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A B S T R A C T

In this paper, we present and investigate important factors that influence a vessels fuel consumption during operation and what model fidelity that is required
to adequately capture these factors in fuel consumption estimations. Our study focuses on evaluating effect of model fidelity and the methodology used to assess
the ship behaviour in operational conditions. Operational performance is affecting cost of operation and estimations of operational performance is used in design
development, operational research and as basis for emission analysis, affecting decision making at an operational and technical level. A comprehensive case
study is presented where we compare fuel consumption and engine operational profile for time domain and discrete-event simulations, and a static statistical
model. Of the factors that have been included in the study, variation in propeller loading and consequently propulsion efficiency is the most prominent physical
factor for estimation of required power and fuel consumption. Further, the ability to replicate realistic scenarios using simulators has a significant effect on our
understanding of how operational and environmental factors affect operational performance.

1. Introduction

Shipping, although being an energy efficient mode of transport,
is a significant contributor to global emissions such as green house
gases (GHG), NOx, SOx and PM (Buhaug et al., 2009; Corbett et al.,
2007a; Eyring et al., 2005; Klimont et al., 2017), which are affecting
global climate, human health and the environment (Eyring et al., 2010;
Corbett et al., 2007b; Kampa and Castanas, 2008). The International
Maritime Organization (IMO) is addressing the negative impact of
shipping on global climate, human health and the environment by
issuing regulations, requiring emission reduction such as the NOx emis-
sion limits of MARPOL Annex IV and the Energy Efficiency Design
Index (EEDI). Several new technologies are being evaluated for use
in marine power systems aiming at increasing transport energy effi-
ciency (Bouman et al., 2017) and reducing emissions (Fujibayashi et al.,
2013; Hiraoka, 2016; Gregory and Confuorto, 2012; Di Natale and
Carotenuto, 2015). Evaluating a large number of potential technical
solutions require cost effective evaluation methods. In addition these
methods have to capture the nature of ship operation to provide
valuable information on novel system solution performance.

There are currently promising methods being put forward using
data-driven statistical methods for increasing the ability to predict
the operational performance of a ship (Yoo and Kim, 2019). While
data-driven methods are useful for generating operational performance
models of already existing ships, the ability to predict effects of changes
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in a system design is limited as there exists no measurement data
for non existing systems. Improving system solutions depends on an
ability to evaluate the effect of design changes of which there are
currently limited performance information. This is commonly achieved
by using mathematical modelling and numerical simulation to predict
the behaviour and performance. While modelling and simulation is a
powerful method, enabling the use of computers to predict behaviour
and performance of physical artifacts, there are still limitations. Com-
monly, model development requires making simplifications which can
affect the validity of the simulation results. In the evaluation of novel
systems and in design optimization it is common to simplify the effect
of the operational conditions and operational decisions, such as single
load point evaluation (Song and wei Gu, 2015; Larsen et al., 2014) and
simplified operational profiles (Gully et al., 2009). The possibility of
using data from these simplified analyses to predict a systems perfor-
mance in operational conditions is limited as the cases used are remote
from operational conditions. Increasing our understanding of the po-
tential of novel systems requires evaluation in an operational context to
ensure that solutions do perform according to expectations in realistic
operating conditions, and not only in theoretical cases (Lindstad and
Bø, 2018).

Evaluating a system’s operational performance in a seaway is a
challenging undertaking. This is due to the large number of different
domains involved, the need for large amounts of information, and the

https://doi.org/10.1016/j.oceaneng.2019.106268
Received 19 March 2019; Received in revised form 1 July 2019; Accepted 4 August 2019

http://www.elsevier.com/locate/oceaneng
http://www.elsevier.com/locate/oceaneng
mailto:jorgen.b.nielsen@ntnu.no
https://www.ntnu.no/ansatte/jorgen.b.nielsen
https://doi.org/10.1016/j.oceaneng.2019.106268
https://doi.org/10.1016/j.oceaneng.2019.106268
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2019.106268&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Ocean Engineering 188 (2019) 106268

2

J.B. Nielsen et al.

Fig. 1. Major physical and operational fuel consumption factors.

difficulty of capturing the physical phenomena sufficiently accurate
in a mathematical form that can be calculated within a reasonable
time frame. Seaway performance evaluation depends on describing
the operation conditions consisting of waves, current and wind, the
hull and propeller performance in the current sea states and power
production with dynamic loads. In addition, a ship is free to change
course, making the encountered weather a function of operational
choices made at different levels in the organization operating the ship.

Establishing these relationships involves abstraction of relevant phe-
nomena into mathematical models that can be used to predict the
performances through either analysis or simulation. There are trade-offs
between model fidelity, model development cost, required calculation
or simulation effort and prediction validity of the model that have to
be considered when developing models for operational performance
evaluations. Estimating power demand, transmission efficiency and
power production efficiency using models of appropriate fidelity bal-
ances the need to capture the effect of design variations and the ability
to evaluate a high number of design concepts. Several approaches for
modelling operation performance have been used in the literature. Cor-
bett et al. (2009) used still water and a cubic relationship between
speed and fuel consumption with constant specific fuel consumption
to evaluate the effect of speed reduction on emissions of CO2 on a
fleet level. For the same purpose of evaluating effect of speed reduction
on CO2 emissions on a fleet level, Lindstad et al. (2011) expanded
the still water assumption to include added resistance due to waves
when calculating the power demand. In addition propeller efficiency
as function of vessel speed was included to account for transmission
efficiency. However, added resistance is based on an estimated av-
erage significant wave height of 2.5 metres and a fixed specific fuel
consumption. In the evaluation of different power system setups, fuels
and hull designs, Lindstad and Bø (2018) further expanded the power
production efficiency model to include specific fuel consumption as
function of engine power. Significant wave height was also expanded to
a set of expected significant wave heights with fractions of sailing time
spent in the different wave conditions. In the work on an operational

performance prediction model, Lu et al. (2015) used sea trail data
to establish the relationship between the power demand and engine
power and the test bench specific fuel consumption curve to establish
fuel consumption. In the work of Prpić-Oršić and Faltinsen (2012)
estimated the effect of speed loss in a sea way due to added resistance
and the effect of wave on the propeller performance. However, the
fuel consumption was based on a constant power assumption with
a fixed fuel consumption per day. In Tillig et al. (2017) engine fuel
consumption is based on model taking into account the working point
of the engine (power and rpm), with torque limits and rpm limits.
While different modelling assumptions are used, it is difficult based
on the available literature to evaluate the importance of the different
assumption and whether including additional factors are worth the
effort.

In the present paper, we evaluate the effect of model fidelity consid-
ering alternative modelling approaches for capturing factors affecting
ship operational performance. Three fundamental aspects are included
in the evaluation; power demand, power transmission efficiency and
power production efficiency. Two models with different fidelity and
two simulation methods are compared, where a high fidelity time
domain model is used for reference. The novelty of the paper is the
comparison of state of the art models for power demand, transmission
efficiency and power production efficiency used in operational analysis
of effect of system design and operational policies with a state of the art
time domain simulation model of the same system. The differences will
be quantified in a case study where three different operation policies
are simulated for 12 voyages equally spaced over one year.

This paper is organized into six sections. The next section addresses
the identification of factors relevant for estimating operational per-
formance focusing on fuel consumption. Section 3 presents the case
study and the different models that are to be compared. Section 4
presents the results focusing on the effect of different factors and the
effect of model fidelity. Section 5 discusses the results in the context of
trade-offs between prediction validity versus the cost of modelling and
simulation and the availability of the different models for representing
novel designs. Finally, the work is concluded in Section 6.
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2. Estimating fuel consumption in operational conditions

Fuel consumption is considered to be a variable of special interest.
From a societal and economic perspective, it represents a measure of
emission level and costs. From a modelling perspective, it requires
modelling of processes and factors spanning from organizational poli-
cies to engine performance at sea. This section presents our approach
towards modelling ships in operational conditions and estimating fuel
consumption. First, it considers the physical and operational factors
which is present in a maritime transportation operation. The occur-
rence and interaction between these factors are discussed and then
categorized according to how they affect the fuel consumption. Three
categories are used; power demand, power transmission efficiency and
power generation efficiency, which are needed to calculate the fuel
consumption. Further the implementation of the different factors into
simulation models are illustrated. Finally, the system is presented in a
generic form consisting of the transformation of fuel to transport work
and categorization of fuel consumption factors.

2.1. Fuel consumption factors and domains

In the present work, the term ‘‘operational conditions’’ refers to
the physical environment the ship operates in, i.e. the wave, current
and wind conditions encountered by the ship. Fig. 1 shows the major
factors for fuel consumption in operational conditions. Physical fac-
tors determine the fuel needed to overcome resistance within a given
environmental condition at a given speed. They arise from hydrody-
namic and mechanical engineering domains and are associated with
the technical description of the ship. Operational factors are linked to
the overall objective for the ship to be present at its location carrying
a given cargo load. These factors arise from human decision making
and operational policies impacting the choices made by the ship owner
and ship master, processes most commonly addressed in operations
research. Maritime transportation is commonly divided into liner, in-
dustrial and tramp shipping, giving rise to varying requirements in term
of speed management and schedule. Meeting these requirements entails
choices affect the vessel’s behaviour through operational and tactical
decisions. The different factors are not independent or static and are
determined by design, the interaction within and between operational
and physical factors, and the changing condition of the system with
time and use.

2.2. Factor interaction

Fig. 2 shows our model for factor interaction. On top, we have the
operation, i.e. the context for applying the vessel to do a specific mis-
sion within a given set of constraints. In the area of operation, weather
conditions are present which affects the power demand through re-
sistance. The knowledge of this effect creates a feedback-loop in the
form of operational reevaluation, from which the operation and sea
passage behaviour may be altered. The interaction between operational
considerations and occurring environmental conditions results in a
set of sea states and vessel speeds for the operation. Combining sea
state and operation allow us to express vessel resistance and required
propulsion power, giving us the basis for the operation power demand.
Further, propeller thrust is generated at a corresponding efficiency
level depending on the propeller loading and interaction from waves
and current. Hence, our modelling approach provides a link between
operation and fuel consumption, spanning from high-level operational
tasks and decisions to low-level physical effects and demand for the
power plant.

2.3. Factor categorization

Fig. 3 shows the system boundaries with fuel and mission as input
and transport work as output. Estimating the conversion of fuel to
transport work through a mission depends on determining the power
demand, the power transmission efficiency and the power generation
efficiency. Environment is included as an input affecting the factors in
the three categories and emissions are an unwanted bi-product of the
process. For propulsion, power demand is associated with the ability
to overcome resistance. Power production is the process of converting
potential energy in the fuel to mechanical energy using a power plant
operating in a given condition. Between power demand and power
production is the transfer efficiency process, transporting energy from
the power plant to the propeller, generating thrust and performing
transportation work. The generic layout of Fig. 3 is applicable for
modelling fuel and energy requirements for all types of ship types and
propulsion systems. It also serves as a means in the present paper for
communicating and discussing the implications and effects of modelling
assumptions on fuel consumption estimates.

3. Case study

A comprehensive case study has been conducted to test the impact
of the modelling choices and simulation method in operational perfor-
mance prediction. Performance evaluation is selected to be carried out
by replicating a crossing of the North Pacific ocean from Tokyo to San
Francisco. This area was chosen to ensure a sufficient simulation length
which facilitate the occurrence of multiple weather systems along the
route. KVLCC2 (Kim et al., 2001) was chosen as the case vessel as it is
an academic hull where data is readily available. The engine modelled
is a Wartsila 8RT-FLEX68D rated to 25,040 kW at 95 RPM. The vessel
is equipped with a fixed pitch propeller where the design has been
adapted to the engine and the hull.

3.1. Model descriptions

As discussed in Section 2 there are several factors that affects the
power demand, the power production and the power transmission. In
this section, models used in the case study for capturing these factors
are presented.

3.1.1. Model 1
Model 1 is based on a transient diesel engine model typically used to

evaluate the effect of transient loads on engine performance (Rakopou-
los and Giakoumis, 2006). Power demand is calculated by a vessel
model and a propeller model. The propeller inflow is estimated by using
ship stern motions ROAs. The RAOs are calculated using linear strip
theory, utilizing potential theory and pressure integration using ShipX
Veres developed by Sintef Ocean (previously MARINTEK). The pro-
peller is represented by a one-quadrant model with thrust and torque
coefficient curves estimated by using the open source Openprop soft-
ware which is based on lattice lifting line theory. Javafoil (Hepperle,
2018) has been used to calculate frictional drag. Effect of ship motion
and inflow on propeller torque and thrust has been included according
to Taskar et al. (2016). The engine model is a dynamic model developed
by Yum et al. (2017) capable of capturing interactions with the varying
propeller load and predicting performance in dynamic loads. Introduc-
ing dynamic models significantly increases the information demand
and the computational efforts required to estimate the performance.
The vessel is modelled using a one-dimensional vessel model where
only surge motion is considered. Added resistance has been calculated
using strip theory, utilizing potential theory and pressure integration
also by using ShipX Veres. Different significant wave heights (Hs),
peak wave periods (Tp) and encounter heading combinations (𝛼) has
been used for calculating added resistance in irregular waves with the
Pierson Moskowitz wave spectrum. Added resistance coefficients has



Ocean Engineering 188 (2019) 106268

4

J.B. Nielsen et al.

Fig. 2. Interaction between important aspects from a modelling perspective when recreating a real seaway operation.

Fig. 3. Generic system model for ship fuel consumption analysis.

Fig. 4. Model 1 implementation.
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Fig. 5. Model 2 implementation.

Fig. 6. Relationship between required average speed and engine power demand
estimated based on the static statistical approach.

been calculated according to the method by Loukakis and Sclavounos
(1978) using ShipX Veres. Fig. 4 shows the details of the model and the
variables exchanged between the different sub models.

Model 1 is dependent on a sub-model for replicating a sea pas-
sage generating the sea state encountered based on position, time
and prevailing weather. The simplest approach would be to select a
great circle route, however such an approach to sea passage modelling
would not take into account the freedom a ship and its captain have
to select routes that avoid harsh weather etc. Sandvik et al. (2018)
addresses the importance of active speed and course decision making
for understanding the performance of ships during sea passage, and
proposes a model for controlling sea passage behaviour in simulation
models. The model adjusts vessel heading and speed as a function of
two variables; target speed 𝑉0 and schedule delay cost rate 𝜅. The
objective function minimizes voyage fuel consumption and delay costs
taking into consideration weather within a 72 h horizon and estimated
ship performance.

Wave conditions are based on hindcast data using the ECMWF ERA5
database (ECMWF ERA5, 2018). An assessment of three wave hindcasts
including the ERA5 predecessor ERA-Interim has been carried out

by Campos and Soares (2016) for the North Atlantic, which concluded
that the data shows minor differences in non-extreme situations while
there are significant differences in extreme situations. For the objective
of this paper discrepancies in the extreme situations will have limited
impact on the predictions as the time spent in extreme situations is very
limited compared to the time spent in non-extreme situations. Campos
and Soares also states that ERA-Interim is the preferred choice for
non-extreme analysis. The impact of wind and current has not been
considered in this case study.

3.1.2. Model 2
Model 2 is based on static performance estimation using still water

engine performance curves and power transmission efficiency esti-
mated as a function of vessel speed only, with a model suggested
by Lindstad and Bø (2018):

𝜂𝐷 = 𝜂𝑑 (𝑗 + 𝑘
√

(𝑣∕𝑣𝑑 )) (1)

where 𝜂𝐷 is the propulsion efficiency, 𝜂𝑑 is the propulsion efficiency at
design speed and 𝑣𝑑 is the design speed. 𝑗 and 𝑘 are constants used to
fit the efficiency, where 𝑗 + 𝑘 = 1. The fuel consumption is calculated
based on the still water specific fuel consumption curve from Model
1. Propulsion efficiency 𝜂𝐷 has been fitted to the propulsion efficiency
of the Model 1 in still water conditions. Power demand is calculated
with the same model as in Model 1 with both still water resistance and
added resistance due to waves. Fig. 5 shows the details of the model
and the variables exchanged between the different sub models.

Model 2 does not include any method for generating individual voy-
ages. Therefore two approaches for estimating encountered sea states
are used. In the first approach, voyage data from Model 1 is used to
calculate still water and wave added resistance based on observed sig-
nificant wave heights, wave periods, vessel speed and wave encounter
angle. In the second approach, added resistance has been included by
estimating expected sea states and power demands using a static sta-
tistical approach based on wave distribution parameters from DNVGL
(2017) presented in table C-5. Fig. 6 presents the relationship between
average speed and estimated average engine power demand, taking
into account the effect of expected speed loss. This approach reduces
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Fig. 7. Models and model implementations compared and evaluated in the case study. Additional information required by the Model 2 implementations are provided by Model 1
simulation results.

Fig. 8. Overview Model 1 time domain vessel model and discrete event voyage and weather controller.

the problem of estimating fuel consumption to a problem where the
only needed inputs are vessel speed and voyage distance. To enable
comparison of model fidelities and not route selection, the average
vessel speeds and voyage distances from Model 1 is used as input to
Model 2.

3.2. Sea passage scenarios

The sea passage sub-model has been used to include three sea
passage scenarios with 𝑉0 and 𝜅 values as presented in Table 1. The
scenarios have been designed to represent different operation policies.

The Low Cost Low Velocity (LCLV) scenario parameters are determined
to allow speed and route variation, which is expected to result in a low
engine power demand. High Cost Low Velocity (HCLV) is a scenario
where the arrival time is stricter than for LCLV, however the low
target speed is likely to limit the need for high power demands for the
majority of the time. The High Cost High Velocity (HCHV) is set to
test the fuel consumption and power estimates at a likely high power
demand scenario. The three cases span the majority of the relevant
engine loading range, allowing us to investigate the influence of model
fidelity on estimates at different engine load intervals. As seasons affect
prevailing weather conditions, and consequently the operational sea
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Fig. 9. Overview Model 1 discrete event vessel model and discrete event voyage and weather controller, with information on model reduction from the time domain model.

Table 1
Sea passage scenarios.

LCLV HCLV HCHV

𝑉0 [kn] 14 14 15
𝜅 [tons/h] 4 7 10

state conditions, it was selected to include all seasons in the case study.
Twelve voyage start dates were selected with historic weather data
from 2016. The start dates are the 2. for each month of the year. Table 1
lists the input parameters describing the operational scenarios used in
the case study.

3.3. Simulation

Two simulation methods are compared in the case study, time
domain and discrete event. Model 1 is simulated in both time domain
and in discrete event, while Model 2 is only simulated in discrete
event. Using Model 1 in a discrete event simulation requires reducing
the dynamic model into a table look up model. While such a model
reduction can reduce the result validity, it contributes to a significant
simulation speed increase. Fig. 7 shows the different implementation
of the different models both with regard to simulation method and
information flow from model 1 to model 2.

3.3.1. Time domain simulation
The complete voyage is simulated using Model 1 in the time domain

with discrete updates of sea states and ship control inputs based on the
sea passage controller presented in Section 3.1.1. The combination of
the discrete event sea passage model and Model 1 is presented in Fig. 8.
The voyage controller determines the required speed which is used as a
set-point to a vessel speed controller setting the engine RPM. At discrete
times, the weather is updated by the weather look-up module. Weather

Fig. 10. Sampling pattern for table look-up Tp Hs combinations based on the DNVGL
wave scatter data (DNVGL, 2017) represented by a contour plot.

is given as an array of Hs, Tp, and encounter angle to calculate hull
resistance and propeller performance.

3.3.2. Discrete event simulation
A discrete-event formulation is used to replicate the voyage utiliz-

ing the sea passage controller and a table look-up representation of
the dynamic model. The process of generating the table look-up and
running the simulation is presented in Fig. 9. The table look-up model
is generated before the voyage simulation by running the time domain
simulation model for a selection of sea states, encounter headings and
vessel speeds. This generates a matrix of engine performance as a
function of Hs, Tp, encounter angle and requested vessel speed. Time
domain simulations for the table generation are run until steady state
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Fig. 11. Comparison of still water power demand and power demand observed in Model 1 TD simulation results for the three sea passage scenarios. A 90% confidence interval
and average is added to providing insight into distribution of observations.

operation is achieved. Linear interpolation is used to estimate power
system performance of the encountered sea states during the voyage.
During the voyage simulation, calls to the table look-up module are
the same as for the time domain model.

Headings and engine speeds ranged from 65 rpm to the maximum
rpm of 95 and headings from 0 to 180 degrees with 45 degree in-
crements. Wave conditions are presented in Fig. 10, where Hs and
Tp combinations are based wave scatter data from DNVGL (2017). In
addition to covering the most likely Hs and Tp combinations, some
extreme values are also included to remove the need for extrapolation

in extreme weather situations. Total number of simulation runs for
generation of table look-up matrix became 6435.

4. Results

In this section, results of the case study are presented. First, a base
line for comparison using Model 1 time domain simulation results is
presented for power demand, power transmission, power production
and fuel consumption. Then, a comparison of how the two base models
and three of the model implementations, Model 1 TD and DE and Model
2 EA, will be compared with regards to effect of model fidelity. Lastly,
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Fig. 12. Comparison of still water propulsion efficiency and propulsion efficiency observed in Model 1 TD simulation results for the three sea passage scenarios. A 90% confidence
interval and average is added to providing insight into distribution of observations.

a comparison of all the models and model implementations is presented
where predictions on total fuel consumption and fuel consumption per
sailed distance are evaluated.

4.1. Factors affecting fuel consumption estimation

4.1.1. Power demand
Power demand has been evaluated as function of vessel speed. The

comparison is presented in Fig. 11, where the LCLV sea passage sce-
nario is found in Fig. 11(a), HCLV in Fig. 11(b) and HCHV in Fig. 11(c).
The scatter data is augmented with an average and a 90% confidence
interval for power demand within seven vessel speeds intervals based
on empirical distributions. Estimated power demand for a selection of
sea states assuming head waves is included for reference.

The same load dynamics and speed transients can be observed in the
power demand data as scatter points outside the requested speeds. In
addition to the grouping on the voyage controller requested speeds and
random scattering due to transients there are observable lines of scatter
points between the speed groupings at high power demand. These lines
are observable in both the HCLV and HCHV sea state scenarios. These
scatter points are caused by involuntary speed loss, where the engine

and propeller are not able to deliver enough thrust to overcome the
resistance for a required speed. As with the propulsion efficiency, the
lowest errors are found at and above the vessel speed with the highest
number of observations.

4.1.2. Power transmission
The power transmission efficiency has been evaluated as function

of vessel speed. Observed efficiencies in the simulation results for
the different sea passage scenarios are compared to efficiency curves
for different wave conditions assuming head waves. The comparison
is plotted in Fig. 12, where data for the LCLV scenario is given in
Fig. 12(a), the HCLV scenario in Fig. 12(b) and the HCHV scenario
in Fig. 12(c). The scatter data from the time domain simulation of
Model 1 is augmented with an average and a 90% confidence interval
for propulsion efficiency with seven vessel speeds intervals based on
empirical distributions. In addition the distributions of observed ves-
sel speeds is included in a histogram for each sea passage scenario.
These vessel speed observations and distributions are applicable to
all data presented with vessel speed at the 𝑥-axis in Section 4.1. In
the scatter plot, observations are grouped around speeds set by the
voyage controller which have a 1 knot resolution. There are also some
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Fig. 13. Combining the propulsion efficiency and the power demand to produce the required engine power. Data based on observations from Model 1 TD simulation results for
the three sea passage scenarios. A 90% confidence interval and average is added to providing insight into distribution of observations.

observations in between the requested speeds and below and above
the expected band of propulsion efficiency. This is due to the dynamic
load and transients between requested speeds and the way propulsion
efficiency is calculated. Propulsion efficiency is calculated based on
the engine power divided by the power demand. In situations where
the engine power drops rapidly, the inertia of the ship causes a much
slower vessel speed reduction. This results in an increased propulsion
efficiency as the power demand is virtually unchanged in the time it
takes for the engine power to drop significantly. When comparing the
error between a calm water propeller performance as function of speed,
and the observed efficiencies with the distribution of observations in
relation to vessel speed, we find that the errors are at its smallest at
and above the vessel speeds with the highest number of observations.

4.1.3. Power production
Combining the power demand and propulsion efficiency gives the

required engine power. The engine power scatter data is presented as
function of vessel speed in Fig. 13, with sea passage scenario LCLV in
Fig. 13(a), HCLV in Fig. 13(b) and HCHV in Fig. 13(c). The scatter
data is augmented with an average and a 90% confidence interval for

engine power within seven vessel speeds intervals based on empirical
distributions. The estimated engine powers for a selection of sea states
assuming head waves and propulsion efficiency a function of propeller
speed and vessel velocity are included for reference. As with the
propulsion efficiency and power demand, the lowest errors are found
at and above the vessel speed with the highest number of observations.

4.1.4. Fuel consumption
As the main performance indicator used in this case study is fuel

consumption per sailed distance, a fuel consumption plot comparable
to those of the factors influencing fuel consumption is presented in
Fig. 14. Sea passage scenario LCLV is presented in Fig. 14(a), HCLV in
Fig. 14(b) and HCHV in Fig. 14(c). The scatter data is augmented with
an average and a 90% confidence interval for fuel consumption within
7 vessel speeds intervals based on empirical distributions. Estimated
fuel consumption for a selection of sea states assuming head waves
based on a test-bench propeller curve engine efficiency is also included
to enable evaluation of the importance of encountered sea states on the
fuel consumption.

The involuntary speed loss scatter data line is also observed in the
fuel consumption plots. Here, the line shows an increase with reduced
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Fig. 14. Combining engine power demand, vessel speed and specific fuel consumption to produce fuel consumption per sailed distance. Data based on observations from Model
1 TD simulation results for the three sea passage scenarios. A 90% confidence interval and average is added to providing insight into distribution of observations.

speeds which is expected as the engine power is constant giving the
same fuel consumption per time unit while the distance covered is
reduced. Comparing still water fuel consumption with observed fuel
consumption in the simulation results highlight a significant discrep-
ancy. As with the propulsion efficiency, power demand and engine
power, the lowest errors are found at and above the vessel speeds with
the highest number of observations.

4.1.5. Specific fuel consumption
Specific fuel consumption [g/kWh] is a common way of evaluating

power production efficiency. The effect of operational conditions of
specific fuel consumption and engine power distribution is compared
for the three sea passage scenarios. The comparison is plotted in
Fig. 15, where data for the LCLV scenario is given in Fig. 15(a), the
HCLV scenario in Fig. 15(b) and the HCHV scenario in Fig. 15(c). The
scatter data from the time domain simulation of Model 1 is augmented
with an average and a 90% confidence interval for specific fuel con-
sumption values within 16 engine power intervals based on empirical
distributions. Engine power distributions of observed engine power are
included in a histogram for each sea passage scenario.

4.2. Comparing model fidelities

In this section a comparison of the average and the 90% confidence
interval for Model 1 TD, Model 1 DE and Model 2 EA is carried out.
Observations for all sea passage scenarios are combined to generate
the underlying data sets. Fig. 16 compares the observed specific fuel
consumption. As Model 2 is based on the engine test-bench propeller
curve there is no confidence interval. In addition to the comparison
of specific fuel consumption distributions for the different models, a
histogram representing the observed engine powers for all sea passage
scenarios is also included. Fig. 17 compares propulsion efficiency 17(a),
power demand 17(b), engine power 17(c) and fuel consumption per
sailed distance 17(d). Fig. 17(a) also includes the vessel speed obser-
vation distributions for all scenarios combined. There are only vessel
distributions available for Model 1 TD and Model 2 DE. Model 2 EA
vessel speeds are based on the vessel speeds of Model 1 DE.

The time series of different performance indicators for the voyage
simulations with departure in March are included in Fig. 18 as an
example of how the different models deviate at low load and high load
during a voyage. An accompanying data set presenting the voyage and
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Fig. 15. Comparison of engine SFOC observed in Model 1 TD simulation results for the three sea passage scenarios. A 90% confidence interval and average is added to providing
insight into distribution of observations. In addition distribution of observations regarding engine power is plotted as a histogram.

sea states encountered is presented in Fig. 19, where Model 2 is based
on the voyage of Model 1 DE.

4.2.1. Comparing time domain and discrete event voyage simulation
Time series for Model 1 TD and Model 1 DE for all three March sea

passage scenarios are presented in Fig. 19, where data for the voyage
controller output and resulting route with encountered operational
conditions are presented. The voyage control data are vessel speed
and course settings. Data on encountered operational conditions are

included in the form Hs and positions in the form of latitudes and
longitudes. In addition there are two plots comparing Model 1 TD and
DE by plotting differences in speed and course between the two models.

The spikes observed in the speed difference plot are due to the speed
transients occurring in Model 1 TD. Changing vessel speed in the TD
model by one knot takes about 15 min, while it is instant in the DE
model. There are no dynamics in the course changes so spikes observed
in the course difference chart are due to differences in temporal reso-
lutions and the exact time of course change. It can be observed that



Ocean Engineering 188 (2019) 106268

13

J.B. Nielsen et al.

Table 2
Voyage particulars, sailed distance and average speed.

Sailed distance [nm] Average vessel speed [kn]

LCLV HCLV HCHV LCLV HCLV HCHV

TD DE TD DE TD DE TD DE TD DE TD DE

jan 4287 4290 4282 4356 4297 4314 13.0 13.0 13.9 14.0 14.3 14.4
feb 4325 4374 4336 4404 4329 4404 13.0 13.0 14.1 14.1 14.7 14.7
mar 4342 4374 4317 4362 4296 4348 13.5 13.5 14.0 14.0 14.8 14.8
apr 4394 4458 4323 4408 4313 4365 12.9 12.8 14.1 14.1 14.5 14.5
mai 4282 4368 4284 4284 4283 4332 13.7 13.5 14.0 14.0 15.0 15.0
jun 4282 4362 4280 4284 4282 4314 13.7 13.7 14.0 14.0 15.0 15.0
jul 4281 4314 4283 4290 4282 4320 13.8 13.8 14.0 14.0 15.0 15.0
aug 4296 4338 4290 4374 4286 4320 13.8 13.6 14.0 14.0 15.0 15.0
sep 4281 4362 4280 4284 4282 4320 14.0 13.7 14.0 14.0 15.0 15.0
okt 4405 4410 4395 4403 4434 4409 13.4 13.4 14.4 14.4 14.6 14.4
nov 4423 4512 4525 4569 4338 4427 12.7 12.7 13.6 13.6 14.8 14.8
des 4291 4356 4284 4368 4288 4326 13.6 13.4 14.0 14.0 15.0 15.0

avg 4324 4377 4323 4366 4309 4350 13.4 13.3 14.0 14.0 14.8 14.8
diff – 52 – 42 – 41 – −0.1 – 0.0 – 0.0
diff % – 1.21% – 0.98% – 0.95% – −0.49% – 0.05% – −0.10%

Fig. 16. Comparison of specific fuel consumption curves between the different model
implementations for operational conditions.

the differences in speed policy and route occur towards the end of the
voyage and that the two models handle speed loss differently in some
instances. Data for all voyages and all sea passage scenarios in the form
of sailed distances and average speed are presented in Table 2.

4.2.2. Operational performance prediction
The operational performance in this case study is based on fuel

consumption, either total fuel consumed during a voyage or the fuel
consumption per sailed distance. Total fuel consumption for the voy-
ages are presented in Table 3. Model 2 SS is also included, although
the method is not intended for use on a single voyage. This is due to
the estimated power demand being based on static statistical approach,
meaning that it is only appropriate to compare the sum over a year as it
is not relevant for single voyages. Average fuel consumption per sailed
distance is presented in Table 4, where the total fuel consumption for
a voyage is divided by the distance sailed.

5. Discussion

Up to this point we have presented model details, case specifics and
simulation results. In this section, we discuss the meaning of the results
and potential implications of the findings. As this case study has been
carried out for a large VLCC-tanker, all observations made may not be
applicable to other types of vessel. Other results may also be expected
for other types of vessels, such as container ships operating at higher
speeds with cargo that are more susceptible to damage and slenderer
hulls that behaves differently in waves. However, the considerations
on how operational performance prediction both depends on models
used and how the evaluation is carried out, are relevant for all ship
categories.

5.1. The influence of the different factors affecting fuel consumption esti-
mates

From the time domain simulation results it is evident that operation
in waves has an impact on estimating the fuel consumption. However,
the impact varies for the different factors. The effect of operation in
waves and transients have some impact on engine specific fuel oil
consumption, however the difference is very small compared to the still
water specific fuel oil consumption. Power transmission does however
have a significant impact on fuel consumption in waves, which can be
seen in Table 3 comparing Model 1 DE and Model 2 EA. In waves
the power transmission efficiency changes significantly from that of
still water operation, which affect both the required engine power and
at which specific fuel consumption the power is produced. Although
all models use the same estimate for still water resistance and added
resistance due to waves, it is evident that the method of including
waves into the estimation has a significant effect of fuel consumption
estimation when comparing the total fuel consumption of Model 2 EA
and Model 2 SS in Table 3.

5.2. Model comparison

In comparing the models, Model 1 TD functions as the reference.
The main difference between Model 1 and Model 2 is that Model 2
requires input on encountered operational conditions and voyage par-
ticulars. In this case study these data have been provided by Model 1 DE
to ensure that the model comparisons are based on the same voyages.
However, additional differences between the models are expected if
other methods for estimating voyages are used for creating the required
input to Model 2 (Sandvik et al., 2018). In this section, mainly Model
1 TD, Model 1 DE and Model 2 EA are compared, as Model 2 SS only
produces data relevant when comparing fuel consumption over a year.
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Fig. 17. Combining engine power demand, vessel speed and specific fuel consumption to produce fuel consumption per sailed distance. Data based on observations from Model
1 TD simulation results for the three sea passage scenarios. A 90% confidence interval and average is added to providing insight into distribution of observations.

Important reasons for the observed differences between Model 1 TD
and DE, are the errors introduced in both the curve fitting needed to
create the table lookup model and the linear interpolation performed
to estimate performance. Errors in curve fitting are especially evident
in the estimation of the specific fuel consumption in Fig. 16. These
errors are limited in the estimation of power demand, see Fig. 11, while
they are observable in both estimation of propulsion efficiency, see
Fig. 12, engine power, see Fig. 13, and fuel consumption per sailed
distance, see Fig. 14. However, the differences are not significant in the
operation points which have the bulk of observations, see the histogram
in Fig. 12. The result is that the overall differences between Model 1
TD and DE are small when comparing total fuel consumption or fuel
consumption per sailed distance, see Tables 3 and 4. Another source of

difference between Model 1 TD and DE is the effect of accumulating
difference in the sailed route due to speed change transients and
difference in estimating speed loss. In this case study, transients when
changing speed take about 1000 s, which results in a difference in
position. In addition, the DE model uses simplified estimates for speed
loss while speed loss of the TD model is part of the simulation. If the
difference gets large, or the differences in cost estimates for different
route alternatives are small, this can result Model 1 TD and DE sailing
different routes. This effect gives a bias when using the TD model as
the performance estimate of the voyage controller is not equal to what
the ship does. The effect of this bias would become more pronounced
for longer voyages.
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Fig. 18. Model 1 TD, Model 1 DE and Model 2 time series for the voyage simulations with departure in March with performance data for LCLV, HCLV and HCHV sea passage
scenarios.

Table 3
Comparison of model estimated operational performance given as total fuel consumption.

Total fuel consumption [1000 kg]

LCLV HCLV HCHV

TD DE EA SS TD DE EA SS TD DE EA SS

jan 812.7 800.4 758.3 720.6 933.4 939.7 885.6 816.9 1016.0 1003.6 945.0 858.0
feb 743.2 743.0 724.3 736.2 898.0 896.2 869.5 842.9 978.3 979.5 946.8 910.8
mar 849.4 837.9 807.3 777.8 935.5 926.2 886.9 819.8 1000.4 1003.5 963.7 910.6
apr 802.4 790.3 759.2 732.7 995.5 988.7 941.9 845.2 1058.7 1055.4 992.1 888.4
mai 760.4 754.3 735.0 775.1 792.8 788.1 768.6 807.0 918.6 931.6 902.2 932.0
jun 741.7 752.1 739.4 795.1 774.3 768.7 755.3 807.0 898.7 899.7 880.0 921.8
jul 747.1 748.3 738.2 796.5 761.5 758.5 748.4 810.3 865.8 877.6 861.1 925.2
aug 753.0 739.5 728.5 783.9 774.3 783.4 770.7 826.2 893.3 896.0 877.1 925.2
sep 725.1 716.5 710.7 795.1 726.8 728.1 722.6 807.0 853.0 866.4 852.6 925.2
okt 856.9 837.7 802.6 772.3 943.2 961.6 918.6 877.2 1018.7 1083.1 999.0 880.7
nov 922.9 917.4 858.2 736.2 1027.7 1024.6 957.2 821.5 990.7 1002.0 963.7 924.1
des 763.6 759.0 739.2 769.8 823.2 830.0 808.6 822.8 962.2 964.8 934.2 928.6

sum 9478 9396 9101 9191 10386 10394 10034 9904 11454 11563 11118 10930
diff – −82 −377 −205 – 8 −352 −490 – 109 −337 −633
diff % −0.87% −3.98% −2.18% 0.07% −3.39% −4.71% 0.95% −2.94% −5.47%

Table 4
Comparison of model estimated operational performance given as specific fuel consumption per sailed distance.

Specific fuel consumption pr nautical mile [kg/nm]

LCLV HCLV HCHV

TD DE EA SS TD DE EA SS TD DE EA SS

jan 189.6 186.6 176.8 168.0 218.0 215.7 203.3 187.5 236.4 232.7 219.1 198.9
feb 171.8 169.9 165.6 168.3 207.1 203.5 197.4 191.4 226.0 222.4 215.0 206.8
mar 195.6 191.6 184.6 177.8 216.7 212.3 203.3 187.9 232.9 230.8 221.7 209.4
apr 182.6 177.3 170.3 164.4 230.3 224.3 213.7 191.7 245.5 241.8 227.3 203.5
mai 177.6 172.7 168.3 177.5 185.1 184.0 179.4 188.4 214.5 215.0 208.3 215.1
jun 173.2 172.4 169.5 182.3 180.9 179.4 176.3 188.4 209.9 208.6 204.0 213.7
jul 174.5 173.5 171.1 184.6 177.8 176.8 174.5 188.9 202.2 203.2 199.3 214.2
aug 175.3 170.5 167.9 180.7 180.5 179.1 176.2 188.9 208.4 207.4 203.0 214.2
sep 169.4 164.3 162.9 182.3 169.8 170.0 168.7 188.4 199.2 200.6 197.4 214.2
okt 194.6 190.0 182.0 175.1 214.6 218.4 208.6 199.2 229.8 245.6 226.6 199.7
nov 208.7 203.3 190.2 163.2 227.1 224.3 209.5 179.8 228.4 226.3 217.7 208.7
des 177.9 174.3 169.7 176.7 192.2 190.0 185.1 188.4 224.4 223.0 216.0 214.6

avg 182.7 178.9 173.3 175.0 200.2 198.4 191.5 187.7 221.5 221.5 213.0 209.4
diff % – −2.09% −5.41% −4.37% – −0.91% −4.52% −6.64% – 0.00% −4.01% −5.79%

When comparing Model 1 and 2, it is most relevant to compare

Model 1 DE and Model 2 EA as the EA model uses the same route as

the DE model. The use of still water specific fuel consumption curve

with fuel consumption as function of engine power in Model 2 EA,
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Fig. 19. Model 1 TD and Model 1 DE time series for voyage simulations with departure in March with data for LCLV, HCLV and HCHV sea passage scenarios. Deviating voyages
both with regards to speed and course are observable. Difference in involuntary speed loss is also observed.

is based on the data in Fig. 16 a reasonable assumption. Time series
for the voyages carried out in March seen in Fig. 18, show that this
assumption is reasonable as the specific fuel consumption curve of
Model 2 EA have less deviation from Model 1 TD than Model 1 DE.
However simplifying the propulsion efficiency to a function of speed
only introduces significant differences compared to Model 1 DE as seen

in Table 3. This simplification leads to a significant shift in the peak of
the observed engine powers seen in Fig. 15.

Another area of comparison of the different models is the required
modelling and simulation effort. Model 1 is based on high fidelity mod-
els of the engine system, propulsion system, hull and hydrodynamics.
Such models are time consuming to develop and require significant
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amount of information that is challenging to obtain, especially in an
early design phase (Tillig et al., 2018). The simulation effort, both
for the time domain model and the model reduction, is significant
compared to the fast calculations required for Model 2. Currently, it
is common to use the approach of Model 2 in higher level estimations
of operational performance applications such as weather routing (Za-
ccone et al., 2018), voyage optimization (Lu et al., 2015), bottom-up
emission estimation (Kilic and Tzannatos, 2014). In these cases, where
the goal is just to evaluate an already available system where data
is easily available, engine models, such as the still water specific fuel
consumption curve of Model 2, are reasonable. In this work, the focus
is however on operational performance evaluation in the context of
evaluating novel system design solutions. While the goal is to always
use as simple models as possible while still capture the effect of design
changes, it might not be achievable to use simple models, such as Model
2. For more advanced systems designed to satisfy EEDI requirements,
including PTI/PTO, waste heat recovery, emission abatement etc., a still
water specific fuel consumption curve may not adequately describe the
system performance at all times. Other aspects that need to be taken
into account is whether the system performance is dependent on the
history of the system, or if it is by all practical considerations only
dependent on a very short history. A diesel engine has time constants
dictated by the turbo charger and thermal transients, however these
time constants are very short compared to a voyage and can in most
cases be ignored. A hybrid system with energy storage based on batter-
ies have longer time constants, and is thereby dependent on a longer
history which may affect decision making and performance.

6. Conclusions

The case study designed to evaluate four ship system model fi-
delity levels for operational performance uncovered that model fidelity
affected results both due to differences in how different factors had
been modelled and how the different models were simulated. The main
factor affecting performance in operational conditions was found to be
the propulsion efficiency estimation. Dynamic operation of the marine
power system was investigated and found to be of less importance when
estimating operational performance. The difference between Model 1
TD and DE was found to be negligible considering the significant
simulation effort required for the TD model compared to the DE model.
However model fidelity required does not only depend on the ability
to provide useful prediction, it also depends on the availability of
information that can be used for less simulation intensive models. This
is illustrated in the case study where all models rely on information
from Model 1 TD for model development through model reduction
to either a table lookup model or for the still water specific fuel
consumption curve.
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