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Abstract
Permeability and formation factor are important properties of a porous medium that only
depend on pore space geometry, and it has been proposed that these transport properties
may be predicted in terms of a set of geometric measures known as Minkowski function-
als. The well-known Kozeny–Carman and Archie equations depend on porosity and surface
area, which are closely related to two of these measures. The possibility of generalizations
including the remainingMinkowski functionals is investigated in this paper. To this end, two-
dimensional computer-generated pore spaces covering a wide range ofMinkowski functional
value combinations are generated. In general, due to Hadwiger’s theorem, any correlation
based on any additive measurements cannot be expected to have more predictive power than
those based on the Minkowski functionals. We conclude that the permeability and forma-
tion factor are not uniquely determined by the Minkowski functionals. Good correlations in
terms of appropriately evaluated Minkowski functionals, where microporosity and surface
roughness are ignored, can, however, be found. For a large class of random systems, these
correlations predict permeability and formation factor with an accuracy of 40% and 20%,
respectively.

Keywords Permeability · Formation factor · Minkowski functionals · Archie equation ·
Kozeny–Carman equation

1 Introduction

Permeability is the most important parameter for fluid transport through porous rocks and
soils, such as aquifers and hydrocarbon reservoirs. The permeability in the subsurface is
typically highly heterogeneous and may have several orders of magnitude in variation. The
permeability is, however, not measurable by downhole logging tools and needs to be inferred
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from correlations based on a combination of logs. Tying all measured data to a set of underly-
ing parameters will improve the credibility of these permeability estimates, and the effort to
try to express the permeability in terms of a small number of underlying geometric properties
goes back several decades, at least to the work of Kozeny (1927) and Carman (1937). The
prediction of transport in porous structures frommeasures of the morphology and topology is
an unsolved problem (Mecke 2000, p. 145). The so-called Kozeny–Carman equation remains
to this day the most popular formulation. How this equation is expressed varies somewhat
throughout the literature depending on which geometric parameters are considered known
and how they are expressed in terms of each other. In the context of this paper, we will refer
to a slightly generalized form of the original Kozeny formulation:

k = φ3

f τσ 2 , (1)

where φ is porosity, σ is the specific void space area, f is a factor that represents the shape
of grains, and τ is the tortuosity which is the ratio of a typical flow path length to the sample
length. The reasoning leading to (1) is based on bundle-of-tubes analogues, and the two
parameters f and τ do not have any strict definition.

Electric resistivity is another important parameter that depends strongly on the pore space
geometry, and resistivity measurements are used for inferring permeability (Archie 1942;
Ogbe and Bassiouni 1978; Mohaghegh et al. 1997). In a porous material consisting of a
non-conducting matrix and pores filled with a conducting fluid, such as brine-saturated sand-
stone, the resistivity will be proportional to the fluid resistivity. The proportionality constant,
conventionally called “formation factor” F , only depends on pore space geometry. F is often
expressed in terms of the Archie equation (Archie 1942, 1950):

F = φ−m, (2)

wherem is called the “cementation index”whichmay vary between rock types. The formation
factor can also be expressed in terms of porosity and the electric tortuosity τe

F = τe

φ
. (3)

Note that (3) serves as the definition of τe, and only expresses the fact that the current in a
real medium has to travel through paths that are longer, more tortuous, than straight parallel
tubes which would give F = 1

φ
. Equation 3 has served as a starting point for developing

correlations for F based on models for τe. By comparing (2) and (3), we see that the Archie
equation is consistent with describing the electric tortuosity as

τe = φ−(m−1). (4)

The electric tortuosity is not the same as the (hydraulic) tortuosity that appears in theKozeny–
Carman equation (1), but, based on the idea that they both are representations of a common
“intrinsic” pore space tortuosity, a number of expressions linking the two have been proposed.
See Ghanbarian et al. (2013) for a fairly recent review.

Since permeability and formation factor only depend on pore space geometry, it is natural
to propose that there should exist a small set of properly defined geometric measures that can,
at least to very good approximation, be used for estimating these properties. The identification
of these geometric measures remains an unsolved problem. In practice, f and τ in (1), andm
in (2) often play the role of mere fudge–factors/fudge–functions for fitting experimental data,
and more rigorous approaches are needed. Recently, it has been proposed (Lehmann et al.
2008; Mecke 2000; Mecke and Arns 2005; Vogel et al. 2010; Scholz et al. 2012, 2015; Liu
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et al. 2017; Armstrong et al. 2018) that permeability and formation factor may be estimated in
terms of a set of geometric measures known as Minkowski functionals or intrinsic volumes.
Two of these measures, φ and σ , are already represented in the Kozeny–Carman equation (1).
In the present paper, we will investigate the predictive power of the full set of Minkowski
functionals on the permeability and formation factor of two-dimensional computer-generated
pore spaces.

2 Minkowski Functionals

The Minkowski functionals are integrals over geometrical sets, and they are also well
defined for polyhedra with singular edges (Mecke 2000). In d-dimensions, there are d + 1
functionalsW0 . . .Wd , whereW0 is the hyper-volume and the rest are integrals over the d−1-
dimensional bounding hyper-surface(s). A recent comprehensive overview of the application
of Minkowski functionals for the characterization of porous media and porous media trans-
port can be found in Armstrong et al. (2018). In two dimensions, the surface integrals are
replaced by integrals over the pore space perimeter.

Our aim is to apply theMinkowski functionals for characterizing permeability and forma-
tion factor, which, for a representative elementary volume (REV) of a homogeneousmedium,
is independent of system size. The relevant quantities are then the specific functionals. Note
also that what is relevant for the transport properties is the connected pore space. This implies
that any isolated pores should be excluded from the calculation of the pore space functionals.

In the present paper, we will only be concerned with two-dimensional pore spaces, and
the characteristic quantities are then (see Fig. 1) porosity

φ = Ap

A
, (5)

where Ap is the connected pore space area and A is the total area, specific pore perimeter
length

σ = 1

A

∫
dL, (6)

where the integral runs over the connected pore space perimeter, and specific Euler charac-
teristic

χs = 1

A
χ = 1

A

1

2π

∫
1

R
dL, (7)

where R is the radius of curvature of the connected pore space perimeter. Note that (in 2D) χ
for the connected pore space is equal to the number of grains (unconnected pores are counted
as being part of the enclosing grains) since we have

∫ 1
R dL = −2π when we integrate along

the perimeter of each single grain. The Euler characteristic is also a measure of topology,
and for a connected periodic pore space, we have

χ = −g, (8)

where g is the number of redundant connections, or, in an equivalent pore network, the
number of links that can be broken keeping inlet and outlet connected.
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Fig. 1 Example of a unit cell for
a 2D periodic porous medium.
Connected pore space in gray and
grains in black. The specific
Minkowski functionals that
characterize the pore space are

porosity, φ = Area of gray
Total area ,

specific pore perimeter length,

σ = Length of red lines
Total area , and

specific Euler characteristic,

χs = −Number of grains
Total area

2.1 Permeability and Hadwiger’s Characterization Theorem

TheMinkowski functionals are especially useful for characterizing physical properties due to
Hadwiger’s characterization theorem (Klain 1995), which states that certain valuations over
geometric sets can be parameterized as a linear combination of the Minkowski functionals
(Mecke 2000). Examples of such valuations are free energies in thermodynamics. Accord-
ingly, claims have been made that it should be possible to estimate permeability from these
functionals (Scholz et al. 2012, 2015). Minkowski functionals also correlate well with cor-
rect transport properties when reconstructing pore spaces (Schlüter and Vogel 2011; Mosser
et al. 2017, 2018).1

Permeability is not an additive quantity (as required by Hadwiger’s theorem), so the the-
orem is not directly applicable, but if the permeability is a function of a set of additive
measures, then permeability is also a function of the Minkowski functionals since any addi-
tive property depends linearly on the functionals. Since permeability is not measurable by
downhole logging tools, it needs to be inferred from correlations based on a combination of
measurements. These measurable quantities are typically additive, and thus, if the permeabil-
ity is a function of the Minkowski functionals, it should be possible to find good generally
applicable correlations, while such correlations will be unobtainable if permeability cannot
be determined based on these functionals.

Volumes with microporosity have a strong influence on the Minkowski functionals σ and
χs , but do not contribute significantly to permeability (see Fig. 2). Also, surface roughness
may change σ without significantly affecting the permeability or formation factor. Based
on these observations, we can conclude that the Minkowski functionals do not completely
determine permeability and formation factor. We may, however, hope that a description of
permeability and formation factor in terms of appropriately evaluatedMinkowski functionals,
where microporosity and surface roughness are ignored, will provide good approximations.
The same level of accuracywould then also pertain to correlations based on additivemeasure-
ments. The distinction between the porosity that is important for permeability and small-scale
porosity that should be ignored, will, however, not always be as clear as in Fig. 2.

1 Note that in general permeability is a tensor, but in the present work we will only consider isotropic pore
spaces so that permeability may be treated as a scalar. Hadwiger’s characterization theorem is not applicable to
anisotropic pore spaces,which should be characterized in terms ofMinkowski tensors instead of theMinkowski
functionals (Schröder-Turk et al. 2013).
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Fig. 2 Example of a connected pore space with grains in black (a). If we replace the dense grains with
microporous grains (b), this microporosity will dominate in the evaluation of Minkowski functionals, but it
will not change the permeability significantly

2.2 Dimensional Analysis

Wemay restrict the functional form of how permeability and formation factor may depend on
the characteristic quantities for a two-dimensional pore space, φ [·], σ [m−1], and χs [m−2],
through dimensional analysis. Two dimensionless numbers can be formed

φ and λ = −σ 2

χs
, (9)

and permeability has dimension m2, so the permeability may be expressed as

k(φ, σ, χs) = 1

σ 2 K (λ, φ), (10)

where K is an unknown dimensionless function. Note the similaritywith theKozeny–Carman
equation (1), which can also be expressed in terms of σ and a dimensionless permeability
KKC:

kKC(φ, σ, f , τ ) = 1

σ 2 KKC(φ, f , τ )

KKC(φ, f , τ ) = φ3

f τ
.

(11)

The formation factor is dimensionless, so we have

F(φ, σ, χs) = F(λ, φ). (12)

We see that the Archie equation (2) is also expressed in terms of dimensionless numbers

FA(m, φ) = φ−m . (13)

We may investigate the viability of a description of permeability and formation factor in
terms of the Minkowski functionals by generating multiple pore spaces with fixed values for
the dimensionless numbers λ and φ, and compare the calculated permeability and formation
factor with (10) and (12).

123



P. A. Slotte et al.

3 Generating Pore Spaces with PrescribedMinkowski Functionals

Most previous work on two-dimensional pore spaces has investigated synthetic models built
from grains or sub-grains of equal shape (typically circles of a given size) (Gebart 1992;
Koponen et al. 1996; Yazdchi et al. 2012; Ebrahimi Khabbazi et al. 2013; Matsumura and
Jackson 2014; Scholz et al. 2015; Kundu et al. 2016; Liu et al. 2017; Zarandi et al. 2019).
Our investigations indicate that the resulting pore spaces do not have sufficient coverage of
the (φ, λ) parameter space; therefore, we need to build models using differently shaped and
sized sub-grains. We will also need to generate several pore spaces for each set of Minkowski
functional values, which requires an algorithm that can generate pore spaces with prescribed
Minkowski functionals.

The pore spaces are generated by filling an initially empty (φ = 1) spatial region with sub-
grains of varying size and shape using a simpleMetropolis-Monte-Carlo algorithm (MCMC),
where an “energy” E is assigned to each specific configuration of grains (realization). This
algorithm ideally creates realizations with probability

p ∝ exp−E . (14)

The current purpose of the MCMC algorithm is, however, not to generate any statistically
correct ensembles, we just want to create reasonable pore spaces.

Prescribed values for the Minkowski functionals, φ0, σ0, and χs0, are enforced using
simulated annealing, that is, by including a term

M = (
w0(φ − φ0)

2 + w1(σ − σ0)
2 + w2(χs − χs0)

2) /T (15)

in the MCMC energy and slowly reducing the annealing parameter T . wn are weights that
may be tuned in order to improve convergence.

Periodic boundary conditions are applied in order to reduce edge effects both on the pore
space itself and on the flow calculations.

The calculation of change in Minkowski functionals as a result of adding or removing a
grain is local, and on a pixel representation (image), it amounts to recalculating the frequency
of certain 2 × 2-pixel configurations (Vogel et al. 2010). We have implemented a slightly
modified version, taking into account the periodic boundary conditions, of the code found in
the QuantIm library (Vogel 2017).

The MCMC energy term is based on the pixel representation

E = −a
∑
i

(1 − δ0ni ) + b
∑
i

(1 − ni )ni + M, (16)

where ni is the number of overlapping sub-grains at pixel i and a and b are tunable constants.
The first term is important for porosity, while the second termgoverns the amount of sub-grain
overlap.

The specifiedMinkowski functional values relate to the connected pore space only, and in
the present work, we have selected to only generate pore spaces without any isolated pores.
Isolated pores may be created when a sub-grain is added or removed (see Fig. 3), so a sub-
grain should not be added or removed if this would create an isolated pore. The calculation of
all energy terms used in the MCMC algorithm, including the Minkowski functionals, is local
on the image so that the resulting algorithm should be very fast both in 2 and 3 dimensions.
The connectivity check, however, requires non-local calculations. In our implementation, we
first calculate the energy change, and the time-consuming connectivity check is performed
only if the change should be accepted based on this. The non-local calculations substantially
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(a) (b) (c) (d)

Fig. 3 In (a), three sub-grains have been placed forming a single grain, and the pore space is connected.
Adding a fourth sub-grain may create an isolated pore (b). Removing the blue sub-grain in (c) will also create
an isolated pore (d)

(a) (b)

Fig. 4 Two grains consisting of circular sub-grains (a) and the corresponding pixelized version (b). If grains
are too close, the Euler characteristic (number of grains) will be different for the true and pixelized version

slow down the code and would especially do so in 3 dimensions. This is the main reason why
our analysis presently is limited to 2Dmodels. This is in contrast to pore space reconstruction
algorithms, which can be based on the total pore space including isolated pores (Schlüter and
Vogel 2011).

In order to enforce that the pixel representation has the correct Euler characteristic, an
additional restriction is placed on where new sub-grains may be added; the distance between
two grains must be at least one pixel (see Fig. 4).

Based on the types of sub-grains used, we have generated four classes of models, with
circular, square, triangular, and a mixture of sub-grain types, respectively.

3.1 Representative Elementary Volume

The concept of permeability belongs in a continuum theory for flow in porous media. The
porous medium, which is highly heterogeneous on the pore scale, is replaced by a homoge-
neous medium at a larger scale. The scale at which the porous medium is homogeneous is
related to the concept of a representative elementary volume (REV). Only REV-sized models
should be used in the analysis, and hence, we are seeking a REV criterion based on the
Minkowski functionals.

The size of a REV in two-dimensional models was discussed byDu andOstoja-Starzewski
(2006). In that paper, the REV characteristic length LREV was calculated for models built
from equally sized non-overlapping disks using the disk diameter d as the characteristic
small-scale length. As seen in Fig. 5, the resulting criterion for the REV size in terms of
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Fig. 5 The size of a REV for models built from equally sized disks [based on the data in Du and Ostoja-
Starzewski (2006)]. Red circles show the linear size LREV in units of disk diameter d, which gives a strong

φ-dependency. Black circles show LREV in units of
√−χs

σ2 , which is the combination ofMinkowski functionals
that gives the least φ-dependency. In these units, all LREV < 130 indicated by the black line

δ = L/d is strongly dependent on porosity. However, porosity is scale invariant, and a good
criterion for determining the REV size should not depend strongly on it. While d might be a
good measure for small-scale structure for low porosities, at high porosities the characteristic
scale is related to the distance between particles, and thus, the REV criterion should be related
to the number of particles in a REV-size box. Forming a length scale using the parameters
σ [m−1], and χs[m−1], a general REV criterion is

L > LREV = σ−2α−1(−χs)
αLD REV, (17)

where LD REV is a dimensionless REV criterion. Varying α in equation (17), we have found
that α = 1

2 gives the least dependency on porosity for the data in Du and Ostoja-Starzewski
(2006), and consequently, we have the following approximate criterion for generating a
REV-sized model (see Fig. 5):

L > LREV = 130

√−χs

σ 2 . (18)

However, using an anisotropy-based REV identification, it will be shown below that this
criterion is not fully sufficient for identifying models that are smaller than a REV. Also, since
the Minkowski-based criterion (18) is difficult to satisfy for some (λ, φ)-combinations given
our system size (2024× 2024 pixels), we have generated models using the relaxed criterion
L > 1/3LREV, and discarded non-REV models based on anisotropy as explained below.

The algorithms that we employ for generating synthetic pore spaces have no preferred
directions and should ideally produce isotropic pore spaces. In practice, the permeability
found by solving flow problems on any finite pore space will have different permeability in
the x- and y-direction and nonzero cross-components. Based on the calculated permeability
tensor, we estimate the isotropic infinite-size permeability as

k = √
k1k2, (19)
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where k1 and k2 are the permeability eigenvalues (permeability in the two principal direc-
tions). Similarly, the isotropic formation factor estimate is

F = 1

2
(Fx + Fy). (20)

If a generated pore space has a high degree of anisotropy, the pore space is smaller than a
REV, and we have discarded models with k1/k2 > 1.25 or |Fx − Fy |/F > 0.25. Out of 253
generated pore spaces with a linear size larger than 1/3LREV, 53 were discarded due to high
anisotropy. Eighteen of these should actually be larger than LREV, so the Minkowski-based
criterion (18) is clearly not sufficient for defining the REV size.

We have also used the maximum anisotropy in groups of models with similar φ and λ as a
proxy for the accuracy of our permeability and formation factor estimates; the relative error
in the estimate of the isotropic property (REV size) is deemed to be less than the maximum
anisotropy in the finite size estimates:

∣∣∣∣k − kREV
kREV

∣∣∣∣ < max

(
k1 − k2

k

)
. (21)

If the difference in permeability between models is larger than the maximum anisotropy, the
difference is deemed significant and cannot be attributed to the models being smaller than a
REV.

4 Results

We have first generated a number of two-dimensional pore spaces by varying the allowed
shapes and sizes of sub-grains and the parameters a and b in (16) without enforcing the
Minkowski functionals (weights wn = 0 in (15)). We have then subsequently generated
pore spaces using different shapes, sizes, and parameters while enforcing the Minkowski
functional values. This produces sets of pore spaces that can be visually quite different but
have the same characterization in terms of Minkowski functionals. The simulated parameter
values are shown in Fig. 6. In total, 219 pore spaces were used in the analysis.

All pore spaces are generated as 2024× 2024-pixel pictures, and the permeabilities were
calculated using the LIR solver for the stationary Stokes equation (Linden et al. 2015) imple-
mented in the commercial GeoDict software (Math2Market 2018). The formation factors
were calculated using a simple finite difference Laplace solver we have implemented in
Python NumPy. Both solvers use periodic boundary conditions.

Examples of generated pore spaces are shown in Fig. 7. The models shown there are
characterized by the same set of Minkowski functionals, but the model built from triangular
grains has significantly different formation factor and permeability than the others. It will be
shown below that this is a general trend. Note also that the three models all satisfy the REV
criterion (18), while a visual inspection reveals that, except for the model built from circular
grains, the pore spaces are clearly not of REV size, as they contain large grains spanning at
least halfway across the model.

4.1 Formation Factor

As can be seen from Fig. 8, the formation factor is mainly a function of porosity, as expected
from the Archie equation (2). For a given porosity, larger λ tends to give higher F .
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Fig. 6 The total coverage of parameter space by simulations. Simulations where the parameters a and b in
(16) are specified without enforcing the Minkowski functionals in red, and simulations with specified values
for the Minkowski functionals in blue. The dashed lines are λ = 4π(1 − φ) and λ = 12

√
3(1 − φ), which

correspond to models with uniformly sized isolated circular and triangular grains, respectively (Eq. 27)

Fig. 7 Examples of pore spaces, solid phase in black. The models are characterized by the same set of
Minkowski functionals: φ = 0.30, σ = 9.00 × 104 m−1, and χS = −1.35 × 109 m−2. Going from left
to right, the formation factors are F = 8.9, F = 12.1, and 11.2, and the corresponding permeabilities are
k = 1.2 × 10−13 m2, k = 5.7 × 10−14 m2, and 1.2 × 10−13 m2

Pore spaces containing triangular sub-grains tend to have a different trend than the others,
so trend analysis is performed on the 112 models with circular and square sub-grains only.
We have fitted the data to the following trend function

Fpred(φ, λ) = e(1−φ)
(
c1+c2φ+c3λ+c4φλ+c5λ2

)
φ−μ, (22)

which is similar to the Archie equation (2) and has the correct end values 1
Fpred(0,λ)

= 0 and

Fpred(1, λ) = 1. The best-fit parameter values are:

– μ = 2.6
– c1 = −1.7, c2 = 0.79, c3 = −0.071, c4 = 0.31, c5 = 0.0015.

Examples of formation factor as a function of porosity for a fixed λ are shown in Fig. 9.
We see that the models built from triangular sub-grains tend to fall outside of the anisotropy-
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Fig. 8 The formation factor as a function of φ. The value of the second dimensionless parameter, λ = − σ2

χS
,

is indicated by symbol size and color. The symbol shape indicates the subgrain shape

Fig. 9 Examples of formation factor as a function of porosity for a fixed λ. The marker shapes correspond to
the shape of sub-grains, and models with a mixture of grain types are marked with a cross. Solid line is (22)
globally fitted to pore spaces with circular and square sub-grains. The dashed lines are error estimates based
on (21)

based error estimates (21). Thus, the difference is significant and cannot be attributed to the
models being smaller than a REV.

The residual plot (Fig. 10) also shows a systematic trend for the triangle-based models,
while the other models tend to spread within a ± 20% range in a random pattern. Based on
these observation, we conclude that the formation factor is not a function of the Minkowski
functionals alone, but for pore spaces built from sufficiently smooth sub-grains, the function-
als may be used to determine F with an accuracy of 20%.

For comparison, we have also fitted the data directly to the Archie equation (2) with a
cementation index m that is a function of λ and φ:

Fpred(φ, λ) = φ−(c1+c2λ+c3λ2+c4φ+c5φ2+c6φλ). (23)

With fit parameters c1 = 2.3, c2 = −0.059, c3 = 0.00077, c4 = −2.7, c5 = 2.6, and
c6 = 0.25, the predictive power of (23) is insignificantly different from (22).
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Fig. 10 Relative distance of actual F from fitted predictor function (22) as a function of F . The marker shapes
correspond to the shape of sub-grains, and models with a mixture of grain types are marked with a cross

Fig. 11 The dimensionless permeability σ 2k as a function of φ. The value of the second dimensionless

parameter, λ = − σ2

χS
is indicated by symbol size and color

4.2 Permeability

As can be seen from Fig. 11, the dimensionless permeability K = σ 2k is mainly a function of
porosity, as may be expected based on the Kozeny–Carman picture (1). For a given porosity,
larger λ = σ 2/χs tends to give lower permeability.

In the same manner as for the formation factor, pore spaces containing triangular sub-
grains tend to have a clearly different trend than the others, but in the case of permeability,
each group of models has a different trend. We have fitted the data from 62 models with
circular sub-grains to the following trend function

Kpred(φ, λ) = e
(
c1+c2λ+c3φ2+c4φ2λ+c5λ2

)
φα, (24)

which is similar to (1) and consistent with K (0, λ) = 0. The best-fit parameter values are:
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Fig. 12 Examples of permeability as a function of porosity for a fixed λ. The marker shapes correspond to
the shape of sub-grains, and models with a mixture of grain types are marked with a cross. Solid line is (24)
globally fitted to pore spaces with circular sub-grains. The dashed lines are error estimates based on (21)

Fig. 13 Relative distance of actual K from fitted predictor function (24) as a function of K . The marker shapes
correspond to the shape of sub-grains, and models with a mixture of grain types are marked with a cross

– α = 3.1,
– c1 = −3.2, c2 = −0.019, c3 = 1.8, c4 = 0.059, c5 = −0.0026.

We see from Fig. 11 that σ 2k remains finite as φ → 1 where the permeability tends to
infinity. In this limit, we have σ → 0 and χS → 0, and the system will contain isolated
single grains. The limiting permeability value, Kφ→1, depends on the details of the shape of
these grains and is not well described by σ and χS . We have therefore excluded models with
φ > 0.85 when fitting to (24).

Examples of permeability as a function of porosity for a fixed λ are shown in Fig. 12.
We see that the models built from triangular and, to a lesser degree square, sub-grains fall
outside of the anisotropy-based error estimates (21). Thus, the difference is significant and
cannot be attributed to the models being smaller than a REV. The residual plot (Fig. 13) also
shows a systematic trend for thesemodels. Themodels with circular sub-grains tend to spread

123



P. A. Slotte et al.

Fig. 14 Relative distance of actual K from fitted φ, σ , and τe-based predictor function (25) as a function of
K . The marker shapes correspond to the shape of sub-grains, and models with a mixture of grain types are
marked with a cross

within a±20% range in a random pattern, while the models with square and mixed sub-grain
types are predicted by the trend within ±40%. Based on these observation, we conclude that
the permeability is not a function of the Minkowski functionals alone, but for pore spaces
built from sufficiently smooth sub-grains the functionals may be used to determine k with an
accuracy of 40%.

4.3 Describing Permeability in Terms of Electric Tortuosity

The electric tortuosity is defined by (3) as τe = φF and is a more readily measurable quantity
than the Euler characteristic. Since the permeability cannot be fully determined using the
Minkowski functionals, we have investigated whether a better predictor might be found using
τe as an alternative to the dimensionless number λ.

The hydraulic tortuosity τ which appears in the Kozeny equation (1) is a different,
albeit related, concept than the electric tortuosity τe (Ghanbarian et al. 2013; Berg and Held
2016). We have fitted the data from models with circular sub-grains to the following trend
function

Kτ (φ, τe) = e
(
c1+c2φ2+c3τ 2e

)
φατ−β

e , (25)

which is consistent with equation (1) with

τ = τβ
e and f = f (φ, τe) = φ3−αe−(

c1+c2φ2+c3τ 2e
)
. (26)

The best-fit parameter values are:

– α = 2.7, β = 0.34,
– c1 = −3.3, c2 = 2.1, c3 = −0.040.

By comparing the residual plots in Figs. 13 and 14, we see that the use of τe instead of λ

in the pore space characterization brings the triangle-based models closer to the calculated
trend. For the other models, the overall predictive power is reduced compared to (24). We
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Fig. 15 The dimensionless permeability K = σ 2k of models with equally sized circular grains, compared
with the fitted predictor function (24) (black line). Triangles are for a triangular lattice, squares for a square
lattice, and circles for randomly distributed non-overlapping grains. Markers in green are this work, in blue
from Fig. 6 in Gebart (1992), and in red from Fig. 2 in Yazdchi et al. (2011). The dotted lines are (28), added
here to highlight the difference in permeability between the two lattices

conclude that for pore spaces built from sufficiently smooth sub-grains the parameter sets σ ,
φ, and τe may be used to determine k with an accuracy of 45%.

4.4 Pore Spaces with Equally Sized and Shaped Grains

In models built using non–overlapping grains of equal size and shape, the dimensionless
parameter λ is a function of φ, so that the two parameters cannot be varied independently. In
particular, we have

λ =
{
4π(1 − φ) Circular grains

12
√
3(1 − φ) Triangular grains

(27)

Thus, for a given grain shape, K and F should, according to (10) and (12), be uniquely
determined by porosity.We know that this is not the case, and the permeability is, for instance,
dependent on lattice type for circular grains placed on a regular lattice (Gebart 1992). Thus,
the validity of a Minkowski functional-based description is limited to classes of random
models, especially when the porosity is close to the critical porosity where these regular
models get jammed and, in 2D, permeability reach zero for nonzero φ. An approximate
expression for the permeability of a system consisting of equally sized circular grains on a
regular lattice is (Gebart 1992)

σ 2k =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

32
√
2

9π
(1 − φ)2

(√
π

4(1 − φ)
− 1

) 5
2

Square lattice

32
√
6

27π
(1 − φ)2

⎛
⎝

√
π

√
3

6(1 − φ)
− 1

⎞
⎠

5
2

Triangular lattice

(28)

In Fig. 15, we have plotted a number of numerically calculated permeabilities for
circular grains on a regular lattice, and we see that (24) fails to give a good prediction
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for these systems. The prediction is much better for randomly distributed non-overlapping
grains (green circles).

5 Conclusions

In order to investigate whether it is possible to derive good correlations for permeability an
formation factor based on the Minkowski functionals, we have generated and analyzed two-
dimensional computer-generated pore spaces covering a wide range ofMinkowski functional
value combinations. In general, due to Hadwiger’s theorem, any correlation based on any
additive measurements cannot be expected to have more predictive power than those based
on the Minkowski functionals.

Different surface roughness and microporosity will influence the functionals without sig-
nificantly affecting the transport properties. However, also in the generated pore spaces,
which do not contain micro porosity and rough surfaces, the Minkowski functionals do not
determine permeability and formation factor uniquely.

Pore spaces with equally sized and shaped grains placed on a regular grid do not fall on
the same trend as the random models, and models built using triangular sub-grains show
a different trend than the others, possibly due to a different apparent surface roughness.
Correlations that predict permeability and formation factor with an accuracy of 40% and
20%, respectively, for the other randommodels we have considered may, however, be found.
Accuracy on the 40% level is considered very good in the context of predicting permeability
from downhole measurements.

Permeability correlations where the Euler characteristic is replaced with the more readily
measurable, and nonadditive, electric tortuosity may be found for a larger class of systems
than the Minkowski functional-based correlations. The accuracy of these correlations is,
however, found to be on the same level; we have derived a correlation accurate to 45%.
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