
Chapter 1

CREATING A MAP OF USER DATA IN

NTFS TO IMPROVE FILE CARVING

Martin Karresand, Åsalena Warnqvist, David Lindahl, Stefan Axelsson
and Geir-Olav Dyrkolbotn

Abstract Digital forensics, and especially file carving, is burdened by the large
and increasing amount of data that needs to be processed. Attempts
to solve the problem are being made by introducing for example more
efficient carving algorithms, parallel processing in the cloud, and the
reduction of data by filtering out uninteresting files.

We propose to use the principle of searching where it is more probable
to find what you are looking for. This is done by creating a map of the
probability of finding unique data at different Logical Block Addressing
(LBA) positions of a collection of storage media. We use Secure Hash
Algorithm 1 (SHA-1) hashes of 512 B sectors to represent the data.
Our results show that the mean probability of finding unique hash val-
ues at different LBA positions vary between 12% to 41% over a New
Technology File System (NTFS) partition.

The map can be used by a forensic investigator to prioritize relevant
areas in storage media, without the need for a working file system. It
can also be used to increase the efficiency of hash-based carving by
dynamically changing the random sampling frequency, which we show.
Our method also contributes to the digital forensics processes in general,
which can now be focused on the interesting regions on storage devices,
increasing the probability of getting relevant results faster.

Our work is based on a collection of 30 NTFS partitions from com-
puters running Microsoft Windows 7 and newer.

Keywords: Digital forensics, file carving, partition content map, hash-based carv-
ing, NTFS

1. Introduction

The ever-increasing amount of data to be handled in digital forensics
is a major challenge to digital forensics case work [55] and has been

2

discussed for many years [28][19][54][6][58]. The field of file carving is
especially affected by the increasing amount of data. File carving is used
in situations where there is no file system available, instead only the the
properties of the stored data itself [52][51] are used. That principle
connects this article to our previous work on determining the data type
(file type) of fragmented data by using histograms of the frequency of
bytes, byte pairs and the difference between consecutive byte values [35]
[40][36][39][37][38]. We have also used the compressibility of data for type
identification [3][2][4]. As before we now use small blocks of data (512 B
sectors in this article) and their statistical properties to improve file
carving, but now we apply the principle of finding patterns in unknown
data to full hard disk partitions. However, this time we determine the
most probable position of user data, not the exact type of it.

Being able to carve files without the help of a working file system is
difficult, but highly valuable to the digital forensic investigator. The
research community is therefore focused on solving the problem of the
increasing amount of data by different means. In a survey from 2014
Quick and Choo [55] lists the following concepts; data mining, data re-
duction and subsets, triage, intelligence analysis and digital intelligence,
distributed and parallel processing, visualization, digital forensics as a
service (DFaaS) and different artificial intelligence techniques.

In the file carving sub-field of hash-based carving, hashes of blocks of
unknown data from the storage media is compared to known equally
sized blocks of suspicious material. The large amount of comparisons
of hashes made by a hash-based carving algorithm puts extra burden
on the forensic process. Therefore different strategies, techniques and
algorithms for hash-based carving have been developed [26][8][7][66][24]
[25][15].

What has not yet been tested is to utilize the principle of searching
for something where it is more probable to find it. Since the allocation
algorithm of the operating system (OS) will place new data in the file
system according to a set of rules, not randomly, the principle can be
used in the digital forensic field too. The allocation process is however
too complex to fully understand and thus commonly regarded as random.
Therefore the current principle is to linearly search the storage media
from beginning to end, regardless of the most probable position of the
sought-after data.

Most of the data of interest in an investigation is related to user
activity, i. e. system logs and files created by the user. Such data is
often unique to the specific computer and cannot be found elsewhere,
because the probability of two users independently creating exactly the
same data is negligible. Of course also shared data downloaded (from

Karresand, Warnqvist, Lindahl, Axelsson & Dyrkolbotn 3

the internet or elsewhere) by the user are of interest, for example child
abuse material. Such data will be stored intertwined with the unique
user data according to the allocation algorithm’s rules. Hence it makes
sense to use the Logical Block Addressing (LBA) position of unique user
data to also find where the user’s activity has stored shared data.

We have therefore performed an experiment using Secure Hash Algo-
rithm 1 (SHA-1) hashes of the content of non-related computers running
Windows 7 and later, to find the probability of unique hashes (unique
user data) at different positions in the 30 largest New Technology File
System (NTFS) formatted partitions of 26 hard disks. The data was
chosen to be as realistic as possible to increase the applicability of our
results, and we therefore used real world computers in the data collec-
tion. The unique data are unique in our data set, there is no guarantee
that they are unique world wide.

The rest of this paper is organized as follows: The remaining parts of
Section 1.1 presents related work and our contributions. In Section 1.2
we describe our data set and how it was collected, together with a de-
scription of how the experiments were implemented. Section 1.3 presents
the results of the study. In Section 1.4 we discuss the effects and im-
plications of our results to the research field of hash-based carving and
also to other areas within and related to digital forensics. Section 1.5
concludes the work and presents ideas of future work to be done.

1.1 Related work

Although we have not found any work that directly relates to our
work, there are several research sub-fields that have bearing on our work;
The main field being file carving, and especially its sub-field of hash-
based carving.

1.1.1 File fragment carving. Apart from our work within
the file fragment carving area there are also work done by others using
different means to identify the type of data fragments. Veenman [65]
use the entropy, histogram and Kolmogorov complexity of 4 KiB file
fragments to determine their type. The result show that histograms
have the highest detection rate versus false positives of the chosen al-
gorithms. Calhoun and Coles [11] experiment with different statistical
measures, for example frequency of ASCII codes, entropy, modes, mean,
standard deviation and correlation between adjacent bytes. They also
look at using the longest common sub-strings and sub-sequences be-
tween file fragments for data classification. Ahmed et al. [1] use the byte
frequency distribution with a new method of measuring the distance be-

4

tween the statistical properties of a data fragment and a model. Instead
of using the Mahalanobis distance measure they use cosine similarity
with improved results. Li et al. [43] also use the byte frequency distribu-
tion (histogram) of different data fragments, but in conjunction with a
support vector machine as a discriminant between different data types.
They explain that the best results are achieved using the byte frequency
distribution alone. Fitzgerald et al. [23] combine several statistical mea-
sures of data fragments (among them histograms of one and two byte
sequences, entropy and Kolmogorov complexity) to get feature vectors
that are fed into a support vector machine for classification. They no-
tice that their method outperform many method presented in previous
work. However, they do not evaluate the contribution of each of the cho-
sen feature vectors, but instead leave it as future work. There is also a
taxonomy of data fragment classification techniques by Poisel et al. [53]
describing the research area.

1.1.2 Hash-based carving. The digital forensics research field
of hash-based carving compares hashes of known file blocks to hashes of
equally sized blocks from a suspects hard drive. In that way even files
that are partially overwritten or damaged can be identified.

The roots of the research field can be traced back to the spamsum tool
by Tridgell [62]. According to Garfinkel one of the first times hashes are
used for file carving is during the Digital Forensic Research Workshop
(DFRWS) 2006 Carving Challenge [26]. Later the spamsum tool is used
as a basis for an article by Kornblum [42] on piecewise hashing and
what is now known as approximate matching. The concept of using
hashes for file carving is further studied by Dandass [18] in 2008 in an
article presenting an empirical analysis of disk sector hashes. The term
hash-based carving is first introduced by Collange et al. [15] exploring
the possibility of using a Graphics Processing Unit (GPU) for comparing
hashes of 512 byte sections of known files with hashes of 512 byte sectors
from disk images.

When Garfinkel use hashes for file carving in the DFRWS 2006 Carv-
ing Challenge [26] parts of files found on the internet are hashed and
used to find equal hashes in the challenge image. These experiences
lead to the development of the frag_find tool [25]. In connection to
the frag_find article the authors discuss the optimal size of the data
blocks to hash. They conclude that the size shall be equal to the sector
size, without stating if they mean 512 B or 4 KiB sectors. Garfinkel
et al. [26] elaborate further on the size of hashed blocks and state that
starting with Windows NT 4.0 the default minimum allocation unit in
NTFS is 4 KiB [44].

Karresand, Warnqvist, Lindahl, Axelsson & Dyrkolbotn 5

Foster [24] discusses the problem of data shared across files, stating
that “the block of NULs is the most common block in our corpus” [24,
p. 15], relating them to the NULL padding of files. The problem of
the large amount of data to handle is also discussed. Young et al. [66]
continues the work further developing the Foster’s ideas. The authors
discuss the optimal block size, how to handle a large amount of data,
efficient hash algorithms, good data sets to use and common blocks of
files.

Random sampling is used to improve the speed of hash-based carving
in several articles [26][24][25]. To find a suitable sampling frequency the
problem is regarded as sampling without replacement. Using a higher
sampling frequency may increase the detection rate, but has a negative
impact on the execution speed. The problem is to find a suitable balance
between the two alternatives.

1.1.3 Data persistence. The concept of data persistence
is interesting to our work because the persistence at different areas of
storage media indicates that they are not reused. This information is
valuable when creating a map of a generic storage media.

Jones and Khan [34] have created a framework to enable studies of
(deleted) file persistence in storage media. They use differential forensic
analysis to compare snapshots of file systems in use and follow the decay
of deleted files over time.

Fairbanks and Garfinkel [20] present 12 factors affecting data persis-
tence in storage media. Fairbanks [21][22] also describes the low-level
functions of ext4 and their effect on digital forensics.

1.1.4 Data reduction. Quick and Choo propose different
methods to reduce the amount of data needed to be analyzed in digi-
tal forensic investigations. Their approach [56][54] builds on extracting
specific files using a list of key files and then work on the subset of files.
This requires a working file system, limiting the methods applicability.
Also the list of key files needs to be constantly updated.

Rowe [59] has a similar approach as Quick and Choo, although more
technical. He compares nine methods for identifying uninteresting files,
defined as “those files whose contents do not provide forensically useful
information about users of a drive.” [59, p. 86]. However, the methods
studied by Rowe all require a working file system, which is not consistent
with the foundation of file carving.

1.1.5 Data mapping. Key [41] has developed an EnScript
module to the EnCase software which creates a map of the recoverable

6

sectors of a file found in a file system. It can handle situations where
other tools does not work, for example partially damaged files, although
it is very processor intensive and therefore can only create maps of a few
files at a time.

Gladyshev and James [28] study the problem of file carving from a
decision-theoretic point of view. They suggest a model where storage
media is sampled with a frequency based on different properties of the
hard disk and the file type that is to be found. In some specific situations
their carving model outperforms standard linear carving algorithms, but
their solution is not yet generally applicable. Gladyshev and James
mention using the distribution of data on disk, but do not seem to relate
that to the probability of finding user data at different LBA positions in
storage media.

In two articles by van Baar et al. [63] and van Beek et al. [64] outlining
the DFaaS system Hansken [64] and its predecessor Xiraf [63] the concept
of non-linear extraction of data from images is discussed. Both van Baar
and van Beek suggests that the Master File Table (MFT) records (the
file system meta data) of an NTFS partition are extracted first. The
MFT records are then used to find other interesting areas in the file
system. van Baar and van Beek also suggest that the analysis process
is used to influence the imaging process by having specified parts being
prioritized.

1.2 Contribution

As can be seen from the review of related work, there is a need to
improve the efficiency of the tools and algorithms used in digital foren-
sics, and especially in file carving. There are many different proposed
solutions to the problem, but no one has yet utilized the inherent struc-
tures of the allocation algorithms to address the problem. We therefore
present the novel idea of using the probability of finding user data at
different locations in storage media to govern the digital forensic process
and hence enabling an immediate increase of the efficiency of existing file
carving algorithms and tools. In hash-based carving the concept can be
used to increase the efficiency when doing random sampling by varying
the sampling rate in accordance with the probability of finding user data
at different LBA positions. The principle can also be used during triage
and other situations where speed and detection rate has to be balanced.

Unlike many of the methods presented in related work our method
works without a file system. The map we create can be used directly to
further improve the speed of any of the file carving algorithms presented
as related work by showing the most probable position of unique data

Karresand, Warnqvist, Lindahl, Axelsson & Dyrkolbotn 7

in a general NTFS formatted storage media. It can either be used for
starting the forensic process at the position with the highest probabil-
ity of containing data of interest (for example user data) or varying the
sampling rate in accordance with the probability of finding user data.
In the latter case the sampling frequency will be higher where it mat-
ters most and lower in other areas, increasing the probability of getting
a hit while maintaining the same amount of samples as with equally
distributed sampling.

Our work also benefits the digital forensic investigator, because our
map introduces the possibility to plan the forensic process in a similar
way to how a map is used when planning operations in the physical
world. Currently storage media are treated as black boxes, forcing the
forensic investigators to spend valuable time scanning them from start
to end before the analysis. This is especially useful in general file carv-
ing situations when there is no file system to govern the search. With
our method the forensic investigators can focus on relevant areas of the
storage media and postpone, or even skip, less relevant areas.

The map can also be used in storage media imaging situations. By
starting the imaging process at the most probable position of user data,
continuing in decreasing order of relevance, the analysis process can be
run almost in parallel to the imaging since the most relevant data for
analysis will be immediately available. In that way the analysis pro-
cess can be started earlier, even before the imaging is finalized, saving
valuable time and effort for the forensic investigators. Of course the
reliability of the analysis will increase as more data are analyzed, but a
preliminary result to guide the progressing work will be available at an
earlier stage. This concept is also supported by the Hansken project [64]
[63]. By implementing our concept in Hansken its ability to also han-
dle media with broken file systems will be higher, possibly close to the
performance of the standard process.

To enable handling of any storage media, regardless of its file system
cluster size, our method use 512 byte sectors when hashing the data.
Since our map is created once and can be reused there is no performance
penalty in using it, just like a physical map. Since we have divided
the map into a small number of equally sized areas (currently 128) any
random seek penalty will only occur between these areas, not within, and
thus can be ignored. Also the only situation where the use of 512 byte
hashes are required is when the map is created. There is no need to use
512 byte hashes when performing case work on a suspect’s hard drive.
Likewise any hashing algorithm can be used for case work because the
hashes of the map are only used to calculate the probability of user data
at different positions and never meant to be compared to hashes from a

8

specific case. If a hash algorithm is broken it can simply be exchanged
for a new and better algorithm, our map will still work.

During our work we found a total of nine sectors having the same hash
value at the same LBA position in all 30 partitions. These sectors can
for example be used to identify an NTFS file system, find the start of a
NTFS partition and locate the $MFT file for further processing. This
can be done regardless of the state of the file system.

To the best of our knowledge this specific research field has not yet
been explored, a field with the possibility to bring improvements to a
number of related research fields in digital forensics. This new approach
therefore has a high impact factor and relevance to most, if not all,
digital forensic cases.

2. Experimental Setup

To determine the distribution of unique data in the major NTFS
formatted partition of a common Microsoft Windows computer we first
collect live data from real computers. Then we calculate the probability
of finding unique hash values at different LBA positions. Finally we
create a map by calculating the mean probability of a number of (128
in our case) equally sized partition areas based on LBA position. The
mean probability calculation is done to generalize and scale the map into
a usable format.

To lower the size of data to be stored for the experiment and also to
protect the privacy of the user we use the SHA-1 algorithm to hash each
512 byte sector of all 30 NTFS formatted main partitions included in the
experiment. We use SHA-1 because it currently offers the best balance
between speed, collision risk and hash size among the hash algorithms we
choose from (Message-Digest algorithm 5 (MD5) and the SHA family).
The choice is based on a practical evaluation using available hardware.
The hashing of data is done locally at each source computer and thus
only the resulting hashes leave the computers.

SHA-1 maps 512 bytes of data onto a 20 byte long hash and thus there
is a theoretical risk of collisions. If we apply the Birthday Paradox to our
situation, the risk of a collision is approximately 1.1 · 10−28 and hence
negligible1. We therefore assume a unique SHA-1 hash to represent a
unique piece of data.

Even though the SHA-1 algorithm is broken [61][17] from a crypto-
graphic point of view the risk of an intentional collision is also negligible,
because the amount of computing power required to create a collision is
out of reach for the common user [61][17]. Also such an attack would
require an attacker to create a large amount of collisions for a majority

Karresand, Warnqvist, Lindahl, Axelsson & Dyrkolbotn 9

of the storage media in the map source data. It would be much simpler
to fill the disks with shared and unique data in an intentional pattern.
This is however mitigated by collecting the source data from non-related
sources. Finally the mapping process is not limited to the use of SHA-1,
any hashing algorithm will do, as long as all mapping data is hashed
using the same algorithm.

2.1 Data Collection

To get hold of data representing real life situations we chose to use
a convenience sample collecting data from computers owned by people
in our acquaintanceship. We did not use the Real Data Corpus (RDC)
because the time stamps on the RDC web site [16] indicate that the last
update of the data set was made in 2011. Therefore our data set is more
up to date containing also versions 8 and 10 of Windows2.

We have collected data from 30 partitions of 26 computers (23 con-
sumer grade and 3 office grade). The data was collected by hashing
every 512 byte sector of the entire hard disks using the dcfldd disk
imaging tool set to use the SHA-1 cryptographic hash algorithm. The
OS installations represent three different language packs and range from
Microsoft Windows 7 to Windows 10, both Enterprise, Professional, Ul-
timate, Home and Educational versions. Some of the computers have
been upgraded form an earlier Windows version to Windows 10. Five
of the computers are in our possession and we therefore have access to
their raw content.

The reason for using real computers and not a simulation in a lab-
oratory environment is to avoid any bias from the simulation of user
behavior. By using real computers our results will be as close to the
forensic investigators case work as possible. The drawback is a lower
degree of control of the material. For example we lack information on
whether a hard disk is mechanical or solid-state drive (SSD) in some
cases. This lack of information does not affect our results since we col-
lect the data at the LBA level from the hard drive controller. The lower
levels of physical storage formats are therefore hidden from us [10][57]
[5][14].

From our point of view the only difference between a mechanical hard
disk and an SSD hard disk is their filling of unused areas, which can be
either old data, 0x00 or 0xFF depending on how the TRIM command
is implemented in the SSDs [9][31][32][33][30][29]. Hence a mechanical
drive will more often give us old data from currently unallocated clusters
than an SSD. Since we only use the LBA positions of unique data any
0x00 and 0xFF filling is automatically filtered out. In the case of old

10

data from unallocated clusters a very unbalanced erase/write cycle is
required to leave a large amount of old data, i. e. first a large amount
of data should be erased, followed by a small amount of (or no) writing
of new data. This will be the case if a hard disk is erased using a
random pattern and then reformatted and reused. If a large amount
of the unallocated sectors contain old data, which are unique, they will
have an effect on our results. To affect the map creation process to
any greater extent the scenario shall be true for a significant part of the
partitions in our data set. Before we collect the data we therefore check
with the users if they have done any large file system cleaning close to
our data collection.

The hard disks in our data set differ in size, ranging from 64 GB to
1 TB. We extract the largest NTFS formatted partition (in four cases
there were an extra storage partition present which was extracted too)
from each hard disk, based on the assumption that it contains the OS
and user files. As can be seen in Table 1 the total size of the partitions in
the experiment is 8 638.4 GiB, corresponding to 18 210 308 798 hashes.
Of those 3 809 786 792 hashes are unique. The percentage of unique
hashes for each partition is also shown in Table 1. A low number of
unique hashes is an indication of the partition not being used, or at
least not for storing user data. A low amount of unique hashes and a
high amount of 0x00 or 0xFF filling can be seen in Table 1 for the bigger
partitions (those ending in “b”) of the hard drives where we used more
than one partition to collect data.

The life time and hence amount of data stored on the hard disks
vary. Most of the hard disks are filled with 0x00 to some extent. That
can be remnants of the production process, but of the smaller hard
disks (≤ 256 GiB) some are SSD, which are filled with 0xFF from the
factory [9]. To determine whether any of the partitions in our data set
has been completely filled with data at any time during its life time we
studied the last 20 GB of each partition. The size of 20 GB was chosen
to be a suitable trade-off between a large enough amount of data and
the risk of including the OS area for the smaller partitions. In Table 1
the partitions sizes and the amount of 0x00 and 0xFF filling are shown.
A low amount of both 0x00 and 0xFF filling is an indication of the
partition being (almost) completely filled with data during some stage
of its life time. This could either be user data or a random data from a
disk wiping tool.

We are only using partitions formatted as NTFS, because that is
currently the most common file system among desktop systems having an
approximate market share of 90% [49]. The partition names in Table 1
are given based on the order of hashing, i. e. partition “A” was hashed

Karresand, Warnqvist, Lindahl, Axelsson & Dyrkolbotn 11

Table 1. The sizes in GiB of the partitions in the experiment, their amount of unique
hashes and 0x00 and 0xFF filling in the last 20 GB of the partitions. A low amount of
filling is an indicator of the partition being completely filled or wiped with at random
pattern at some stage during its life time.

Name Size [GiB] Unique hashes [%] 0x00 fill [%] 0xFF fill [%]

F 59.5 0.08 100.00 0
E 59.5 22.36 2.01 0.12
AC 111.3 7.63 100.00 0
I 111.6 61.83 20.12 1.67
A 118.4 23.17 75.24 0.00
W 118.6 59.80 26.18 0
K 146.4 5.82 100.00 0
Qa 150 43.33 45.78 0.07
N 177.6 38.32 48.48 0.00
Ra 185.9 31.89 56.89 0.14
Sa 200 86.85 0.02 0.02
Oa 209 13.68 100.00 0
Y 217.1 14.77 100.00 0
P 232.7 53.97 0.83 0.07
H 237.3 16.68 100.00 0
AA 237.3 12.60 100.00 0
D 237.9 20.59 0 100.00
G 238.1 7.03 25.56 0.16
M 238.1 23.06 79.47 0.01
Rb 258.4 1.68 100.00 0
Sb 265.6 36.22 100.00 0
T 297.9 9.35 48.12 0.28
C 421.7 34.98 0.86 1.17
Z 423.9 4.05 100.00 0
X 443.8 6.48 100.00 0
U 448 10.60 100.00 0
V 465.6 48.43 100.00 0
Ob 699 0.15 98.72 0.00
Qb 766.5 1.47 100.00 0
B 905.2 29.74 100.00 0

Sum 8683.4 20.92 67.61 3.35

12

before “B” and so on. Four computers contain two partitions each that
are included based on size (the computers were installed with an extra
partition for user data). These partitions are indicated by a second
lowercase letter in the name in Table 1. Although lacking an OS these
partitions still contain an NTFS file system and therefore can be included
in our data set.

The unique hash values we have found also include an amount of
1 KiB3 MFT records. These records will result in up to two unique
hash values each when hashing due to their highly varying content (time
stamps, file names, file content etc). We therefore performed a survey on
27 computers not included in our data set estimating the mean number
of MFT records by counting the total number of files and folders in
the computers (since each file and folder in a computer is represented
by, at least, one MFT record4). The result of the survey showed that
the average total amount of files and folders in these computers were
363 630. Due to the uncertainty involved in the counting (we counted
via the file explorer) the value includes an extra 25% added to cover for
hidden files, files requiring more than one MFT record and any MFT
records that are internal to the file system. The extra 25% also cover
for any network storage of user data of the office grade computers in
our file counting data set. In consumer grade computers all user files
would probably have been stored locally and therefore included in our
counting.

2.2 Implementation

To prepare the data for the experiment we extract and merge the hash
data from the largest partitions into a single file, which is then sorted in
ascending order of hash value. We then extract the unique hashes from
the file, thus any 0x00 and 0xFF filled sectors are automatically filtered
out. After the extraction of unique hashes we sort them in order of
ascending LBA position and separated them in individual files based on
partition identity. The data for each partition are then divided into 128
equally sized areas, each being 1

128 of the size of the partition. Then we
calculate the probability of finding unique hashes in each area through
counting the number of unique hashes divided by the size of the areas
in sectors for each partition.

After the probability calculation step we calculate the mean, median
and standard deviation of the probability of unique hashes for each area
of the partitions regardless of the differing partition sizes. The mean
values are used as a map of a general storage media, showing where

Karresand, Warnqvist, Lindahl, Axelsson & Dyrkolbotn 13

it is more probable to find user data (unique data) in a generic NTFS
formatted partition.

2.3 Evaluation

To evaluate our map we run an experiment simulating a hash-based
carving scenario comparing the performance of sampling according to
our map to a uniform sampling distribution. As ground truth we use
four real partitions not included in our data set. We use the distribution
of unique data in the four partitions to pick a random integer target.
Then we use our map to pick a random integer map and the uniform dis-
tribution to pick a random integer uni. All random integers are selected
within the same total range representing the LBA postitions of a fictive
partition, although with bias for target and map. If map = target our
map gets one hit, if uni = target the uniform distribution gets one hit.
The predefined range is set to 16 MiB and divided into 128 equally sized
areas using the mapping process. The small partition size was chosen to
increase the number of hits.

We iterate the random sampling process 109 times for each of the four
partitions to stabilize the result. The low number of partitions used to
create the map does however affect the evaluation since it is a small
population to build a model from. Likewise our set of partitions forming
the ground truth is small and the result is therefore affected by any
individual variations of the partition content. Another factor affecting
the result is the fact that the four partitions used as ground truth were
taken from computers that should be scrapped and therefore had well
used hard drives. They therefore contained a lower amount of 0x00 and
0xFF at the end.

The experiment was executed using Python 2.7 and the random library
in a Debian Stretch (v. 9) computer.

3. Result

As can be seen in Figure 1 showing a map of our results the probabil-
ities of unique hashes at different positions are varying between approx-
imately 12% to 41%. The low median values in the second half of the
partitions are due to the presence of 0x00 and 0xFF filling in a signifi-
cant number of the partitions. If more than 50% of the partitions have
no or a very low amount of unique data in that area the median value
will be (close to) zero, which it is. The plot is based on splitting each
partition into 128 blocks corresponding to 1

128 of the partitions size.
When formatting a hard disk with NTFS 12.5% of the volume space

is reserved for the MFT [48] as default. In all 30 partitions in our data

14

Mean

Std dev

Median

P
r
o
b
a
b
il
it
y
 [
%
]

0

10

20

30

40

Position [% of size]

0 20 40 60 80 100

Figure 1. A plot of the mean, median and standard deviation of the probability of
unique hashes (in percent) at different positions of the 30 partitions in our data set.
The position is given as percent of the partition size. Each of the partitions is split
into 128 equally sized areas based on the specific partition’s total size. The behavior
of the median plot in the second half is due to the low number of unique hashes in
these parts of most of the partitions.

set the MFT area starts exactly 3 GiB into the partition. Hence the
start of the area where non-resident file data are allocated can be found
at LBA position P = 3 ∗ 230 + 0.125 · partition size in bytes, if not the
user changes the MFT reserved space at the time of formatting. If the
partition is very small the non-resident data allocation point is probably
changed. Based on our data set the non-resident data allocation start is
valid for partitions ≥ 60 GiB.

At the non-resident data allocation point the bulk of the OS, first
user files and different software from the initial installation reside. The
minimum space requirement for a Windows 7, 8, 8.1 and 10 installation is
20 GiB for 64-bit systems according to Microsoft [47][45][46]. The most
probable start of storage of the day-to-day usage of a partition containing
Windows is consequently at (3+ 20) · 230 +0.125 · partition size in bytes
bytes into a partition. Transferring this to a percentage of the partition
length gives in our case (see Figure 1) a value approximately between 14
and 43%. The highest amount of OS files is found in the beginning of
the area and it decreases towards the end. This can explain the overall
sharp negative trend of the plot between 20% and 40%, together with
the peaks around 30%. Looking at the behaviour of the mean plot from
40% and upwards the values are slowly decreasing and the standard
deviation is increasing. This is the effect of the differing usage patterns

Karresand, Warnqvist, Lindahl, Axelsson & Dyrkolbotn 15

of the partitions. Some have been storing more data, been more utilized,
than other partitions in the data set.

We found 3 809 786 792 unique hashes in our data set, which corre-
spond to data created locally by the user or the OS, such as logs. There
are however unique parts of MFT records too in the data. Each file and
directory is represented by at least one MFT record in NTFS5. The
MFT records might affect the result by increasing the number of unique
non-user data hashes. To estimate the effect from the MFT records we
studied the number of files and folders in 27 typical computers (both
office and home). We found the mean value to be 363 630 files, which
corresponds to approximately 0.7% of the unique hashes in our 30 com-
puters.

The pagefile.sys and hiberfil.sys might also generate a large
amount of unique hashes depending on to what extent they are used.
These files will certainly affect the map and our results, but since they are
of high value to a digital forensic investigation they should be included
in our data.

During the work with the mapping process we found four sectors con-
taining the same hash value at the same LBA position in all partitions
included in our data set. The sectors are found in file system cluster
786 435. They all contain the second half of MFT records which has
only been used once according to their signature values [12, p. 352].
The first part of these MFT records contain similar, but not equal in-
formation. The istat tool [13] shows that the sectors belong to the
$MFT file, i. e. the file system itself. The $DATA attribute of the $MFT
files in the five computers we have raw access to all allocate the same
eight clusters at the beginning of the run length (see Table 2). Com-
bining this with the static content of the four sectors in cluster 786 435
the NTFS formatting seems to place the start of the MFT at the same
position exactly 3 GiB into the partition. If this is true the first and
last sectors of an NTFS partition should contain the hexadecimal string
00 00 0C 00 00 00 00 00 starting at position 0x30 [50] (little endian).
We have verified this for the five computers we have raw access to.

According to Carrier the “$DATA attribute of the $MFTMirr file
allocates clusters in the middle of the file system” [12, p. 303]. This
implies that the middle sector, based on the size of the volume (the
partition), is actually where the mirror should be kept. However, this
is not always true. In four of the five computers we have full access to
the $MFTMirr file allocates file system cluster 2 and in the last partition
file system cluster 8 912 895 is allocated. However, the latter partition
is 59 919 808 clusters in size, hence none of the $MFTMirr files are located

16

Type: $DATA (128-12) Name: N/A Non-Resident [...]

786432 786433 786434 786435 786436 786437 786438 786439

[...]

Type: $DATA (128-1) Name: N/A Non-Resident [...]

786432 786433 786434 786435 786436 786437 786438 786439

[...]

Type: $DATA (128-6) Name: N/A Non-Resident [...]

786432 786433 786434 786435 786436 786437 786438 786439

[...]

Type: $DATA (128-1) Name: N/A Non-Resident [...]

786432 786433 786434 786435 786436 786437 786438 786439

[...]

Type: $DATA (128-6) Name: N/A Non-Resident [...]

786432 786433 786434 786435 786436 786437 786438 786439

[...]

Figure 2. Part of the $DATA attribute of the $MFT file for five computers in our
data set. The eight numbers on every third row indicate the file system clusters
allocated to the file. File system cluster 786 435 contains the four static sectors (at
positions 6 291 481, 6 291 483, 6 291 485 and 6 291 487) we have found in all 30
partitions.

near the middle of any of the partitions. Consequently the allocation
strategy of NTFS seem to have changed since Carrier wrote his book.

To evaluate the efficiency of our map in random sampling situations we
tested it against 4 NTFS partitions not included in the 30 used to create
the map. Due to the low number of partitions used in the evaluation,
the distribution of unique data in the individual partitions have a high
impact on the result. We therefore regard the result as a first indicator
of the performance of future maps, not the final answer. We are awaiting
access to more data to be able to run a new evaluation. The result of
the evaluation can be seen in Table 2.

The best result (when the map most resembles one of the evaluation
partitions) is almost 10% better than using a uniformly distributed sam-
pling rate. Varying the number of equally sized areas do not change the
results in any significant way, neither do varying the fictive (16 MiB)
partition size.

4. Discussion

Although the validity of the idea of looking for data where the proba-
bility of finding it is higher than randomly searching for data in a uniform

Karresand, Warnqvist, Lindahl, Axelsson & Dyrkolbotn 17

Table 2. The result of the evaluation of the map against four unrelated NTFS parti-
tions, which are not included in the 30 partitions in the mapping data set. The table
shows the number of hits using the map relative to using a uniformly distributed sam-
pling rate. We used 16 MiB partitions divided into 128 equally sized areas sampled
109 times for the evaluation.

Map Uniform Map/uniform [%]

28635 30279 94.6
29881 30363 98.4
32556 30836 105.6
33257 30461 109.2

124329 121939 102.0

pattern is based on common sense we have also performed an empiri-
cal evaluation to test our specific implementation. The result shows an
improvement of 2% when using our map compared to a uniformly dis-
tributed sampling rate. This might not create a paradigm shift, but it
still is a positive indicator of the relevance of our idea. The reason for
the seemingly poor result is the low number of partitions used to create
the map. To reveal the underlying deterministic allocation pattern the
amount of data needs to be much larger. Using a more solid statistical
foundation will then improve the strength of the result. Having a big
enough data set also allows us to divide it into several use cases, each
one rendering its own map. The idea is to be able to diversify between
for example web surfers, office administrators, file sharers. This however
requires a much larger data collection effort, while maintaining a high
level of control of the collected material to filter out unique data not
created by the user or system, such as data written during disk wiping.

When the mapping foundation is stable there are several ways it can
be used to improve the efficiency of the current digital forensic methods
and tools, especially in file carving situations where there is no file system
to be used. One example of usage is when using hash based carving to
find parts of files in a hard disk. Then three different scenarios are
possible:

Speed is prioritized. The total amount of samples is lowered com-
pared to the uniformly distributed sampling case without any sig-
nificant loss in detection ability. This scenario can for example be
used in triage situations or when there is a need to get a prelimi-
nary answer quickly.

Speed is maintained. The same amount of samples are maintained
compared to the uniformly distributed sampling case, which gives

18

a higher detection ability at the same execution speed. This is
the standard case, which can be used without changing the digital
forensic process.

Detection rate is prioritized. A larger amount of samples are used
compared to the uniformly distributed sampling case, giving a
much higher detection rate at a lower cost in execution speed.
For example used in situations where the suspects hard disk has
an unusual usage pattern. In this way the standard amount of
hashes can be maintained in low priority areas and at the same
time use a higher sampling rate for better detection ability in high
priority areas of the hard drive.

When the area reserved for the MFT is used up a new area equalling
12.5% of the volume size is added. If possible that area is to be contigu-
ous, but need not be. Hence as the file system grows new MFT records
are added and allocated where suitable [12]. Thus an old and well used
NTFS partition might very well have MFT records spread all over the
storage space. This would possibly affect the creation of the map, adding
noise to the unique data. According to our empirical study of the num-
ber of files and directories (usually represented by a single MFT record
each) in an NTFS partition the amount of MFT records corresponds to
approximately 0.7% of the total amount of unique hashes in each parti-
tion. The actual amount of unique hashes belonging to an MFT record
is probably less than 0.7% because the second part of an MFT record
often contain 510 zero bytes followed by a two byte long signature value6

at the end of the sector. The worst case scenario is a partition filled with
files less than approximately 700 bytes7 in size, which would result in
a partition filled with MFT records storing the data internally. If all
files contained the same data only the MFT meta data (time stamps
etcetera) would differ, thus the partition would still seem to be filled
with random data. The maximum number of files in an NTFS partition
is 232−1 [48], hence the partition would be approximately 4 TiB in size.

To estimate the amount of unique MFT record hashes in our data set
in another way we generate SHA-1 hash values for all possible combi-
nations of 510 zeros and a two byte signature value, which correspond
to the second half of a standard MFT record. The first such hash being
unique in our data set represent a signature value of 3613 (0x1D0E, little
endian). Many of the lower signature values generate several thousands
of hits. There is however no guarantee that all the generated hashes be-
long to MFT records, but at least four do and consequently the amount
of possibly unique MFT hash values polluting our data set is most prob-

Karresand, Warnqvist, Lindahl, Axelsson & Dyrkolbotn 19

ably less than 0.7%. Hence the unique hashes of the MFT records do
not affect the precision of the map to any larger extent.

We have chosen to limit our experiment to computers running Mi-
crosoft Windows 7 and later and having NTFS formatted main parti-
tions. To protect the privacy of the computer owners we use the crypto-
graphic SHA-1 hash to obscure the real data. This limits our ability to
trace the original data of each hash, but since we are only interested in
the LBA position of unique hashes we do not need to know what data
the hashes represent to be able to create a map.

Our work can also be used to find shared data. Of special interest is
what we call static data, shared data that are found at the same LBA
position in several unrelated storage media. Knowledge of the LBA
position of static data will be of great use for a wide range of digital
forensics applications. Together with for example forensic imaging and
analysis prioritizing such knowledge can also provide an investigator with
the means to break the encryption of a hard drive through a plain text
attack [60], depending on the encryption algorithm used.

The LBA position of static data can be used to handle corrupt storage
media. In many cases large parts of the corrupt media are readable, but
there are no indications of the forensic value of the lost parts. Having
access to a map of static content in storage media will help the digi-
tal forensic investigator to improve the evaluative reporting during case
work by indicating the forensic value of any lost areas. This will in the
end lead to a higher confidence in the collected evidence.

Furthermore a map can be used to create signatures to identify the
correct file system in partially recovered partitions. Since the meta data
layout and allocation process during installation are differing between
OSs such signatures are feasible.

Finally areas that should have a high probability of static content,
but do not, will work as an indicator of the presence of malware or any
other suspicious activity in a file system, since deviations are unlikely in
such areas. Instead of having to hash every file in a file system in search
of deviations, the search can start at the most probable place in the file
system. The partition is then scanned in descending order of probability
of static content.

5. Conclusion and Future Work

Our work is based on the principle that it is better to search for
something where the probability of finding it is higher. We therefore
have developed a method to create a map of the probability of finding
unique data at different LBA positions of storage media. The term

20

unique data is defined as data that are created locally on a computer
and not (yet) shared. This includes both data created by the system,
such as log files and data created locally by the user (not downloaded
from the internet). Such uniquely created data are often more valuable
to a forensic investigation than shared data, even though shared data of
course can be valuable too.

The map provides the digital forensic investigator with a pre-calculated
view of a generic storage media, which can be used to concentrate the
forensic process on the relevant parts of the disputed material, instead
of spending valuable time on first scanning the complete storage media
from end to end. The concept of unique data is only used when creating
the map, which is done once (apart from regular updates). When the
map is finished it can be used repetitively for any data, method, tool or
investigation process and without the need to recreate it for each new
case.

The concept of creating a map of the probability of unique (or static)
data at different positions of storage media opens up a new world of ap-
plications. It can for example be used in triage situations, when planning
the order of analysis of large amounts of seized storage media, estimate
the value of partially analyzed data due to corruption and for breaking
encryption of storage media. We therefore plan to extend our data set
to stabilize the map creation and make the map more reliable. We will
also explore other methods to be used for creating maps, as well as the
possibility to create maps for different use cases.

The four sectors with equal hash values that we found at approx-
imately 3 GiB into all 30 partitions in our data set show that there
might be specific areas of NTFS partitions that are static. We aim to
search for and study the origin of any such areas as future work. We also
plan to extend our approach to other file systems, especially ext4 and
Apple File System (APFS), with the goal of creating a general mapping
process for any storage media, regardless of type and file system.

We are releasing our current hash data set to the public, but due to
its size the optimal transfer option will need to be agreed upon in each
specific case. Please contact the first author to arrange for a transfer.

This work was sponsored by the Norwegian Research Council Ars-
Forensica project number 248094/O70.

Notes

1. The theoretical risk of collisions come from the fact that 512 bytes of data are com-
pressed into a 20 byte long hash and therefore the results might contain false positives. The
problem can be viewed as a Birthday Paradox, where N is the number of possible hashes,
n is the number of hashes, i. e. the total amount of sectors we have hashed (as a worst case

Karresand, Warnqvist, Lindahl, Axelsson & Dyrkolbotn 21

scenario), and P (Collision) the probability of a collision, which can be calculated as

P (Collision) = 1−

N !

Nn
· (N − n)!

and with N = 2160 and n = 18 210 308 798 the probability of at least one collision is
approximately

P (Collision) ≈ 1− e−n2/2N
≈ n2/2N ≈ 1.1 · 10−28.

Our approximation is based on Stirling’s approximation of factorials, which gives acceptable
results when dealing with very large numbers. Since the SHAttered [61][17] attack is 100 000
times faster than a brute force attack using the birthday paradox the risk of an intentional
collision is higher, but the attack is unfeasible in our situation.

2. Windows 8 was introduced at the end of 2012 [27] and therefore cannot exist in the
RDC, nor can Windows 10.

3. The size of an MFT record is defined in the boot sector of an NTFS partition. The
de facto standard size is 1 KiB [12].

4. If a file has many attributes, for example alternate streams or is heavily fragmented,
the file system creates a new MFT record to hold the extra information.

5. Depending on the number of attributes connected to a file more than one MFT record
might be needed to store them. A typical example is a file with a lot of alternate data
streams, or a highly fragmented file.

6. Signature values [12] are used by NTFS to verify the integrity of data structures (but
not sectors containing file content) spanning two or more sectors. The last two bytes of every
sector in such a data structure are called a fixup value and are moved to an array in the
beginning of the structure during the process of writing to disk. These last two bytes are
then replaced by the signature value. When the data structure is read the signature values
are used to check that all sectors that are read have the same signature value, and thus belong
to the same data structure. Every time a data structure is updated on disk the signature
value is incremented by one [12].

7. The maximum size of an internal $Data attribute varies depending on the size of other
attributes stored in the MFT record. Most sources give a maximum internal $Data attribute
size of 600 to 700 bytes. Microsoft reports a 900 byte limit [48].

References

[1] I. Ahmed, K. Lhee, H. Shin and M. Hong, On improving the accu-
racy and performance of content-based file type identification, Pro-
ceedings of the Fourteenth Australasian Conference on Information
Security and Privacy, pp. 44–59, 2009.

[2] S. Axelsson, The normalised compression distance as a file fragment
classifier, Digital Investigation, 7(Supplement), pp. S24–S31, 2010.

[3] S. Axelsson, Using normalized compression distance for classifying
file fragments, 2010 International Conference on Availability, Reli-
ability and Security, pp. 641–646, 2010.

[4] S. Axelsson, K. Bajwa and M. Srikanth, File fragment analysis us-
ing normalized compression distance, in Advances in Digital Foren-
sics IX: Ninth IFIP WG 11.9 International Conference on Digital
Forensics, Orlando, FL, USA, January 28-30, 2013, Revised Se-
lected Papers, G. Peterson and S. Shenoi, (Eds.), pp. 171–182, 2013.

22

[5] J. Barbara, Solid state drives: Part 5, Forensic Magazine, 11(1), pp.
30–31, 2014.

[6] F. Breitinger, G. Stivaktakis and H. Baier, Frash: A framework to
test algorithms of similarity hashing, Digital Investigation, 10(Sup-
plement), pp. S50–S58, 2013.

[7] F. Breitinger and K. Petrov, Reducing time cost in hashing oper-
ations, in Advances in Digital Forensics IX: Ninth IFIP WG 11.9
International Conference on Digital Forensics, Orlando, FL, USA,
January 28-30, 2013, Revised Selected Papers, G. Peterson and S.
Shenoi, (Eds.), pp. 101–117, 2013.

[8] F. Breitinger, C. Rathgeb and H. Baier, An Efficient Similarity
Digests Database Lookup – A Logarithmic Divide & Conquer Ap-
proach, Journal of Digital Forensics, Security and Law, 9(2), pp.
155–166, 2014.

[9] C. Buckel, Understanding flash: Blocks, pages and program erases,
(flashdba.com/2014/06/20/understanding-flash-blocks-
pages-and-program-erases/), 2014.

[10] C. Buckel, Understanding flash: The flash translation layer,
(flashdba.com/2014/09/17/understanding-flash-the-flash-
translation-layer/), 2014.

[11] W. Calhoun and D. Coles, Predicting the types of file fragments,
Digital Investigation, 5(Supplement), pp. S14–S20, 2008.

[12] B. Carrier, File System Forensic Analysis, Addison-Wesley Profes-
sional/Pearson Education, Upper Saddle River, NY, USA, 2005.

[13] B. Carrier, Tsk tool overview, (wiki.sleuthkit.org/index.php?
title=TSK_Tool_Overview), 2014.

[14] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee and H.-J.
Song, A survey of flash translation layer, Journal of System Archi-
tecture, 55(5-6), pp. 332–343, 2009.

[15] S. Collange, Y. Dandass, M. Daumas and D. Defour, Using graphics
processors for parallelizing hash-based data carving, 2009 Fourty-
Second Hawaii International Conference on System Sciences, pp.
1–10, 2009.

[16] Digital Corpora, Real data corpus, (digitalcorpora.org/
corpora/disk-images/real-data-corpus), 2018.

[17] Cryptology Group at Centrum Wiskunde & Informatica (CWI) and
Google Research Security, Privacy and Anti-abuse Group, Shattered
— we have broken SHA-1 in practice, (shattered.io), 2017.

Karresand, Warnqvist, Lindahl, Axelsson & Dyrkolbotn 23

[18] Y. Dandass, N. Necaise and S. Thomas, An empirical analysis of
disk sector hashes for data carving, Journal of Digital Forensic
Practice, 2(2), pp. 95–104, 2008.

[19] European Police Office (Europol), Internet organised crime threat
assessment (IOCTA) 2016, Technical report, European Cybercrime
Centre (EC3), The Hague, The Netherlands, 2016.

[20] K. Fairbanks and S. Garfinkel, Column: Factors affecting data de-
cay, Journal of Digital Forensics, Security and Law, 7(2), pp. 7–10,
2012.

[21] K. Fairbanks, A technique for measuring data persistence using the
ext4 file system journal, 2015 IEEE Thirty-Ninth Annual Computer
Software and Applications Conference, vol. 3, pp. 18–23, 2015.

[22] K. Fairbanks, An analysis of ext4 for digital forensics, Digital In-
vestigation, 9(Supplement), pp. S118–S130, 2012.

[23] S. Fitzgerald, G. Mathews, C. Morris and O. Zhulyn, Using NLP
techniques for file fragment classification, Digital Investigation,
9(Supplement), pp. S44–S49, 2012.

[24] K. Foster, Using distinct sectors in media sampling and full me-
dia analysis to detect presence of documents from a corpus, Mas-
ter’s thesis, Naval Postgraduate School, Monterey, California, USA,
2012.

[25] S. Garfinkel, A. Nelson, D. White and V. Roussev, Using purpose-
built functions and block hashes to enable small block and sub-file
forensics, Digital Investigation, 7(Supplement), pp. S13–S23, 2010.

[26] S. Garfinkel and M. McCarrin, Hash-based carving: Searching media
for complete files and file fragments with sector hashing and hashdb,
Digital Investigation, 14(Supplement 1), pp. S95–S105, 2015.

[27] S. Gibbs, From Windows 1 to Windows 10: 29 years of Windows
evolution, The Guardian, (www.theguardian.com/technology/
2014/oct/02/from-windows-1-to-windows-10-29-years-of-

windows-evolution), 2014.

[28] P. Gladyshev and J. James, Decision-theoretic file carving, Digital
Investigation, 22(Supplement C), pp. 46–61, 2017.

[29] Y. Gubanov and O. Afonin, Why SSD drives destroy court evi-
dence and what can be done about it, (belkasoft.com/download/
info/SSD%20Forensics%202012.pdf), Belkasoft LLC, Palo Alto,
CA, USA, 2012.

[30] Y. Gubanov and O. Afonin, Recovering evidence from SSD
drives in 2014: Understanding trim, garbage collection and exclu-
sions, (articles.forensicfocus.com/2014/09/23/recovering-

24

evidence-from-ssd-drives-in-2014-understanding-trim-

garbage-collection-and-exclusions/), 2014.

[31] Y. Gubanov and O. Afonin, SSD and eMMC forensics
2016, part 1, (articles.forensicfocus.com/2016/04/20/ssd-
and-emmc-forensics-2016/), 2016.

[32] Y. Gubanov and O. Afonin, SSD and eMMC forensics
2016, part 2, (articles.forensicfocus.com/2016/05/04/ssd-
and-emmc-forensics-2016-part-2/), 2016.

[33] Y. Gubanov and O. Afonin, SSD and eMMC forensics
2016, part 3, (articles.forensicfocus.com/2016/06/07/ssd-
and-emmc-forensics-2016-part-3/), 2016.

[34] J. Jones, T. Khan, K. Laskey, A. Nelson, M. Laamanen and D.
White, Inferring previously uninstalled applications from residual
partial artifacts, Annual ADFSL Conference on Digital Forensics,
Security and Law, pp. 113–130, 2016.

[35] M. Karresand, Completing the Picture — Fragments and Back
Again, Licentiate thesis, Linkping Institute of Technology, Linkping
University, Linkping, Sweden, 2008.

[36] M. Karresand and N. Shahmehri, File type identification of data
fragments by their binary structure, Proceedings from the Seventh
Annual IEEE Systems, Man and Cybernetics (SMC) Information
Assurance Workshop, 2006, pp. 140–147, 2006.

[37] M. Karresand and N. Shahmehri, Oscar – file type and camera
identification using the structure of binary data fragments, Pro-
ceedings of the First Conference on Advances in Computer Security
and Forensics, ACSF, pp. 11–20, 2006.

[38] M. Karresand and N. Shahmehri, Oscar – file type identification of
binary data in disk clusters and RAM pages, Proceedings of IFIP
International Information Security Conference: Security and Pri-
vacy in Dynamic Environments (SEC2006), pp. 413–424, 2006.

[39] M. Karresand and N. Shahmehri, Oscar – using byte pairs to find
file type and camera make of data fragments, Proceedings of the Sec-
ond European Conference on Computer Network Defence, in con-
junction with the First Workshop on Digital Forensics and Incident
Analysis (EC2ND 2006), pp. 85–94, 2007.

[40] M. Karresand and N. Shahmehri, Reassembly of fragmented jpeg
images containing restart markers, Proceedings - Fourth Annual Eu-
ropean Conference on Computer Network Defense, EC2ND 2008,
pp. 25–32, 2008.

Karresand, Warnqvist, Lindahl, Axelsson & Dyrkolbotn 25

[41] S. Key, File block hash map analysis, (www.guidancesoftware.
com/app/File-Block-Hash-Map-Analysis), 2012.

[42] J. Kornblum, Identifying almost identical files using context trig-
gered piecewise hashing, Digital Investigation, 3(Supplement), pp.
S91–S97, 2006.

[43] Q. Li, A. Ong, P. Suganthan and V. Thing, A novel support vec-
tor machine approach to high entropy data fragment classifica-
tion, Proceedings of the South African Information Security Multi-
Conference (SAISMC 2010), pp. 236–247, 2010.

[44] Microsoft, Default cluster size for NTFS, FAT and exFAT,
(support.microsoft.com/en-us/help/140365/default-
cluster-size-for-ntfs--fat--and-exfat), 2015.

[45] Microsoft, System requirements, (support.microsoft.com/en-gb/
help/12660/windows-8-system-requirements), 2017.

[46] Microsoft,Windows 10 system requirements, (support.microsoft.
com/en-us/help/4028142/windows-windows-10-system-

requirements), 2017.

[47] Microsoft, Windows 7 system requirements, (support.microsoft.
com/en-us/help/10737/windows-7-system-requirements),
2017.

[48] Microsoft, How NTFS works, (technet.microsoft.com/pt-pt/
library/cc781134(v=ws.10).aspx), 2018.

[49] Net Applications.com, Desktop operating system market
share, (www.netmarketshare.com/operating-system-market-
share.aspx?qprid=10&qpcustomd=0), 2017.

[50] NTFS.com, NTFS partition boot sector, (www.ntfs.com/ntfs-
partition-boot-sector.htm), 2018.

[51] A. Pal and N. Memon, The evolution of file carving, IEEE Signal
Processing Magazine, 26(2), pp. 59–71, 2009.

[52] R. Poisel and S. Tjoa, A comprehensive literature review of file
carving, 2013 International Conference on Availability, Reliability
and Security, pp. 475–484, 2013.

[53] R. Poisel, M. Rybnicek and S. Tjoa, Taxonomy of data fragment
classification techniques, in Digital Forensics and Cyber Crime:
Fifth International Conference, ICDF2C 2013, Moscow, Russia,
September 26-27, 2013, Revised Selected Papers, P. Gladyshev, A.
Marrington and I. Baggili, (Eds.), pp. 67–85, Springer International
Publishing, Cham, Switzerland, 2014.

[54] D. Quick and K.-K. Choo, Data reduction and data mining frame-
work for digital forensic evidence: Storage, intelligence, review and

26

archive, Trends & Issues in Crime and Criminal Justice, 480, pp.
1–11, 2014.

[55] D. Quick and K.-K. Choo, Impacts of increasing volume of digi-
tal forensic data: A survey and future research challenges, Digital
Investigation, 11(4), pp. 273–294, 2014.

[56] D. Quick and K.-K. Choo, Big forensic data reduction: digital foren-
sic images and electronic evidence, Cluster Computing, 19(2), pp.
723–740, 2016.

[57] R. Reiter, T. Swatosh, P. Hempstead and M. Hicken, Accessing
logical-to-physical address translation data for solid state disks, No.
8898371, (www.freepatentsonline.com/8898371.html), 2014.

[58] V. Roussev, Managing terabyte-scale investigations with similarity
digests, in Advances in Digital Forensics VIII: Eighth IFIP WG
11.9 International Conference on Digital Forensics, Pretoria, South
Africa, January 3-5, 2012, Revised Selected Papers, G. Peterson and
S. Shenoi (Eds.), Springer, Berlin, Germany, pp. 19–34, 2012.

[59] N. Rowe, Identifying forensically uninteresting files using a large
corpus, in Digital Forensics and Cyber Crime: Fifth International
Conference, ICDF2C 2013, Moscow, Russia, September 26-27,
2013, Revised Selected Papers, P. Gladyshev, A. Marrington and I.
Baggili (Eds.), Springer International Publishing, Cham, Switzer-
land, pp. 86–101, 2014.

[60] B. Schneier, Applied Cryptography – Protocols, Algorithms, and
Source Code in C, 2 edition, John Wiley & Sons Inc., Hoboken,
NJ, USA, 1996.

[61] M. Stevens, E. Bursztein, P. Karpman, A. Albertini and Y.
Markov, The first collision for full SHA-1, Advances in Cryptology
– CRYPTO 2017, pp. 570–596, 2017.

[62] A. Tridgell, Spamsum README, (www.samba.org/ftp/unpacked/
junkcode/spamsum/README), 2002.

[63] R. van Baar, H. van Beek and E. van Eijk, Digital forensics as a
service: A game changer, Digital Investigation, 11(Supplement), pp.
S54–S62, 2014.

[64] H. van Beek, E. van Eijk, R. van Baar, M. Ugen, J. Bodde and A.
Siemelink, Digital forensics as a service: Game on, Digital Investi-
gation, 15, pp. 20–38, 2015.

[65] C. Veenman, Statistical disk cluster classification for file carving,
Proceedings of the Third International Symposium on Information
Assurance and Security, 2007 (IAS 2007), pp. 393–398, 2007.

Karresand, Warnqvist, Lindahl, Axelsson & Dyrkolbotn 27

[66] J. Young, K. Foster, S. Garfinkel and K. Fairbanks, Distinct sector
hashes for target file detection, Computer, 45(12), pp. 28–35, 2012.

