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Abstract

Computational fluid dynamics (CFD) simulations of large-scale furnaces or

reactors for thermal conversion of solid fuels remains challenging partially

due to the high computational cost related to the particle sub-models. Ow-

ing to the thermally thick nature, it is particularly expensive to simulate the

conversion of large fuel particles such as biomass particles. To address this

issue, a fast-solving particle model was developed in this work with special

attention to the computational efficiency. The model spatially discretizes a

fuel particle in one homogenized dimension. The conversion process of the

fuel particle is treated as a reactive variable-volume one-dimensional tran-

sient heat conduction problem. The model also utilizes several features that

are typically found in sharp interphase-based models to reduce the compu-

tational cost. Validation of the model was carried out by comparing with

experimental results under both pyrolysis and combustion conditions. The
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accuracy and computational efficiency of the model was thoroughly exam-

ined by varying the degrees of temporal and spatial discretization. It was

found that the model well predicted pyrolysis and combustion of a single

biomass particle within a broad range of temporal and spatial discretization.

The time used to simulate the conversion of a biomass particle using the

developed model can be more than one order of magnitude smaller than the

conversion process itself. It was also revealed that a well-predicted conduc-

tive heat transfer inside the particle is essential for a precise simulation of the

drying and devolatilization process. The char conversion process, however,

is less sensitive to the external heat transfer as it is mainly controlled by the

mass diffusion process. Further studies showed that a time step of 1× 10−3 s

and a spatial discretization of 20 cells were sufficient for simulating the con-

version of typical fuel particles in grate-fired and fluidized-bed furnaces. We

also demonstrated that when the particle model was implemented in a CFD

solver, only 2.2% of computational overhead was introduced by the model.

As the model can efficiently employ fixed time stepping, optimal load bal-

ancing during parallel computing of many simultaneous conversion processes

becomes trivial. This performance opens up new possibilities for treating

fuel polydispersity in Eulerian CFD simulations of biomass conversion.

Keywords: biomass, combustion, mathematical modeling, CFD

Nomenclature

Symbols

A pre-exponential factor (1/s)
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AC ash content (-)

a matrix coefficient (J/K s)

b matrix coefficient (J/s)

C molar concentration (mol/m3)

cp heat capacity (J/kg K)

d initial diameter (m)

dt time step (s)

∆H heat of reaction (J/kg)

E activation energy (kJ/mol)

h convective heat transfer coefficient (J/m2 K s)

keff effective rate constant (m/s)

l initial length of a finite cylinder (m)

l1,l2,l3 initial dimensions of a parallelepiped (m)

M molar mass (kg/mol)

m mass of a given species in a cell (kg)

mp particle mass (kg)

MC moisture content (-)

Np number of cells (-)
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r homogenized radial position (m)

rb particle radius (m)

RCT relative calculation time (-)

RE relative error (%)

S mass source during a given conversion stage (kg/s)

Sg specific gravity (-)

Sp implicit coefficient for the source term of energy equation (J/K s)

Su explicit contribution to the source term of energy equation (J/s)

Senergy source term of energy equation (J/s)

SA surface area (m2)

SF shrinkage factor during a given conversion stage (-)

t time (s)

Tg gas temperature (K)

Ts solid temperature (K)

Tw reactor wall temperature (K)

tHT timescale of conductive heat transfer (s)

ttotal,cal total time used for executing the code (s)

ttotal,con total conversion time of a particle (s)

4



V volume of a given species in a cell (m3)

Vc volume of a cell (m3)

Vp particle volume (m3)

w mass fraction (-)

xb location of the outer cell boundary (m)

xc location of the cell mass center (m)

Greek

α fraction of oxygen consumed by volatile gases (-)

β mass transfer coefficient (m/s)

Γ particle shape factor (m2)

ε emissivity (-)

θ radiation temperature (K)

κ thermal conductivity (J/m K s)

ρ density (kg/m3)

σ Stefan Boltzmann constant (kg/s3 K4)

φ volume fraction (-)

χ coefficient of the explicit discretization of the energy equation (J/K s)

Ω stoichiometric coefficient (-)
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Subscript

∞ far field

ash ash

b cell outer boundary i.e. west boundary

BL baseline

C carbon atom

char char

charc char conversion process

charf char front

db dry based

dev devolatilization process

dry drying process

dry wood dry wood

E east cell

gas gas

H hydrogen atom

H2O water molecule

O oxygen atom
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O2 oxygen molecule

P cell center

sur particle surface

tar tar

vol volatiles

W west cell

wb wet based

wet wood wet wood

Superscript

∗ current time step

0 previous time step

Abbreviations

CFD computational fluid dynamics

DEM discrete element method

IBM interface-based model

MBM mesh-based model

ODE ordinary differential equation

PDE partial differential equation
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SFOR single first-order

SIMPLE semi-implicit method for pressure linked equations

1. Introduction

Biomass is a promising renewable source of heat, power, liquid fuels, and

chemicals. It has gained popularity due to the increased awareness of sustain-

ability, especially for the lignocellulosic biomass, which has been widely used

in the Nordic countries to replace fossil fuels [1]. Due to the fibrous nature of

lignocellulosic biomass, it is energy-intensive to reduce the size of a biomass

particle. Consequently, biomass fuel particles used in industrial-sized fur-

naces are usually much bigger than coal particles. Moreover, the proportion

and rate of release of volatiles differ significantly between coal and biomass.

This situation makes the often-used thermally thin assumption (i.e. negligi-

ble internal temperature gradients) in the modelling of coal conversion less

suitable when simulating conversion of biomass. In addition, a recent study

has suggested that temperature gradients inside a biomass particle need to

be considered even under suspension-firing conditions [2], where the major-

ity of fuel particles are less than 500 µm. The internal temperature field not

only influences the rate of conversion, but also to a great extent the biomass

decomposition products.

To more accurately simulate the conversion of biomass particles, non-

isothermal models accounting for the thermal thickness have been devel-

oped, ranging from simplified one-dimensional modelling approaches to com-

prehensive multi-dimensional models. A comprehensive overview of these

various modelling approaches has been presented recently [3], in which multi-
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dimensional models are recommended only when there is a need to account

for the anisotropy of the fuel particle or when the boundary conditions of the

fuel particle are varying significantly in space [3]. Both these scenarios are,

however, rare in large-scale biomass-fueled reactors. Despite the anisotropy

of the raw lignocellulosic biomass, the fuel particles used in industrial-size fur-

naces can generally be characterized as isotropic due to pretreatments such as

size reduction and densification. Even where this is not the case, such as for

wood chip fuels, the accuracy obtained from one-dimensional particle mod-

els is usually satisfactory without accounting for particle anisotropy [3]. The

assumption of homogeneous boundary conditions for the fuel particle is also

typically acceptable [4] since the size of a fuel particle is much smaller than

that of the fuel bed. Moreover, one-dimensional particle models are also typ-

ically linked to the surface area per unit volume of the particle phase, rather

than to the surface area of an individual particle, when used in Eulerian

fixed-bed reactor models [5]. Consequently, one-dimensional models with

their associated reduction in computational cost are in general well suited to

simulations of fuel particle conversion in large-scale biomass-fueled reactors.

This fact is even more pronounced when the particle conversion model is to

be coupled to a computational fluid dynamics (CFD) solver, as but one out

of many sub-models in what necessarily becomes a rather computationally

expensive configuration.

Generally, one-dimensional models can be categorized into two concep-

tual groups: interface-based models (IBMs) [5, 6, 7, 8, 9] and mesh-based

models (MBMs) [10, 11, 12, 13, 14, 15, 16, 17]. In the IBM, the fuel particle

is divided into three (moist wood, dry wood, and char) or four (moist wood,
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dry wood, char, and ash) distinct layers. The chemical reactions and phase

changes are then described as occurring only in narrow regions between the

different layers (i.e. at sharp interfaces). With such a spatial discretization,

the governing equations for each layer become ordinary differential equations

(ODEs) coupled via boundary conditions at the interfaces. Thus, very few

equations and variables need to be solved and stored respectively, and the

relatively low memory requirements were also a main driving force for the

original development of these types of methods. In the MBM, a particle

is discretized along the radius into an ensemble of mesh points over which

the conservation equations are spatially discretized. Unlike the IBMs, each

discretized unit/cell may contain several different species in the MBM. All

governing partial differential equations (PDEs) are converted into an alge-

braic equation system by discretization in space and time. Depending on

the gradients of temperature and species mass fractions, various numbers of

grid points are needed for a reasonable representation of the particle con-

version process. In some combustion cases, the grid points for a single fuel

particle can be as many as 1200 [10], which potentially provides informa-

tion in much greater spatial detail compared to the more coarsely discretized

interface-models.

The IBMs are intuitively believed to have a higher numerical efficiency

than the MBMs due to the reduced number of equations. Comparative stud-

ies between IBMs and MBMs are however rarely reported. It was briefly

stated in a previous study [7] that the developed IBM could achieve a similar

level of accuracy as a more comprehensive MBM [15] but at lower compu-

tational cost. However, it is worth noting that IBMs have some inherent
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characteristics, which may limit their computational performance. For in-

stance, two different sets of energy equations need to be solved sequentially

at the boundaries and layers, since the solutions of the algebraic equations at

the boundaries provide boundary temperature data that need to be known

to advance the layer temperatures in time. Typically, a higher-order explicit

method [7] or an iterative implicit method [6] is used to solve the ordinary

differential equation for the layer temperatures. However, the accuracy of

both methods, as well as the robustness of the explicit method, is in prac-

tice limited by the smallest thermal mass of any present layer, indicating

that very small time steps are needed in the beginning and towards the end

of each conversion process (drying, devolatilization and combustion). Some

sort of adaptive time stepping is therefore typically required, as well as a

numerical limiter on the smallest layer or particle size allowed [5, 18]. On

the other hand, it is common that linearly implicit extrapolation methods

are utilized in the MBMs, which can be very efficient particularly when the

size of the matrix is small. One reason for the high computational cost of the

traditional MBMs is the consideration of intraparticle flow, which is usually

ignored in the IBMs. In traditional MBMs, five sets of transport equations

need to be solved of which four are related to the gas phase (continuity, mo-

mentum, energy, and species). The convective timescale of the off-gas may

be smaller, if not comparable, to the timescale of conductive heat transfer

in the solid phase, thus, resulting a lower maximum allowed time step. A

simplified MBM without solving intraparticle flow may therefore achieve a

good balance between accuracy and computational efficiency.

Even though the different types of particle models discussed here form the
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basis for comprehensive CFD simulations of reactors for biomass conversion,

the implications of the particle model formulation for the computational ef-

ficiency of the overall simulation framework are in general not discussed in

depth. In particular, biomass combustion systems are typically characterized

by a strong flow-chemistry coupling and chemical time-scales that are sev-

eral orders of magnitude smaller than those relevant for the global conversion

process [19]. In such situations, it is customary to invoke operator-splitting

and compute the source terms in the energy and species transport equations

for the duration of a fluid-flow time step [20, 21]. This repeated stopping

and re-initialization of the biomass conversion sub-model has profound con-

sequences for the global efficiency of the numerical method. For example,

higher-order time integration methods require storing of information from

multiple previous time levels and are associated with a larger computational

effort concentrated to the beginning of each CFD time interval [21]. Such

methods, which may exhibit superior performance to lower-order alterna-

tives in stand-alone codes, can therefore, perhaps somewhat unexpectedly,

deteriorate the overall performance of the final CFD implementation. In the

present work, we therefore choose to focus on the balance between computa-

tional efficiency, numerical accuracy and predictive capability achievable for

biomass particle conversion models intended for use in biomass conversion

reactor assessment.

Our long-term ambition with the current work goes further than a mere

reduction in the computational cost of particle sub-models in biomass con-

version simulations. We target our particle model development at a CFD

simulation scenario where the fluid flow time step is in the order of 1× 10−3
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s or less. If a particle model can be derived such that the computational

overhead in a typical fixed-bed conversion simulation is lower than e.g. 10%,

then new opportunities will present themselves. More specifically, if the cost

of executing one instance of the particle model is small enough, more in-

stances can be afforded with little penalty to the overall computational cost.

These additional instances could enable a more elaborate treatment of par-

ticle polydispersity or finer spatial resolution in Eulerian simulations. The

success of such a computational setup would also in practice depend on the

possibilities to achieve efficient parallelization of many simultaneous particle

conversion processes. We shall return to these possibilities in the discussion

of the results.

The remainder of this paper is organized as follows. In Section 2, a sim-

plified MBM is presented. Besides neglecting the demanding solution of the

intraparticle gas flow, the proposed model combines the concept of sharp

reaction fronts from the IBM and the advantage of the traditional MBM

by using an efficient matrix solver (LU factorization). The modeling details

of phase change, reaction, thermophysical parameters, and solution strategy

are also described. Validation of the model is discussed in Section 3 by com-

paring with the experimental data and results from an IBM. In Section 4,

comprehensive analysis of the model is carried out to systematically scru-

tinize effects of model formulation on the predictability and computational

efficiency in various conditions. A specific aim is to establish a solid theoret-

ical foundation for interpretations of the observed results. Moreover, general

guidelines for CFD simulations using one-dimensional thermally thick parti-

cle sub-models are given, and new possibilities offered by the herein presented
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particle model are discussed.

2. Theory

2.1. Model framework

As the present model is developed based on an, in our opinion, well-

established baseline model [5, 6], implementation details regarding the physic-

ochemical modeling of the conversion processes are not discussed in detail

here. We have strived to achieve as similar implementations as the overar-

ching model frameworks allow. The same argument can be made for the

choice of material and transport properties – it is not the main purpose here

to assess the relative merits of different correlations and literature sources

on these values, but to illustrate, analyze and contrast the model behaviors

for an acceptable set of property values typical of thermochemical conversion

of woody biomass. The main differences between the present MBM, com-

prehensive MBMs, and IBMs are summarized in Table 1 (the characteristic

features of comprehensive MBMs and IBMs are exemplified using previous

works [6, 15]). It should be noted that, although there is no direct resolution

of gas-phase species concentration fields in the present MBM or in classical

IBMs, effects of chemical reactions on outflowing gases may still be included

in these modelling frameworks by integration of the reaction rate expressions,

given that the residence time through the exterior layers and an approximate

temperature profile in these layers are always known.

2.2. Particle heat balance

In the discretized particle model proposed in the current work, the ther-

mochemical conversion of a biomass particle is essentially treated as a re-
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Table 1: Main differences between the present MBM and typical comprehensive MBMs

and IBMs.

Present MBM Comprehensive MBM IBM

Hydrodynamic con-

sideration of intra-

particle flow

Not considered Darcy’s law or full

Navier-Stokes equa-

tions

Not considered

Direct resolution of

gas-phase species

transport inside par-

ticle

Not considered PDEs for each gas-

phase species includ-

ing temporal and spa-

tial gradients, convec-

tion and source terms

Not considered

Chemical reaction of

gas-phase species in-

side particle

Not considered Arrhenius expressions Not considered

Energy conservation PDEs for the solid

phase

Combined PDEs for

both gas and solid

phases

ODEs for the tem-

peratures of the solid

phase layers and alge-

braic equations at the

boundaries between

layers

Solver Matrix solver (Gaus-

sian elimination by

LU factorization)

Matrix solver (Gaus-

sian elimination, e.g.

tridiagonal matrix

algorithm; possibly

with auxiliary algo-

rithms for handling

pressure-velocity cou-

pling, e.g. SIMPLE)

ODE solver
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active variable-volume one-dimensional transient heat conduction problem.

The conceptual basis for the model is a previously developed IBM [5, 6],

which has here been fundamentally reformulated in adaptation to the MBM

framework. As illustrated in Figure 1, the biomass particle is divided into a

number of segments. In a conventional IBM, these segments would be few

and correspond to moist wood, dry wood, char and ash. Here, they merely

represent a spatial discretization of the particle and they may, at any given

point in time, correspond to either of the four previously listed constituents,

or a mixture thereof. The basis for the MBM formulation is the treatment

of the local particle properties as mass-weighted averages of the four basic

constituents, in effect turning the MBM into a “one-solid” model in the vein

of “one-fluid” models for segregated multiphase flows.

Figure 1: Schematics of one-dimensional MBM.
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The governing equation to be solved is thus:

mpcp
∂Ts
∂t

=
Vp
Γ

∂

∂r

(
Γκ

∂Ts
∂r

)
+ Senergy (1)

where mp is the particle mass (kg), cp is the particle heat capacity (J/kg

K), Ts is the particle temperature (K), t is the time (s), Vp is the particle

volume (m3), Γ is the particle shape factor (m2), r is the homogenized radial

position (m), κ is the particle thermal conductivity (J/m K s) and Senergy is

the source term (J/s) due to the conversion processes (drying, devolatiliza-

tion and char combustion). Expressions for the particle shape factor are

given in Table 2. Radiative heat transfer inside the particle may be included

via a semi-empirical contribution to the particle thermal conductivity [15].

However, this contribution is neglected in the current work, as the process

is mostly heat-transfer controlled at lower temperatures (during drying and

devolatilization) and mass-transfer controlled during char combustion (when

the temperatures are high).

The particle properties in Equation (1) are mass-weighted averages based

on the local presence of moist wood, dry wood, char and ash. Equation

(1) is discretized using a fully implicit finite-volume method, with a first-

order backward differencing scheme for the transient term and a second-

order central differencing scheme for the conduction term. The source term

linearization (Senergy = Su+SpTs) uses the temperature at the new time level

to harmonize with the implicit treatment, and the discretized equation [22]

for the temperature becomes:

Ts,P =
χWTs,W + χETs,E + χ0

PT
0
s,P + Su

χ0
P + χW + χE − Sp

(2)
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Table 2: Particle shape factors.

Γ

Infinite plate1 1

Infinite cylinder1 2πr

Sphere 4πr2

Finite cylinder2 2π(3r2 + r(l − d))

Parallelepiped3 24r2+8r((l2−l1)+(l3−l1))+2(l2−l1)(l3−l1)

1 For an infinite cylinder, Γ is related to a unit length of the cylinder, and

for infinite plates to a unit area.

2 Initial length l and initial diameter d.

3 With initial dimensions l1×l2×l3, where l1 represents the shortest end.

where the coefficients χ (J/K s) and temperatures Ts have subscripts that re-

fer to the east (E), west (W ) and cell center (P ) positions, and a superscript

of 0 refers to the previous time level. The coefficients and all ancillary expres-

sions used in the discretized model are presented in the Appendix A to this

paper. The boundary conditions employed are zero gradient (symmetry) at

the particle center and a known temperature at the outer particle boundary.

The particle surface temperature is obtained from a heat balance where the

conductive heat flux into the particle is equated to the external (convective

and radiative) heat flux, under the assumption of no heat accumulation at

the surface. A uniform temperature field is provided as the initial condition.

The spatial discretization is performed so that the biomass particle is di-

vided into a number of cells of equal initial mass in its radial direction. Once
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the coefficients and source terms for all cells have been calculated, a system

of algebraic equations can be assembled. By neglecting the temperature-

induced variation of the coefficients over the time step, this equation system

can thereafter be solved directly by LU factorization with a matrix solver

(Meschach [23]). The combined method is stable, owing to its implicit char-

acter, and the employment of a first-order temporal scheme minimizes over-

head losses due to re-initialization after each fluid flow time step [21]. The

limitations in accuracy of the method brought about by the implicit treat-

ment [24] and the further approximation of slowly varying coefficients can be

offset by employing a small enough time step. Here, we take advantage of

the fact that a CFD simulation of biomass conversion anyhow must include

outer loops where the fluid flow solution is advanced in time with the newly

updated source terms from the particle conversion sub-model. This iteration

between the particle and the fluid level sets an upper limit on the time step

for the sub-model, implying that higher-order methods that would allow time

steps longer than the time scales on which the fluid flow must be updated

are anyway unnecessary.

2.3. Drying, devolatilization and char conversion

Two types of drying models are common in the literature: thermal drying

models and kinetic drying models. In this study, a single first-order (SFOR)

kinetic model with an Arrhenius type rate expression (Adry = 5.13×1010 1/s

and Edry = 88 kJ/mol [10, 15]) is chosen in order to guarantee that the tem-

perature field is everywhere differentiable and to improve numerical stability.

Some previous studies have suggested that two types of water are present in

woody biomass (free and bound water), the evaporation processes of which
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should be modeled separately [15] since they may behave differently. How-

ever, the determination of free water and bound water contents is nontrivial,

requiring complicated analytical methods (e.g. nuclear magnetic resonance

scanning). Considering the low availability of the required data and addi-

tional uncertainties it may bring, we do not distinguish between free water

and bound water in the current model. Previous experimental work has also

indicated that the effect of more tightly bound water on the overall drying

process is insignificant under conditions relevant to the current applications

[25]. Furthermore, the condensation of water vapor inside the particle is also

neglected in the current model, but there is nothing in the model formulation

that precludes an extension to include this effect in the future.

Devolatilization of biomass is a very complex process involving decom-

position of carbonaceous materials into permanent gases, tar, and char. An

accurate prediction of this process is usually considered very difficult. The

promising multispecies multistep models [26, 27] and structural models (Bio-

FLASHCHAIN [28], Bio-CPD [29], and FG-Bio [30]) are simply too expensive

to be used in the CFD simulation of large-scale reactors, despite their poten-

tials to predict product distributions over a wide range of temperature. On

the other hand, simple and fast-solving SFOR devolatilization models require

information of char yield in advance, making their application less reliable.

Hence, a competing devolatilization scheme is selected in this study to bal-

ance the computational cost, accuracy, and applicability. The formation of

light gases, tar and char are described by three competing SFOR reactions

(Adev,gas = 1.11× 1011 1/s, Edev,gas = 177 kJ/mol, Adev,tar = 9.28× 109 1/s,

Edev,tar = 149 kJ/mol, Adev,char = 3.05 × 107 1/s, Edev,char = 125 kJ/mol),
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respectively, which were derived from conditions close to this study [31, 32].

In addition, the selected kinetic parameters have been successfully applied

to simulate conversion of large biomass particles [2, 15]. In the current work,

this set of the devolatilization kinetics is used in all simulations to show col-

lective behaviors, as it is typically difficult to find kinetics matching both

wood species and devolatilization conditions.

This study aims to develop a model for combustion of biomass in fixed

or fluidized beds where a steep temperature gradient exists inside the par-

ticle. Therefore, char is assumed to be converted in an infinitely narrow

region similar to the method used in a previously developed IBM [5]. The

adoption of this assumption in the MBM avoids the requirement of knowing

concentrations of gas-phase reactants at every cell inside the particle, thus,

greatly reducing the computational cost. The mass source for char during

its conversion (Scharc,char) is given by the following equation:

Scharc,char = − (1− α)CO2,∞ΩkeffSAcharMc (3)

where α is the fraction of oxygen that is consumed by the volatile gases (-),

CO2,∞ represents the oxygen concentration in the far field (mol/m3), Ω is

the stoichiometric factor of the char combustion (-), keff is the effective rate

constant estimated by taking both chemical kinetics and mass diffusion into

consideration [5, 19] (m/s), SAchar is the surface area of the char front (m2),

and MC is the molar mass of carbon (kg/mol). As shown in a previous

work [33], conversion of relatively large char particles at high temperature is

usually dominated by the oxidation reaction. Therefore, the gasification re-

actions are not included in this study. Various reaction schemes for modeling
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of char conversion have been proposed previously. With the goal of achieving

an acceptable balance between accuracy and computational cost, we choose

a global scheme [34]. This is an efficient model that has been widely used

to simulate combustion of biomass [5, 19, 35, 36, 37, 38, 39]. Moreover, it

has been well documented that the external mass transfer is the rate-limiting

mechanism for char oxidation in biomass-fueled grate-fired and fluidized-bed

furnaces [33, 40, 41], so different kinetic parameters may only have limited

effect on the overall conversion process of the char. Since the current single

particle model is intended to be coupled with a CFD solver where gas phase

reactions are handled, homogeneous gas phase reactions inside the particle

are not explicitly calculated. The consumption of oxygen by volatile gases is

instead estimated by a factor α:

α = min

−Sdev,dry wood (1− ACdry wood)
(
wC
MC

+ wH
4MH
− wO

2MO

)
SAsurCO2,∞β

−
Sdev,char (1− ACchar) 1

MC

SAsurCO2,∞β
, 1

) (4)

where Sdev,dry wood and Sdev,char are mass source terms for dry wood and char

during the devolatilization process respectively (kg/s), wC , wH , wO are mass

fractions of carbon, hydrogen, and oxygen in the dry wood, respectively (-),

ACdry wood and ACchar are ash contents in dry wood and char, respectively

(-), MH and MO are molar mass of hydrogen and oxygen (kg/mol), SAsur is

the particle surface area (m2), and β is the mass transfer coefficient (m/s).

To simplify the estimation, char is considered to contain only carbon and

volatile gases are assumed to be converted fully into CO2 and H2O.
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2.4. Additional model information

Shrinkage is a non-negligible phenomenon accompanying the entire con-

version process of a biomass particle including drying, devolatilization, and

char conversion. It is influenced by several factors, such as type of biomass,

water content, biomass density, size of the particle, and external heating con-

ditions [42]. Given that shrinkage depends on many parameters, it should

ideally be measured experimentally at the conditions of interest [43]. Here,

the volumetric shrinkage from dry wood to char (SFdev) and from char to

ash (SFcharc) is estimated by constants (28% and 95%, respectively), as de-

scribed in a previous study [5]. Shrinkage during drying is calculated based

on wood species and moisture content as explained in the literature [42]. It

is important that the thermal properties are chosen in a consistent way with

regard to the changes the particle undergoes during conversion (mass loss

and shrinkage) [44]. This is, however, not a straightforward task particularly

for the determination of the thermal conductivity due to the variations in

wood species and moisture content. A general equation describing thermal

conductivity perpendicular (tangential and radial directions) to the grain [43]

was used in this study, whereas the thermal conductivity parallel to the grain

was estimated as 1.8 times the value in the perpendicular direction [43]. The

overall thermal conductivity was calculated by averaging in all three direc-

tions [44]. Regarding the thermal conductivity of char, a wide range of values

have been reported with magnitudes (in J/m K s) ranging from 10−2 to 100

[2, 3, 15, 19, 43, 44, 45]. Thus, a median value of 0.1 was chosen in this

study. Details about the thermal conductivity and other model parameters

are listed in Table 3.
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Table 3: Model parameters.

Parameter Expression Ref.

Specific heat

capacity cp

(J/kg K)

wet wood:

(4.206Ts − 37.7) (1−MCwb) + 4309MCwb

+(23.55Ts − 1320MCdb − 6191)MCdb

[45]

dry wood: 4.206Ts − 37.7 [45]

char: −119× 10−12Ts
4 + 1010× 10−9Ts

3

−3160× 10−6Ts
2 + 4410× 10−3Ts − 334.0

[45]

ash: 754 + 0.586 (Ts − 273.15) [19]

Thermal

conductivity κ

(J/m K s)

wet wood:

3.8 (Sg (0.1941 + 0.4064MCdb) + 0.01864) /3

Sg is the specific gravity

[46]

dry wood: 3.8 (0.1941Sg + 0.01864) /3 [46]

char: 0.1

ash: 754 + 0.586 (Ts − 273.15) [19]

Initial density ρ

(kg/m3)

beech: 718 (MCwb = 20%) [42]

poplar: 844 (MCwb = 40%) [42]

boxwood: 830 (MCwb = 0%) 1 [47]

SFdry (-)
beech: 14% (MCwb = 20%) [42]

poplar: 13% (MCwb = 40%) [42]

boxwood: 0% (MCwb = 0%) 1

Particle emissivity

ε (-)

0.85 [15]

1 MCwb is assumed to be zero, as it was not directly stated in the original

work [47].
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All the simulations were calculated sequentially using one of the compu-

tational cores from an Intel R© Xeon R© X5650 CPU (2.66 GHz, Intel R© Turbo

Boost Technology disabled, Intel R© Hyper-Threading Technology disabled).

The overall solving procedures for the IBM and the MBM are outlined in

Figure 2.

Initialize solution

Calculate source terms

Update particle
surface temperature

Determine ma-
trix coefficients

Solve matrix system
to obtain particle
internal tempera-
ture field at t+∆t

Advance
solution
to t+∆t

Update mass
in every cell

Initialize solution

Update interface
temperatures

Calculate derivative of
the layer temperature
with respect to time

Test update of layer
temperature to t+∆t

Update interface
temperatures

Advance
solution
to t+∆t

Convergence?
YesNo

(a) (b)

Figure 2: Solving procedures for the MBM proposed in the current work (a) and the IBM

on which it is based (b).

3. Model validation

The developed MBM has been validated against experimental data from

three different studies [14, 15, 47]. The first experiment is pyrolysis of a
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spherical beech particle (d = 0.02 m, MCwb = 20%) in a nitrogen atmo-

sphere at a temperature of 1098 K. The ambient gas temperature (Tg) and

reactor wall temperature (Tw) in the simulation was considered to be the

same as they were not distinguished in the original study [14]. The second

experiment is combustion of a near-spherical poplar particle (d = 0.0095 m,

MCwb = 40%) in air. The reactor wall temperature and ambient gas temper-

ature were configured as 1050 K and 1273 K, respectively in the simulation

according to the experiment [15]. Due to insufficient information provided

in the experimental studies, the convective heat transfer coefficient was esti-

mated from a correlation [48]. In both simulations, the particle is discretized

into 50 cells. A relatively small time step of 1.0×10−4 s was chosen to ensure

stability and accuracy of the solution.

In addition to the experimental data, simulation results from other well-

validated models were also added. These include three comprehensive MBMs

(MBM 1 [14], MBM 2 [17], and MBM 3 [15]) and two IBMs (IBM 1 [5, 6]

and IBM 2 [18]) developed focusing on the numerical efficiency. We aim

here to illustrate the general performance of the single-particle model with

the assumption of constant boundary conditions. It should also be noted

that the same property and kinetic parameters were used in IBM 1 and

the proposed MBM, so that a direct comparison between the two different

modeling philosophies can be made.

The evolutions of particle surface temperature, particle central tempera-

ture, and mass loss for pyrolysis of a beech particle are shown in Figure 3.

As shown in Figure 3, a good agreement between the model predictions and

the experimental data can be found for the evolutions of both temperatures
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and mass loss ratios. In general, with thermochemical parameters as listed

in Table 3, the proposed MBM is able to reasonably capture both surface

temperature and mass loss during pyrolysis of a woody biomass particle.

In fact, all the included models behave similarly, despite being constructed

in significantly different ways. Nearly identical surface temperature profiles

were produced using different models. However, relatively large differences

are shown in Figure 3(b) regarding the center temperature. It is however

interesting to see that the IBM 1, using a thermal drying model, and the

proposed MBM, using a kinetic drying model, predicted very similar drying

times (the time until the center temperature rises above the boiling point of

water). This further proves the applicability of both models. The difference

between model predictions of the drying time mainly stem from the selec-

tion of the thermochemical parameters, such as heat capacity and thermal

conductivity. Examples of the influence of such parameters are illustrated in

Appendix B by varying the thermal conductivity of char. These examples

also show that better agreement with experimental data for both the IBM

1 and the proposed MBM can be obtained by choosing different parameter

values. Due to the overlapping of drying and devolatilization, the mass loss

of the particle is over 80% at the end of drying in all simulations. Therefore,

although different center temperatures were obtained after the end of dry-

ing as shown in Figure 3(b), mass loss profiles are rather similar, with the

exception of the simplified IBM 2 as indicated in Figure 3(c).
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Figure 3: Surface temperature profile (a), center temperature profile (b), and mass loss

profile (c) during pyrolysis of a beech particle using the parameters in Table 3. Better

agreement for the current MBM and IBM 1 can be obtained with other parameters, as

shown in Appendix B. (d = 20 mm, Tw = Tg = 1098 K, MCwb = 20%, φN2 = 100%)

Similarly, comparisons between model predictions and experimental data

of combustion of a poplar particle are shown in Figure 4. It can be seen in

Figure 4(a) that relatively big differences exist between the simulated surface

temperatures and the experimental data. All models give over-prediction of

the surface temperature at the early stage of the conversion process (less than

around 20 s). This disagreement likely arises from the experimental uncer-

tainties, as explained by the authors of the original work [15]. Since the sur-

face temperature was measured by a thermocouple buried next to the surface,

the reading from the thermocouple might be slightly lower than the actual

value. All models underpredict surface temperatures after around 10–20 s.

The lack of heat flux from the volatile flame perhaps contributes most to the

underprediction of the surface temperature. Unfortunately, it is difficult to
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accurately describe the process of volatile combustion using a single-particle

model only. This issue, however, can be resolved by the coupling with a CFD

solver. Additionally, authors of the experimental work have stated that the

bead of the thermocouple might lose contact to the particle surface and ex-

pose to the volatile flame during the tests [15], which potentially resulted in

higher temperature readings. It should be noted that the surface tempera-

ture calculated from the proposed MBM decreases slightly at around 50 s as

shown in Figure 4(a), which is a result of the completion of the drying pro-

cess. If a particle contains moisture, the center temperature of the particle

stays relatively low. The devolatilization front moves gradually from the hot

surface to the cold drying front, thus gently releasing volatile gases. A small

amount of volatile gases does not consume all the oxygen transported to the

particle surface. Therefore, there is still oxygen left for the exothermic char

oxidation, which elevates the particle surface temperature. However, after

the depletion of moisture inside the particle, the temperature of the particle

increases dramatically. A large amount of volatile gases is released accord-

ingly, and this causes a complete consumption of the oxygen that terminates

further char oxidation temporarily. Without the heat released from char ox-

idation, the surface temperature decreases slightly. Again, despite the large

differences between measured and calculated temperatures, the mass loss ra-

tios predicted by all models (apart from the IBM 2) agree well with the

experiment as shown in Figure 4(c). This phenomenon is further discussed

in Section 4.
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Figure 4: Surface temperature profile (a), center temperature profile (b), and mass loss

profile (c) during combustion of a poplar particle. (d = 9.5 mm, Tw = 1273 K, Tg = 1050

K, MCwb = 40%, φO2 = 21%, φN2 = 79%)

It can be seen from Figure 4(b) that all models produced a distinct tem-

perature plateau until around 40–50 s owing to the drying process. In fact, it

is promising to see that all models predict a similar drying time. On the other

hand, the measured temperature rises gradually after only 10 s. Such behav-

ior may be caused by heat conduction along the wire as detailed in a recent

study [47]. This influence should be more severe in the combustion case [15]

than in the pyrolysis case [14] due to the smaller particle and higher gas tem-

perature. In order to further test the proposed MBM under such conditions

(small particle and high gas temperature), another experiment [47] was used

for validation, which contains measured temperature profiles for pyrolysis

of boxwood particles with three different diameters (d = 0.003, 0.005, 0.008

m). In the simulation, the ambient gas temperature was set to 1355 K, which

is same as the measured gas temperature at the end of the experiment (50
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s after the start of the experiment), whereas the reactor wall temperature

was set to 723 K, as given in the experimental work [47]. Figure 5 shows

the comparison between measured center temperature and calculated values

using the proposed MBM. Note that all the shown experimental data have

been corrected to minimize the effect of heat conducted along the thermo-

couple wires [47]. It is clear that a better agreement is achieved compared

to Figure 4(b).

0 10 20 30 40 50
Time (s)

400

600

800

1000

1200

1400

P
ar

tic
le

 c
en

te
r 

te
m

pe
ra

tu
re

 (
K

)

3 mm 5 mm 8 mm
This paper
Exp. [47]

 
 

 
 

 
 

Figure 5: Center temperature profile during pyrolysis of boxwood particles using the

parameters in Table 3. (d = 3, 5, 8 mm, Tw = 723 K, Tg = 1355 K, MCwb = 0%,

φN2 = 100%)

4. Results and discussion

In order to better understand the effects of spatial and temporal resolution

on the performance of the MBM, the two validation cases described in Section

3 (the pyrolysis of a 20 mm beech particle and the combustion of a 9.5
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mm poplar particle) were investigated further. The influence of the spatial

resolution of the MBM was investigated by varying the numbers of cells, and

the influence of the temporal resolution was studied by changing the time

step. In addition, two non-dimensional factors, relative error (RE, %) and

relative calculation time (RCT , -), are defined accordingly as:

RE = 50%

√√√√√ 1

n

n=bttotal,conc∑
t=1,2,...,n

(
mp (t)−mp,BL (t)

mp,BL (t)

)2

+50%

√√√√√ 1

n

n=bttotal,conc∑
t=1,2,...,n

(
Ts,sur (t)− Ts,sur,BL (t)

Ts,sur,BL (t)

)2

(5)

RCT =
ttotal,cal
ttotal,con

(6)

where mp(t) and mp,BL(t) are the particle masses (kg) calculated from a

test case and a baseline case at time t respectively, Ts,sur(t) and Ts,sur,BL(t)

are the particle surface temperatures (K) calculated from a test case and

a baseline case at time t, respectively, ttotal,con is the total conversion time

of a particle (s), and ttotal,cal is the elapsed real time (wall-clock time) for

the calculation (s). When coupled with a CFD solver, the MBM exchanges

energy and mass with the surrounding environment. Accurate estimations

of surface temperature and mass loss of the particle are crucial to calculate

fluxes of energy and mass coming out of the MBM. Therefore, a combined

error function defined by both surface temperature and mass of the particle is

constructed in Equation (5). The baseline case referred to is a case configured

with very fine spatial and temporal resolutions. Details are given in the

following sections.
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4.1. Effect of the spatial resolution

Figure 6 shows predicted temperatures and mass loss ratios during com-

bustion of a 9.5 mm poplar particle using the MBM with the same time

step of 1× 10−4 s but different degrees of spatial discretization (i.e. different

numbers of cells). Note that the case denoted as 10† was configured slightly

different from the others, in that combustion of char was not allowed until

all the dry wood in the particle had become char. The surface temperature

profiles look overall similar in Figure 6(a). However, some oscillations can

be observed for the cases with coarse spatial resolution. These oscillations

are caused by intermittent char conversion in the outermost cell. Since the

volatile flame is not accounted for in the particle model when de-coupled from

a CFD solver, the available oxygen for char conversion is instead estimated

from the amount of hydrogen being released (cf. Section 2.3). As indicated

from the surface temperature of the 10† case before 50 s, the outermost cell

was heated to a high temperature even without char conversion. This sit-

uation makes the char conversion in this cell very sensitive to the available

oxygen concentration. Given the small thermal mass of this cell, even a

small amount of oxygen can cause a big increase in the local temperature,

and consequently also in the surface temperature. Similar oscillating behav-

ior has also been reported previously using a different particle model [49].

Although the oscillation may appear dramatic, its influence on the overall

particle conversion is nearly negligible as shown in Figure 6(c). Moreover,

this oscillating phenomenon would be greatly reduced in a CFD simulation of

a large furnace, in which the oxygen concentration is influenced by a collec-

tive of particles and the homogenous gas phase combustion is simultaneously
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accounted for.
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Figure 6: Effect of the spatial resolution on surface temperature profile (a), center temper-

ature profile (b), and particle mass loss ratio (c) during combustion of a poplar particle.

(d = 9.5 mm, Tw = 1273 K, Tg = 1050 K, MCwb = 40%, φO2 = 21%, φN2 = 79%)

With an increased degree of spatial resolution, calculated surface temper-

atures seem to converge to the same values. On the other hand, the particle

center temperature varies more with the number of cells. This is due to that

the center temperature shown in Figure 6(b) is in fact the temperature of the

innermost cell. Since the particle is heated externally, the larger the inner

cell is (i.e. the lower the degree of spatial discretization is), the sooner the

center temperature appears to rise inside the particle. As shown in Figure

6(c), the effects of spatial resolution on the mass loss ratio are very small:

the predicted mass loss evolution is well characterized already at a resolution

of 10 cells.

Both temperature and heating rate may affect product distribution dur-

ing the devolatilization process. As shown in Figure 6, certain variations can
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be observed in the temperature prediction with varying degrees of spatial dis-

cretization. Since competing reactions have been implemented for resolving

the devolatilization process, the spatial discretization may also have an influ-

ence on the distribution of the devolatilization products. Figure 7 shows the

normalized cumulated mass for gas, tar, and char under the same condition

as used in Figure 6 as obtained with particle resolutions of 10, 50, and 200

cells. It seems that nearly identical product distributions are obtained. The

heating rate of the particle is relatively low (estimated to be below 100 K/s

during the devolatilization process) under the tested condition, and the slight

differences in the temperature prediction caused by varying spatial resolution

are too small to influence the product distribution.
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Figure 7: Effect of the spatial resolution on distribution of the devolatilization products

during combustion of a poplar particle. The product mass is normalized by the initial

particle dry mass. (d = 9.5 mm, Tw = 1273 K, Tg = 1050 K, MCwb = 40%, φO2 = 21%,

φN2 = 79%)

By using Equations (5) and (6), quantitative differences of computational
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accuracy and cost between calculations with various degrees of discretization

were obtained, as shown in Figure 8. Besides the combustion test case, the

pyrolysis of a 20 mm particle described in Section 3 was also simulated. The

relative errors shown in Figure 8 were calculated by comparing with the base-

line cases, respectively for the combustion (200-cell spatial discretization) and

pyrolysis (300-cell spatial discretization) conditions. The low relative errors

again demonstrate that the predictability of MBM model is not sensitive to

the spatial resolution at the tested conditions. On the contrary, the calcu-

lation time is heavily influenced by the number of cells (note a logarithmic

scale is used). It can be estimated from Figure 8 that when the number of

cells is lower than 25, the RCT is lower than 1 or, in other words, the time

used for executing the code is shorter than the actual physical conversion

process simulated.

The computational efficiency of the MBM is further analyzed by timing

different operations, i.e. solving the matrix system and all other operations.

The effect of the spatial resolution on the time used for the matrix solver and

the other operations are shown in Figure 9. As described in Section 2.2, the

system of linear equations is directly solved by LU factorization to obtain the

temperature of each discretized cell. The computational cost of solving such a

system scales with the size of the system to the power of three. Consequently,

as shown in Figure 9, the time used for solving matrix is almost proportional

to cube of the number of cells. The rest of the operations, such as calculations

of the reaction rates and updating the mass, need to be performed the same

number of times for each individual cell at any given time. Therefore, the

time used for those operations is linearly correlated to the number of cells.
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4.2. Effect of the temporal resolution

Figure 10 shows the effect of the temporal resolution (time step) on the

prediction of temperature and mass loss using the MBM. The same condition

of the combustion of a 9.5 mm poplar particle was used. All the calculations

shown in Figure 10 were obtained using the same spatial discretization of 50

cells, which is sufficient to obtain reasonable results under the tested condi-

tions as illustrated in Section 4.1. As shown in Figure 10, most of the profiles

look nearly identical, except the ones calculated with time steps larger than

1×10−2 s. Since a fully implicit finite-volume method is used in the MBM, an

unconditionally stable solution should be expected. However, as mentioned

before, solutions calculated with time steps larger than 1× 10−2 s differ sig-

nificantly to other results. This suggests that some physical processes limit

the largest tolerable time step with respect to solution accuracy. Detailed

illustrations of this phenomenon are given in the next section.

The effect of the temporal resolution on computational accuracy and cost

for both combustion and pyrolysis conditions are shown in Figure 11. It is

not surprising that the computational cost is inversely proportional to the

time step. When the time step is larger than 5× 10−4 s, the computational

time is shorter than the physical conversion time at the tested conditions

and current spatial discretization. The relative errors were estimated by

comparing to the base cases calculated with a time step of 1 × 10−5 s. For

both tested combustion and pyrolysis conditions, a very small relative error

can be obtained by using a time step smaller than 1× 10−2 s.
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Figure 10: Effect of the temporal resolution on surface temperature profile (a), center

temperature profile (b), and particle mass loss ratio (c) during combustion of a poplar

particle. (d = 9.5 mm, Tw = 1273 K, Tg = 1050 K,MCwb = 40%, φO2 = 21%, φN2 = 79%)
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Figure 11: Effect of the temporal resolution on relative error and relative calculation time.

(combustion: poplar, d = 9.5 mm, Tw = 1273 K, Tg = 1050 K, MCwb = 40%, φO2 = 21%,

φN2 = 79%; pyrolysis: beech, d = 20 mm, Tw = Tg = 1098 K, MCwb = 20%, φN2 = 100%)

39



4.3. Optimal spatial and temporal resolutions

Despite the unconditionally stable nature of the implicit scheme used to

solve Equation (1), small time steps are required to ensure accuracy. In order

to find the optimal spatial and temporal resolutions, three scenarios (inert

heating, pyrolysis, and combustion) were tested based on the condition of the

combustion of a 9.5 mm poplar particle described in the previous sections.

The drying, pyrolysis, and char conversion were disabled in the inert heating

cases, whereas the char conversion was turned off in the pyrolysis cases. The

surface temperature profiles for the inert heating scenario with various level

of spatial and temporal resolutions are shown in Figure 12.
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Figure 12: Effect of spatial (cells: 10 – 200) and temporal resolutions (time step: 1× 100

and 1× 10−4 s) on prediction of surface temperature during heat transport process.

As shown in Figure 12, when the time step is small (1 × 10−4 s), the

obtained surface temperatures are identical for the cases with varying spatial

resolutions. Due to the similarity, only three cases were plotted. However,
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large discrepancies can be noted from the cases calculated using the time step

of 1 × 100 s. Counterintuitively, the results deviate more with an increased

number of grid points. This observed phenomenon can be attributed to the

comparison between the time step and the time scale of conductive heat

transfer (tHT ) inside the particle, which is defined by the equation below:

tHT =
(length scale)2

thermal diffusivity
(7)

The length scale of each discrete volume can be estimated by the distance

between two adjacent grid points. Therefore, when the particle size remains

constant, this length scale reduces as the number of grid points increases,

and so does the associated time scale tHT for cell-to-cell heat conduction. If

tHT is smaller than the time step used in the solution procedure, the heat

transfer process cannot be resolved accurately. Figure 13 shows the heat

transfer timescale of each discretized cell for all three scenarios (time step =

1 × 10−4 s and cell count = 50). The heat transfer time scales for all cells

increase initially due to the decreasing thermal diffusivity when temperature

is elevated. Since the spatial discretization is performed by dividing the

particle into equal mass cells (i.e. equal volume cells) in its radial direction,

the length scale of the cell decreases from particle center to particle surface.

For the inert heating case shown in Figure 13(a), it is apparent that majority

of the timescales are smaller than 1× 100 s. Consequently, a large deviation

can be found for the results calculated using the time step of 1 × 100 s and

the spatial discretization of 50. As the cell number increases, even smaller

time steps are required, and thus more severe underprediction of the surface

temperatures were obtained as shown in Figure 12.
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Due to the reduction of the computational cell size caused by the phase

change and chemical reactions, significant reduction in the time scales can be

observed for the pyrolysis and combustion cases in Figure 13(b) and 13(c),

respectively. This reduction is particularly pronounced for the combustion

case because of the severe shrinkage and mass loss during the char conversion

process. In fact, the size of the outmost layer needs to be kept constant during

the char conversion process to improve the stability of the MBM model. To

better assess the effect of phase change and chemical reaction on the choice of

time step and spatial discretization, RE s were calculated for both pyrolysis

and combustion scenarios using two baseline cases (time step of 1 × 10−5 s

and spatial resolution of 200 cells). The results are shown in Figure 14.

Interestingly, although the absolute values are different, similar trends

can be observed for the pyrolysis and combustion cases. Nearly identical
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Figure 14: Comparison of computational accuracy between pyrolysis (a) and combustion

(b) cases.

results are obtained when the time step is smaller than 1×10−4 s, regardless

of spatial resolutions for two conditions. However, as shown in Figure 13,

big differences of tHT exist between the combustion and pyrolysis cases. This

apparent contradiction may be explained by Equation (1). As shown in the

right-hand side of Equation (1), both the conductive heat transfer and the

explicit energy sources due to drying, devolatilization, and char combustion

can influence the solution. To capture the process of biomass conversion,

the maximum allowed time step in the simulation should be smaller or at

least comparable to the time scales associated with the physical processes de-

scribed by the MBM. Irrespective of whether tHT is the smallest time scale

or not during the conversion process, the time step should at least always be

smaller than this time scale to ensure an accurate prediction. The underpre-

diction of the heat transfer caused by using time steps larger than tHT can
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have a cumulative effect on the temperature prediction and thus significantly

influence the results. On the other hand, both drying and devolatilization

are calculated using temperature dependent Arrhenius equations, and de-

volatilization is typically considered not to be exothermic. Since each layer

is gradually heated up from room temperature (or relatively low tempera-

ture) through conductive heat transfer during drying and devolatilization,

the rates of drying and devolatilization are controlled by the heat transfer

process. The point to have a time step smaller than a time scale of a certain

process is to be able to well resolve the changes of that process. The change

of the rate for drying or devolatilization is the result of changing temper-

ature (assuming the process is not limited by the available mass). Due to

the nature of the non-positive feedback from drying and devolatilization on

temperature, even if the time step is larger than the time scales of those two

processes, a fairly accurate temperature prediction can be obtained assuming

the conductive heat transfer is well accounted for. Therefore, it is important

to have a time step that is smaller than the tHT in most of the cells before

completion of devolatilization.

It should be noted that, in contrast to drying and devolatilization, char

conversion releases heat, which provides a positive feedback on temperature.

This situation implies to a certain restriction on the time step. In the mean-

time, since the conductive heat flux is likely to be much smaller than the

heat released from the exothermic char oxidation reaction, an accurate pre-

diction of the conductive heat transfer becomes less crucial. Nevertheless,

as shown in Figure 11 and Figure 13(c), the analysis on tHT fits well with

the results. This indicates that such a time step also fulfills the requirement
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for the char conversion under the tested conditions, perhaps because of the

limited oxygen availability.

4.4. Applications to industrial conditions

Two common industrial applications (grate furnaces and fluidized-bed

furnaces) are taken as examples in this section to provide a guideline for

choosing the optimal parameters (cell number and time step) for the MBM.

Typically, wood chips and briquettes are used in the biomass-fired grate

furnaces, which are in the size range of 101 to 102 mm, whereas, smaller sized

chips and pellets are usually utilized in the fluidized-bed furnaces (<80 mm

for bubbling fluidized-bed and <40 mm for circulating fluidized-bed) [50].

Due to the concerns of ash melting, fluidized-bed furnaces operate at lower

temperatures (923—1173 K) than grate furnaces (operating at 1273—1373

K). As shown in Table 4, combustion of a single particle was tested under

two conditions resembling environments in grate furnaces and fluidized-bed

furnaces, respectively. Two different moisture contents, 5% and 40%, were

also studied to cover most common fuel types. The model parameters for

the MBM were chosen in the context of CFD simulations. Because of the

high computational cost for large-scale reactive CFD simulations, Reynolds-

averaged Navier–Stokes based turbulence models are usually used to simulate

industrial furnaces. The time step used in such simulations is in the order

of 10−3 s. If the MBM is employed as a particle conversion sub-model in a

CFD simulation, time step of the MBM should not be larger than time step

of the fluid solver. Therefore, a time step of 1 × 10−3 s was selected in the

following test cases. As shown in the previous section, the choice of spatial

resolution for the MBM has a big influence on the computational cost. To

45



Table 4: Simulation conditions resembling industrial furnaces.

Grate-fired furnace

d = 50 mm, Tw = Tg = 1323 K,

φO2 = 21%, φN2 = 79% MCwb = 5

% and 40%

Fluidized-bed furnace

d = 20 mm, Tw = Tg = 1073 K,

φO2 = 21%, φN2 = 79% MCwb = 5

% and 40%

ensure a good balance between accuracy and cost, a spatial discretization of

20 cells is chosen. This resolution produced a relative error of around 5%

in the previous test cases and is in line with the resolutions employed in

conventional mesh-based models [14]. A baseline case with a finer resolution

(200 cells) and a shorter time step (1×10−4 s) was also tested for comparison.

Due to the long conversion time required for a full conversion of particle, the

simulation was stopped at 95% mass loss.

Simulation results obtained with two sets of model parameters are shown

in Figure 15. The computational efficiency (RCT ) achieved was nearly iden-

tical with the same model parameters, regardless of the particle size, moisture

contents and combustion conditions. The proposed time step and grid num-

ber yielded satisfactory fast solutions in all tested conditions. Less than 5%

error was observed for the majority of the tested cases. The deviation be-

comes somewhat larger towards to the end of the conversion, but remains
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within an acceptable level. On average, around 400 times speedup could be

achieved when compared to the baseline cases. Considering the outdated

CPU (launched in 2010) used, the RCT could be further reduced to a large

degree by using modern computational architectures.
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Figure 15: Comparison between simulations of biomass conversion under industrial condi-

tions with different model parameters. Relative errors up to 50%, 90%, and 95% of mass

loss are calculated by comparing with the baseline simulation.

Finally, the computational overhead of the MBM is evaluated in a test

run with the fixed-bed combustion model described in a recent study [51].

These simulations are designed to simulate the combustion of wood pellets

loaded in a 60 L bench-scale fixed-bed reactor. In this test run, the bed is

discretized in 100 computational cells in the vertical direction and the CFD

model is based on the three-dimensional transient pressure-based segregated

solver using operator splitting available in ANSYS Fluent 15.0.7. When the

herein presented MBM is employed as the sub-model for the particle phase

(cell number 20 and time step 1× 10−3 s) at a CFD time step of 1× 10−3 s,
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the computational overhead is only a mere 2.2%. We thus conclude that the

MBM, used under such conditions, is not the limiting factor with regard to

the overall computational efficiency of the combined framework.

The most important implication of the current work is thus that the

particle model opens up for new approaches to treating large ensembles of

biomass particles. When the cost of solving the particle sub-model is no

longer the limiting factor in the computational setup, more instances of par-

ticle sub-models can be afforded without significantly increasing the total

cost of the simulation. Here, one could envision different scenarios: in one

the model would be employed as the basis for a Lagrangian CFD simulation

(as in Eulerian-Lagrangian or CFD-DEM approaches), where each particle

physically present is represented as one computational particle; in another

the model would be used as an Eulerian model of a representative particle

in each computational cell to compute the local source terms of all particles

(or fractions thereof) present in the CFD-cell in question. In the former

approach the particle motion is typically obtained by solving Newton’s sec-

ond law of motion with an auxiliary ODE-solver for each physical particle,

whereas in the latter approach such motion is more often prescribed or solved

on the same computational mesh used for the gas-phase calculations (e.g. us-

ing a continuum model for granular flow as a viscoplastic fluid [52]). The

Eulerian approach is particularly attractive with the current sub-model, as

it would open up possibilities for dynamic mesh refinement. Regions with

small gradients in the solid phase properties could use a coarser resolution,

whereas a region of finer mesh resolution would dynamically move with e.g.

the combustion front in a fixed-bed reactor (during steady-state operation
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of a typical fixed-bed incinerator, the regions of finer resolution would stay

in place). Dynamic mesh refinement is only computationally tractable if the

coarse and fine regions require significantly different resolution and the cost

of re-meshing can be tolerated; the design and performance of the herein pro-

posed particle sub-model, in conjunction with the layout of typical fixed-bed

furnaces, imply that these criteria are fulfilled. Furthermore, the low compu-

tational cost — and the potential to reduce it even further by dynamic mesh

refinement –– also mean that several instances of the model could be used

in parallel in every computational cell to account for polydispersity in terms

of sizes, shapes or even biomass types. Finally, the proposed model is also

well suited for massively parallelized high-performance computing platforms.

Dynamic load balancing is already a standard feature in most Lagrangian

particle models in commercial CFD codes, and in Eulerian frameworks the

rules for dynamic load balancing can typically be adjusted via model-based

weighting. Unlike IBMs, where dynamic time stepping results in varying

computational cost over the lifetime of a fuel particle, the current MBM uses

a fixed time step, which simplifies load balancing significantly by making it

easier to predict computational costs a priori. In conclusion, we believe that

it is these new possibilities offered by the robustness and efficiency of the

currently proposed model that are most interesting in terms of potential for

future applications and development.

5. Conclusion

A mesh-based particle model has been developed with the intention of

coupling with CFD solvers. The model was validated against experimen-
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tal data from the literature [14, 15] under both pyrolysis and combustion

conditions. Using various degrees of spatial and temporal discretization, we

demonstrated that the model behaved robustly. Different from most of the

existing mesh-based models, the intraparticle flow is not considered in the

current model, which enables a good balance between accuracy and com-

putational efficiency. By carefully examining the timescale of conductive

heat transfer under conditions of inert heating, pyrolysis, and combustion,

we found that the conductive heat transfer plays an important role in the

drying and devolatilization processes. Therefore, the time step used in the

proposed model should be smaller or at least close to the timescale of conduc-

tive heat transfer during the drying and devolatilization processes to obtain

a satisfactory simulation of biomass conversion. On the other hand, the

highly exothermic process of char conversion is dominated by the transport

of oxygen, which is less sensitive to the heat transfer process.

In addition, the model was tested for conversion of a biomass particle un-

der typical conditions in grate-fired and fluidized-bed furnaces. The findings

suggested that a resolution of 20 cells per particle at a time step of 1× 10−3

s is sufficient for a reliable prediction of biomass conversion. The execution

time for the model was around only one tenth of the physical conversion time.

To further assess the computational efficiency, the model was implemented

into a CFD solver. The simulation of a bench-scale fixed-bed reactor showed

that the model introduced merely 2.2% additional computational overhead

to the cost of solving for the reactive gas flow through the bed. Further in-

vestigation with larger-scale CFD simulation would be useful to show the full

potential of the model. When used as a sub-model in Eulerian simulations of
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fixed-bed conversion, the exhibited computational performance is sufficient

to open up opportunities for handling fuel polydispersity and/or dynamic

mesh refinement.
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Appendix A

In this section, implementation details are illustrated. The particle is first

discretized into a given number (Np) of cells of equal mass in one homoge-

nized dimension as shown in Figure A.1.

Figure A.1: Schematics of the one-dimensional discretization. xb is the location of the

outer cell boundary (m), xc is the location of the cell mass center (m), rb is the radius of

the particle (m).

At the beginning of each time step, the mass fraction of each solid species

in each cell is first obtained as:

wwet wood =
mwet wood

mp

(A.1)
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wdry wood =
mdry wood

mp

(A.2)

wchar =
mchar

mp

(A.3)

wash =
mash

mp

(A.4)

where wwet wood, wdry wood, wchar, and wash are mass fractions of wet wood,

dry wood, char, and ash, respectively (-); mwet wood, mdry wood, mchar, and

mash are masses of wet wood, dry wood, char, respectively (kg). Afterwards,

the volume of the cell (Vc, m3) is updated by:

Vc = Vwet wood + Vdry wood + Vchar + Vash (A.5)

where Vwet woodd, Vdry wood, Vchar wood, and Vash are volumes of wet wood, dry

wood, char, and ash, respectively (m3), expressed as:

Vwet wood = V 0
wet wood +

S0
dry,wet wooddt

ρwet wood
(A.6)

Vdry wood = V 0
dry wood +

S0
dev,dry wooddt

ρdry wood
−
SFdryS

0
dry,wet wooddt

ρwet wood
(A.7)

Vchar = V 0
char +

S0
charc,chardt

V 0
char/m

0
char

+
SFdevS

0
dev,chardt

ρdry wood
(A.8)

Vash = V 0
ash −

SFcharcS
0
charc,chardt

V 0
char/m

0
char

(A.9)
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where Sdry,wet wood, Sdev,dry wood, Sdev,char, and Scharc,char are mass sources for

wet wood due to drying, dry wood due to devolatilization, char due to de-

volatilization, char due to char conversion, respectively (kg/s); SFdry, SFdev,

and SFcharc are shrinkage factors for drying, devolatilization, and char con-

version, respectively (-); dt is time step (s); the superscript 0 represents values

in the previous time step. After the volume has been updated, the location

of each grid point (xc) and the radius of the particle (rb) are then calculated.

Depending on the shape factor Γ, different formulations for these updates

are used. As an example, for a spherical particle, xc and rb are calculated

by:

xci =


3

√
3
8π
Vc,i i = 0, innermost cell

3

√√√√ 3
4π

(
i−1∑
j=0

Vc,j +
Vc,i
2

)
0 < i ≤ Np− 1

(A.10)

rb = 3

√√√√ 3

4π

Np−1∑
i=0

Vc,i (A.11)

The mass source terms are then updated as:

Sdry,wet wood = −mwet woodAdry exp

(
Edry
RTs

)
(A.12)

Sdev,gas = mdry woodAdevo,gas exp

(
Edev,gas
RTs

)
(A.13)

Sdev,tar = mdry woodAdevo,tar exp

(
Edev,tar
RTs

)
(A.14)
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Sdev,char = mdry woodAdevo,char exp

(
Edev,char
RTs

)
(A.15)

Sdev,dry wood = −Sdev,gas − Sdev,tar − Sdev,char (A.16)

Scharc,char = − (1− α)CO2,∞ΩkeffSAcharMc (A.17)

It should be noted that the char conversion front is assumed to be very

thin. Thus, in the current implementation, the char conversion is only cal-

culated in one cell, where the char front is currently located. SAchar can

be estimated using the geometrical surface area of the char front, since the

apparent kinetic formulation is applied.

The total energy source term (Senergy, J/s) has contributions from dry-

ing (Senergy,dry, J/s), devolatilization (Senergy,dev, J/s), and char conversion

(Senergy,charc, J/s), which are calculated as follows:

Senergy = Senergy,dry + Senergy,dry + Senergy,charc (A.18)

Senergy,dry = MCwbSdry,wet wood
(
cp,H2O (Ts,boundary − Ts) + ∆Hdry

)
(A.19)

Senergy,dev = − (Sdev,gas + Sdev,tar) cp,vol (Ts,boundary − Ts) + Sdev,dry wood∆Hdev

(A.20)

Senergy,charc = Scharc,char∆Hcharc (A.21)
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where ∆Hdry, ∆Hdev, and ∆Hcharc are latent heat of vaporization of water,

heat of devolatilization, and heat of reaction due to char conversion, respec-

tively (J/kg); cp,H2O and cp,vol are heat capacities of water vapor and volatiles,

respectively (J/kg K). As explained in Section 2.2, the energy source term is

linearized using Picard’s method:

Senergy = Su + SpTs (A.22)

where the superscript ∗ represents values in the current time step.

Su = S∗energy −
(
∂Senergy
∂Ts

)∗
T ∗s (A.23)

Sp =

(
∂Senergy
∂Ts

)∗
(A.24)

The update of the particle temperature is performed in three steps. First,

the particle surface temperature is determined by solving the heat balance

over the particle surface as:

hΓsur (Tg − Tsur) + εσΓsur
(
θ4 − T 4

sur

)
= κNp−1SAsur

dTs
dr

∣∣∣∣
xcNp,xcNp−1

(A.25)

where h is the convective heat transfer coefficient (J/m2 K s), which is esti-

mated using Ranz-Marshall Correlation, σ is the Stefan Boltzmann constant

(kg/s3 K4), θ is the radiation temperature (K) which is estimated by the

reactor wall temperature in the particle simulation, and SAsur is particle

surface area (m2).

55



Thereafter, the linearized temperature equations are established as:



aP,Np−1 aE,Np−1

aW,Np−2 aP,Np−2 aE,Np−2

... ... ...

aW,i aP,i aE,i

... ... ...

aW,1 aP,1 aE,1

aW,0 aP,0





Ts,Np−1

Ts,Np−2

...

Ts,i

...

Ts,1

Ts,0


=



bNp−1

bNp−2

...

bi

...

b1

b0


(A.26)

where a and b are matrix coefficients which can be calculated as:

aP,i =



−mp,icp,i
dt
− SAb,i−1

κi+κi−1
2

xci−xci−1

−SAsurκi
rb−xci + Sp,i

i = Np− 1, outermostcell

−mp,icp,i
dt
− SAb,i−1

κi+κi−1
2

xci−xci−1

−SAb,i
κi+1+κi

2

xci+1−xci + Sp,i

0 < i < Np− 1

−mp,icp,i
dt
− SAb,i

κi+1+κi
2

xci+1−xci + Sp,i i = 0, innermostcell

(A.27)

aE,i =


SAb,i−1

κi+κi−1
2

xci−xci−1
0 < i ≤ Np− 1

0 i = 0, innermostcell
(A.28)

aW,i =

 0 i = Np− 1, outermostcell

SAb,i
κi+1+κi

2

xci+1−xci 0 ≤ i < Np− 1
(A.29)

bi =

 −
mp,icp,i

dt
T 0
s,i − SAsurκi

(rb−xci)Tsur − Su,i i = Np− 1, outermostcell

−mp,icp,i
dt

T 0
s,i − Su,i 0 ≤ i < Np− 1

(A.30)
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where the SAb is the surface area of the cell outer boundary (west boundary,

m2). The matrix system is solved by LU factorization using a matrix solver

named Meschach. More details regarding the matrix solver can be found from

http://homepage.divms.uiowa.edu/~dstewart/meschach/. After the tem-

peratures have been solved for, the mass of each species in each cell is then

updated by:

mwet wood = m0
wet wood + Sdry,wet wooddt (A.31)

mdry wood = m0
dry wood + Sdev,dry wooddt− Sdry,wet wooddt (1−MCwb) (A.32)

mchar = m0
char + Scharc,chardt+ Sdev,chardt (A.33)

mash = m0
ash − wchar,ashScharc,chardt (A.34)

Depending on whether the current time reaches the given end time or

not, the code either advances to the next time step or terminates.

Appendix B

In this section, the effect of thermal conductivity of char (κchar) is illus-

trated in Figure B.1 and Figure B.2. It should be noted that the calculated

center temperature shown in Figure B.1(b) is represented by the temperature

of the innermost layer, which is higher than the actual center temperature.

A previous study has shown that IBMs can better estimate the temperature
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of the center with an additional constant core layer [6], the application of

which is outside the scope of the current work.
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Figure B.1: Calculated (with IBM 1) and measured surface temperature profile (a), center

temperature profile (b), and particle mass loss ratio (c) during pyrolysis of a beech particle

(d = 9.5 mm, Tw = Tg = 1098 K, MCwb = 20%, φN2 = 100%).
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Figure B.2: Calculated (with the proposed MBM) and measured surface temperature

profile (a), center temperature profile (b), and particle mass loss ratio (c) during pyrolysis

of a beech particle (d = 9.5 mm, Tw = Tg = 1098 K, MCwb = 20%, φN2 = 100%).
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