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Abstract. This paper presents an efficient method for collision design of prestressed concrete 
pontoon walls. High fidelity finite element models of a container ship bow and a prestressed 
concrete pontoon wall are first established. Integrated numerical simulations are conducted to 
study the structural deformation of the pontoon wall during the collision. Parametric studies are 
also carried out to investigate the effect of the pontoon wall thickness. Based on the failure mode 
of the pontoon wall, a punching shear check procedure is proposed. This method yields a good 
accuracy while significantly reduces computational efforts. Hence, the proposed approach can 
be used for collision analysis in the preliminary design phase of floating pontoons. 

1. Introduction 
The Norwegian Public Roads Administration is planning to build a highway along the west coast of 
Norway. New installations must be constructed to cross the wide and deep fjords along the route. 
Convectional structures with fixed foundations cannot be constructed and novel floating bridges should 
be designed and constructed alternatively [1-4]. For floating bridges, one of the main concerns is the 
pontoon safety against accidental ship collisions. Ship collisions may result in structural damage in the 
pontoon wall and subsequent flooding in the pontoon compartments [5, 6]. Further, progressive collapse 
of the bridge may also occur due to the excessive flooding in the pontoon.  

Floating support mudules, i.e. pontoons, pylons, platforms, are commonly constructed with 
reinforced concrete or steel material. Compared with steel floating foundations, reinforced concrete 
floaters are easier to construct and the cost is also generally lower. Therefore, reinforced concrete 
structures are widely used to construct large scale floating structures. However, normal strength concrete 
floating structures are vulnerable to accidental ship bow collisions. High strength ship bows may induce 
excessive punching shear damage in the concrete structures [6]. Consequently, progressive collapse may 
occur to the whole floating structure if the floating unit is flooded. Therefore, it is important to design 
the floating concrete units against accidental ship collisions.  

Three approaches are generally used for ship collision analysis and design of concrete structures. 
Experimental tests are the most direct approach for obtaining the collision force and structural damage 
during a collision [7]. However, this method is seldom conducted due to site limitations and cost. 
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Another approach which is widely used for ship collision is numerical analysis. Reliable results can be 
obtained with validated numerical models [8-10]. Numerical analysis, however, requires significant 
modelling and simulation efforts. Hence, it is not suitable for practical use in the preliminary design 
phase. Validated analytical method can provide efficient and accurate results and thus can be used 
efficiently in practical engineering practice [11, 12]. 

This paper aims to investigate the ship collision response of RC pontoon walls and propose simple 
but reliable design check procedures for both structures. In this work, high fidelity finite element models 
of an RC pontoon wall and a container ship bow are first established. The impact demand and failure 
mode are identified for RC pontoon walls, respectively. Based on the failure mode of the pontoon walls, 
a simple design check procedure, which can be used in the preliminary design phase, is proposed for 
RC pontoon walls. 

2. Finite element models 
In this study, finite element models of a reinforced concrete pontoon wall and a container ship bow are 
established based on the structural drawings for numerical collision analyses. 

2.1. Pontoon wall model 
The pontoon model is established for a cable-stayed continuous floating bridge as shown in Figure 1 
[13]. The cable-stayed navigation span in the middle is supported by two towers resting on two main 
pontoons. These two pontoons are particularly exposed to the passing ships. Hence, the two main 
pontoons have a higher possibility of subjecting to accidental ship collisions compared to other side 
pontoons. In addition, they are essential supporting structures regarding the overall stability of the whole 
bridge. Hence, the focus is placed on the collision analysis of the main pontoons in this study. 

 

Figure 1. Rendering of the floating bridge concept. 

The main pontoons are divided into sub-compartments so that the damage of one or two 
compartments shall not lead to overall flooding of the pontoon. A finite element model of the pontoon 
was developed based on this prototype. It should be noted that only the front wall of the first middle 
compartment was modelled in detail as shown in Figure 2. This is because developing the whole pontoon 
model requires extensive modelling efforts and the computational time would be excessive. It is not 
necessary to model the whole pontoon for a local ship collision analysis as most of the structure is far 
away from the impact region and is thus not expected to have any influence on the local collision 
response of the front wall [6]. The pontoon-supported bridge load was not included in the analysis as 
the collision duration is very short compared to the natural frequency of the bridge. Therefore, a ship 
collision accident can be considered as a transient process and thus the loads can be ignored for local 
collision analysis. The load effects from the construction and fabrication stage were also neglected. 

To accurately model the RC pontoon wall, a detailed modelling was applied to the concrete, 
reinforcements and prestressing tendons in the pontoon as shown in Figure 2. The concrete part in the 



COTech

IOP Conf. Series: Materials Science and Engineering 700 (2019) 012038

IOP Publishing

doi:10.1088/1757-899X/700/1/012038

3

 
 
 
 
 
 

pontoon wall was modelled with 8-node solid elements while the reinforcements and tendons were all 
modelled by circular beam elements. The reinforcements are embedded inside the concrete cover of the 
pontoon wall. The prestress in the concrete was introduced by tendons made by strands of high strength 
steel wires. The height, width and thickness of the pontoon wall are 20 m, 13.3 m and 0.9 m, respectively. 
The diameter of the rebar and the stirrup is 15 mm and 8 mm respectively, while the vertical and 
transverse tendons have a diameter of 90 mm and 70 mm respectively. A detailed description of the 
structural modelling including prestressing modelling can be found in Sha and Amdahl [6]. 

 

Figure 2. Finite element model of the pontoon wall portion, (a) concrete, (b) rebar and stirrups, and 
(c) prestressed tendons [6]. 

2.2. Ship bow model 
According to the statistical and risk analysis of passing ships, the design ship is selected as a 20,000-ton 
container ship. The ship bow model as shown in Figure 3 is developed based on the actual structural 
drawing. This ship has an overall length of 166.62 m and a moulded breadth of 27.4 m. The depth and 
the scantling draught of the ship are 13.2 m and 9.6 m, respectively. In this work, the first 20 meters of 
the ship bow structures are modelled. The various decks, stringers and transverse frames are modelled 
in addition to the outer shell panels. The vertical stiffeners have a spacing of 0.6 m. The thickness of the 
steel components in the ship bow varies from 7.5 mm to 20.5 mm. 

 
Figure 3. (a) FE model of the ship bow and (b) structural mesh. 

2.3. Material modelling 
The extended Karagozian & Case Rel3 (MAT_72Rel3) material model was used for the concrete in the 
pontoon [5]. This material model has been widely employed to model the dynamic behaviour of concrete 
including plasticity and damage softening after failure. This material model can automatically generate 
stress and strain parameter by only specifying the compressive stress. Therefore, no stress-strain curve 
is required for the concrete material. The model has been proven yielding reliable numerical simulations 
of concrete material damage to shock and impact loads. For the concrete in the pontoon wall, 
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compressive strength of 60 MPa is used. Concrete failure is considered by utilizing the erosion algorithm 
MAT_ADD_EROSION with a failure strain of 0.1 [14].  

The material model MAT_PIECEWISE_LINEAR_PLASTICITY was employed for the steel 
reinforcements and tendons. The reinforcements are made of normal mild steel while the tendons are 
made by high strength steel strands. A user-defined power-law hardening material model was for the 
steel in the ship bow which has a characteristic strength of 275 MPa. The stress-strain curve of the steel 
used for the ship bow is shown in Figure 4. Detailed parameters for all materials are listed in Table 1. 

 
Figure 4. Stress-strain curve of the steel in the ship bow 

 
Table 1: Parameters of concrete and steel materials. 

Materials Items Values 

Concrete 

Density 2400 kg/m3 
Poisson’s ratio 0.2 

Compressive strength 60 MPa 
Failure strain 0.1 

Steel 
(Reinforcements) 

Density 7850 kg/m3 
Poisson’s ratio 0.3 

Young’s modulus 2.1E11 
Yield stress 275 MPa 

Failure strain 0.35 

 
Steel 

(Tendons) 

Density 7850 kg/m3 
Poisson’s ratio 0.3 

Young’s modulus 2.1E11 
Yield stress 1860 MPa 

Failure strain 0.35 

Steel 
(Ship bow) 

Density 7890 kg/m3 
Young’s modulus 210 GPa 

Poisson’s ratio 0.3 
Yield stress 275 MPa 

Strength index 740 MPa 
Strain index 0.24 
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3. Numerical results 

3.1. Impact force and structural damage 
In the simulation, the ship bow collided with the pontoon walls at a constant speed of 10 m/s. All nodes 
at the four edges of the pontoon wall were fixed in all degrees of freedom.  

As shown in Figure 5, the impact force increases from zero until 35 MN at 0.7 m ship displacement 
due to the crushing of the ship bow. Later, the general force level is between 30 MN and 40 MN due to 
the gradual engage and damage of internal bow frames and decks. The RC wall with a thickness of 0.9 
m can resist the bulb impact with very limited spalling damages on the surface. Major damage occurs 
in the ship bulb, which dominates the energy dissipation as shown in Figure 6.  
 

 

Figure 5. Force-displacement curves for ship bow collision with the 0.9 m thick pontoon wall. 

 
 

Figure 6. Structural damage for ship bow collision with the 0.9 m thick pontoon wall. 
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3.2. Effect of pontoon wall thickness 
Further, it is interesting to analyze how the pontoon wall thickness affects the collision response of the 
pontoon wall and the ship bow. Numerical simulations are conducted for pontoon walls with smaller 
thicknesses of 0.7 m and 0.8 m.  

Figure 7 shows that both the 0.7 m and 0.8 m thick pontoon walls are unable to resist the impact of 
the ship bow. The punching damage of the pontoon wall is associated with a sudden drop in the 
resistance. A thinner wall fails earlier and results in a lower energy absorption ability. The energy 
dissipated for 0.8 m thick wall is about 60 MJ while only 18 MJ collision energy is dissipated for the 
0.7 m thick wall as shown in Figure 7 (b). This shows that the structural damage is very sensitive to the 
relative strength of the ship bulb and the pontoon wall. The major deformation switches from the ship 
to the pontoon when the wall thickness is reduced from 0.9 m to 0.8 m or less. 
Figure 8 shows the side views of the 0.7 m thick pontoon at various ship displacements. It is obvious 
that the bulb collision-induced damage is concentrated at the impacted area. A localized punching shear 
failure can be observed around the impacted region. Similar damage mode is also observed for the 0.8 
m thick pontoon wall. 
 

  

Figure 7. (a) Force-displacement curves and (b) energy dissipation curves for RC walls with different thickness. 

 

 
Figure 8. Side view of the strain profiles for the 0.7 m RC wall at various ship displacement. 
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4. Simplified method 
In the preliminary bridge design phase, it is often difficult to conduct detailed numerical analyses with 
high-resolution FE models. It is more desirable that simplified design approaches can be used in the 
early design phase. In this paper, a design procedure, which can be used for punching shear failure 
prediction of concrete pontoon walls subjected to ship bulb collisions, is proposed.  
For punching shear design of concrete slabs, it is reported [15] that the critical shear crack theory (CSCT) 
proposed by Muttoni [16] which includes the size effect, yields better results than the design codes ACI 
318-14 [17] and Eurocode 2 [18]. Consequently, the CSCT method is used to predict the punching shear 
capacity of pontoon walls against ship bulb collisions in this study. 

In the CSCT method, the punching shear capacity is determined as the intersection between the 
failure criterion and the load-rotation curve. The failure criterion is defined by a relationship between 
the punching shear capacity (VC) of a slab and the rotation (ψ) of the slab. The shear demand is expressed 
by the impact load (Vd) - slab rotation curve. A semi-empirical failure criterion which relates the 
punching shear capacity to the rotation of the structure was proposed by Muttoni [9] as 
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where u0 is the perimeter of the critical section for punching shear and d is the effective depth of the 
wall. fc is the average cylinder compressive strength of concrete. 

𝑑𝑑
𝑑𝑑𝑔𝑔0+𝑑𝑑𝑔𝑔

 is a size coefficient that 
accounts for the wall thickness and aggregate size. 𝑑𝑑𝑔𝑔  is the maximum aggregate size and 𝑑𝑑𝑔𝑔0  is a 
reference size equal to 16 mm. For a pontoon wall structure, it is recommended to take the maximum 
aggregate size 𝑑𝑑𝑔𝑔 no larger than one-third of the effective depth d [19].  

The load-rotation relationship can be simplified by assuming a parabola with a 3/2 exponent for the 
rotation as a function of the load-flexural strength ratio 𝑉𝑉𝑑𝑑

𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
. The flexural strength 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is equal to 8𝑚𝑚𝑑𝑑, 

where 𝑚𝑚𝑑𝑑 is the yield moment of the slab. The load-rotation relationship can be obtained by 
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where L is the main span of the slab. fs and Es are the yield strength and modulus of elasticity of the 
reinforcements. 

The failure criteria of the RC walls with 0.7 m, 0.8 m, and 0.9 m calculated with Eq. (1) while the 
load-rotation relationships are obtained from Eq. (2). The punching shear capacity can be readily 
obtained as the intersections of the failure criteria and the load-rotation curves. Here, we obtain a 
punching shear capacity at the intersections of 33 MN, 44 MN, and 59 MN for the 0.7 m, 0.8 m, and 0.9 
m thick pontoon wall, respectively.  

The obtained punching shear capacity of the three RC pontoon walls are compared with the ship bulb 
strength as shown in Figure 9. It can be observed the punching shear capacities of 0.7 m and 0.8 m thick 
pontoon walls are smaller than the maximum ship bulb strength. The 0.9 m thick RC pontoon wall, 
however, has a sufficient capacity compared with the ship bulb strength. The predictions are in line with 
the numerical observations where punching shear failure occurs in the 0.8 m and 0.7 m thick pontoon 
walls while the 0.9 m thick pontoon wall remains intact. 
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Figure 9. Comparison of impact demand and punching shear capacity for the RC pontoon walls. 

5. Conclusions 
The findings of the current study are summarized as follows: 

1. The 0.9 m thick RC pontoon wall can resist the bow impact of the 20,000-ton container ship. 
Severe damage occurs in the ship bow which dissipates the majority of the collision energy. The 
pontoon wall, however, has very limited damage and can maintain its integrity after the 
collision. 

2. Further reducing the pontoon wall thickness to 0.8 m or 0.7 m will result in a punching shear 
failure in the pontoon wall under the collision from the same container ship bow. The ship bow 
has a small local deformation upon contact. 

3. A design check procedure that can be used for design RC pontoon walls against ship bulb 
collisions is proposed. The impact force and damage initiation obtained from the design check 
procedure agree well with the numerical results. This indicates that the proposed analytical 
punching shear failure model captures the essential physical effects of the collisions. 
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