
lable at ScienceDirect

Digital Investigation 29 (2019) S51eS60
Contents lists avai
Digital Investigation

journal homepage: www.elsevier .com/locate/d i in
DFRWS 2019 USA d Proceedings of the Nineteenth Annual DFRWS USA
Using NTFS Cluster Allocation Behavior to Find the Location of User
Data

Martin Karresand a, b, *, Stefan Axelsson a, c, Geir Olav Dyrkolbotn a

a Department of Information Security and Communication Technology (IIK), Norwegian University of Science and Technology (NTNU), Norway
b Division of Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR), Swedish Defence Research Agency
(FOI), Sweden
c Halmstad University, Sweden
a r t i c l e i n f o

Article history:

Keywords:
Digital forensics
File carving
Partition content map
Allocation algorithm
NTFS
* Corresponding author. Department of Information
Technology (IIK), Norwegian University of Science and

E-mail address: martin.karresand@ntnu.no (M. Ka

https://doi.org/10.1016/j.diin.2019.04.018
1742-2876/© 2019 The Author(s). Published by Elsevie
licenses/by-nc-nd/4.0/).
a b s t r a c t

Digital forensics is heavily affected by the large and increasing amount of data to be processed. To solve
the problem there is ongoing research to find more efficient carving algorithms, use parallel processing
in the cloud, and reduce the amount of data by filtering uninteresting files.

Our approach builds on the principle of searching where it is more probable to find what you are
looking for. We therefore have empirically studied the behavior of the cluster allocation algorithm(s) in
the New Technology File System (NTFS) to see where new data is actually placed on disk. The experiment
consisted of randomly writing, increasing, reducing and deleting files in 32 newly installed Windows 7, 8,
8.1 and 10 virtual computers using VirtualBox. The result show that data are (as expected) more
frequently allocated closer to the middle of the disk. Hence that area should be getting higher attention
during a digital forensic investigation of a NTFS formatted hard disk.

Knowledge of the probable position of user data can be used by a forensic investigator to prioritize
relevant areas in storage media, without the need for a working file system. It can also be used to increase
the efficiency of hash-based carving by dynamically changing the sampling frequency. Our findings also
contributes to the digital forensics processes in general, which can now be focused on the interesting
regions on storage devices, increasing the probability of getting relevant results faster.
© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The amount of data to be handled during digital forensic case
work is rapidly increasing and is a major challenge. The problem
has been of concern to the digital forensic field for many years
(Gladyshev and James, 2017; European Police Office (Europol),
2016; Quick and Choo, 2014a; Breitinger et al., 2013; Roussev,
2012), but the problem has not yet been solved. We therefore
propose to use the principle of searching where it is more probable
to find what you are looking for, instead of regarding every new
storage media as a black box filled with randomly distributed data.

The principle is especially valid for the digital forensic sub-fields
of file carving and hash-based carving, which are performed when
there is no file system available. Instead the processes are based on
using only the properties of the stored data itself (Poisel and Tjoa,
2013; Pal and Memon, 2009). That principle connects this article
Security and Communication
Technology (NTNU), Norway.
rresand).

r Ltd on behalf of DFRWS. This is a
to our previous work on determining the data type (file type) of
fragmented data by using histograms of the frequency of bytes, byte
pairs and the difference between consecutive byte values
(Karresand, 2008; Karresand and Shahmehri, 2008, 2007,
2006a,b,c). However, this time we determine the most probable
position of user data, not the exact type of it.

When performing hash-based carving, hashes of blocks of a
suspects hard drive are compared to hashes of blocks of known
suspicious material. Since it is unfeasible to compare all hashes of a
hard drive with all suspicious material hashes different strategies,
techniques and algorithms have been developed (Garfinkel and
McCarrin, 2015; Young et al., 2012; Foster, 2012; Garfinkel et al.,
2010; Collange et al., 2009).

Different forms of file carving is highly valuable to the digital
forensic investigator, but is CPU and I/O intense, hence much effort
is put into mitigating the increasing amounts of data by different
means. In a survey by Quick and Choo (2014b) the following con-
cepts are listed; data mining, data reduction and subsets, triage,
intelligence analysis and digital intelligence, distributed and
n open access article under the CC BY-NC-ND license (http://creativecommons.org/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:martin.karresand@ntnu.no
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2019.04.018&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2019.04.018
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2019.04.018
https://doi.org/10.1016/j.diin.2019.04.018

M. Karresand et al. / Digital Investigation 29 (2019) S51eS60S52
parallel processing, visualization, digital forensics as a service
(DFaaS) and different artificial intelligence techniques.

The main focus of a digital forensic investigation are user ac-
tivity and commonly the who, what, when, where, why and how
(5WH) questions are meant to be answered. The activity comprises
anything that has bearing on the user and his or her usage of the
computer, i. e. system logs and files created by the user. Often such
data are unique, because the probability of two users or processes
independently creating exactly the same data is very low. Also
shared data (not unique to a specific user) are of course of interest
to the digital forensic investigator. The Windows operating system
(OS) cluster allocation algorithms together with NTFS cannot
differentiate between unique data and shared data, hence the data
types will be stored together.

We define user data as any data that is created from the user's
(daily) activity, regardless of its uniqueness. Data that is created
during the installation and usage preparation (configuration) pha-
ses, before the user starts using the computer, we call static data.

By differentiating between user data and static data and
combine that with the cluster allocation pattern in a collection of
NTFS partitions we createwhat can be called a precomputedmap of
user data, showing the probability of finding user data at different
Logical Block Addressing (LBA) position in generic NTFS formatted
storage media. The map can then be used in the same way as a
geographical map is used for planning, executing and following up
activities in the physical world. The precomputed map is therefore
meant to be reusable between investigations.

The mapping process is the same regardless of the type of
storage media (solid-state drive (SSD) or mechanical drive),
because we collect the data at the logical (LBA) level of the hard
drive controller. In an SSDs the flash based physical storage is
hidden by the Flash Translation Layer (FTL) (Afonin, 2019; Buckel,
2014; Reiter et al., 2014; Barbara, 2014; Chung et al., 2009), which
also hides any wear leveling or other low level functions of the
controller. If an SSD is accessed using Factory Access Mode (FAM)
(Afonin, 2019) during an investigation the FTL is bypassed. How-
ever, themap can still be used, but in conjunctionwith a translation
table to restore the logical layout of the disk. The translation table is
stored on disk and accessible through the FAM.

To be able to empirically study the behavior of the cluster
allocation algorithm used by Windows in NTFS we use virtual
machines freshly installed with four different versions of Microsoft
Windows (7, 8, 8.1 and 10). Each machine is powered on, a file
operation (write, expand, shrink and delete files with a weighted
random distribution) is performed on its internal (virtual) hard
drive, which is then powered down and finally a copy of the $Bit-
map file from the $MFT is extracted externally (via the host). This
process is iterated 100001 times using 32 virtual machines in 8
nodes in a computer cluster. The $Bitmap file copies were then used
to find the difference in cluster allocation status between each
iteration by making a bitwise comparison between the files. Finally
the usage frequency of each NTFS file system cluster is calculated
and used to create a generic map of the allocation activity at
different LBA positions in the partitions.

The work presented in this article complements a previous
article (Karresand et al., 2019) where we studied the possibility to
use real-world drives to create a map of the location of user data.
Themapwas created using unique Secure Hash Algorithm 1 (SHA1)
hashes of 512 B sectors. The unique hashes were assumed to
represent data created by the user because of the low probability of
1 We had to break the experiment prematurely after 16 days for a number of
machines due to time constraints. These machines had then performed at least
9035 iterations.
several users creating data having exactly the same hash values,
unless they shared the data.

The rest of this paper is organized as follows: The remaining
parts of Section sec:introduction presents related work and our
contributions. In Section sec:experiment we describe the experi-
mental platform and how the experiment was implemented. Sec-
tion sec:result presents the results of the experiment and in Section
sec:discussion we discuss the effects and implications of our result
to the research field of hash-based carving and also to other areas
within and related to digital forensics. Section sec:concl-future-
work concludes the work and presents ideas of future work to be
done.
1.1. Background

Silberschatz et al. (2012) describe in detail how file systems are
constructed. A file system is used to keep track of data stored on
secondary storage. It can be organized in different ways, but all
share some common properties; the addressing of the physical
storage is abstracted by the file system into logical addresses and
the position of the stored data is determined by an allocation al-
gorithm. All modern file systems use index allocation, where the
addresses of the file data blocks are held in an index separated from
a file's data. This allocation strategy does not suffer from external
fragmentation, but can waste disk space, especially for small files
requiring a full indexmeta data block to hold just a few index posts.

There are also a number of algorithms used for handling the free
space that is to be populated by new files. Silberschatz et al. (2012)
list three of them, they are:

First fitwhere the first available free space large enough to hold
the new file is used. The search for free space can either be from the
current position or the start of the partition.

Best fitwhere the free space best fitting the new file is used, i. e.
giving the smallest remaining free space. This requires all the free
spaces available to be compared before the best can be chosen.

Worst fit where the free space having the worst fit to the new
file is chosen. This is the opposite to best fit. The idea is to give the
largest possible remaining free spaces, which then can be used to
hold future files.

The first fit, best fit andworst fit free space allocation algorithms
are not specific to storage of data on disk, they are also used in for
example memory allocation in RAM (Silberschatz et al., 2012).

Based on the information given by Microsoft (2018) and Hughes
(2009) Windows in combination with NTFS is using a index allo-
cation strategy. The problem of space being wasted when using
index allocation is in NTFS solved by storing the data of smaller files
(up to approximately 700 B2) in the meta data records themselves.
Microsoft (2018) states that the meta data in NTFS is held in the
Master File Table (MFT), which in turn hold the MFT records asso-
ciated with the files in the file system. According to Carrier (2005)
the best fit algorithm is used by Windows XP on NTFS formatted
hard disks. Since the book was written in 2005 it does not cover the
allocation algorithms used by Windows 7 and newer. There are
indications of the actual behavior of the allocation algorithm in a
Superuser Q&A, where groups of free clusters are said to be allo-
cated in descending order of size and ascending order of LBA
(Superuser, 2017).

When formatting an NTFS partition 12.5% of the space is
reserved for the MFT as default (Microsoft, 2018). The MFT records
2 The maximum size of an internal $Data attribute varies depending on the size
of other attributes stored in the MFT record. Most sources give a maximum internal
$Data attribute size of 600e700 bytes. Microsoft reports a 900 byte limit Microsoft
(2018).

M. Karresand et al. / Digital Investigation 29 (2019) S51eS60 S53
are 1 KiB in size and usually the size of the smallest allocatable unit
(called cluster) in NTFS is 4 KiB. The allocation status of every
cluster in the file system is stored in the $Bitmap file, which is re-
cord number 6 in the MFT. Each bit in the $Bitmap file represents
one cluster in ascending LBA order. If a cluster is allocated the
corresponding bit in the $Bitmap file is set to 1, hence 0 represents
an unallocated cluster.

1.2. Related work

We have not found any related work directly dealing with the
idea of precomputed maps of user data location. Instead we list
related work from a number of digital forensic sub-fields that have
bearing on our work.

1.3. Hash-based carving

The digital forensics research field of hash-based carving com-
pares hashes of known file blocks to hashes of equally sized blocks
from a suspects hard drive. In that way even files that are partially
overwritten or damaged can be identified. The roots of the research
field can be traced back to the spamsum tool by Tridgell (2002).
According to Garfinkel one of the first times hashes are used for file
carving is during the Digital Forensic ResearchWorkshop (DFRWS)
2006 Carving Challenge (Garfinkel and McCarrin, 2015). Later the
spamsum tool is used as a basis for an article by Kornblum (2006)
on piecewise hashing and what is now known as approximate
matching. The concept of using hashes for file carving is further
studied by Dandass et al. (2008) in 2008 in an article presenting an
empirical analysis of disk sector hashes. The term hash-based
carving is first introduced by Collange et al. (2009) exploring the
possibility of using a Graphics Processing Unit (GPU) for comparing
hashes of 512 byte sections of known files with hashes of equally
sized sectors from disk images.

When Garfinkel and McCarrin use hashes for file carving in the
DFRWS 2006 Carving Challenge (Garfinkel and McCarrin, 2015)
they use hashes of parts of files found on the internet to find traces
of the same files in the challenge image. These experiences lead to
the development of the frag_find tool (Garfinkel et al., 2010). In
connection with the frag_find article the authors discuss the
optimal size of the data blocks to hash. They conclude that the size
should be equal to the sector size, without stating if they mean
512 B or 4 KiB sectors. Garfinkel and McCarrin (2015) elaborate
further on the size of hashed blocks and state that starting with
Windows NT 4.0 the default minimum allocation unit in NTFS is 4
KiB (Microsoft, 2015).

Foster (2012) discusses the problem of data shared across files,
stating that “the block of NULs is the most common block in our
corpus” (Foster, 2012, p. 15), relating them to the NULL padding of
files. The problem of the large amount of data to handle is also
discussed. Young et al. (2012) continues the work further devel-
oping Foster's ideas. The authors discuss the optimal block size,
how to handle a large amount of data, efficient hash algorithms,
good data sets to use and common blocks of files.

Random sampling is used to improve the speed of hash-based
carving in several articles (Garfinkel and McCarrin, 2015; Foster,
2012; Garfinkel et al., 2010). To find a suitable sampling fre-
quency the problem is regarded as sampling without replacement.
Using a higher sampling frequency may increase the detection rate,
but has a negative impact on the execution speed. The problem is to
find a suitable balance between the two alternatives.

1.4. Data persistence

The concept of data persistence is relevant to our work because
the persistence at different areas of storage media indicates that
they are not reused. This information is valuable when creating a
precomputed map of a generic storage media.

Jones et al. (2016) have created a framework to enable studies of
(deleted) file persistence in storage media. They use differential
forensic analysis to compare snapshots of file systems in use and
follow the decay of deleted files over time.

Fairbanks and Garfinkel (2012) present 12 factors affecting data
persistence in storage media. Fairbanks (2015, 2012) also describes
the low-level functions of ext4 and their effect on digital forensics.

1.5. Data reduction

Quick and Choo (2016, 2014a) propose methods to reduce the
amount of data needed to be analyzed in digital forensic in-
vestigations. Their approach builds on extracting specific files using
a list of key files and then working on the subset of files. This re-
quires a working file system, limiting the methods applicability.
Also the list of key files needs to be constantly updated.

Rowe (2014) has a similar approach as Quick and Choo, although
more technical. He compares nine methods for identifying unin-
teresting files, defined as “those files whose contents do not pro-
vide forensically useful information about users of a drive.” (Rowe,
2014, p. 86). Themethods studied by Rowe all require aworking file
system, which is not consistent with the foundation of file carving.

1.6. Data mapping

Key (2012) presents an EnScript module to the EnCase software
which creates a map of the recoverable sectors of a file found in a
file system. The module can handle situations where other tools
does not work, for example when recovering partially damaged
files. It is very processor intensive and therefore can only create
maps of a few files at a time.

Gladyshev and James (2017) study the problem of file carving
from a decision-theoretic point of view. They suggest a model
where storage media is sampled with a frequency based on
different properties of the hard disk and the file type that is to be
found. In some specific situations their carving model outperforms
standard linear carving algorithms, but their solution is not yet
generally applicable. Gladyshev and James (2017) mention using
the distribution of data on disk, but do not seem to relate that to the
probability of finding user data at different LBA positions in storage
media.

In two articles by van Baar et al. (2014) and van Beek et al. (2015)
outlining the DFaaS system Hansken (van Beek et al., 2015) and its
predecessor Xiraf (van Baar et al., 2014) the concept of non-linear
extraction of data from images is discussed. Both van Baar and
van Beek suggest that the MFT records (the file system meta data)
of an NTFS partition are extracted first. The MFT records are then
used to find other interesting areas of the file system. van Baar and
van Beek also suggest that the analysis process is used to influence
the imaging process by having specified parts being prioritized.

2. Experiment

Our experiment is based on iterating over the same process a
predefined number of times. The process contains the following
steps:

1. Boot a virtual machine.
2. Randomly (with bias) either create, delete, expand or shrink a

file within the virtual machine's NTFS file system.
3. Shut down the machine.

Table 2
The four file operations and their numerical repre-
sentation used in the Python scripts.

Number File operation

0 create
1 delete
2 increase
3 decrease

M. Karresand et al. / Digital Investigation 29 (2019) S51eS60S54
4. Extract the $Bitmap file from the virtual hard disk (using dd
from the host)

The experiment uses freshly installed virtual machines (Vir-
tualBox) running Windows versions 7, 8, 8.1 and 10. The experi-
ment empirically studies the Windows cluster allocation algorithm
and its allocation frequency at different LBA positions.

Each virtual machine is installed with its specific Windows
version using standard parameters. Then Python 2.7 is added
together with the file operation scripts and an auto started .bat

script, which is small enough to fit into an MFT record and hence
does not require any new cluster allocation outside the MFT. The
path environmental parameter is then modified to reflect the Py-
thon installation. Finally the security level is lowered to allow login
without password. The goal is to keep the NTFS file system as
pristine as possible to allow us to study the allocation algorithm
from the start of the life of the file system. There are however a
number of system processes, which is beyond our control, that also
modifies the file system in each iteration.

Even though we do not have full control of the cluster allocation
and deallocation during an iteration in the experiment we let 16
virtual machines use exactly the same file operation pattern to test
if there is any deterministic behavior connected to the allocation, i.
e. any similarity of the allocation patterns can be found. Hypo-
thetically it should be, since the virtual machines within each
Windows version are exact copies of each other. We do not use the
clone function of VirtualBox when distributing the virtual ma-
chines to the computer cluster nodes, we use scp to copy them to
keep them identical. We also verify the copies using SHA1 hash
summing, to verify that they are identical.

Unfortunately one virtual machine had to be rebooted when the
experiment was started and therefore was disqualified from the
similarity test. Due to unforeseen behavior of the virtual machines
(machine hung during boot, system messages locking the shut
down process etcetera) a total of 5 virtual machines were dis-
qualified from the similarity test at the end of the experiment,
giving 11 that were possible to compare.

To be able to generalize the results we also performed a small
experiment where we used virtual machines with larger hard
drives (256 GiB). Windows 8 was excluded from that experiment
due to its slow power cycle. Each machine was setup in the same
way as the small hard disk machines and the same file operation
pattern as in the similarity test with 16 machines was used.

2.1. Platform

The experiment is run on eight nodes in a large computer
cluster. Each node is running Gentoo Linux 10.1 with kernel 4.18.13
and VirtualBox 5.2.20. The nodes are equipped with Intel Xeon E3-
1230 v2 3.3 GHz CPUs, 500 GB Samsung 860 EVO SSDs and 32 GiB of
RAM. The cluster is managed by another organization and we are
not allowed to make any changes to the host and its OS. We
therefore cannot install any specialized software, such as the Sleuth
Kit by Carrier (2014) on the nodes.

We run four virtual machines in each node, one for each version
of Windows in our test (see Table 1). The virtual machines are
Table 1
The four versions of Windows used in our experiment.

Name Version

Windows 7 Professional SP 1 7601
Windows 8 Enterprise 9200
Windows 8.1 Enterprise 9600
Windows 10 Consumer 1803
copied between the nodes and hence identical. The $Bitmap file
from the MFT is used to check which clusters are affected by each
file operation. Since we shut down the virtual machine as the
second last step in every iteration any allocation changes are
flushed (written) to the $Bitmap file. Thus the only difference be-
tween two consecutive $Bitmap file copies are the allocation
changes induced by the latest file operation and any active system
processes. The changes can contain both deallocation and alloca-
tion at the same time when a file is expanded and therefore moved
to a new location. Likewise any changes to the MFT files, for
example expansion of the MFT itself, will be manifested in the
$Bitmap copies.

To enable us to extract the $Bitmap file after each process iter-
ation the virtual machines are configured to use fixed size virtual
disks. This type of disks are given their full size directly when
created, which makes them behave as real hard disks, i. e. they are
not affected by the virtualization layer of VirtualBox (TerryE and
mpack, 2018). The virtual disk files therefore can be handled by
standard Linux file carving tools, such as dd.3

We have limited the size of the fixed virtual disks to 64 GiB to be
able to have four virtual machines in each node and still have space
for the $Bitmap file copies, since each $Bitmap copy is 2 MiB large.
The size is small compared to the current standard hard disks, but
still large enough to be found in cheaper or older computers
equipped with SSD hard disks.

Each virtual machine has Python 2.7 installed together with four
Python scripts, one for each file operation. There is also an auto
started .bat script used to send a signal when the virtual machine
is completely started. The Python scripts are placed in a directory
shared with the host and does not affect the allocation pattern of
the virtual disk. For the communication between the host script
and the virtual machine scripts we use the VBoxManage interface.
Each virtual machine has its own virtual disk shared with the host
and hence its own copies of the scripts. This configuration is used to
isolate the machines from each other to minimize the risk of un-
specified behavior due to several machines reading the same file.
The file operations are executed as the local user of the virtual
machine to simulate the activity of a real user.
2.2. Implementation

The virtual machines are each controlled by a Python script on
the host node. The script is governed by a file containing randomly
selected operations (see Table 2).

The selection of file operations is biased (weighted) and the size
of the files varied within a size range. This is done by using a Python
list (vector) containing different amounts of the numbers 0 to 3
based on the chosen bias. Each number in Table 2 represents a file
operation and the amount of a specific number relative to the total
3 There is a VirtualBox specific header at the beginning of the.vdi file containing
the virtual hard disk. This header has to be skipped to reach the actual hard disk
part. The header size is measured in one MiB blocks, usually it is two blocks large
(TerryE and mpack, 2018).

Fig. 1. The simulated user behavior, i. e. the total amount of data stored in the NTFS
partition after each iteration, of the 16 virtual machines that were used for the simi-
larity test. The plot shows 10000 iterations. The Windows 8 machines were run at least
9035 iterations before being shut down, the rest of the virtual machines executed all
10000 iterations.

M. Karresand et al. / Digital Investigation 29 (2019) S51eS60 S55
amount of operations gives its bias. The bias value of an operation is

calculated as biasop ¼ factoropP
factors

. The selection of a file operation is

done by randomly choosing a value from the file operation vector.
The vector [0, 0, 0, 0, 1, 1, 2, 3] will for example give 50% create
operations, 25% delete operations and 12.5% increase and decrease
operations respectively. The bias of each file operation in the
experiment can be seen in Table 3.

There are also limits on the usage of the storage area to simulate
a user that fills a hard disk with files over time and then erases a
certain amount when the hard disk is believed to be full. The limits
are based on our estimation of the behavior of a typical user. The
write start/stop and delete start/stop limits in Table 3 is used to
protect the virtual disk from being emptied or completely filled. If
the current amount of data (controlled by the main script) in the
virtual machine falls outside of the start limit multiplied with the
total size (see Table 3) it triggers write or delete operations until the
stop limit multiplied with the total size is reached. The degree of
utilization of the partition for the simulated user behavior of the 16
machine similarity test can be seen in Fig. 1.

We have included the possibility to simulate the behavior of a
user with regard to the size of the files operated on. Our assumption
is that a user who use the computer for web surfing will create
mostly small files (cached data and logs), a file sharing user will
create a high amount of large files and a user storing a large amount
of images will probably create mostly small to medium sized files.
We therefore use size factors which define a file size class, which is
measured in 512 B sectors. This function is implemented using a
Python list in the same way as the file operation bias. The list is
shown as the size factors in Table 3. The chosen factor is multiplied
with a random number from the random range giving the number
of sector to be affected (written, increased or decreased).

The script on the host checks if a virtual machine is started
before it sends the file operation commands. There is also a check of
the exit status of the virtual machine scripts that only logs suc-
cessful executions. If the exit status indicates an error the iteration
counter is decremented and the file operation is repeated. This
behavior might induce extra allocations changes due to the extra
power cycling of the virtual machine, but we accept them because
occasionally a real user might also be forced to reboot a computer.

Every file operation is logged in a file external to the virtual disk.
The log contains the sequence number, the action performed, the
name of the affected file, the size factors, the current random size
number and the current file size. The log file is stored in a Vir-
tualBox share and hence does not interfere with allocation algo-
rithm of the studied file system. We have chosen not to specifically
store the file size difference for the increase and decrease opera-
tions, because they can be calculated from the stored transactions if
Table 3
The settings used to generate the lists governing the behavior of the file operations
on the virtual machines and other relevant settings used in the experiment. The
settings are given as sectors of 512 B where applicable. The bias of the write/delete/

increase/decrease operations are calculated as biasop ¼ factoropP
factors

.

Setting Ident. behavior Uniq. behavior

Size factors 8/2048 8/8/128/2048
Writes 10 10
Deletes 9 9
Increases 11 14
Decreases 10 7
Random range 1024 1024
Write start/stop 0.05/0.3 0.05/0.3
Delete start/stop 0.95/0.7 0.95/0.7
Total size 112000000 112000000
needed.
The three Python scripts that execute write operations on the

virtual machines are set to write the iteration sequence number
into every 512 byte sector of the file. This enables us to see the raw
write pattern in the virtual disk file if needed. The three scripts are
also given the iteration sequence number as the file name for each
file to further increase the traceability. The create and decrease file
scripts both write new files (use the wb flag in the Python open

command). This behavior might in the case of a file size decrease
lead to the deallocation of the original clusters and the allocation of
a smaller amount of new clusters, or even deallocation and allo-
cation of the same clusters depending on the type of allocation
algorithm used. The increase script appends new data at the end to
an existing file, using the ab flag. Therefore the data written to disk
of increased files can contain two or more sequence numbers.

Since the write operations are looped the size factor number of
times the OS does not know the final size of the file and therefore
can only optimize the allocation strategy for each write. This might
induce a more stochastic behavior of the allocation algorithm and
possibly hide any deterministic behavioral pattern from us, but that
would lead to an underestimation of the experimental results,
which is better than an overestimation.

To be able to detect the changes to the allocation status of the
NTFS clusters of the virtual hard drive we have chosen to use the
NTFS $Bitmap file. The file is extracted after each file operation as
the last step in each iteration. Since the $Bitmap give the allocation
status of 4 KiB NTFS clusters as the smallest unit we do not see any
changes made at the logical 512 B sector level. Instead of using the
$Bitmap file we can extract and compare the full virtual hard disk
for each file operation to be able to detect any differences at the
512 B level. That would however require us to extract, compare and
store 215 times more data (64 GiB instead of 2 MiB) for each iter-
ation.We therefore use 4 KiB blocks as the smallest units for the file
operations.

The $Bitmap file copies from each iteration are extracted using
the Linux dd tool. Using of the dd tool requires the position of the
$Bitmap file to be known and static. The size of the $Bitmap file
should not change since we keep the disk and partition sizes con-
stant and hence it should not have to be extended or moved by
NTFS and its position is consequently static. To find the position of
the $Bitmap file before the experiment is started we use the istat

Fig. 2. A map of the mean allocation frequency for all 32 virtual machines having NTFS
formatted partitions in 64 GiB disks running Windows 7, 8, 8.1 and 10. The resolution is
set to 64 groups.

M. Karresand et al. / Digital Investigation 29 (2019) S51eS60S56
tool from The Sleuth Kit by Carrier (2014) on the virtual disk im-
ages, before they are copied to the hosts. The istat tool is run on an
external computer (not a cluster node) because we are not allowed
to install new software in the cluster nodes and hence cannot for
example use the icat tool from the Sleuth Kit (Carrier, 2014) or the
idifference tool (Garfinkel and Fairbanks, 2012) during the
experiment. Using the idifference tool would also force us to
perform post-processing since the tool only reports differences at
the file level, i. e. we would have to use the istat (Carrier, 2014) to
find what clusters each file allocates and then do a difference
calculation. Consequently the idifference tool is of no use to us.

The virtual hard disks in our experiment are not encrypted
because neither block device encryption (for example BitLocker) nor
stacked file system encryption (for example EFS) affect the allocation
strategy of the OS or file system, since they act either above or
below the file system (Arch Linux, 2018; Gattol, 2015). Adding
encryption to the virtual hard disks would therefore put an
execution overhead on the experiment without affecting the data
allocation.

To be able to estimate the position of the bulk of the OS files in
the partitions we extract all existing files containing the string
“Windows” somewhere in their paths. We then filter out the files
containing “Users/” to avoid contaminating the result with user
data. The extraction is done after the experiment is finished to also
include any system files written during the file operations. To
further strengthen the result we also includ three real-life disks in
the OS file extraction. These three disks are taken from home user
computers and all have been used for at least a year.

2.3. Map creation

When the chosen number of iterations is reached we do a dif-
ferential analysis of each consecutive pair of $Bitmap copies
extracted as the last step in each iteration. This gives us the LBA
position for each change in allocation status for each file operation.
Since we cannot control the behavior of the OS any allocation
changes induced by the OS are also included. The probability of a
new file being larger than the system changes induced by its cre-
ation is high, because otherwise the file system would be very
inefficient. Hence the allocation changes introduced by the OS at
each iteration are negligible compared to the changes occurring
because of the file operation.

We then plot the $Bitmap changes from the previous step. All
deallocation posts are removed, because we only want to know the
allocation frequency of each LBA position and each allocation must
be preceded by a deallocation. The remaining posts are then merge
sorted in order of LBA position.

To reduce any noise in the plot we group equally sized areas of
the storage media together based on the position in the partition.
The number of groups is chosen based on the desired precision of
the map. Finally the mean of the allocation frequencies of the posts
in each group are calculated. These groups then make up the map,
which resolution depends on the number of groups.

3. Result

The $Bitmap files extracted during the experiment contain not
only traces of the file operations executed by our scripts, but also
any operations executed by the OS during each iteration. Especially
the start and stop phases of an iteration will induce changes to the
MFT of the file system. Hence the data will include clusters allo-
cated by the OS too, but that is a minor problem because the OS
activities often affects already allocated clusters. An MFT record is 1
KiB in size and the smallest allocatable unit in a 64 GiB NTFS
partition is 4 KiB, hence every fourth file creation will give rise to a
new cluster being allocated due to new MFT records being created.
Of course there are also for example log files written by the OS, but
when such a file grows and requires a new cluster to be allocated
the cluster position will most probably be found in the user data
allocation area. Consequently it will strengthen the result of the
experiment.

In Fig. 2 a plot of the allocation frequency at different LBA po-
sitions is shown. The plot is divided into 64 equally sized groups
based on LBA position. We have separated the plots for each of the
OSs in the experiment to enable a comparison of their behavior. As
can be seen the behavior of the OSs differ in the first part of the
partitions, as well as in the very last part. When formatting a hard
disk as NTFS a contiguous area of 12.5% of the partition space is
reserved for the MFT (Microsoft, 2018) as default. We have not
found any specification of the exact LBA position of this area, but we
have noticed that the MFT allocation starts at cluster 786432 in
every non-related NTFS formatted partition we have checked in
more than 35 computers running Windows 7 and above. Cluster
786432 corresponds to a position exactly 3 GiB into the partition,
hence close to the beginning of the partition. The size of the
reserved area can be changed by the user when formatting the
partition or by the OS if the MFT requires more space. As can be
seen in Fig. 2 Windows 7, 8.1 and 10 have a somewhat lower
amount of allocation changes at the start of the partition than
Windows 8. We can also see that the behavior of the older Win-
dows 7 differ from the other three Windows versions in the very
first part of the partitions.

After the area reserved for the MFT the OS, different software
from the initial installation and the user data reside. The minimum
requirement for free hard disk space for a Windows 7, 8, 8.1 and 10
installation is 20 GiB for 64-bit systems according to Microsoft
(2017b, a, c). Hence the 12.5% together with the OS files corre-
spond to approximately 45% of the space in our 64 GiB disks. The
distribution and positions of the system files (OS and installed
software) is uncertain, we have not been able to check the position
of every system file in the partitions due to the large amount of
work involved. What we know empirically is that the MFT starts its
allocation at exactly 3 GiB into the partitions, which correspond to
group 3 on the x-axis in Fig. 2.

Close to the middle of the partitions (see Fig. 2) there are large
disturbances in the plots for all versions but Windows 10. Ac-
cording to Carrier (2005) the 4 KiB $MFTMirr file, containing a
backup of the first four files in the MFT, is located at the middle of

Fig. 3. Amap of the mean allocation frequency using the same file operation pattern of
the 16 NTFS formatted partitions in 64 GiB disks running Windows 7, 8, 8.1 and 10. The
resolution is set to 64 groups.

Fig. 4. A map of the mean allocation frequency in NTFS formatted partitions in 256 GiB
hard disks running Windows 7, 8.1 and 10 and using the same file operation pattern.
The resolution is set to 64 groups.

M. Karresand et al. / Digital Investigation 29 (2019) S51eS60 S57
an NTFS partition. This might be true in Windows XP,4 but not for
the newer versions of Windows in our experiment. In these ma-
chines we have found the $MFTMirr file to be located at different
LBA positions, none of them at the middle of the partition. Still
Microsoft might have reserved the middle of the partition for other
special files or functions and therefore the dip in allocation fre-
quency at that position in Fig. 2.

The allocation frequency of the 16 virtual machines that were
using the same file operation pattern can be seen in Fig. 3. Since two
Windows 8.1 machines and tree Windows 10 machines broke
down during the test we have normalized the result by multiplying
the numbers forWindows 8.1 with 2 andwith 4 forWindows 10. As
can be seen the allocation behavior of the different versions of
Windows are not similar, although they all performed exactly the
same file operations. The deviation might originate from effects in
the broken down machines. Still the differences are larger than
what can be expected from losing the allocation of a few files. The
allocation behaviour is notmuch different from the result of the full
test using all 32 virtual machines. One apparent difference is the
dip at the middle of the partition, which is deeper for Windows 10
in the sub-experiment than for the full experiment shown in Fig. 2.
Another difference is the relative higher allocation frequency of
Windows 8 in groups 15 to 35 compared to the other Windows
versions in the sub-experiment (see Fig. 3) than in the full exper-
iment. Hence we can conclude that although similar, the behavior
of the allocation algorithm in different versions of Windows are
deviating.

The result of the experiment with larger hard disks running the
same file operations as 16 of the small hard disk machines is shown
in Fig. 4. The experiment only included three different versions of
Windows (7, 8.1 and 10) because of time and space constraints. Yet
it is possible to see similarities with the results of the other
experiments.

The plots in Figs. 2, 3 and 4 all have a common shape with only
small variations between them, which indicates that the allocation
algorithm is behaving the same way at least in the size span of 64
GiB to 256 GiB. The disturbance at the middle of the partitions is
less visible in 256 GiB hard disks than in the 64 GiB versions due to
their larger size in combinationwith the resolution being kept at 64
4 We have checked a number of partitions downloaded from the Real Data
Corpus (Digital Corpora, 2018) indicating this.
groups. These similarities between hard disks of different sizes
indicates that the result can be generalized to partitions with
different sizes, at least up to 256 GiB. The algorithm might still
behave differently in partitions larger than 256 GiB, but this is left
as future work due to the current limitations in the hardware
available to us.

We also inspected the allocation pattern using istat from the
Sleuth Kit by Carrier (2014) for some of the largest files present at
the end of the experiment in two randomly chosen virtual ma-
chines running Windows 7 and 10. The result showed that the files
were heavily fragmented and that the allocation algorithm had
allocated free areas in order of increasing size. There were noise in
the form of some small areas allocated in between the larger, but
the trend was clearly visible. We therefore also tested to create
eight new files in one of the virtual machines using a modified
create script that wrote consecutive numbers into every 512 byte
sector. This showed that the allocation pattern from the istat tool
was given in consecutive order and that the size of the allocated
areas increased towards the end of the partition also for new files.

The result of the experiment where we extract all files having
“Windows” in their path indicates that the OS files written during
installation are placed at the beginning of a partition, which can be
seen in Fig. 5. The result is based on the position of these files in
four virtual disks and three real-life disks. The real-life disks are
larger than the virtual disks and we have no control of the type of
user behavior for these hard disks. Still all hard disks show similar
behavior in the first part of the partitions.

The three real-life hard disks in Fig. 5 have their almost vertical
bend, which probably represents the end of the OS installation file
area, at a higher LBA position than the smaller virtual disks (cluster
number 6000000 instead of 2500000). The Windows 7 SP1 parti-
tion even has two vertical bends, the second bend probably origi-
nates from the Service Pack installation. The reason for the larger
installation area is the need for a larger amount of drivers due to the
more diverse hardware base in the real-life computers. There is also
extra software installed in close connection to the OS installation in
the real-life computers, which is not the case for the virtual ma-
chines, which were kept as simpel as possible. The more irregular
shape of the real-life hard disk curves comes from a more frequent
usage and longer life span than for the virtual machines. The two
Windows 8.1 machines have not utilized as much of the partitions
space for OS files as the rest of the Windows versions, which is
manifested by flat and sparse lines in the plot.

Fig. 5. The density of OS related files at different LBA positions in four virtual and three
real-life hard disks. A steeper slope of a curve means a higher density of OS files and a
lower slope represents a lower density. As can be seen the starting areas, up to
approximately cluster 2:5,106, have a steeper slope than the rest of the curves. The
curves represent, from bottom to top, four virtual 64 GiB hard disks containing Win-
dows 7, 8, 8.1 and 10 and three real-life hard disks, 500 GiB, 256 GiB and 500 GiB in
size, containing Windows 7 SP1, 7 and 8.1.

M. Karresand et al. / Digital Investigation 29 (2019) S51eS60S58
4. Discussion

Although the result of the experiment might seem limited in its
simplicity and already be covered by common knowledge, it still is
(as far as we know) the first attempt to empirically prove the
common knowledge and make it a scientific fact. An alternative
would have been to read the source code of the file system and OS
allocation algorithm for each Windows version, but that would not
have taken the installation process and any static data into account.
By using the empirical approach we have managed to show the
impact of the installation, the reserved MFT area and other attri-
butes that might not have been found through a source code
inspection.

Our approach of using the $Bitmap file to find the LBA positions
allocated to new or modified files is not optimal, but we hade to use
it because we were not allowed to install any new software on the
computer cluster nodes we had access to and they only contained a
basic collection of Linux tools.Wewould have preferred to use tools
(for example istat) from the Sleuth Kit toolkit to extract the exact
allocation information for each file, which was also suggested by
one of the reviewers of the article. Using the istat tool would also
have automatically filtered out the allocations of system files from
our results. However, we still got results that are similar to our
previous work on real-life data presented in an earlier article
(Karresand et al., 2019).

The experiment showing the placement of OS files is based on
only seven hard disks, including four that are virtual and specif-
ically prepared for the experiment. The validity of the results might
therefore be questionable. The behavior at the very beginning of
the disks, where the files from the installation process should be
placed according to our hypothesis, is valid for all seven disks.
However, the result should be seen more as an indicator of
approximately where on disk system files reside, not as the truth.
The selection of the files to be included is based solely on the ex-
istence of the word “Windows” in the path of the files. There
certainly are system files that do not fulfill that requirement and
likewise there are a large amount of non-system files that have
“Windows” in their path, for example user installed software. We
will therefore expand the collection of real-life hard disks as much
as possible and also create better search terms and filters to in-
crease the amount of system files and exclude non-system files.

The test used to find any deterministic behavior between
different versions of Windows did not prove the hypothesis of the
allocation pattern being deterministic. There seem to be slight al-
terations to the allocation algorithms in different versions. How-
ever the test was partly flawed due to a number of virtual machines
crashing repeatedly and therefore behaving differently. There
might still be deviations even in the machines we used for the plot
in Fig. 3, which we have not been able to detect. The test do prove
that the probability of two different Windows machines having
exactly the same allocation pattern is very low.

Our discovery that the allocation algorithm is allocating free
areas in order of increasing size is interesting because that con-
tradicts a strict best fit behavior. The behavior gives a high frag-
mentation of files, but preserves any large unused areas. Hence it
seem to adhere to the idea of a worst fit algorithm that is meant to
preserve as large areas as possible for future use.

In hash-based carving a collection of hashes of known data is
compared to hashes of an unknown source leading to a huge
amount of hash comparisons. Different techniques are proposed to
mitigate the problem, one being random samplingwith a frequency
chosen to balance speed and detection rate. The frequency is uni-
formly distributed and we therefore propose an upgrade by varying
the sampling frequency in accordance with the precomputed map
of the probability of finding user data at different positions in an
NTFS formatted partition. The concept can be compared to the
common sense principle of looking for a lost item where the
probability of finding it is higher.

Our mapping concept can be of benefit to other areas than hash-
based carving too. On a general level it can be used to improve the
efficiency of the current digital forensic methods and tools, espe-
cially in file carving situations where there is no file system to be
used. One example of usage is when searching for hashes of files or
parts of files in a hard disk. Then three different scenarios are
possible:

Prioritizing speed Instead of using a uniformly distributed
sampling our map can be used to lower the total amount of samples
without any significant loss in detection ability. This method can for
example be used in triage situations when there is a need to get a
preliminary answer quickly.

Maintaining speed Using the same total amount of samples as
in a uniformly distributed sampling case, a higher detection ability
can be achieved at the same execution speed. This method can be
used without changing the digital forensic process.

Prioritizing detection rate. By increasing the total amount of
samples compared to a uniformly distributed sampling case, the
detection rate will increase more than the induced penalty in
execution speed. This will be achieved by using the same sampling
frequency in areas of low interest as in the uniformly distributed
sampling case and increasing the sampling rate for better detection
ability in high priority areas of the hard drive.

Our mapping concept is also beneficial to the daily work of the
digital forensic investigator by introducing the possibility to plan
the forensic process in a better way. Currently hard drives and other
storage media are treated as black boxes and scanned from start to
end before the analysis. Using our map the forensic investigators
can focus on relevant areas of the storage media and postpone, or
even skip, less relevant areas.

M. Karresand et al. / Digital Investigation 29 (2019) S51eS60 S59
The map is also applicable when imaging storage media. By
starting the imaging process at the most probable area of user data
and continue in decreasing order of relevance some of the analysis
work can be started immediately rendering results faster. In that
way valuable time and effort is saved, although the reliability of the
analysis will of course increase as more data are analyzed. This
concept is supported by the Hansken project (van Beek et al., 2015;
van Baar et al., 2014) and using our mapping concept the speed of
the analysis process in Hansken will be even higher, especially
when dealing with partly damaged media.

Also when dealing with corrupt or damaged storage media our
map can be beneficial. The forensic value of any unreadable areas of
a storage media can quickly be found using the map. The infor-
mation can then be used to establish the forensic value of the lost
areas and consequently increase the value of the evidence in court.

Since we have based our map on diving a generic storage media
into a reasonable amount of subareas (currently 64) there will not
be any real performance penalty due to random seek. Within the
areas any seek pattern can be used, it is only when switching be-
tween the areas (in order of priority) a random seek situation may
occur. The performance penalty of doing a maximum of 64 random
seeks can safely be ignored.

5. Conclusion and future work

We have empirically studied the behavior of the cluster alloca-
tion algorithms in Windows 7, 8, 8.1 and 10 to see whether it is
possible to create a precomputed map of the probability of finding
new data at different LBA positions in NTFS formatted partitions.
The result show that the OSs in question share a structure at a high
level regarding which areas (clusters) that are being allocated more
frequently. The highest probability can be found approximately 10%
into a (64 GiB) partition. The probability is then slowly decreasing
down to half the maximum value and then drops rapidly towards
zero closer to the end of the partitions in our experiment.

The concept of creating a precomputed map of a generic storage
media is useable to a wide range of applications within digital fo-
rensics. The field of file carving is the most obvious benefactor, but
the concept can also be used in for example disk imaging, planning
the investigation process and data rescue situations when dealing
with failing hardware.

As future work we will first of all modify our experimental
framework to use the proper tools needed to exclude everything
but the exact LBA positions allocated by the executed file opera-
tions. We will also include other combinations of OSs and file sys-
tems in our experiments to create precomputed maps for the most
popular consumer computer systems. Since the framework we
have developed for the experiments can handle any system (OS and
file system) that can be installed in a VirtualBox machine we will
cover as much as we can of the current OS and file system market.

Finally we will continue to search for the reason behind the
disruption in the middle of the plots, as well as any other matter
needed to reverse engineer the behavior of the allocation algo-
rithms in Windows versions not included in the book by Carrier
(2005).

Acknowledgment

We would like to thank the anonymous reviewers for their
insightful comments and suggestions. We are also thankful to the
Swedish Defence Research Agency (FOI), which let us use a subset
of their Cyber Range And Training Environment (CRATE) computer
cluster for the experiments.

The research leading to these results has received funding from
the Research Council of Norway programme IKTPLUSS, under the
research and development project Ars Forensica grant agreement
248094/O70.
References

Afonin, O., 2019. Life after Trim: Using Factory Access Mode for Imaging SSD Drives.
https://blog.elcomsoft.com/2019/01/life-after-trim-using-factory-access-mode-
for-imaging-ssd-drives/. (Accessed 15 March 2019).

Arch Linux, 2018. Disk Encryption. https://wiki.archlinux.org/index.php/disk_
encryption. (Accessed 30 December 2018).

Barbara, J., 2014. Solid State Drives: Part 5. https://www.forensicmag.com/article/
2014/04/solid-state-drives-part-5. (Accessed 8 October 2018).

Breitinger, F., Stivaktakis, G., Baier, H., 2013. Frash: a framework to test algorithms of
similarity hashing. Digit. Invest. 10 (Suppl. ment), S50eS58 (the Proceedings of
the Thirteenth Annual DFRWS Conference).

Buckel, C., 09 2014. Understanding Flash: the Flash Translation Layer. https://
flashdba.com/2014/09/17/understanding-flash-the-flash-translation-layer/.
(Accessed 8 October 2018).

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley Professional.
Carrier, B., 2014. TSK Tool Overview. http://wiki.sleuthkit.org/index.php?title¼TSK_

Tool_Overview.
Chung, T.-S., Park, D.-J., Park, S., Lee, D.-H., Lee, S.-W., Song, H.-J., 2009. A survey of

flash translation layer. J. Syst. Archit. 55 (5e6), 332e343.
Collange, S., Dandass, Y.S., Daumas, M., Defour, D., 2009. Using graphics processors

for parallelizing hash-based data carving. In: 2009 42nd Hawaii International
Conference on System Sciences, pp. 1e10.

Dandass, Y., Necaise, N., Thomas, S., 2008. An empirical analysis of disk sector
hashes for data carving. J. Digit. Forensic Pract. 2 (2), 95e104.

European Police Office (Europol), 2016. Internet Organised Crime Threat Assess-
ment (IOCTA) 2016. Tech. Rep. European Cybercrime Centre (EC3).

Fairbanks, K., 2012. An analysis of ext4 for digital forensics. Digit. Invest. 9 (Suppl),
S118eS130 (the Proceedings of the Twelfth Annual DFRWS Conference).

Fairbanks, K., 2015. A technique for measuring data persistence using the ext4 file
system journal. In: 2015 IEEE 39th Annual Computer Software and Applications
Conference, vol. 3, pp. 18e23.

Fairbanks, K., Garfinkel, S., 2012. Column: factors affecting data decay. Journal of
Digital Forensics, Security and Law 7 (2).

Foster, K., 2012. Using Distinct Sectors in Media Sampling and Full Media Analysis to
Detect Presence of Documents from a Corpus. Master’s thesis. Naval Post-
graduate School, Monterey, California, USA.

Garfinkel, S., Fairbanks, K., 2012. sleuthkit/tools/fiwalk/. https://github.com/
kfairbanks/sleuthkit/tree/master/tools/fiwalk. (Accessed 30 December 2018).

Garfinkel, S., McCarrin, M., 2015. Hash-based carving: searching media for complete
files and file fragments with sector hashing and hashdb. Digit. Invest. 14
(Suppl. 1), S95eS105 (the Proceedings of the Fifteenth Annual DFRWS
Conference).

Garfinkel, S., Nelson, A., White, D., Roussev, V., 2010. Using purpose-built functions and
block hashes to enable small block and sub-file forensics. Digit. Invest. 7
(Suppl. ment), S13eS23 (the Proceedings of the Tenth Annual DFRWS Conference).

Gattol, M., 2015. Block-layer Encryption. https://web.archive.org/web/20150917051251/
http://www.markus-gattol.name/ws/dm-crypt_luks.html. (Accessed 24 January
2019).

Gladyshev, P., James, J., 2017. Decision-theoretic file carving. Digit. Invest. 22
(Suppl. C), 46e61.

Hughes, J., 2009. The Four Stages of NTFS File Growth. https://blogs.technet.
microsoft.com/askcore/2009/10/16/the-four-stages-of-ntfs-file-growth/.
(Accessed 24 October 2018).

Jones, J., Khan, T., Laskey, K., Nelson, A., Laamanen, M., White, D., 2016. Inferring
previously uninstalled applications from residual partial artifacts. In: Annual
ADFSL Conference on Digital Forensics, Security and Law, pp. 113e130.

Karresand, M., 2008. Completing the Picture d Fragments and Back Again. Licen-
tiate thesis. Link€oping Institute of Technology, Link€oping University, Sweden.

Karresand, M., Warnqvist, Åsalena, Lindahl, D., Axelsson, S., Dyrkolbotn, G.O., 2019.
Advances in Digital Forensics XIV. Springer International Publishing AG, Cham,
Switzerland (Ch. 4. Creating a map of user data in NTFS to improve file carving).

Karresand, M., Shahmehri, N., 2006a. File type identification of data fragments by
their binary structure. In: Proceedings from the Seventh Annual IEEE Systems,
Man and Cybernetics (SMC) Information Assurance Workshop, 2006. IEEE,
Piscataway, NJ, USA, pp. 140e147.

Karresand, M., Shahmehri, N., 2006b. Oscar e file type and camera identification
using the structure of binary data fragments. In: Haggerty, J., Merabti, M. (Eds.),
Proceedings of the 1st Conference on Advances in Computer Security and Fo-
rensics, ACSF. The School of Computing and Mathematical Sciences. John
Moores University, Liverpool, UK, pp. 11e20.

Karresand, M., Shahmehri, N., 2006c. Oscar e file type identification of binary data
in disk clusters and RAM pages. In: Proceedings of IFIP International Informa-
tion Security Conference: Security and Privacy in Dynamic Environments
(SEC2006). Lecture Notes in Computer Science, pp. 413e424.

Karresand, M., Shahmehri, N., 2007. Oscar e using byte pairs to find file type and
camera make of data fragments. In: Blyth, A., Sutherland, I. (Eds.), Proceedings
of the 2nd European Conference on Computer Network Defence, in Conjunction
with the First Workshop on Digital Forensics and Incident Analysis (EC2ND
2006). Springer Verlag, pp. 85e94.

https://blog.elcomsoft.com/2019/01/life-after-trim-using-factory-access-mode-for-imaging-ssd-drives/
https://blog.elcomsoft.com/2019/01/life-after-trim-using-factory-access-mode-for-imaging-ssd-drives/
https://wiki.archlinux.org/index.php/disk_encryption
https://wiki.archlinux.org/index.php/disk_encryption
https://www.forensicmag.com/article/2014/04/solid-state-drives-part-5
https://www.forensicmag.com/article/2014/04/solid-state-drives-part-5
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref4
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref4
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref4
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref4
https://flashdba.com/2014/09/17/understanding-flash-the-flash-translation-layer/
https://flashdba.com/2014/09/17/understanding-flash-the-flash-translation-layer/
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref6
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref8
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref8
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref8
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref8
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref9
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref9
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref9
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref9
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref10
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref10
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref10
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref11
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref11
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref12
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref12
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref12
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref13
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref13
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref13
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref13
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref14
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref14
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref15
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref15
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref15
https://github.com/kfairbanks/sleuthkit/tree/master/tools/fiwalk
https://github.com/kfairbanks/sleuthkit/tree/master/tools/fiwalk
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref17
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref17
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref17
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref17
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref17
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref18
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref18
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref18
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref18
https://web.archive.org/web/20150917051251/http://www.markus-gattol.name/ws/dm-crypt_luks.html
https://web.archive.org/web/20150917051251/http://www.markus-gattol.name/ws/dm-crypt_luks.html
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref20
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref20
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref20
https://blogs.technet.microsoft.com/askcore/2009/10/16/the-four-stages-of-ntfs-file-growth/
https://blogs.technet.microsoft.com/askcore/2009/10/16/the-four-stages-of-ntfs-file-growth/
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref22
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref22
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref22
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref22
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref23
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref23
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref23
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref23
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref23
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref24
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref24
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref24
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref25
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref25
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref25
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref25
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref25
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref26
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref26
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref26
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref26
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref26
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref26
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref26
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref27
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref27
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref27
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref27
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref27
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref27
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref28
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref28
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref28
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref28
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref28
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref28
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref28

M. Karresand et al. / Digital Investigation 29 (2019) S51eS60S60
Karresand, M., Shahmehri, N., 2008. Reassembly of fragmented jpeg images con-
taining restart markers. In: Proceedings - 4th Annual European Conference on
Computer Network Defense, EC2ND 2008, pp. 25e32.

Key, S., 2012. File Block Hash Map Analysis. https://www.guidancesoftware.com/
app/File-Block-Hash-Map-Analysis. (Accessed 28 April 2018).

Kornblum, J., 2006. Identifying almost identical files using context triggered
piecewise hashing. Digit. Invest. 3 (Suppl. ment), 91e97 the Proceedings of the
6th Annual Digital Forensic Research Workshop (DFRWS ’06).

Microsoft, 2015. Default Cluster Size for NTFS, FAT, and exFAT. https://support.
microsoft.com/en-us/help/140365/default-cluster-size-for-ntfs–fat–and-exfat.

Microsoft, 2017a. System Requirements. https://support.microsoft.com/en-gb/help/
12660/windows-8-system-requirements. (Accessed 30 April 2018).

Microsoft, 2017b. Windows 10 System Requirements. https://support.microsoft.
com/en-us/help/4028142/windows-windows-10-system-requirements.
(Accessed 30 April 2018).

Microsoft, 2017c. Windows 7 system requirements. https://support.microsoft.com/
en-us/help/10737/windows-7-system-requirements. (Accessed 30 April 2018).

Microsoft, 2018. How NTFS Works. https://technet.microsoft.com/pt-pt/library/
cc781134(v¼ws.10).aspx. (Accessed 30 September 2018).

Pal, A., Memon, N., 2009. The evolution of file carving. IEEE Signal Process. Mag. 26
(2), 59e71.

Poisel, R., Tjoa, S., 2013. A comprehensive literature review of file carving. In: 2013
International Conference on Availability, Reliability and Security, pp. 475e484.

Quick, D., Choo, K., 2014a. Data reduction and data mining framework for digital
forensic evidence: storage, intelligence, review and archive. Trends & Issues in
Crime and Criminal Justice 1e11.

Quick, D., Choo, K.-K.R., 2014b. Impacts of increasing volume of digital forensic data:
a survey and future research challenges. Digit. Invest. 11 (4), 273e294.

Quick, D., Choo, K.-K.R., 2016. Big forensic data reduction: digital forensic images
and electronic evidence. Clust. Comput. 19 (2), 723e740.

Digital Corpora, 2018. Real Data Corpus. https://digitalcorpora.org/corpora/disk-
images/real-data-corpus. (Accessed 29 September 2018).

Reiter, R., Swatosh, T., Hempstead, P., Hicken, M., November 2014. Accessing Logical-
To-Physical Address Translation Data for Solid State Disks. http://www.
freepatentsonline.com/8898371.html. (Accessed 8 October 2018).

Roussev, V., 2012. Managing terabyte-scale investigations with similarity digests.
In: Peterson, G., Shenoi, S. (Eds.), Advances in Digital Forensics VIII: 8th IFIP WG
11.9 International Conference on Digital Forensics, Pretoria, South Africa,
January 3-5, 2012, Revised Selected Papers. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 19e34.

Rowe, N.C., 2014. Identifying forensically uninteresting files using a large corpus. In:
Gladyshev, P., Marrington, A., Baggili, I. (Eds.), Digital Forensics and Cyber
Crime: Fifth International Conference, ICDF2C 2013, Moscow, Russia, September
26-27, 2013, Revised Selected Papers. Springer International Publishing, Cham,
pp. 86e101.

Silberschatz, A., Galvin, P., Gagne, G., 2012. Operating System Concepts, ninth ed.
Wiley.

Superuser, 03, 2017. What Block Allocation Algorithm Does NTFS Use? https://
superuser.com/questions/274855/what-block-allocation-algorithm-does-ntfs-
use. (Accessed 24 January 2019).

TerryE and mpack, 2018. All about Vdis. https://forums.virtualbox.org/viewtopic.
php?t¼8046. (Accessed 30 December 2018).

Tridgell, A., 2002. Spamsum README. https://www.samba.org/ftp/unpacked/
junkcode/spamsum/README. (Accessed 27 April 2018).
van Baar, R., van Beek, H., van Eijk, E., 2014. Digital forensics as a service: a game
changer. Digit. Invest. 11, S54eS62 (proceedings of the First Annual DFRWS
Europe).

van Beek, H., van Eijk, E., van Baar, R., Ugen, M., Bodde, J., Siemelink, A., 2015. Digital
forensics as a service: game on. Digit. Invest. 15, 20e38 (special Issue: Big Data
and Intelligent Data Analysis).

Young, J., Foster, K., Garfinkel, S., Fairbanks, K., 2012. Distinct sector hashes for target
file detection. Computer 45 (12), 28e35.
Martin Karresand is a PhD candidate at the Center for Cyber and Information Security,
Department of Information Security and Communication Technology (IIK), Norwegian
University of Science and Technology (NTNU), Norway. He is also a Senior Scientist at
the Department of Information Security and IT Architecture, Division of Command,
Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance
(C4ISR), Swedish Defence Research Agency (FOI), Sweden, since 2003. He got his MSc
in Engineering in 2002 and a Licentiate degree in Computer Science in 2008, both from
Link€oping University (LiU), Sweden. The Licentiate thesis, titled “Completing the pic-
ture e Fragments and back again”, lead to a leave from FOI and an employment as a
digital forensic engineer at the Swedish Laboratory for Forensic Science (SKL) between
2010 and 2013. He is a lecturer at several digital forensic courses at LiU and FOI and act
as an external expert during examinations of digital forensic investigators at the
Swedish National Forensic Centre (NFC). His research interests include file carving,
machine learning, data mining and cyber defence.
Stefan Axelsson is an associate professor at NTNU, Norway, with a PhD in computer
security from Chalmers University of Technology, Sweden, where he also got his
master's degree in engineering. He has been working with Norwegian police via NTNU,
and is currently an associate professor at Halmstad University, Sweden. He also has
considerable experience from the industry, mainly from Ericsson, where he worked as
a specialist on security of mobile IP telecommunications systems. He has authored, and
co-authored, a number of research publications that together have been cited more
than 2000 times. His research interests include surveillance of digital systems and
data analysis supported by automatic methods (his PhD was on the topic of machine
learning and information visualization for intrusion detection).
Geir Olav Dyrkolbotn is an officer in the Norwegian Armed Forces and an associate
professor at Center for Cyber and Information Security (CCIS) at the Norwegian Uni-
versity of Science and Technology (NTNU). He is currently head of the NTNU Malware
Lab and the research group for cyber defence at CCIS. Geir Olav holds a PhD in infor-
mation security from Gjøvik University College (HiG) and a MSc in computer science
from the NTNU. His PhD thesis was on reverse engineering microprocessor content
using electromagnetic radiation. His career includes more than 25 years in the Nor-
wegian Armed Forces, where he holds the rank of Major. His career has focused on
operation, maintenance and security in tactical communication systems and the last 15
years on defensive cyber operations, computer network defense and operational se-
curity. His research interest include cyber defense, reverse engineering and malware
analysis, side-channel attacks and machine learning. His current focus is on Malware
Analysis, Cyber Operations, Cyber Intelligence, Digital forensics and machine learning.
He is also the founder and chair of NTNU Malware Forum and a member of the project
group for the Norwegian Cyber Range, working to establish a virtualized arena for ed-
ucation, training and exercises for the Norwegian society.

http://refhub.elsevier.com/S1742-2876(19)30169-0/sref29
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref29
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref29
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref29
https://www.guidancesoftware.com/app/File-Block-Hash-Map-Analysis
https://www.guidancesoftware.com/app/File-Block-Hash-Map-Analysis
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref31
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref31
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref31
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref31
https://support.microsoft.com/en-us/help/140365/default-cluster-size-for-ntfs--fat--and-exfat
https://support.microsoft.com/en-us/help/140365/default-cluster-size-for-ntfs--fat--and-exfat
https://support.microsoft.com/en-gb/help/12660/windows-8-system-requirements
https://support.microsoft.com/en-gb/help/12660/windows-8-system-requirements
https://support.microsoft.com/en-us/help/4028142/windows-windows-10-system-requirements
https://support.microsoft.com/en-us/help/4028142/windows-windows-10-system-requirements
https://support.microsoft.com/en-us/help/10737/windows-7-system-requirements
https://support.microsoft.com/en-us/help/10737/windows-7-system-requirements
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref37
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref37
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref37
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref38
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref38
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref38
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref39
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref39
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref39
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref39
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref39
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref40
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref40
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref40
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref41
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref41
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref41
https://digitalcorpora.org/corpora/disk-images/real-data-corpus
https://digitalcorpora.org/corpora/disk-images/real-data-corpus
http://www.freepatentsonline.com/8898371.html
http://www.freepatentsonline.com/8898371.html
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref44
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref44
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref44
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref44
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref44
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref44
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref45
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref45
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref45
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref45
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref45
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref45
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref46
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref46
https://superuser.com/questions/274855/what-block-allocation-algorithm-does-ntfs-use
https://superuser.com/questions/274855/what-block-allocation-algorithm-does-ntfs-use
https://superuser.com/questions/274855/what-block-allocation-algorithm-does-ntfs-use
https://forums.virtualbox.org/viewtopic.php?t=8046
https://forums.virtualbox.org/viewtopic.php?t=8046
https://forums.virtualbox.org/viewtopic.php?t=8046
https://www.samba.org/ftp/unpacked/junkcode/spamsum/README
https://www.samba.org/ftp/unpacked/junkcode/spamsum/README
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref50
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref50
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref50
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref50
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref51
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref51
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref51
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref51
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref52
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref52
http://refhub.elsevier.com/S1742-2876(19)30169-0/sref52

	Using NTFS Cluster Allocation Behavior to Find the Location of User Data
	1. Introduction
	1.1. Background
	1.2. Related work
	1.3. Hash-based carving
	1.4. Data persistence
	1.5. Data reduction
	1.6. Data mapping

	2. Experiment
	2.1. Platform
	2.2. Implementation
	2.3. Map creation

	3. Result
	4. Discussion
	5. Conclusion and future work
	Acknowledgment
	References

