) to 99,375% (17 features, ANN) and 98,75% (17 features, 

DT).  

Secondly, models considering results of the ReliefF were 

created. Here, 18 attributes with zero score were removed, as 

well as parameters identified by a human expert as irrelevant. 

This resulted in parameter list consisting of 24 parameters that 

are highlighted in bold in Table 1. J48 decision trees algorithm 

resulted in 98,75% accuracy (24 features), while ANN had 

97,5% (24 features). As it is easy to see, use of feature selection 

leads to increase in prediction accuracy of models in both cases. 

It is also important to mention, that in all models values of ROC 

area and F-measure do not show presence of overfitting. 

Some parameters that have received the highest scores from 

information gain algorithm, excluding those identified as 

irrelevant by a human expert, are: “cushion size after holding 

pressure”, “smallest size of cushion”, “average cushion value”, 

“holding pressure (set)”, “average temperature in zone 2 of 

nozzle” and “barrel temperature (set)”. ReliefF gives some of 

the highest scores to the following features: “cushion size after 

holding pressure”, “smallest size of cushion”, “average cushion 

value”, “holding pressure (set)”, “tool temperature (set)”, and 

“backpressure (set)”. 

4. Conclusions and future work 

This study described application of two feature selection 

methods, namely, Information Gain and ReliefF. The 

algorithms were used in order to identify the most relevant 

injection molding parameters out of 47 logged and included 

into DOE for their further use in parts quality classification 

model. The dataset is based on 160 injection molding machine 

runs, where DOE with 32 combinations of process parameters 

was used to conduct the experiment and acquire process data. 

Each of these 32 parameter combinations was launched five 

times.  

InfoGain method results included 26 parameters with zero 

score, while ReliefF algorithm gave 18 parameters zero or 

negative score, identifying them as irrelevant. Distinctive 

results can be explained by differences in the above-mentioned 

algorithms and quality measures they use to score the assessed 

parameters. It is also worth mentioning that depending on 

which parameters are varied during experiment, the algorithms 

might give higher or lower scores to certain features. 

Parameters that have received some of the highest scores from 

both methods are: “cushion size after holding pressure”, 

“smallest size of cushion”, “average cushion value”, “holding 

pressure (set)”, “average temperature in zone 2 of nozzle”, 
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“barrel temperature (set)”, “tool temperature (set)” and 

“backpressure (set)”.  

Based on the InfoGain and ReliefF algorithm results, it has 

been confirmed that removing features with zero scores 

increases quality of classification models built by Artificial 

Neural Networks and Decision Trees methods. 
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