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Abstract

We consider the classical problem of whether certain classes of life-
time distributions are preserved under the formation of coherent sys-
tems. Under the assumption of i.i.d. component lifetimes, we consider
the NBUE (new better than used in expectation) and NWUE (new
worse than used in expectation) classes. First, a necessary condition
for a coherent system to preserve the NBUE class is given. Sufficient
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conditions are then obtained for systems satisfying this necessary con-
dition. The sufficient conditions are satisfied for a collection of systems
which includes all parallel systems, but the collection is shown to be
strictly larger. We also prove that no coherent system preserves the
NWUE class. As byproducts of our study, we obtain the following
results for the case of i.i.d. component lifetimes: (i) the DFR (de-
creasing failure rate) class is preserved by no coherent systems other
than series systems, and (ii) the IMRL (increasing mean residual life)
class is not preserved by any coherent systems. Generalizations to the
case of dependent component lifetimes are briefly discussed.

Keywords: coherent system; reliability polynomial; mean residual life; failure
rate; copula

1 Introduction

1.1 Classes of life distributions based on aging prop-
erties

Motivated by studies of maintenance policies, Frank Proschan, Richard Bar-
low and several co-authors introduced, in the 1960s, classes of lifetime distri-
butions with relevance to replacement policies. An early reference is Barlow
and Proschan [2]. Much of this work was later presented in the monographs
[3] and [4] by Barlow and Proschan.

The following main classes of lifetime distributions are considered in [4],
where each of them comes with a “deteriorating” version and an “improving”
version: IFR (DFR) – increasing (decreasing) failure rate; IFRA (DFRA)
– increasing (decreasing) failure rate average; NBU (NWU) – new better
(worse) than used ; NBUE (NWUE) – new better (worse) than used in ex-
pectation. Marshall and Proschan [8] later introduced the classes DMRL
(IMRL) – decreasing (increasing) mean residual life.

The relationships given below are by now well known to reliability scien-
tists, see [4] for background.

IFR ⇒
IFRA ⇒ NBU

DMRL
⇒ NBUE (1)

and

DFR ⇒
DFRA ⇒ NWU

IMRL
⇒ NWUE (2)
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1.2 Motivation for the study

Since the pioneering papers mentioned above, a large number of studies have
been devoted to the problem of preservation of the various classes of life-
time distributions under the formation of convolutions and mixtures, and in
particular under the formation of coherent systems. It is the purpose of the
present paper to complement the existing theory, with emphasis on preser-
vation properties of particular classes, under formation of coherent systems
with independent and identically distributed (i.i.d.) component lifetimes. An
extension to the dependent case will be briefly discussed in the concluding
section.

The engineering motivation for the interest in preservation results is sim-
ple. It is reasonable to consider the properties of the i.i.d. component lifetimes
to be subject to the control of the engineer; the quality of a batch of like com-
ponents can be selected by the engineer from among the varied component
types available for use. When the components are used in a specific system,
the reliability of the system is often a complex function of the component
reliability, and the stochastic behavior of the system may be difficult to de-
scribe. When it is possible to establish the fact that a particular property of
component lifetimes is preserved in a system in which these components are
used, the user stands to benefit from a more detailed understanding of the
system’s expected performance.

It is well known that certain classes (e.g., the IFRA and NBU classes) of
lifetime distributions are preserved under the formation of coherent systems
([4, Chapter 4, p. 85 and Chapter 6, p. 182]). On the other hand, such
an implication does not hold for IFR component lifetimes, even in the case
of i.i.d. component lifetimes ([5],[13]). The present work is dedicated to a
careful examination of the larger NBUE class (with a similar treatment of
the NWUE class) which is not necessarily preserved under the formation of
coherent systems without additional assumptions. Our results provide some
clarity in the latter area, as they identify specific conditions under which
the NBUE and NWUE properties of component lifetimes ensure the same
properties for the system’s lifetime.

Given the relationships in (1) and (2), preservation results for the NBUE
and NWUE classes are of special interest, as they correspond to the weakest
restriction made among those defining the nonparametric classes mentioned
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above. Thus, this restriction results in the largest class of life distributions
among these varied classes. When used as a modeling assumption for ob-
served experimental data (e.g., Whitaker and Samaniego [16]), the restric-
tion under discussion permits treatment of a larger class of data sources and
experimental circumstances than is possible under standard nonparametric
models.

Unlike the smaller IFRA and NBU classes for which preservation results
under the formation of coherent systems are known, the preservation results
for the NBUE class are not universal ([4, Chapter 6, p. 183]), that is, they
hold only under additional conditions. The need to specify such conditions
may be the reason for the time lapse between the present results and the
preservation results established for the smaller classes.

1.3 Recent literature

The distribution classes mentioned above, as well as several modifica-
tions, extensions and new classes, have recently been studied by a number
of authors, see, e.g. Franco et al. [6] and Nanda et al. [9] and references
therein. These authors studied preservation properties under formation of
coherent systems with various assumptions. More recently, Navarro et al.
[11] extended the scope of these studies by considering the case of depen-
dent, identically distributed (d.i.d.) component lifetimes, with dependency
modeled by a copula. A key feature of this approach, is a generalization of
the reliability polynomial.

In this generalized framework, Navarro [10] gave sufficient conditions for
preservation of the DMRL and IMRL classes, extending work by Abouam-
moh and El-Neweihi [1]. The latter authors proved that parallel systems
preserve both the DMRL class and the NBUE class in the case of i.i.d. com-
ponent lifetimes. These results had earlier been anticipated by Klefsjö [7].

1.4 Outline and contribution of the paper

The main purpose of the present paper is to study in more detail the preser-
vation properties of the NBUE class and the NWUE class under formation
of coherent systems for the i.i.d. case, with the aim of obtaining some new
results. For the NBUE class, we first give a necessary condition for a coherent
system to preserve this class. In particular, this condition is not satisfied for
series systems. Sufficient conditions obtained next, are shown to be satisfied
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for a collection of systems which includes all parallel systems. As will be
pointed out in the final section of the paper, our results on the NBUE class
can be extended to the d.i.d. case.

We next prove the somewhat surprising result that, in the i.i.d. case, no
coherent system preserves the NWUE property of component distributions.
From this, we finally obtain the following consequences for the case of i.i.d.
component lifetimes: (i) the DFR class is not preserved by any coherent
systems other than series systems, and (ii) no coherent system preserves the
IMRL class.

The paper is organized as follows. In Section 2 we give, for later use,
some preliminary definitions and results on coherent systems and classes of
lifetime distributions. The NBUE class is studied in Section 3. Both a
necessary condition and a sufficient condition for preservation of this class
are given. Section 4 is devoted to the NWUE class, for which, as already
mentioned, no coherent system preserves the class. Section 5 presents results
for the DFR and IMRL classes, which are implied by the results and, in
particular, by the proof of Theorem 3 in Section 4. In Section 6, we conclude
the present study with a brief discussion of the d.i.d. case.

2 Preliminaries

2.1 Coherent systems

2.1.1 Component and system lifetimes

We consider coherent systems with n binary components, with component
lifetimes denoted by X1, . . . , Xn, and with T denoting the system lifetime.
The key reference to coherent systems and their properties is the classical
monograph by Barlow and Proschan [4]. We assume that X1, . . . , Xn are
i.i.d. with distribution F , where we let the cumulative distribution function
and survival (reliability) function be denoted, respectively F and F̄ , with
F̄ = 1 − F . We will assume, in addition, that F has finite expectation,
denoted by µ. If F is absolutely continuous, we will denote the hazard
rate by λ, where λ = F ′/F̄ . For the system lifetime T , the corresponding
functions are given the subscript T .
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2.1.2 Minimal path set representation of T

A minimal path set P is a subset of the component set {1, 2, . . . , n} such that
the system works when all components in P are working, but the system fails
if only a proper subset of components in P are working (with all components
in the complementary set P ′ assumed to have failed). The system functions
if and only if all components in at least one minimal path set are working.
Thus, if the minimal path sets are denoted P1, . . . ,Pm, the system lifetime
is

T = max
j=1,...,m

(

min
i∈Pj

Xi

)

. (3)

If the system is coherent, then no minimal path set can be a subset of another,
and their union is the full component set {1, 2, . . . , n}, see [4, Chapter 1, p.
15].

2.1.3 Reliability polynomial

Barlow and Proschan [4, Chapter 2, p. 21] define the reliability function
h(p1, . . . , pn) to be the probability that the system functions if the compo-
nents function independently of each other, with pi being the probability
that component i functions. Thus, if the pi are equal, with value p, the
probability that the system functions is a polynomial in p, which we shall
denote by h(p), referred to as the reliability polynomial. The coefficients of
the reliability polynomial depend only on the structure of the system. If
the component lifetimes are i.i.d. with survival function F̄ , then the system
lifetime T has survival function

F̄T (t) = h(F̄ (t)). (4)

The reliability polynomial of a system can be derived in alternative ways,
for example using minimal path sets or minimal cut sets of the system, see
[4, Chapter 2, p. 24]. The reliability polynomial can also be given in terms
of the signature s = (s1, . . . , sn) of the system, see Samaniego [14, p. 84]:

h(p) =
n

∑

j=1

aj

(

n

j

)

pj(1− p)n−j,

where

aj =
n

∑

i=n−j+1

si for j = 1, . . . , n.
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2.2 Distribution classes

Let F be a lifetime distribution with finite expectation and let τ = sup{t :
F̄ (t) > 0}. Then for a lifetime X with distribution F , we define

m(t) = E[X − t|X > t] =

∫

∞

t
F̄ (u)du

F̄ (t)
for 0 ≤ t < τ. (5)

The definition of the NBUE and NWUE classes, which are the main subjects
of the present paper, can be given in terms of the mean residual life func-
tion (5). This also applies to the closely related DMRL and IMRL classes.
For completeness, these classes are defined below.

2.2.1 NBUE and NWUE

A lifetime distribution F is NBUE (NWUE) if

m(t) ≤ (≥) µ for 0 ≤ t < τ, (6)

where µ < ∞ is the expected value of F .
Abouammoh and El-Neweihi [1] noted that condition (6) is equivalent to

(
∫

∞

t

F̄ (u)du

)

1− F̄ (t)

F̄ (t)
≤ (≥)

∫ t

0

F̄ (u)du. (7)

2.2.2 DMRL and IMRL

A lifetime distribution F is DMRL (IMRL) if m(t) is decreasing (increas-
ing) in [0, τ). Clearly, m(0) = µ and hence DMRL (IMRL) implies NBUE
(NWUE) by (6) above.

Navarro [10] recently studied preservation properties of the DMRL and
IMRL distribution classes.

2.2.3 IFR and DFR

We also discuss some connections to the IFR and DFR distribution classes
and therefore recall their definitions below.

A lifetime distribution F is IFR (DFR) if F̄ is logconcave (logconvex), see
Shaked and Shanthikumar [15, p. 1]. If F is absolutely continuous, then this
is equivalent to the hazard rate λ(t) being increasing (decreasing) in t. Esary
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and Proschan [5] showed that for a system with reliability polynomial h(p)
and component lifetimes with absolutely continuous distribution F , one has

ph′(p)

h(p)

∣

∣

∣

∣

p=F̄ (t)

=
λT (t)

λ(t)
. (8)

They concluded from (8) that if F is IFR (DFR), then the system lifetime T
has an IFR (DFR) distribution provided ph′(p)/h(p) is decreasing (increas-
ing) in p on (0, 1]. In fact, it has been noted (Samaniego [13], Navarro et al.
[11]) that the converse also holds, that is, a coherent system with reliability
polynomial h(p) preserves the IFR (DFR) class if and only if ph′(p)/h(p) is
decreasing (increasing) for 0 ≤ p ≤ 1. Hence these two classes cannot be
preserved at the same time in a coherent system, except for series systems
(see Proposition 2.1 in [11]).

3 Preservation of the NBUE class

Barlow and Proschan [4, Chapter 6, p. 183] showed that a series system of
two components with i.i.d. lifetime distributions does not preserve the NBUE
class. Theorem 1 below provides a necessary condition for preservation of the
NBUE class. The condition is clearly not satisfied for any series system, but
in fact excludes a much larger collection of systems. The theorem is followed
by Theorem 2, which provides a sufficient condition for the preservation of
the NBUE class by adding a condition to that of Theorem 1.

Theorem 1 Let a coherent system with i.i.d. component lifetimes have relia-
bility polynomial h(p). Then a necessary condition for the system to preserve
the NBUE class is that h(p) ≥ p for all 0 ≤ p ≤ 1.

Proof: Consider a coherent system with reliability polynomial h(p). Suppose
that there is 0 < p0 < 1 such that h(p0) < p0. We will now prove that the
system does not preserve the NBUE class, a fact that implies the desired
result. With the given p0, let the component lifetime distribution F give
probability 1− p0 to t = 1 and probability p0 to t = a, where

a = 1 + 1/(1− p0).

Thus

F̄ (t) =







1 for 0 ≤ t < 1
p0 for 1 ≤ t < a
0 for t ≥ a

,
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while the expected value of F is µ = 1−p0+ap0 = 1+(a−1)p0 = 1/(1−p0).
That F is NBUE is seen from (5) and (6) and by calculating

∫

∞

t
F̄ (x)dx

F̄ (t)
=

{

1− t+ (a− 1)p0 for 0 ≤ t < 1
a− t for 1 ≤ t < a.

(9)

Indeed, (6) obviously holds for 0 ≤ t < 1, while for 1 ≤ t < a we have

a− t ≤ a− 1 = 1/(1− p0) = µ.

Thus, F is NBUE.
Now, let h(p) be given as in the beginning of the proof. The corresponding

survival function of the system is F̄T (t) = h(F̄ (t)), and hence by (9),
∫

∞

t
F̄T (x)dx

F̄T (t)
=

{

1− t+ (a− 1)h(p0) for 0 ≤ t < 1
a− t for 1 ≤ t < a

. (10)

The expected value µT of FT is found by letting t = 0 in (10), so that

µT = 1 + (a− 1)h(p0) < 1 + (a− 1)p0 = 1/(1− p0) = a− 1.

Thus, by (10),
∫

∞

t
F̄T (x)dx/F̄T (t) > µT for t = 1, so (6) does not hold for

the system with reliability polynomial h(p). Hence this system is not NBUE,
so the system with reliability polynomial h(p) does not preserve the NBUE
property.

Remark 1 It is clear that this theorem rules out any series system as a
system that preserves the NBUE property. By (4), the necessary condition
of the theorem implies F̄T (t) ≥ F̄ (t) for all t, which means that the system
lifetime stochastically dominates the component lifetimes.

Theorem 2 Let h(p) be the reliability polynomial of a coherent system with
i.i.d. component lifetimes, such that h(p) ≥ p for all 0 ≤ p ≤ 1, and such
that

p

h(p)
·
1− h(p)

1− p
· sup
r∈(0,p]

h(r)

r
≤ 1 for all 0 < p < 1. (11)

Then the system preserves the NBUE class.

Remark 2 If h(r)/r decreases in r, then (11) simplifies to

p

h(p)
·
1− h(p)

1− p
· h′(0) ≤ 1 for all 0 < p < 1. (12)
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Remark 3 Since h(p) is a polynomial without constant term, it is clear that
h(p)/p is always a polynomial. Further, since 1 − h(1) = 0, it follows that
1− h(p) is divisible by 1− p, i.e., it follows that (1− h(p))/(1− p) is also a
polynomial.

Proof of Theorem 2: Suppose that F satisfies (6) (and hence (7)), and sup-
pose that h(p) ≥ p for 0 ≤ p ≤ 1. Now, considering the left-hand side of (7)
with h(F̄ (t)) replacing F̄ (t) and noting that h(p) ≥ p for all 0 ≤ p ≤ 1, we
have

∫

∞

t

h(F̄ (u))du ·
1− h(F̄ (t))

h(F̄ (t))

=

∫

∞

t
h(F̄ (u))du

∫

∞

t
F̄ (u)du

·

∫

∞

t

F̄ (u)du ·
1− h(F̄ (t))

h(F̄ (t))

=

∫

∞

t
h(F̄ (u))du

∫

∞

t
F̄ (u)du

·

∫

∞

t

F̄ (u)du ·
1− h(F̄ (t))

h(F̄ (t))

≤ sup
r∈(0,F̄ (t)]

h(r)

r
·

∫ t

0

F̄ (u)du ·
F̄ (t)

1− F̄ (t)
·
1− h(F̄ (t))

h(F̄ (t))

≤ sup
r∈(0,F̄ (t)]

h(r)

r
·

F̄ (t)

1− F̄ (t)
·
1− h(F̄ (t))

h(F̄ (t))
·

∫ t

0

h(F̄ (u))du.

Hence (7) holds for h(F̄ (t)) under the assumption of the theorem, so the
system with reliability polynomial h(p) preserves the NBUE class.

Example 1: Parallel system. Abouammoh and El-Neweihi [1] showed that
the NBUE class is preserved under the formation of parallel systems with
i.i.d. components. Note that this is also implied by Theorem 2, which can
be seen as follows. Let h(p) = 1 − (1 − p)n. We first show that h(p)/p is
decreasing in p. Let q = 1− p. We will instead show that (1− qn)/(1− q) is
increasing in q. This follows from the fact that

1− qn

1− q
= 1 + q + q2 + . . . qn−1. (13)

Thus we can use condition (12). Noting that h′(0) = n and using (13), the
left hand side of (12) is

np(1− p)n

(1− p)(1− (1− p)n)
=

n(1− q)qn

q(1− qn)
=

nqn−1

1 + q + q2 + . . . qn−1
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which is clearly ≤ 1.

Example 2: A system that preserves the NBUE class but not the IFR class.
Consider the system illustrated in Figure 1. As noted by Samaniego [13],
this system does not preserve the IFR class. We shall see, however, that the
NBUE class is preserved.

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

2

1

3

Figure 1: System with 3 components that preserves the NBUE class but not
the IFR class.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

p

h
(p
)/
p

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p

p
h
'(
p
)/
h
(p
)

Figure 2: System that preserves the NBUE class but not the IFR class. Left:
The function h(p)/p. Right: The function ph′(p)/h(p).

In this example, h(p) = p+p2−p3, so h(p)/p = 1+p−p2 with a maximum
of 5/4 at p = 1/2 (see left panel of Fig. 2). Hence

sup
r∈(0,p]

h(r)

r
=

{

h(p)
p

for 0 < p ≤ 1/2
5
4

for 1/2 < p ≤ 1
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Substituting this in the left hand side of (11), we get a decreasing function
with a maximum value of 1 at p = 0. This shows that the system preserves
the NBUE class.

The fact that the IFR class is not preserved by the system in Fig. 1 is
illustrated in the right panel of Fig. 2, in which the curve ph′(p)/h(p) is seen
not to be decreasing.

Example 3: A system that preserves the IFR class but not the NBUE class.
Consider now the system displayed in Figure 3.

✚✙
✛✘
✚✙
✛✘

✚✙
✛✘

3

2

1

Figure 3: System with 3 components that preserves the IFR class but not
the NBUE class.

In this case, h(p) = 2p2 − p3, so it is seen that h(p) < p for all 0 < p <
1. Thus Theorem 1 shows that this system does not preserve the NBUE
property.

By a simple calulation, we have that

ph′(p)

h(p)
=

4− 3p

2− p

which is a decreasing function, implying that the system preserves the IFR
property.

4 The NWUE class

It is shown in [4, Chapter 6, p. 183] that the NWUE class is not preserved
under the formation of coherent systems. Specifically, it is shown that the
lifetime of a parallell system of two components with i.i.d. standard expo-
nential distributions is not NWUE. In this section, we show that no coherent
system, regardless of its size, preserves the NWUE class in the case of i.i.d.
components. This is the result of Theorem 3 below. The proof is divided
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into two cases, one for non-series systems and one for series systems. In the
former case, it is shown that for any coherent non-series system with i.i.d.
exponential component lifetimes, the system lifetime is not NWUE. In the
case of series systems, we present a component lifetime distribution in the
NWUE class for which no series system of two or more components will have
an NWUE distribution.

Theorem 3 No coherent systems with i.i.d. components preserve the NWUE
class.

Proof of Theorem 3 for non-series systems: Let h(p) be the reliability poly-
nomial of a system which is not a series system. Suppose the component
lifetimes are i.i.d. with the standard exponential distribution. The survival
function of the system lifetime is then h(e−t), and by (5) and (6), the system
lifetime is NWUE provided that

∫

∞

t
h(e−x)dx

h(e−t)
≥

∫

∞

0

h(e−x)dx for all t ≥ 0. (14)

Substitution of p = e−x in the integrals gives

∫

∞

t

h(e−x)dx =

∫ e−t

0

h(p)

p
dp.

Hence, by defining c(r) =
∫ r

0
h(p)
p
dp for 0 ≤ r ≤ 1, (14) is equivalent to

c(r)

h(r)
≥ c(1) for all 0 < r ≤ 1. (15)

Further, writing h(p) =
∑n

i=1 aip
i, it is seen that

c(r) =
n

∑

i=1

ai
i
ri,

and that

lim
r→0

c(r)

h(r)
=

1

k
,

where k = min{i : ai 6= 0}. Moreover, k is the number of components in a
minimal path set of the system containing the fewest number of components.
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It can hence be concluded, by letting r tend to 0 in (15), that the system
does not preserve the NWUE property if

c(1) ≡ E[T ] >
1

k
, (16)

where T is the lifetime of the system.
We now show that (16) holds, recalling that the system under considera-

tion is not a series system. To see this, recall from subsection 2.1.2 that

T = max
j=1,...,m

(

min
i∈Pj

Xi

)

,

where P1, . . . ,Pm are the minimal path sets of the system. Without loss
of generality we can assume that P1 is a minimal path set of minimum
size, k. Then if T1 = mini∈P1

Xi, we clearly have T ≥ T1 with probability
1, while E[T1] = 1/k, since T1 is the minimum of k independent standard
exponentially distributed lifetimes. It thus suffices to show that E[T ] >
E[T1]. Below, we first show that we can find w > 0 and α > 0 such that
P (T − T1 > w) ≥ α. This is seen as follows. Since the system under
consideration is coherent and is not a series system, it must have at least two
minimal path sets, and no minimal path set can be contained in another.
Thus, if we fix one of the other minimal path sets, say P2, the set P1 contains
at least one component that is not in P2. The set P1 \P2 ≡ P1 ∩Pc

2 is hence
nonempty. Let w > 0 be arbitrarily chosen, and let 0 < u < v be such that
w = v − u. Then, with T and T1 defined as above, we have

P (T − T1 > w) ≥ P (min
i∈P2

Xi −min
i∈P1

Xi > w)

≥ P ({Xi < u, ∀i ∈ P1 \ P2} ∩ {Xi > v, ∀i ∈ P2})

≡ α > 0.

But then

E[T ]− E[T1] = E[T − T1]

= E[(T − T1)I(T − T1 > w)] + E[(T − T1)I(T − T1 ≤ w)]

≥ wP (T − T1 > w)

= w α > 0,

where I(A) is the indicator function of the event A. Hence E[T ] > E[T1] =
1/k and consequently the considered system (an arbitrary non-series system)
does not preserve the NWUE class.
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Example 4: A system close to a series system. This example is meant to
illustrate the main features of the above first part of the proof of Theorem 3.
Consider the system illustrated in Figure 4, where n ≥ 2. If n is large, we

✚✙
✛✘
✚✙
✛✘

1 2 ✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

n

n-1

n-2

Figure 4: System with n components and k = n− 1.

can think of this system as “almost” a series system. For this system, we
have h(p) = 2pn−1 − pn, and it is readily shown that

c(r) = rn−1

[

2

n− 1
−

r

n

]

. (17)

We thus obtain

lim
r→0

c(r)

h(r)
=

1

n− 1
.

This is in accordance with the developments in the above proof of Theorem 3,
since the minimal path sets of the system are P1 = {1, 2, . . . , n − 2, n − 1}
and P2 = {1, 2, . . . , n − 2, n}, which both have size n − 1. Note also that
P1 \ P2 = {n − 1}. We complete this example by noting that by (17) we
have, for all n ≥ 2,

E[T ] = c(1) =
2

n− 1
−

1

n
=

n+ 1

n
·

1

n− 1
>

1

n− 1
= E[T1].

Following the proof of the theorem, this shows that the system in Fig. 4 does
not preserve the NWUE class.

Proof of Theorem 3 for series systems: We first present a distribution F
which is NWUE (in fact it is IMRL), and then show that the NWUE property
does not hold for the lifetime of a series system with n ≥ 2 components with
component lifetime distribution F .
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Let F have the survival function

F̄ (t) =







e−t for 0 ≤ t < 2 ,
e−1.3t+0.6 for 2 ≤ t < 4 ,
e−0.2t−3.8 for t ≥ 4 .

(18)

Writing c for 1/13 ≈ 0.769 for simplicity, one may calculate

m(t) =

∫

∞

t
F̄ (u)du

F̄ (t)
=







1 + et[(5− c)e−4.6 − (1− c)e−2.0] for 0 ≤ t < 2,
c+ (5− c)e1.3t−5.2 for 2 ≤ t < 4,
5 for t ≥ 4.

The function m(t) is increasing in t, and thus the distribution F is IMRL
and hence NWUE. The mean residual life function m(t) is shown in the left
panel of Fig. 5.

Consider now a series system of n ≥ 2 components, having F as compo-
nent lifetime distribution. We shall show that such a system is neither IMRL
nor NWUE.

The survival function of the lifetime T of this series system is (F̄ (t))n,
and the corresponding mean residual life function (5) is hence given by

mn(t) =
1

(F̄ (t))n

∫

∞

t

(F̄ (u))ndu.

Substituting F̄ from (18) we obtain, for n ≥ 1, the particular values

mn(0) =
1

n

{

1 + (5− c)e−4.6n − (1− c)e−2.0n
}

,

mn(2) =
1

n

{

c+ (5− c)e−2.6n
}

.

Since n = 1 corresponds to the component distribution F itself, one may
easily check that m1(0) − m1(2) < 0. However, for all n ≥ 2, we have
mn(0)−mn(2) > 0. This is seen in the right panel of Fig. 5 when n = 2. For
the general case, this can be proven by differentiating d(n) = mn(0)−mn(2)
with respect to n and observing that the derivative is positive for n ≥ 1.
Thus, the expected lifetime of a new series system is larger than the expected
remaining lifetime of one which has reached the age 2. It follows from (6) that
the system lifetime T is not NWUE. This completes the proof of Theorem 3
in the series system case.
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Figure 5: Left: The mean residual life function m(t) for the component
distribution F . Right: The mean residual life function m2(t) for a series
system with n = 2 components.

5 Consequences for the DFR and IMRL classes

A closer look at the two parts of the proof of Theorem 3 shows that we can
conclude as below in the case of i.i.d. components.

Corollary 1 The following preservation properties hold for systems with
i.i.d. component lifetimes:

(i) A coherent system preserves the DFR class if and only if it is a series
system.

(ii) No coherent systems preserve the IMRL class.

Proof: (i) Here the ’if’-part is well known; see, e.g., [11]. In the proof of
the non-series case of Theorem 3, we showed that an exponential component
distribution, which in particular is DFR, leads to a system lifetime which is
not NWUE. But then it cannot be DFR, since the DFR class is contained in
the NWUE class. This proves (i).

(ii) For non-series systems, we showed that an exponential component
distribution, which is also IMRL, leads to a system lifetime which is not
NWUE and hence not IMRL. Thus, non-series systems do not preserve the
IMRL property. Further, in the proof of the series system part of Theorem 3,
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we showed that a component distribution, which was noted to be IMRL,
led to a non-NWUE distribution of the lifetimes of series systems of any
size. Since the IMRL class is contained in the NWUE class, this means that
the IMRL class is not preserved for series systems, completing the proof of
claim (ii).

6 Concluding remarks

In this paper, we have so far restricted the attention to coherent systems with
i.i.d. component lifetimes, with the aim to complement existing knowledge.
It should be noted, however, that there has been a significant interest in the
independent and non-identically distributed case in the reliability literature;
see, e.g., [4, Chapter 4]).

Recently, Navarro et al. [11] have made important advances also for the
case of dependent component lifetimes. Specifically, these authors generalize
the reliability polynomial to the case where the dependency of the compo-
nent lifetimes is given by a copula, while the marginal distributions of the
component lifetimes are specified separately from the system and the copula.

In particular, [11] considers coherent systems with component lifetimes
X1, . . . , Xn having identical marginal distributions given by a survival func-
tion F̄ , and a possible dependency among the component lifetimes repre-
sented by a survival copula K(u1, . . . , un) (e.g., Nelsen [12]). In this case,
which the authors name the dependent and identically distributed case (d.i.d.),
the joint survival function for the component lifetimes can be written

P (X1 > t1, . . . , Xn > tn) = K(F̄ (t1), . . . , F̄ (tn)).

From this, the authors demonstrate that the survival function of the system
lifetime T can be written

F̄T (t) = q(F̄ (t))

for a continuous and increasing function q(u) defined on [0, 1], with q(0) = 0,
q(1) = 1. A key feature is that the function q depends on the system structure
and on the dependence copula K, but not on the component distribution F .
It has been named the domination function or the distortion function. The
i.i.d. case is now obtained as the special case where K is the independence
copula given by K(u1, . . . , un) =

∏n

i=1 ui, and q is in this case simply the
reliability polynomial h as defined in Section 2.1.3.
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It is easy to confirm that the results of Theorems 1 and 2 of the present
paper will continue to hold for the d.i.d. case when the reliability function h
is replaced by the distortion function d in the statements and in the proofs.
Since the proof of Theorem 3 is strongly based on properties of the reliability
polynomial for the i.i.d. case, it is, however, not clear whether the conclusion
of the theorem holds in some form for the d.i.d. case. This also applies to
the conclusions of Corollary 1.

In view of the latter result, it is however interesting to note that Navarro
[10, Example 3.3] presents an example where the IMRL class is preserved
for a series system with n = 2 d.i.d. components, with the dependency given
by a Clayton-Oakes copula. This is in contrast to the i.i.d. case where no
coherent system preserves this class. Another example in that paper shows,
on the other hand, that the IMRL class is not preserved in parallel systems
with independent but not identically distributed component lifetimes.

Further studies in these directions are of obvious interest for future re-
search.
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