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A B S T R A C T

Optimal scheduling of power generating units must take into account possibilities of forecast errors and
equipment failure. The stochastic unit commitment problem addresses scheduling of generating units under
uncertainty. Focusing primarily on scenario-based approaches, this article summarizes the fundamental concepts
of stochastic unit commitment, including the representation of uncertainty, different problem formulations and
the most common decomposition techniques applied to solve the problem. It also provides a survey of the latest
research on stochastic unit commitment, including an in-depth review of selected important recent advances in
decomposition based methods.

1. Introduction

The well-established unit commitment problem concerns the op-
timal scheduling of power generating units, and is used for cost mini-
mization in vertically integrated environments, as well as for market
clearing, reliability assessments and intra-day operations in market
environments. The possibility of forecast error or equipment failure
means some of the parameters in the problem are uncertain. In parti-
cular, the rapidly increasing amounts of power generation from inter-
mittent sources have motivated research on efficiently managing un-
certainty in power system operations and unit commitment decisions.
Numerous configurations of the unit commitment problem have been
proposed, differing in how uncertainty is represented, as well as how to
formulate and solve the problem [1]. An important family of ap-
proaches is stochastic unit commitment, where uncertainty is explicitly
taken into account inside the model using a set of discrete scenarios
with associated probabilities.

For systems of realistic size, unit commitment problems involve
large numbers of binary decision variables, and even deterministic
problems can be challenging to solve efficiently. The potential for cost
savings have, however, led to intensive investigation of the unit com-
mitment problem over several decades [2], and thousands of research
articles have been published. Although the vast majority of unit com-
mitment literature concerns deterministic problem formulations, there
are also hundreds of articles discussing formulations and methodology
for solving stochastic programs for unit commitment, including
sporadic review papers. Zheng et al. [3] classify literature written until
2014 on stochastic optimization methods for unit commitment into
three main categories: stochastic programming, robust optimization, and

(approximate) stochastic dynamic programming. They further distinguish
between two-stage, multi-stage and variations of risk-averse stochastic
programming model, while also providing a discussion for each of these
methods and a useful comparison of their advantages and dis-
advantages. Dai et al. [4], on the other hand, distinguish stochastic
programming-based formulations for unit commitment between verti-
cally integrated and deregulated market environments. Most of the lit-
erature is written in from a vertically integrated point of view, and they
further classify these approaches into basic two-stage stochastic pro-
gramming, basic multi-stage stochastic programming, security-con-
strained and chance-constrained two-stage formulations. Here, the basic
formulations do not take security or risk considerations into account.
Tanahan et al. [5] survey the broader area of what they call uncertain
unit commitment, list three approaches for dealing with uncertainty in-
side the unit commitment model, stochastic optimization, robust optimi-
zation, and chance-constrained optimization. A recent update of this
survey also focuses on heuristic methods [6]. Also focusing heavily on
heuristics and other non-traditional methods, Aburajad et al. [1] pro-
vide a practical summary of a range of heuristic methods, and compare
these with more traditional approaches.

While recognizing the increasingly important roles of robust [7],
interval [8], and other risk-averse optimization approaches [3], the
focus of this article is formulating and solving scenario-based stochastic
programming approaches to the unit commitment problem. Scenario
generation [9,10] and reduction [11,12] impact the performance of
stochastic programming models, but are considered outside the scope of
this paper.

This article does not attempt to duplicate the efforts of earlier re-
viewers by exhaustively surveying all available literature on unit
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commitment under uncertainty, but includes a synopsis of the funda-
mental literature, with explanations of the two-stage and multi-stage
stochastic programming formulations, as well as methods for decom-
posing and solving such problems. Furthermore, the article surveys and
classifies relevant literature from recent years. The article also includes
a detailed review of some the most important developments in de-
composition-based methods for stochastic unit commitment, aiming to
highlight key algorithmic innovations and efficient solution strategies
for the future.

Section 2 gives an introduction to the deterministic unit commit-
ment problem, while different formulations for the stochastic unit
commitment problem are presented in Section 3. Decomposition
methods are key to solving many stochastic unit commitment problems,
and Section 4 provides an overview of commonly used methods. Recent
developments in decomposition-based methods are presented in Section
5, based on in-depth reviews of selected books and articles. A survey
and classification of new literature on stochastic unit commitment is
included in Section 6, before Section 7 summarizes the most important
conclusions.

2. The unit commitment problem

In power generation scheduling, the unit commitment decision in-
dicates, for each point in time over the scheduling horizon, what gen-
erating units are to be used [13]. Then, the most economic dispatch, i.e.
the distribution of load across generating units for each point in time, is
then determined to meet system load and reserve requirements [14].
Start-up and production costs are taken into account, and together with
a host of operating constraints, this forms the unit commitment pro-
blem. The operating constraints could include local level status re-
strictions, minimum up time and down time requirements, and a variety
of start-up, fuel usage and ramping constraints [2]. After making the
unit commitment decisions, these can be passed on as 0/1 parameters
to the economic dispatch problem, which can then be formulated and
solved efficiently using continuous variables. The unit commitment
problem, on the other hand, contains a potentially large number of
binary decision variables.

2.1. General formulation

Assume we are to find a schedule for I generating units over a
horizon of T time periods. Then the generic unit commitment problem
can be formulated as

f x u umin , ,
x u i I t T

i it it it
,

1
(1)

x D t Ts. t.
i I

it t
(2)

X u x R t T
i I

i it it t
(3)

Here, fi is the cost function of each generating unit i. This function
typically includes operation and maintenance cost as a convex and
quadratic function of the generation level xit , as well as start-up and
shut-down costs when the state uit of a unit changes between zero and
one or vice versa. A solution to (1) must, in addition to satisfying the
demand Dt in (2) and reserve requirement Rt in (3) for each time period
t, also satisfy operating constraints for each individual unit. These
usually include minimum and maximum operating levels X i and Xi in
(4), as well as meeting constraints for minimum up time and down time.
This means a unit has to be on for at least Li

up periods, or similarly, off
for Li

dn periods before the state of the unit can be changed. Other op-
erating constraints, such as ramp-rate limits, deration and status of the
units, are sometimes included [15]. For all i I t T, ,

X u x X ui i it i it (4)

= + … +u u u t t L, 1, ,it it i i1
up (5)

= + … +u u u t t L1 , 1, ,it it i i1
dn (6)

2.2. Solution methods

Decades ago, Sheble [15] provided an literature synopsis showing
the diversity in methods and approaches to formulating and solving the
unit commitment problem, starting with Garver [16] in the early 1960s.
Based on their solution methods, Sheble classified the unit commitment
literature available at that time into exhaustive enumeration, priority list,
dynamic programming, integer and mixed-integer programming, branch-
and-bound, linear programming, dynamic and linear programming, separ-
able programming, network flow programming, Lagrangian relaxation, ex-
pert systems/artificial neural networks, risk analysis, simulated annealing,
and decision analysis.

In particular, Lagrangian relaxation has been widely applied to unit
commitment problems. This well-established method was first applied
to unit commitment in [13], exploits the separable structure of the
problem, and decomposes the problem into smaller, more manageable
subproblems. Leaving out the reserve constraint (3) for simplicity, the
Lagrangian relaxation procedure from [17] provides a demonstration.
First, Lagrangian multipliers t are associated with each of the demand
constraint (2). Dualizing these constraints leads to the Lagrangian dual
function ( ), given as

= f x u u x D( ) min , , ,
x u i I t T

i it it it
t T

t
i I

it t
,

1
(7)

subject to (4)–(6). The Lagrangian dual function, evaluated for any
selected 0 provides a lower bound to the solution of the unit
commitment problem. The Lagrangian dual problem is to find the set of
multipliers providing the best lower bound, i.e.

max ( )
0 (8)

To show its separable structure, (7) can be rewritten as

= f x u u
I

x D( ) min , , ,
x u i I t T

i it it it
t

it t
,

1
(9)

which is equivalent to = F( ) ( )i I i , i.e. separate programs for
each generating unit i:

=F f x u u
I

x D( ) min , ,i
x u t T

i it it it
t

it t
,

1
(10)

subject to the operating constraints of unit i.
The Lagrangian dual function ( ) is concave and bounded, so a

global optimum can be found. The non-differentiability of the function
inhibits solution by conventional gradient descent methods, and several
other methods are used. A subgradient procedure based on iteratively
updating the Lagrangian multipliers based on the subgradients, given as
D xt i I it (the slack of the demand constraints) has been widely used
[2].

3. Stochastic unit commitment formulations

The demand for electricity is not known with certainty in the
planning phase. Also, there is the possibility of generating units un-
expectedly becoming unavailable due to equipment failure.
Furthermore, the accuracy of forecasts for power generation from in-
termittent renewable energy sources is limited. These are the three most
important sources of uncertainty that must be managed in the unit
commitment problem. In the deterministic unit commitment formula-
tion, this uncertainty is managed by including a reserve requirement
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(3), to ensure sufficient flexibility in dispatch decisions taken at a later
stage. Sometimes, price uncertainty is also taken into account in the
unit commitment problem, e.g. to identify optimal bidding strategies
[18], but such formulations are not included here.

3.1. Scenario representations of uncertainty

Assuming knowledge of the underlying distribution for the sources
of uncertainty, the set of all possible realizations of the uncertain
parameters can be approximated by a set of discrete scenarios S and
their associated probabilities s. Then, Dts would represent the realized
electricity demand in time period t for each scenario s S. Availability
of generation capacity is used to represent both outages and uncertainty
in generation from intermittent sources, and can be included as Xits,
such that capacity for each generating unit depends on time period and
scenario.

The problem can be formulated as a two-stage program [19,20], in
which commitment decisions uit must be made in the first stage, and
dispatch decisions xits are made in the second stage, after the realization
of the uncertain parameters. The problem can also be formulated as a
multi-stage problem using a scenario tree [17,21], where commitment
decisions taken at a given node o are required to be equal across all
scenario paths including o. A third possibility is to include demand
uncertainty in chance constraints [22]. Other methods, such as robust
optimization [7] and interval optimization [8] are sometimes also
considered useful in representing uncertainty inside the unit commit-
ment model, cf. [23].

3.2. Two-stage formulation

The two-stage formulation of the stochastic unit commitment pro-
blem takes uncertainty into account through scenarios. For the case
with uncertain demand, the generation level xits can be decided after
information on demand Dts is obtained, i.e. in the second stage. The
commitment decision uit however, must be made prior to obtaining this
information, and is hence a first stage decision. Splitting the cost
function fi into first-stage ( fi

(1)) and second-stage ( fi
(2)) parameters

emphasizes the two stages in the model:

+f u u f xmin , ( )
i I t T s S

s i i t it
s S

s i its
(1)

( 1)
(2)

(11)

x D t T s Ss. t. , ,
i I

its ts
(12)

The reserve constraint is often discarded, as uncertainty is con-
sidered to be managed by the scenario representation of the uncertain
parameters. The objective function is often quadratic or piecewise
linear.

As before, operating constraints must be satisfied. For the upper and
lower capacities, this becomes

X u x X u i I t T, ,i it its its it (13)

Often, only the upper bound is considered time variant and scenario
dependent. Minimum uptime and downtime constraints are unchanged
from (5) and (6). A similar formulation, using scenario dependent
commitment variables uits and non-anticipativity constraints is also
possible.

The unit commitment problem was first formulated as a two-stage
stochastic programming problem in 1977 in [24]. However, the con-
siderably larger computational effort required to solve stochastic pro-
grams with integer variables impeded research of stochastic unit com-
mitment until 1996, starting with the multi-stage formulations in
[21,17]. Carøe and Schultz [19,25] developed a two-stage formulation
and decomposed it by scenario, proposing a dual decomposition
method based on Lagrangian relaxation of the non-anticipativity

constraints. They then used a branch-and-bound procedure is used to
identify primal feasible solutions. Dentcheva and Römisch [20] instead
chose a Lagrangian relaxation of the demand constraints to obtain
single-generator subproblems and search for feasible solutions using so-
called Lagrangian heuristics, see also [26].

3.3. Multi-stage formulation

Just as in the two-stage formulation, uncertain parameters are re-
presented by scenarios in the multi-stage formulation. Here, however,
information on uncertain parameters is not given all at once, but is
obtained at intervals throughout the planning horizon. This allows a
more accurate representation of the decision process, especially for
longer time horizons. Scenarios representing different outcomes are
branched in a scenario tree at the node after which they are no longer
equivalent. Up to this point, the scenarios belong to the same bundle,
and the multi-stage formulation requires that decisions taken in a node
must be equal for all scenario paths in which the node is included. I.e.,
if scenario s belongs to bundle B s t( , ) in time period t, then we have the
non-anticipativity constraints

=u u B s t i I t T, ( , ), ,its it (14)

The multi-stage stochastic unit commitment problem can then be
formulated as

f u u xmin , ,
i I t T s S

s i i t s its its( 1)
(15)

x D t T s Ss. t. , ,
i I

its ts
(16)

All of the operating constraints include commitment variables,
which are now scenario dependent. For all i I t T s S, , ,

X u x X ui its its its its (17)

= + … +u u u t t L, 1, , ,its i t s i s i( 1)
up (18)

= + … +u u u t t L1 , 1, , ,i t s its i s i( 1)
dn (19)

Carpentier et al. [21] provides an early example of a multi-stage
formulation, letting the possibility of disturbances due to random
events be represented in a scenario tree using a node formulation. The
problem is decomposed using an Augmented Lagrangian relaxation on
the demand constraints. Then, a stochastic dynamic subproblem is
solved for each generating unit and iteration. Takriti et al. (1996) [17]
also represent uncertain load and generator availability in a scenario
tree, but decouple the problem by scenario and solve the problem using
a progressive hedging algorithm [27] on the deterministic subproblems.
Another multi-stage formulation is used by [28] for a hydro-thermal
problem under load uncertainty, using a Lagrangian decomposition
algorithm. In addition to uncertainty in demand, Takriti et al. (2000)
[29] takes uncertain spot market and fuel prices into account using
Benders decomposition, passing cuts from a fuel allocation problem to
the unit commitment problem, which is solved using stochastic dy-
namic programming. Also, [20,30] include both two-stage and multi-
stage formulations, both of which are decomposed into single-generator
subproblems. A similar, but notably different approach was proposed in
[31], where a multi-stage stochastic program is decomposed into single-
generator subproblems using a column generation algorithm. Dynamic
programming is used for the subproblems.

3.4. Chance-constrained formulation

For comparison, an alternative way to recognize the stochasticity of
demand in the unit commitment problem is by requiring the demand
constraints to be met with a high probability. Here, uncertain para-
meters are represented by their distributions, rather than scenarios,
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which can be seen as samples of these distributions. Therefore, random
variables representing demand are not limited to discrete values, and
the correlation between demand in consecutive hours is explicitly ac-
counted for in the chance-constrained formulation.

A chance constrained formulation based on [22] is provided for
comparison with the two-stage and multi-stage formulations in Sections
3.2 and 3.3. Starting from the deterministic unit commitment for-
mulation in (1)–(6), we make Dt a random variable, and the demand
constraints in (2) is rewritten as a single probabilistic constraint,

P x t TD , 1
i I

it t
(20)

Here, (20) can be reformulated to obtain the deterministic equivalents
used when solving the problem. First, let At denote the event that de-
mand is met in time period t, i.e. x Di I it t , while At

c is the com-
plement event. First, note that

=P A P A[ ] 1 [ ]
t T

t
t T

t
c

(21)

Then, since we always have

P A P A[ ] [ ]
t T

t
c

t T
t
c

(22)

we also have

P A P A[ ] 1 [ ]
t T

t
t T

t
c

(23)

and if we require P A[ ]t
c

T , we have

P A[ ] 1
t T

t
(24)

Furthermore, assuming Dt to be normally distributed with mean µt and
standard deviation t , the requirement that P A[ ]t

c
T is equivalent to

>P xD[ ]t i I it T . Denoting by z
T
the 100(1 )T th percentile of the

standard normal distribution, we replace Dt and obtain the linear de-
terministic equivalents of (20)

+x µ z t T,
i I

it t T t
(25)

These constraints can be used in the otherwise deterministic unit
commitment formulation to account for uncertainty in demand.

3.5. Extended formulations

Compared to the basic formulations presented in previous sections,
various modeling extensions have been proposed. Typically in-
corporating additional constraints, notable example models include
reserve and ramping requirements, transmission network constraints
and generator fuel allocation.

3.5.1. Reserve requirements
Stochastic unit commitment models can take uncertainty in fore-

casts and availability of generation and transmission into account
through representative scenarios. This approach represents modelling
of the sources of uncertainty explicitly. Deterministic unit commitment
also manages uncertainty in power system operations, but relies on
multistage decision making and operating reserve requirements [32].

Ruiz et al. [32] point out that most earlier stochastic unit commit-
ment studies [17,21,24,29,33–38] leave out the reserve requirement
constraints in (3), considering uncertainty to be explicitly considered in
the stochastic programming formulation. This can be problematic, since
most of the same research, including [26], assess the performance of the
commitment found by stochastic models using sets of scenarios already
included in the optimization. In [32], on the other hand, it is ac-
knowledged that the realization of the uncertain parameters can (and
will most likely be) different from all of the scenarios used in the

decision process. Therefore, performance is assessed in a Monte Carlo
simulation for a number of realizations much larger than the amount of
scenarios considered in the optimization. The authors argue that “a few
scenarios in the unit commitment formulation cannot capture the whole
spectrum of uncertainty” [32], and based on this recognition they
choose to include reserve requirements in their stochastic program.
Their combination of the stochastic and reserve methods outperforms
both the deterministic and regular stochastic formulations in terms of
both cost and reliability. It is not obvious, however, how to determine
the optimal reserve requirement. Later, [39] has followed a similar
approach, using both scenarios and a reserve requirement to obtain a
risk-averse management of uncertainty.

3.5.2. Ramping constraints
Ramping constraints are sometimes included in unit commitment

formulations. In [40], they are formulated as
+R x x R i I t T s S, , {1},i its i t s i( 1) (26)

Here, +Ri
/ denote the maximum allowed change in generator output

between time periods.
Ramp-rate constraints are problematic when decomposing the sto-

chastic unit commitment by time period, as they link consecutive time
periods. Nasri et al. [41] propose a heuristic decomposition by time
period, relaxing the ramping constraints, processing time periods suc-
cessively, and enforcing ramp rate constraints only locally with respect
to the previous time period.

3.5.3. Transmission network constraints
Different formulations have been proposed for transmission con-

strained stochastic unit commitment. Papavasiliou et al. (2013) [40]
include transmission constraints using linearized (DC) power flow
equations. Here, decision variables elts denote the power flow on line l in
time period t and scenario s, and for each node n in the network, LIn is
the set of lines ending at node n, while lines in LOn start at node n.
Then, we have separate demand constrains at each node n N , as well
as, t T s S, :

+ = +e x D e
l LI

lts
i I

its nts
l LO

lts
n n (27)

Power flows elts are calculated based on the susceptance parameter
Bls (which is scenario dependent to model line failures), and the voltage
phase angles nts, which are decision variables.

= =e B l m n L t T s S( ), ( , ) , ,lts ls nts mts (28)

Finally, each transmission line l have capacity limits TCl due to
thermal considerations,

TC e TC l L s S t T, , ,l lts l (29)

When using AC power flow equations, the problem becomes mixed-
integer nonlinear, and is hard to solve, although this has been done
using Benders decomposition in [41].

Stochastic Security-Constrained Unit Commitment is an often used
approach in taking into the possibility of network contingencies. In a
large family of models [38,42–48], the usual approach is to solve the
unit commitment without network constraints for each scenario, before
assessing whether network constraints have been violated, and itera-
tively adding feasibility cuts in the master problem, e.g. using a Benders
decomposition [42].

3.5.4. Fuel constraints
Takriti et al. (2000) [29] take uncertain fuel and spot market into

account in a fuel allocation problem inside the multi-stage stochastic unit
commitment formulation. Here, at each stage in the scenario tree, a
two-stage problem is solved. The first-stage decision in this two-stage
problem is the commitment decisions, while the second stage is a fuel
allocation problem, which uses scenario specific price information. This

M. Håberg Electrical Power and Energy Systems 109 (2019) 38–48

41



is solved efficiently using Benders decomposition, in which the optimal
fuel allocation subproblem for a given set of commitment decisions is
added as a cut in the master problem, and through an iterative proce-
dure, the optimal commitment decisions are found.

4. Decomposition methods for stochastic unit commitment

The computational effort required to solve stochastic mixed integer
programming problems leads to intractability for large-scale problems.
This is one of the key challenges in applying a stochastic programming
formulation to the unit commitment problem [49]. Still, some authors
have solved their stochastic unit commitment problems using mixed
integer linear programming techniques [50–52]. The structure of the
optimization problem, however, allows for decomposition into man-
ageable subproblems, and various techniques have been proposed.

4.1. Scenario decomposition

A widely used family of approaches is Scenario decomposition, in
which the stochastic problem decomposes into separate deterministic
unit commitment problems for each scenario. Methods for scenario
decomposition are well described in [53], and briefly summarized
below.

4.1.1. Dual decomposition
Solving the stochastic unit commitment problem with this technique

was first proposed in [25]. It uses Lagrangian relaxation of the non-
anticipativity constraints to obtain a Lagrangian dual function which is
separable for each scenario. Solving the Lagrangian dual problem (as in
Section 2.2) provides a lower bound to the solution of the primal pro-
blem. The Lagrangian dual problem can be solved using e.g. the sub-
gradient method [54] or variations of the cutting-plane method (in-
cluding the bundle method). Notable applications of the dual
decomposition are also found in [40,49,53,55,56].

4.1.2. Progressive hedging
This method was pioneered by Rockafellar and Wets [27], and was

among the techniques used to decompose the first stochastic unit
commitment problems [17]. The subproblems in progressive hedging
have structural connections with the augmented Lagrangian [53].
Progressive Hedging algorithms have also been applied to the stochastic
unit commitment problems in [57–59].

4.2. Unit decomposition

As an alternative to scenario decomposition, this approach decom-
poses the problem into single-generator stochastic programs, which can
be solved separately, e.g. using dynamic programming. The decom-
position itself is often achieved through Lagrangian relaxation, al-
though this is not the only possibility.

4.2.1. Lagrangian relaxation
Also including augmented Lagrangian relaxation [21], this technique

can be applied to the demand constraint to decompose the problem into
single-generator problems, as is done in [20,28,30], to mention but a
few. A similar method was also used in [29], coupled with a Benders
decomposition for the uncertainty in fuel and electricity prices.

4.2.2. Danzig-Wolfe decomposition
This technique is less common, but it is used by [31] in a column

generation approach. Here, new schedules are created in a Lagrangian
subproblem by solving it using DP on a scenario tree.

4.3. Benders-like decomposition

The basic version of Benders decomposition adds cuts in the master

(first-stage) problem, based on the evaluation of the subproblem
(second-stage) for given values of the first-stage decision variables.
Both multi-cut and single-cut methods appear in literature. Benders-like
decomposition has been applied to the stochastic unit commitment
problem in several models, including [29,41,42,52,60–62]. The L-
shaped method, based on Benders decomposition, is, in contrast to
scenario and unit decomposition, a time stage-based decomposition
technique, and has a less uniform distribution of the difficulty of the
subproblems compared to scenario decomposition, which reduces the
benefit of solving subproblems in parallel [57,63].

5. Advances in decomposition-based methods for stochastic unit
commitment

Effectively applying stochastic programming in unit commitment
decisions requires the ability to solve such problems efficiently. Several
methods aim to improve the computational efficiency through ad-
vanced concepts for decomposing and solving stochastic unit commit-
ment problems, possibly establishing new best practices for the future.
This section summarizes and explains some of the most important
concepts developed in the past few years.

5.1. Parallel distributed algorithms

When performing a Lagrangian relaxation on the non-anticipativity
constraints of the stochastic unit commitment problem, the Lagrangian
dual function is decomposable across scenarios. This separable struc-
ture encourages a parallel implementation of the solution of determi-
nistic subproblems [17]. Computations can then be parallelized at
each iteration of the dual problem, and parallel algorithms have been
used in combination with scenario decomposition methods in
[40,55–57,64,65], exploiting the increase in distributed computing
capacity.

5.1.1. Dual decomposition algorithm for parallel implementation
A dual decomposition algorithm was developed in [40] to be used

for the two-stage stochastic unit commitment problem on a high-per-
formance computing cluster. The formulation is in many ways similar
to (11)–(13), but they use both first stage and second-stage (scenario
specific) commitment and startup variables, w z,it it and u v,its its, re-
spectively. Then they enforce non-anticipativity using

=u w i I t T s S, ,s its s it (30)

=v z i I t T s S, ,s its s it (31)

Also they use a linear objective function, and include ramp-rate con-
straints and power flow on lines in a transmission network in the model.

By dualizing the non-anticipativity constraints (30) and (31) with
associated dual variables µits and its, they obtain the Lagrangian dual
function

= + +

+ +

K u S v C x

µ u w v z

( )

( ( ) ( ))
i I t T s S

s i its i its i its

i I t T s S
s its its it its its it

(32)

Decomposing (32) into one subproblem for each scenario, we can
find the optimal second-stage decisions for scenario s using

+ +

+ +

K u S v C x

µ u v

P2 : min ( )

( )

s
i I t T

s i its i its i its

i I t T
s its its its its

(33)

subject to energy balance, line flow, unit capacity, ramp-rate, startup
logic constraints, as well as non-negativity for xits and vits, and
u {0, 1}its .

Optimal first-stage decisions can be found using a single
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subproblem:

+µ w zP1 : min ( )
i I t T s S

s its it its it
(34)

subject to minimum up and down-time constraints and binary re-
quirement for wit and logic constraints, including bounds, for zit .

Finally, they update the dual variables after each iteration k using

= ++µ µ w u i I t T s S( ), , ,its
k

its
k

k s it
k

its
k1 (35)

= ++ z v i I t T s S( ), , ,its
k

its
k

k s it
k

its
k1 (36)

While it would have been possible to relax only (30), the authors
choose also to relax (31). This means non-anticipativity of the startup
variables is handled in (P2s) s S, which is a smaller problem com-
pared to (P1), which contains constraints on the unit commitment. Also,
this division allows the commitment schedule wk found in (P1) in
iteration k to be used as input for an economic dispatch calculation
(EDs) for each scenario s, thereby generating a feasible solution to the
original problem. Hence, an upper bound is obtained in every iteration.
The second-stage subproblems (P2s) and the economic dispatch calcu-
lations (EDs) can be solved in parallel.

5.1.2. Asynchronous algorithm
Parallel algorithms using traditional iteration methods, such as

subgradient, gradient or proximal-point methods, run subprocesses in
parallel at each iteration, and move to the next iteration when all
subprocess are finished. Aravena and Papavasiliou [55] highlights this
need for synchronization points in previous approaches as an important
drawback, as parts of the computing capacity is idle while waiting for
other subprocess to finish.

To better utilize the parallel computing infrastructure, they propose
an asynchronous algorithm, in which the traditional iteration method is
replaced by an incremental method [66]. An incremental method uses
information from parts of the objective function when calculating the
update direction. They choose an incremental subgradient method and
apply it asynchronously in combination with the dual decomposition
technique [40] summarized above into a two-stage formulation [65] of
the stochastic unit commitment problem. They also handle primal re-
covery solutions in an asynchronous manner, feeding feasible com-
mitment schedules obtained in each incremental iteration to a queue for
primal recovery.

In the incremental subgradient methods, we consider concave, non-
differentiable component functions h (·)j and convex optimization pro-
blems of of the form

h ymax ( ),
y Y j J

j
(37)

with Y being a nonempty, closed and convex set. Only a subset of the
component functions are used for updating the multipliers. For iteration
k y, is updated as

++y j J h ky q q y( ), , ( ),k
Y

k k
j j y j

1
(38)

Here, q j is a subgradient of the component function h (·)j at the th
iteration. Y is the projection onto Y.

However, due to delays, different components will be evaluated
using different sets of multipliers, complicating the calculation of a
lower bound. Denoting by fs the component function given by (P2s) in
(33), we let be the index of the most recently evaluated component
function f (·), and at the k-th iteration, all other component functions
f (·)t have been evaluated using multipliers µ ,t

j t
t
j t( ) ( ) with iteration

<j t k( ) . Concatenating the most recent multipliers used for all com-
ponent functions into multiplier vectors µ ,j j,

… …µ µ µ µ t( , , , , ),j
t
j t k

t
j t

l
( ) ( )

n
n

1
1 (39)

… … t( , , , , ),j
t
j t k

t
j t

l
( ) ( )

n
n

1
1 (40)

and the lower bound LBk can be calculated by evaluating the second
stage component functions using their latest multiplier values, and
adding the evaluation g (·), corresponding to the (P1) subproblem in
(34) using the concatenated multiplier vectors:

= + +LB f µ f µ g µ, , ,k k k

t S t
t t

j t
t
j t j j

,

( ) ( )

(41)

The subgradients of f (·) and g (·) are available after evaluating (41),
and multipliers µ and are updated using

++µ µ w u( )k k
k

k k1 (42)

+µ µ t S t, ,t
k

t
k1 (43)

++ z v( )k k
k

k k1 (44)

+ t S t, ,t
k

t
k1 (45)

This incremental step is used for updating multipliers, in contrast to
updating using the regular subgradient method in (35) and (36).
Compared to an equivalent synchronous algorithm, the authors
achieved convergence three times faster using the asynchronous algo-
rithm.

5.2. Other dual decomposition algorithms

As noted in Section 4.1, stochastic programs for unit commitment
have often been decomposed into scenarios using dual decomposition
or progressive hedging algorithms. Kim and Zavala [53] explain and
elaborate on both of these categories.

The differences between dual decomposition algorithms are related
to the solution of the Lagrangian dual problem, i.e. after we obtain a
separable expression of the Lagrangian dual function. This was shown
in (10) for a decomposition by generator. Similarly, a separate program
in terms of the dual variables for each scenario in the Lagrangian dual
function can be denoted Fs, and then we have the dual problem

= Fmax ( ) ( )
s S

s
0 (46)

The subgradient method, as described before, updates the dual vari-
ables using information on the slack of the dualized constraints, as in
(35). The step sizes k at each iteration must be appropriately selected,
and different rules have been studied. Finite termination cannot be
proved in the subgradient method [54].

The cutting-plane method also solves the Lagrangian dual problem
iteratively. By adding linear inequalities, an outer representation is
formed, given for each iteration k by the Lagrangian master problem

m maxk
s S

s
,s (47)

+ = …F s S j ku ws. t. ( ) ( ) ( ), , 0, 1, ,s s
j

s
j

s
j T j (48)

Here, the difference between us
j and ws

j is the slack in the dualized non-
anticipativity constraints in scenario s. Hence, at this point, each vari-
able s in the Lagrangian master problem is constrained by +k 1 hy-
perplanes. New multipliers +k 1 are found by solving (47) and (48). The
authors [53] point out that this problem exhibits a block-angular
structure, and can thus be solved in parallel using an interior-point
solver [67]. By terminating the algorithm when m 1 ( )k

k , the
cutting-plane method will find an optimal solution to the Lagrangian
dual function in a finite number of steps.

The instability of the cutting-plane method causes solutions of the
master problem to oscillate in the first iterations, when the linear in-
equalities added do not adequately approximate the dual problem. The
solution also suffers from degeneracy. Kim and Zavala [53] present two
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variants of the cutting-plane addressing these issues.
The interior-point cutting-plane method, proposed in [56] uses an

early termination criterion, allowing a duality gap in the solution of
(47) and (48). This is suboptimal, but interior feasible solutions are
used to find stronger cuts and avoid degeneracy. Their algorithm is
proved to terminate after a finite number of iterations with an optimal
solution of the Lagrangian dual problem [56].

The bundle method stabilizes the master problem in (47) by adding a
quadratic term. The master problem is then reformulated as

+ +m max 1
2k

s S
s

,

2

s (49)

+ = …F s S j ku ws. t. ( ) ( ) ( ), , 0, 1, ,s s
j

s
j

s
j T j (50)

Here, two parameters are added. > 0 defines the stabilization effect,
and + is a stability center. The parameter value typically needs to be
adjusted at every iteration [67], and to avoid this, [56] propose using a
trust-region constraint as an alternative way of stabilizing the solution
of the Lagrangian master problem.

5.3. Advanced progressive hedging algorithms for stochastic unit
commitment

Progressive hedging algorithms have been used for scenario de-
composition in the stochastic unit commitment problem since the be-
ginning. In [17], a progressive hedging algorithm proposed by Rock-
afellar and Wets [27] is applied by first performing a Lagrangian
relaxation of the bundle (non-anticipativity) constraints, associating
with it multipliers µits and adding a penalty term µ u c( )its its i

k to the
objective function. Here, for all scenarios s that share the same bundle

k, the target value will be the same and given as the weighted average
of the decisions

= =

=
c

u
i
k s B s t s its

s B s t s

( , )

( , )

k

k (51)

The S deterministic unit commitment problems are solved in an
iterative procedure where the penalties µits are updated until the solu-
tions of the subproblems satisfy the bundle constraints. As [17] re-
marks, there is no guarantee that the progressive hedging algorithm
will converge, and if it does, it may terminate at a local minimum.

As Takriti et al. [17] use a ordinary Lagrangian relaxation of the
non-anticipativity constraints, the added penalty term is linear. Rock-
afellar and Wets [27] note that the augmented Lagrangian combines
features of multipliers and penalties, is not limited to convex problems
and is more powerful, “if one can work with it”. The augmented La-
grangian adds, in addition to the linear dualized constraints, a quad-
ratic proximal term u cs S s s2 is added to the objective func-
tion. This term is not decomposable into separate terms for each
scenario, and to achieve decomposition, the progressive hedging algo-
rithm solves, for each scenario s, separate subproblems of the form

+P c µ F u c, , min
2s s s

2

(52)

This appears to be the common approach when applying progressive
hedging to stochastic unit commitment programs [53,57,63].

Ryan et al. [57] include accelerators, techniques to improve con-
vergence of the progressive hedging algorithm. This includes variable
fixing and slamming, as described in [68], together with techniques for
detecting and breaking cyclic behaviour caused by integer decision
variables.

Furthermore, [57] highlights the importance of the penalty para-
meter in the quadratic proximal term, as poor choices can lead to slow
convergence, or no convergence at all. The authors employ variable-
specific values, using a cost-proportional parametrization based on

locational marginal prices of the economic dispatches of the scenario
subproblems, evaluated after the 0th iteration.

The authors also report on successfully reducing solution times for
the subproblems is to group scenarios into bundles forming small-scale
stochastic programs, and solve them directly using commercial MIP
solvers. However, the merit of this aggregation depends on the number
of scenarios in the bundles, which is an empirical question [57].

6. Survey and classification of new stochastic unit commitment
literature

This paper reports on new literature on scenario-based stochastic
programming for unit commitment and classifies it into multi-stage and
two-stage formulations, and further distinguish between the main de-
composition approaches, namely scenario decomposition, unit decom-
position, Benders-like decomposition and No decomposition approaches.
Table 1 provides a compact summary of this classification.

6.1. Two-stage formulations

As described in Section 5.1, Aravena and Papavasiliou [55] present
a distributed asynchronous algorithm, using an incremental method to
solve the Lagrangian dual problem following a dual decomposition.
Papavasiliou et al. (2015) [69] describe, for a related model, the par-
allel implementation on a high-performance computing cluster. Kim
and Zavala (2016) [53] also decompose the problem by scenarios, but
do so using different dual decomposition methods and progressive
hedging for decomposing a two-stage formulation by scenarios into
subproblems solvable in parallel. They also provide the generic algo-
rithms for the methods, as well as some recent innovations.

Also using progressive hedging, Feng et al. [10] and Cheung et al.
[71] report on novel customizations to the progressive hedging algo-
rithm for stochastic unit commitment, proving able to solve “realistic,
moderate-scale problems with reasonable numbers of scenarios in no
more than 15min of wall clock time on commodity compute plat-
forms”. Unlike the Lagrangian relaxation method, progressive hedging
seeks to find a feasible solution, thus obtaining an upper bound [53].
Gade et al. [59] present a method for obtaining lower bounds in two-
stage and multi-stage formulations of the stochastic unit commitment
using a progressive hedging algorithm. Here, lower bounds can be
computed using dual prices calculated during execution of the pro-
gressive hedging algorithm. A final contribution is Rachunok et al. [72].
They apply a progressive hedging algorithm using a relatively large grid
model, while investigating the impact of the number of scenarios used
on computational complexity, and identify an unexpected transition at
a given threshold. This was found to be caused by wind power scenarios
with zero or very low power trajectories being “very difficult to re-
concile with more typical scenarios”.

Table 1
Classification of recent literature on scenario-based stochastic programming for
the unit commitment problem.

Decomposition Method Two-stage Multi-stage

Scenario Dual decomposition [53,55,69,70]
Progressive hedging [10,53,59,71,72] [59]

Primal-dual decomposition [73]
Column generation [74–76] [74–76]

Unit Spatial decomposition [70]

Benders-like Benders decomposition [41,77–80]

None Solved directly [39,81–87] [83,88–91]
Cutting-plane [92]

Dynamic formulation [93]
Heuristic [94–96]
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Apparently, the only recent application of unit decomposition is
made by Scuzziato et al. [70]. For a system complicated by cascaded
hydropower plants, they evaluate different configurations of the de-
composition, differing in the spatial representation of hydro plants and
reservoirs. Through a formalized benchmarking procedure, they find
one of these configurations computationally outperforming a scenario
decomposition procedure based on Lagrangian relaxation, while per-
forming almost as well in terms of duality gaps.

Benders decomposition is still popular in recent literature on sto-
chastic unit commitment. It is used by Nasri et al. [41] to decompose an
AC network-constrained unit commitment with uncertain wind power
production by both scenario and time period. The original problem is a
MINLP, but though a convexification, Benders decomposition can be
applied to the complicating (first-stage) decisions, giving a MILP master
problem for the first stage, and separate, nonlinear problems for each
scenario, which are decomposed by time period using a Benders de-
composition and heuristic relaxation technique on the intertemporal
constraints. Solution of the subproblems for each scenario and time
period provides cuts to the master problem, which updates the fixed
values of the first-stage decisions in an iterative procedure. Lopez-Sal-
gado et al. [80] also decompose the problem into single time periods
subproblems using Benders decomposition. However, complex hydro-
power topologies in their model make the dispatch problem non-linear.
To optimize the binary commitment decisions, outer approximation is
applied, providing candidate commitment schedules to the dispatch
problem and making use of its results to improve the MILP approx-
imation of the non-linear problem.

Another application of Benders decomposition is incorporating
network constraints in security-constrained unit commitment models.
In two similar models, Vatanpour et al. [78,79] extend the use of fea-
sibility cuts to also ensure first-stage decisions to be feasible in all
scenarios. Yet another subproblem is used to generate optimality cuts
based on the optimal schedules across all scenarios. This is different
from the approach taken by Mehrtash et al. [77]. They also decompose
a stochastic security-constrained unit commitment problem into a
master problem and several subproblems, but use a point estimation
method is used rather than a conventional scenario representation. In a
point estimation method, the probability density functions of random
variables are concentrated into a few points, provided by their first
central moments, and all probable combinations of these points con-
stitute the set of scenarios considered in the optimization. Imani et al.
[97] incorporate vehicle-to-grid (V2G) participation and uncertain
wind production in what they claim to be a security-constrained unit
commitment model. However, it is highly unclear how the small set of
wind power scenarios is used to find optimal commitment decisions, if
it is done at all.

In [73], van Ackooij and Malick provide a holistic introduction to
stochastic unit commitment, including an interesting discussion on the
limitations of existing decomposition approaches. In their words, “the
existing primal (Benders) or dual (Lagrangian) approaches make un-
clear how to recover feasible first stage solutions, or make significant
changes to the set of technical constraints”. They propose a new de-
composition algorithm, a primal-dual approach, using several hot-started
bundle methods together with cutting plane methods and primal re-
covery heuristics. Another example is the hybrid formulation by
Dvorkin et al. [81]. Using both stochastic and interval unit commit-
ment, the first hours of the horizon are scheduled using the full scenario
representation, while interval optimization is applied to the remaining
hours. This reduces the computational burden significantly, and for
their test cases, the formulation also outperform a stochastic pro-
gramming formulation in terms of expected actual operating cost. No
decomposition is applied. Shi and Oren [89,90] incorporate topology
control, which are binary decisions and further increase the computa-
tional challenge of solving large stochastic unit commitment problems.
Facing this, they apply decomposition, but not in the traditional sense.
Rather than decomposing by unit or scenario, they simply partition a

large network into separate zones and solve these separately, regarding
cross-zonal flows as fixed parameters. Acknowledging that this is sub-
optimal compared to treating such flows with decision variables, they
use the term decomposition heuristic to describe the procedure and, in
essence, solve their smaller problems directly on a solver. In a different
approach to improve computational tractability, Du et al. [87] propose
using scenario maps an efficient alternative to a the traditional set of
scenarios typically found using scenario reduction. As for scenarios,
higher solution quality can be traded against computational perfor-
mance by increasing the number of states in the scenario map, and
numerical tests with no decomposition applied shows the scenario-map
method to be faster than a traditional approach using the necessary
number of scenarios to obtain the same solution quality.

A considerable share of recent papers report on solving two-stage
stochastic unit commitment problems without applying decomposition
techniques. Bakirtzis et al. [84] use a two-stage model over a rolling
horizon to manage storage energy levels. The scale of the model is
limited by two important factors. The scheduling horizon is limited,
varying from 12 h to 36 h in each optimization process, using a variable
time resolution of 15m, 30m and hourly periods. Moreover, only 15
scenarios are used to represent uncertainty in wind and consumption.
When applying the procedure to a model of the Greek power system, an
average optimization run takes about 10 s without applying any de-
composition or parallel architecture. Valinejad et al. [85] apply a rather
traditional two-stage configuration to account for uncertainty in wind
power, forecasted demand and random failures. Including a re-
presentation of aggregated demand response participation, the authors
apply the method on a relatively small test network without reporting
on solution methods or computational experience. Rather than ag-
gregating demand response, Gomes et al. [86] use a two-stage model to
optimize their bidding strategy for a generation portfolio consisting of
wind power, PV and thermal units. Interestingly, not only wind and PV
power, but also uncertainty in market and imbalance prices are re-
presented through different scenarios. The model is tested for a short
horizon without a network model, and also provide no details on im-
plementation or computational experience. In an interesting real-life
application, Abbaspourtorbati and Zima [82] describe the two-stage
stochastic unit commitment model used for clearing the reserve market
in Switzerland. However, the computational challenge is limited, as
they use only a small number of scenarios. Asensio and Contreras [39]
also appear to be able to solve their program without decomposition.
Their two-stage model manages uncertainty in demand, wind and
photovoltaic power production in an isolated island system through
both scenarios and a reserve requirement. This is used to obtain a risk-
averse solution to the problem, and they also include a constraint on the
conditional value-at-risk in the model.

Solving stochastic unit commitment problems solely using various
kinds of heuristics has become more commonplace. Although outside
the main focus of this survey, a few examples will be mentioned.
Shahbazitabar and Abdi [94] reduce computation time by cir-
cumventing the traditional MILP procedure of optimizing binary com-
mitment decisions. Instead, they generate candidate commitment
schedules using priority lists, which is a simple classical heuristic. While
the heuristic method is found to reduce costs compared to a determi-
nistic model, the performance is not benchmarked against a formal
stochastic optimization procedure. Jo and Kim [96] also solve their
stochastic program with a priority list, boldly claiming it to be an
“optimal solution procedure”. To their defence, efforts are mainly fo-
cused on uncertainty representation through so-called multi-scenario
trees. A comparable, but more sophisticated approach is made by Wang
et al. [95]. They apply and compare a range of different metaheuristics
to a stochastic unit commitment problem, and conclude that the best
performance is achieved using a binary artificial sheep algorithm. How-
ever, the value of this insight is questionable, as they do not evaluate
these heuristics against traditional methods, which they claim to have
such deficiencies as “poor quality results” [95].
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6.2. Multi-stage formulations

Compared to two-stage models, the list of recent literature on multi-
stage stochastic unit commitment models is sparse. However, several of
the efforts that have been made are well documented and appear to
meet high quality standards. By studying the substructures of the con-
straints, Jiang et al. [92] introduce strong valid inequalities to
strengthen the linear programming relaxation of the multi-stage sto-
chastic unit commitment program. The valid inequalities are in-
corporated as cutting planes into a branch-and-cut framework, and the
authors also claim their proposed cutting planes can be integrated with
other decomposition methods. Attacking the problem from a different
angle, the key innovation by Analui and Scaglione [93] is not in the
solution method, but in their multi-stage formulation. Unit commitment
programs typically require fairly long horizons to ensure minimum up-
and down-time constraints are satisfied. Their formulation avoids this
by representing the on-time of units in state variables, allowing the
nodes in the scenario tree to be solved in a dynamic manner, only using
information from the next time-step, rather than an entire scenario.
This reduces the problem to a set of much smaller problems, allowing
parallelization, and they apply no further decomposition in their case
studies.

Schulze and McKinnon [75] compare two-stage and multi-stage
stochastic unit commitment models to their deterministic counterparts
to evaluate their added value in day-ahead and intra-day operations,
using an innovative scenario decomposition based on Dantzig-Wolfe
decomposition first described in [74]. The decomposition is combined
with a new techniques to for initialization and primal recovery. The
model is also further extended in [76], and applied to a model based on
the British national grid, achieving significantly faster convergence
compared to solving the extensive form directly. Although not com-
pared directly to alternative decomposition methods, the reported
computational performance is very promising.

While most unit commitment studies consider scheduling of slow-
starting units, Wang and Hobbs [88] focus on a short-start unit com-
mitment to simulate real-time markets, solving it directly using the
CONOPT solver, without applying decomposition techniques. However,
the problem instances appear to be relatively small in size.

Uckun and Botterud [83] introduce a dynamic decision process for unit
commitment with uncertain wind power production. This is slightly dif-
ferent from a traditional multi-stage formulation, not relying on scenario
trees but rather scenario buckets, representing similar wind power levels.
This allows using non-anticipativity constraints, giving a dynamic solution,
but at a considerably lower computational cost compared to a multi-stage
formulation. Comparative simulations on the same input data confirm ad-
vantageous computational performance compared to the multi-stage for-
mulation, while it outperforms the two-stage formulation in terms of solu-
tion quality. Another model disobeying established norms of structure is the
three-stage program formulated by Du et al. [91]. The main difference from
a traditional two-stage model is in the third stage or look-ahead stage, ex-
tending the horizon of some of the operational decisions using an economic
dispatch model.

7. Conclusion

This article has explained the fundamental concepts for stochastic
programming methods for the unit commitment problem. The in-
creasing penetration of intermittent power generation in many power
systems increases uncertainty in day-ahead generation decisions. In the
stochastic unit commitment problem, uncertainty is often handled ex-
plicitly by representing uncertain parameters by scenarios. These pro-
blems can be formulated as two-stage or multi-stage programs, which
are often intractable due to large number of integer decision variables.
To be able to solve stochastic unit commitment programs efficiently,
the structure of the problem is usually exploited to decompose the
problem into manageable subproblems.

The rapidly growing list of literature on stochastic unit commitment
can be categorized in different ways. This article proposes a classifi-
cation of the newest stochastic programming literature based on the
formulation and decomposition methods used, dividing literature by
two-stage and multi-stage models and further distinguishing into scenario
decomposition, unit decomposition, Benders-like decomposition and ap-
proaches using No decomposition.

During the last few years, there are several articles proposing al-
gorithmic innovations for decomposing and solving stochastic unit
commitment problems more efficiently. In particular, new techniques
for primal recovery and calculation of lower bounds are available, and
there is significant focus on distributed algorithms utilize parallel
computing resources. There also seems to be a preference of scenario
decomposition and two-stage formulations in the newest literature.
Unit decomposition, which was widespread in pioneering stochastic
unit commitment research, appears not to prevail. At the same time,
there is also a clear tendency of stochastic unit commitment problems
being solved directly, without applying decomposition. Some of these
models are hybrid formulations or limited in size, whereas others can
be of considerable scale.

Interestingly, several recent stochastic unit commitment models
embrace factors such as demand response and various kinds of storage.
Compared to the traditional scheduling of slow-starting generating
units under uncertain load and renewable generation, there is a trend of
applying the techniques in a broader set of contexts, including real-time
market operations and scheduling of energy storage.
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