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Abstract— An integral version of the line-of-sight guidance
method is shown to compensate for both kinematic and dynamic
disturbances generated by wind, waves and sea currents.
The guidance law is designed for path following tasks of
underactuated marine vessels moving in the horizontal plane.
Specifically, the control system consists of an integral line-of-
sight heading reference generator in a cascaded configuration
with an adaptive surge-yaw controller. The total drifting effect
of the environmental disturbances is modeled as a combination
of a constant and unknown kinematic drift, and a constant,
unknown and heading-dependent dynamic pressure acting on
the vessel. The closed loop stability analysis shows that path
following is achieved with global κ-exponential stability prop-
erties. The theoretical results are supported by simulations.

I. INTRODUCTION

Control methods for path following and trajectory tracking
are fundamental for autonomous ships since they make the
vessel follow a predetermined path. In particular, robust path
following and trajectory tracking control systems specifically
designed for underactuated vessels are required to success-
fully enable autonomous ships since they operate in presence
of disturbances such as wind, waves and ocean currents
that may seriously influence the success of a mission. Such
disturbances have an even greater effect when acting in
the transverse abeam direction since all ships are generally
underactuated at transit speed, i.e., they have no thrusters
providing side force to counteract for transverse disturbances
or, if they have any, they are ineffective at surge speeds
higher than 2-3 knots [1]. Consequently, several robust path
following and trajectory tracking solutions based on linear
and nonlinear control theory have been proposed [2]–[8] and
among them the integral line-of-sight (ILOS) guidance law
for path following purposes ranks among the most popular
ones thanks to its simplicity and intuitiveness [9]–[13].

This paper shows that the ILOS guidance law first pre-
sented in [9] successfully compensates for combined kine-
matic and dynamic disturbances, thus further extending the
results of [10], [14]. To this end and motivated by [15], the 3
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degrees-of-freedom (DOFs) maneuvering model presented in
[16] is modified to include both the kinematic and dynamic
disturbance effects of currents, wind and waves for control
design purposes. The model separates the disturbances into
an unknown irrotational current (kinematic drift/bias) and an
environmental load vector (dynamic bias). Such a distinction
is proposed to capture the different effects of the otherwise
combined disturbances [17]. The kinematic bias account
for currents, tidal drifts, low frequency swells and second
order wave-induced forces, while the environmental load
vector embodies the heading dependent dynamic effects of
the disturbances. In this context the mean wind forces are
assumed to dominate in the load vector and are modeled
as an unknown pressure acting in a certain direction. The
two disturbances generally act in different directions and are
assumed slowly varying or here constant. The first order
wave-induced forces are neglected since they cause zero
mean oscillatory motions that are usually removed through
wave filtering. The effect of wind gusts is either directly
compensated by wind feedforward control action or by the
feedback controllers. The ILOS guidance method developed
in [9], [10] is extended with adaptation, and it is analytically
shown that the resulting control scheme successfully com-
pensates for both kinds of disturbances and hence guarantees
path following of underactuated surface vessels in different
sea conditions. Path following of straight lines is considered
and, due to the integral action, the underactuated vessel is
made to crab in order to compensate for the drift and follow
the desired course since no actuation is available in sway.
The control approach is based on relative velocities only.
The combined effect of kinematic and dynamic disturbances
is analyzed assuming that the dynamic disturbance is known
in direction but unknown in magnitude. The mathematical
analysis of the complete kinematic-dynamic closed loop
system combines the results from [10] with elements of
robust control of mechanical systems [18]. This shows that
the ILOS guidance in a cascaded configuration with an
adaptive speed-heading controller guarantees uniform global
asymptotic stability (UGAS) and uniform local exponential
stability (ULES) (i.e. global κ-exponential stability). Simu-
lations are presented to verify and illustrate the theoretical
results.

The paper is organized as follows: Section II presents
the vessel model for control design purposes, Section III
defines the control problem, while Section IV presents the
ILOS guidance. Section V presents the adaptive surge-yaw
controller, and the stability properties of the closed loop
system are given in Section VI. The mathematical analysis is



developed in Section VII and the simulation results are given
in Section VIII. Finally, conclusions are found in Section IX.

II. THE CONTROL PLANT MODEL

The control plant model is a simplified mathematical
description of the surface vessel. It contains the physical
properties that are significant for control design purposes [1].

A. Vessel Assumptions

Assumption 1. The motion of the vessel can be described by
3 degrees of freedom (DOF), that is surge, sway and yaw.

Assumption 2. The vessel is port-starboard symmetric.

Assumption 3. The body-fixed coordinate frame b is located
on the center-line of the vessel at a distance x∗g from the
center of gravity (CG), where x∗g is to be defined later.

Assumption 4. The hydrodynamic damping is linear.

B. The Ocean Current

The drifting effect of currents, tides, low frequency swells
and second order wave-induced forces is embodied into the
ocean current vector denoted as V c:

Assumption 5. The ocean current is defined in the inertial
frame i and is assumed constant, unknown, irrotational
and bounded. Hence, V c , [Vx, Vy, 0]T and there exists a
constant Vmax > 0 such that Vmax ≥

√
V 2
x + V 2

y .

Remark 1. The constant and irrotational ocean current model
is widely accepted to describe slowly varying disturbances
and it represents a good approximation when closed-loop
control is implemented on-board of marine vehicles [19].

Remark 2. The first order wave-induced forces are neglected
in this context since they cause zero mean oscillatory motions
that are usually removed through wave filtering [16].

C. The Control Plant Model

The state of the surface vessel is given by the vector
[pT ,νTr ]T where p , [x, y, ψ]T describes the position and
the orientation of the vehicle with respect to the inertial frame
i. The vector ν , [u, v, r]T contains the linear and angular
velocities of the ship defined in the body-fixed frame b, where
u is the surge velocity, v is the sway velocity and r is the yaw
rate. The ocean current velocity in the body frame b, νc ,
[uc, vc, 0]T , is obtained from νc = RT (ψ)V c where R(ψ)
is the rotation matrix from b to i. Following Assumption 5
the ocean current is constant and irrotational in i and hence
V̇ c = 0, and ν̇c = [rvc,−ruc, 0]T . When ocean currents are
present it is useful to describe the state of the vessel with
the relative velocity vector (i.e. velocity relative to water):
νr , ν − νc = [ur, vr, r]

T . The vector νr is defined in b,
where ur is the relative surge velocity and vr is the relative
sway velocity. This paper, under Assumption 5, covers the
class of marine vehicles described by the following 3-DOF
maneuvering model expressed in terms of νr [10], [16]:

ṗ = R(ψ)νr + V c, (1)
Mν̇r +C(νr)νr +Dνr = Bf +w. (2)

Remark 3. The ocean current V c does not depend on the
heading of the vessel and represents a kinematic bias in
(1). It defines in fact a constant and irrotational velocity
drift and hence it does not capture the heading dependent
disturbing effects of currents, wind and waves. In this paper
the vector w is introduced in (2) to take into account for
these disturbances as well. In particular, the significant effect
of wind is analyzed in this context.

The vector f , [Tu, Tr]
T is the control input vector, con-

taining the surge thrust Tu and the rudder angle Tr. Notice
that the model (1-2) is underactuated in its configuration
space since it has fewer control inputs than DOFs. The vector
w , [wu, wv, wr]

T is the body-fixed dynamic environmental
load vector. The vector w is defined and discussed in detail
in Section II-D. The matrix M = MT > 0 is the mass and
inertia matrix and includes hydrodynamic zero frequency
added mass. The matrix C is the Coriolis and centripetal
matrix, D > 0 is the hydrodynamic damping matrix,
assuming linear or linearized damping, and B ∈ R3×2 is
the actuator configuration matrix. For maneuvering control
purposes, the matrices R(ψ), M , D, B are considered to
have the following structures:

R(ψ) ,

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
, M ,

[m11 0 0
0 m22 m23
0 m23 m33

]
, (3)

D ,

[
d11 0 0
0 d22 d23

0 d32 d33

]
, B ,

[
b11 0
0 b22

0 b32

]
. (4)

The particular structure of M and D is justified by As-
sumptions 1-4. The actuator configuration matrix B has full
column rank and maps the control inputs Tu and Tr into
forces and moments acting on the vessel. The Coriolis and
centripetal matrix C is obtained from M as [16]:

C(νr) ,
[ 0 0 −m22vr−m23r

0 0 m11ur
m22vr+m23r −m11ur 0

]
. (5)

Finally, x∗g from Assumption 3 is chosen so that
M−1Bf = [τu, 0, τr]

T . The point (x∗g, 0) exists for all port-
starboard symmetric vehicles [10]. Notice that in (1-2) there
are two terms describing environmental disturbances: the
current V c in (1), representing a pure kinematic drift, and the
vector w in (2), representing heading dependent disturbances
that show up at the dynamic level. The vector w is defined
and discussed in the following Section II-D.

D. The Environmental Load Vector w

The vector w represents a bias term that embodies unmod-
eled dynamics and heading-dependent disturbances caused
by currents, winds and waves. In this context, the significant
effect of constant wind disturbances is assumed to dominate
in w. Inspired by [15] and [16], the overall effect of wind
is modeled as a constant pressure Pe acting on the vessel in
a constant direction βe:

Assumption 6. The pressure Pe > 0 is considered constant,
unknown, and acting in a constant and known direction βe of
the inertial frame. Therefore, there exists a constant Pmax

e >
0 such that Pmax

e ≥ Pe.



Remark 4. The mean and slowly varying drifting effect
caused by wind is considered, while the peaks arising from
wind gusts are neglected since they are often removed
through filtering and feedforward. The direction βe is as-
sumed known since the tools to measure and estimate the
wind direction are often available [16], [20].

The forces and moments generated by the wind pressure
Pe on the ship are proportional to the frontal and lateral
projected areas above the waterline of the ship, and to some
well-defined load coefficients. The areas above the waterline
are considered since the effect of wind is limited to the
surface. The loading coefficients depend on the geometry
of the ship hull and superstructure, and are functions of
the disturbance angle of attack. They are usually obtained
through interpolation of data from simulations and wind
tunnel tests for different types of ships [15], [21], [22]. The
environmental load vector w is then defined as:

w ,

[
PeAFwCX(γe)
PeALwCY (γe)

PeALwLoaCN (γe)

]
, (6)

where AFw is the frontal projected area above the waterline,
ALw is the lateral projected area above the waterline, and Loa
is the length overall of the vessel (maximum length of the
vessel hull). The term γe , ψ−βe−π is the angle of attack
of the wind. The terms CX(γe), CY (γe) and CN (γe) are the
load coefficients. The following assumption is introduced:
Assumption 7. There are no dynamic disturbances in sway
and yaw in presence of head/following sea (γe = nπ, i.e.
multiples of 0 and π) and no dynamic disturbances in surge
in presence of beam sea (γe = π/2 ± nπ, i.e. multiples of
π/2 and 2π/3).

The load coefficients can be then redefined as: CX(γe) ,
C∗X(γe) cos(γe), CY (γe) , C∗Y (γe) sin(γe) and CN (γe) ,
C∗N (γe) sin(γe). The vector w is rewritten as:

w =

[ −PeAFwC∗X(γe) cos(βe−ψ)

PeALwC
∗
Y (γe) sin(βe−ψ)

PeALwLoaC
∗
N (γe) sin(βe−ψ)

]
. (7)

Furthermore, the functions C∗X(γe), C∗Y (γe) and C∗N (γe) are
required to satisfy:
Assumption 8. C∗X(γe), C∗Y (γe), C∗N (γe) are bounded, pe-
riodic, class C1 functions with bounded first derivatives and
satisfy:
• C∗X(γe) < 0, ∀ γe,
• C∗Y (γe) > 0, ∀ γe,
• −m23C

∗
Y (γe)+m22LoaC

∗
N (γe) 6= 0 for γe = π/2±nπ.

Finally, the following function is considered:

κv(·) ,
PeALw

m22m33 −m2
23

[m33C
∗
Y (·)−m23LoaC

∗
N (·)] .

(8)
Since C∗Y (·) and C∗N (·) are bounded,they have bounded
first derivatives and Pe is bounded, then there exist
κmax
v , κ′max

v > 0 such that κv(·) ≤ κmax
v , dκv(·)

d· ≤ κ
′max
v .

Assumption 9. C∗Y (·) and C∗N (·) are such that, given any
constants k ∈ R and βe ∈ [0, 2π], the following bound holds
for all s ∈ R:∣∣∣∣∣κv(γ

k
e )− κv(γ

k+s
e )

√
k2 + 1√

(s+ k)2 + 1

∣∣∣∣∣ ≤ κmax
v

|s|√
(s+ k)2 + 1

, (9)

where γke , − tan−1(k)−βe−π and γk+s
e , − tan−1(k+

s)− βe − π.
Remark 5. Notice that the wind load coefficients given
in [15], [16], [21], [22] trivially satisfy Assumptions 7-
9, or can be easily approximated with functions satisfying
Assumptions 7-9.
Remark 6. Given the model (1-2) one can choose to consider
both the proposed disturbances, [Vx, Vy, 0]T and w, or only
one, depending on the application, type of vessel and the
environmental conditions.

E. The Model in Component Form

To solve nonlinear underactuated control design problems
it is useful to expand the model (1-2) into a component form:

ẋ = ur cos(ψ)− vr sin(ψ) + Vx, (10a)
ẏ = ur sin(ψ) + vr cos(ψ) + Vy, (10b)

ψ̇ = r, (10c)
u̇r = Fu(ur, vr, r) + Peκ

∗
u(γe) cos(βe − ψ) + τu, (10d)

v̇r = X(ur)r + Y (ur)vr + κv(γe) sin(βe − ψ), (10e)
ṙ = Fr(ur, vr, r) + Peκ

∗
r(γe) sin(βe − ψ) + τr. (10f)

Notice the absence of any control inputs in sway (10e)
to compensate for the environmental disturbances. The
ship should therefore crab to counteract for currents, wind
and waves having abeam components. The expressions for
κ∗u(γe), κ∗r(γe), Fr(ur, vr, r), Fu(vr, r), X(ur) and Y (ur)
are given in Appendix I. Furthermore, the functions Y (ur)
and X(ur) are bounded for bounded arguments and thus
satisfy the following assumption:
Assumption 10. Y (ur) satisfies Y (ur) ≤ −Y min <
0, ∀ur ∈ [−Vmax, Urd], where Y min is a positive constant.
Remark 7. Assumption 10 is justified by a contradiction:
Y (ur) ≥ 0 would imply a nominally unstable vehicle in
sway which is not the case for commercial vessels by design.
No bounds are implied on ur and Urd > 0 is defined in the
next section.

III. CONTROL OBJECTIVE

The control system should make the vessel follow a
given straight line P and maintain a desired constant surge
relative velocity Urd > 0 in the presence of environmental
disturbances, modeled as a combination of the ocean current
V c and the wind pressure Pe. The inertial reference frame
i is placed such that x-axis is aligned with the desired path
P as shown in Fig. 1 without any loss of generality, giving
P , {(x, y) ∈ R2 : y = 0}. The vehicle y coordinate
then corresponds to the horizontal cross-track error and the
control objectives become:

lim
t→∞

y(t) = 0,

(11)
lim
t→∞

ψ(t) = ψss,

(12)
lim
t→∞

ur(t) = Urd,

(13)
where ψss ∈ (−π/2, π/2) is constant. The yaw angle
ψ(t) is not required to converge to zero but rather to a
steady-state constant value to make the vessel crab and thus
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Fig. 1. Integral line of sight guidance for an underactuated surface vessel.
At steady state the nonzero angle ψss allows the underactuated vehicle to
counteract the disturbances.

counteract the environmental disturbances since the ship is
underactuated and no control forces are available in sway to
compensate for the drift. The value of ψss will be specified
later. The relative velocity needs to be sufficiently large to
guarantee ship maneuverability in presence of disturbances.
In particular, it is shown in this paper that the following as-
sumption guarantees path following in presence of kinematic
and dynamic disturbances acting in any direction:
Assumption 11. Urd satisfies the following condition:

Urd > max

{
Vmax +

5

2

∣∣∣∣ κmax
v

Y (Urd)

∣∣∣∣ , 2Vmax + 2

∣∣∣∣κmax
v + κ′max

v

Y (Urd)

∣∣∣∣
}
.

Remark: It is always possible to find values of Urd sat-
isfying Assumption 11, since |Y (ur)| is strictly increasing
for ur > 0.

Remark: The chosen control approach is based on relative
velocities: see [10] for more details on relative vs absolute
velocity.

IV. THE INTEGRAL LINE OF SIGHT GUIDANCE

The ILOS guidance is introduced in a cascaded configu-
ration with adaptive surge and yaw controllers to solve the
path following problem described in Section III. The surface
vessel has to converge and follow the x-axis in presence of
environmental disturbances. In this paper it is shown that
the ILOS guidance method introduced in [9] in combination
with adaptive surge and yaw controllers compensates for both
kinematic as well as dynamic disturbances, further extending
the results of [10], [14]. Hence, the desired heading angle is:

ψILOS , − tan−1

(
y + σyint

∆

)
, ∆, σ > 0, (14a)

ẏint =
∆y

(y + σyint)
2

+ ∆2
, (14b)

where ∆ is the look-ahead distance, and σ is the integral
gain, both constant design parameters. A detailed description
of the ILOS guidance law is given in [10].

V. THE SURGE AND YAW CONTROLLERS

This section presents the adaptive surge-yaw controller
that, added in a cascaded configuration with the ILOS guid-
ance from Section IV, solves the tasks defined in Section III
when the wind pressure Pe is unknown.
Remark 8. An adaptive version for the surge and yaw
controllers is presented to add robustness with respect to
the unknown dynamic disturbance Pe. In fact, it is common
to have both feed-forward and integral action in modern
autopilots and speed controllers [16].
The following combined surge-yaw controller is proposed:

τu =− Fur (ur, vr, r) + u̇rd − kur (ur − urd)
− P̂eκ∗u(γe) cos(βe − ψ),

(15a)

τr =− Fr(ur, vr, r) + ψ̈d − (kψ + λkr)(ψ − ψd)
− (kr + λ)(ψ̇ − ψ̇d)− P̂eκ∗r(γe) sin(βe − ψ),

(15b)

˙̂
Pe =γ1G

T (ψ)

[
ur−urd
γ2(ψ−ψd)

γ2[(ψ̇−ψ̇d)+λ(ψ−ψd)]

]
, (15c)

where G(ψ) , [κ∗u(γe) cos(βe − ψ) 0 κ∗r(γe) sin(βe −
ψ)]T is the regressor, kur , kψ, kr, λ > 0 are constant con-
troller gains and γ1, γ2 > 0 are constant adaption gains. The
controller (15) is an adaptive feedback linearizing controller
and, as later shown in Section VII, it makes sure that ur,
ψ and r exponentially track urd, ψd and ψ̇d. The generic
references urd and ψd are set to Urd and ψILOS respectively,
in the following sections. Furthermore, P̂e exponentially
estimates the magnitude of the unknown disturbance Pe.

VI. STABILITY CONDITIONS

This section presents the stability conditions under which
the proposed ILOS guidance (14) in a cascaded configuration
with the adaptive controller (15) achieves the objectives (11-
13). The notation XUrd , X(Urd), Y Urd , Y (Urd) is used.

Theorem 1. Given an underactuated surface vessel de-
scribed by the dynamical system (10). If Assumptions 5-11
hold and, if the look-ahead distance ∆ and the integral gain
σ satisfy the conditions:

∆ >
|XUrd |
|Y Urd |

Ω(σ)

[
5

4

Urd + Vmax + σ

Urd − Vmax − σ
+ 1

]
, (16)

0 < σ < Urd − Vmax −
5

2

∣∣∣∣ κmax
v

Y Urd

∣∣∣∣ , (17)

where Ω(σ) is defined as,

Ω(σ) ,
Urd − Vmax − σ

Urd − Vmax − σ − 5
2

∣∣∣ κmax
v

Y Urd

∣∣∣ , (18)

then the controller (15), where ψd is given by (14) and urd ,
Urd, guarantee achievement of the control objectives (11-13).

VII. PROOF OF THEOREM 1

The first part of the proof follows along the line of [10].
The dynamics of the cross track error y and the relative
sway velocity vr are analyzed first. Given the error signals
ũr , ur − Urd, ψ̃ , ψ − ψd, ˙̃

ψ , r − ψ̇d, the vector



ζ , [ũr, ψ̃,
˙̃
ψ]T is defined. Combining (10b), (10e) and (14b)

leads to the y − vr subsystem that is analyzed in [10]:

ẏint =
∆y

(y + σyint)
2

+ ∆2
, (19a)

ẏ =(ũr + Urd) sin(ψ̃ + ψd) + vr cos(ψ̃ + ψd) + Vy,
(19b)

v̇r =X(ũr + Urd)(
˙̃
ψ + ψ̇d) + Y (ũr + Urd)vr

+ κv(γe) sin(βe − ψ̃ − ψd).
(19c)

The equilibrium point of the system (19) on the manifold
ζ = [ũr, ψ̃,

˙̃
ψ]T = 0 is given by the following equation:

s
√
s2 + 1 =

Vy
Urd

s2 +
cos(βe)s+ sin(βe)

Urd|Y Urd |
κeq
v (s) +

Vy
Urd

,

(20)
where s , σyeq

int/∆ and yeq
int is the value of yint at equi-

librium. The term κeq
v (s) is defined as the value of κv(γe)

at equilibrium, i.e. when γe = γeq
e , − tan−1(s)− βe − π.

The equilibrium point equation (20) is assessed in [10] where
it is shown under which conditions (20) has a unique real
solution, hence a single equilibrium point:

Lemma 1. If Assumptions 8 and 11 hold, then (20) has
exactly one real solution s = σyeq

int/∆.

Proof. The proof of Lemma 1 is given in [10, Lemma 1].

At equilibrium yeq = 0 while yeq
int and veq

r are constant
values where yeq

int is the unique solution of (20) and veq
r

relates to yeq
int as veq

r = Urdσy
eq
int/∆−Vy

√
(σyeq

int/∆)2 + 1).
The heading angle held by the vessel at steady-state is
then ψss , − tan−1 (σyeq

int/∆). A new set of variables
is introduced to move the equilibrium point to the origin:
e1 , yint−yeq

int, e2 , y+σe1 and e3 , vr−veq
r . Substituting

(14a) for ψd and factorizing the result with respect to ζ leads
(19) to the following expression:[

ė1
ė2
ė3

]
= A(e2)

[
e1
e2
e3

]
+B(e2)+H(y, yint, ψd, vr, ζ)ζ. (21)

The term H contains all the terms vanishing at ζ = 0. A is
given in (30) while B and H are:

B(e2) ,

[
0

Vyf(e2)

− ∆XUrdVy

(e2+σy
eq
int

)2+∆2 f(e2)+sin(ψss−βe)g(e2)

]
, (22)

H(y, yint, ψd, vr, ζ) ,

[ 0 0
1 0

− ∆X(ũr+Urd)

(e2+σy
eq
int

)2+∆2 1

] [
hTy

hTvr

]
, (23)

and

f(e2) ,1−
√

(σyeq
int)

2 + ∆2√
(e2 + σyeq

int)
2 + ∆2

, (24)

g(e2) ,κeq
v −

κv(γe)
√

(σyeq
int)

2 + ∆2√
(e2 + σyeq

int)
2 + ∆2

. (25)

The vectors hy and hvr are given in Appendix I. The system
(21) on the manifold ζ = 0 is equivalent to the following
nominal system that is analyzed in [10]:[

ė1
ė2
ė3

]
= A(e2)

[
e1
e2
e3

]
+B(e2). (26)

Lemma 2 states the stability properties of (26):

Lemma 2. Under the conditions of Theorem 1, the nominal
system (26) is UGAS and ULES.

Proof. The proof of Lemma 2 is given in [10, Lemma 2].

From this point on the proof differs substantially from [10]
since the actuated dynamics (10d) and (10f) of the ship in
closed loop configuration with the novel adaptive controller
(15) are analyzed. Given the error signals ũr, ψ̃, ε , ˙̃

ψ+λψ̃
and the estimation error P̃e , Pe − P̂e, the vector ξ ,
[ũr, ψ̃, ε]

T is defined. The dynamics of ξ and P̃e are obtained
by combining equations (10c), (10d), (10f) with (15):

ξ̇ = χ(ξ) +G(ψ̃ + ψd(ξ, t))P̃e, (27a)

˙̃Pe = −γ1G
T (ψ̃ + ψd(ξ, t))

[
∂W1(ξ)

∂ξ

]T
, (27b)

where:

χ(ξ) ,

[
−kur 0 0

0 −λ 1
0 −kψ −kr

]
ξ, (28)

W1(ξ) ,
1

2
ũ2
r +

γ2kψ
2

ψ̃2 +
γ2

2
ε2. (29)

The stability properties of the origin (0, 0) of (27) are
assessed using [18, Theorem 1]. Assumption A2 of [18,
Theorem 1] is considered first. In particular, notice that
it is trivial to find three constants c1, c2, c3 > 0 such
that c1 ‖ ξ ‖≤W1(ξ) ≤ c2 ‖ ξ ‖ and [∂W1(ξ)/∂ξ] χ(ξ) ≤
−c3 ‖ ξ ‖. This satisfies Assumption A2 of [18, Theorem
1].

Assumption A1 of [18, Theorem 1] is considered next.
Notice that the regressor G(ψ̃+ψd(ξ, t)) relies on the error
signal ψ̃ and the reference ψd(ξ, t) to estimate the unknown
Pe, where the reference ψd(ξ, t) is allowed to depend upon ξ
as well. According to [18, Theorem 1] the regressor G(ψ̃+
ψd(ξ, t)) has to be analyzed on the manifold ξ = 0 (notice
that ξ = 0 implies ζ = 0). The notation ψ0

d , ψd(0, t) and
G0(ψ0

d(t)) , G(ψ̃ + ψd(ξ, t))|ξ≡0 is introduced for this
purpose. Furthermore, some preliminary analysis of ψ0

d and
its time derivative ψ̇0

d = ρ(yint(t), y(t), vr(t))|ξ≡0, where
ρ(yint, y, vr) is given in Appendix I, is necessary:
Corollary 1. ψ0

d and ψ̇0
d are bounded and continuous.

Proof. The signal ψd(t) = − tan−1[(y(t) + σyint(t))/∆]
is function of the time trajectories [e1(t), e2(t), e3(t),
ξT (t), P̃e(t)]

T as suggested by (21). However, the condi-
tion ξ = 0 required by [18, Theorem 1] and that de-
fines ψ0

d, opens the loop. In fact, ψ0
d = − tan−1[(y(t) +

σyint(t))/∆]|ξ≡0 is function of the time trajectories
[e1(t), e2(t), e3(t)]T |ξ≡0 generated by the nominal system
(26). Following Lemma 2, the nominal system (26) is UGAS
and ULES, and therefore, the ψ0

d and ψ̇0
d are always bounded

and continuous.

It is now possible to check that all the conditions
of Assumption A1 in [18, Theorem 1] are
satisfied. First, notice that it is trivial to find a
continuous non-decreasing function θ1(·) such that



A(e2) ,



− σ∆
(e2+σy

eq
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)2+∆2
∆

(e2+σy
eq
int

)2+∆2 0

− σ2∆
(e2+σy

eq
int

)2+∆2

(
− Urd√

(e2+σy
eq
int

)2+∆2
+ σ∆

(e2+σy
eq
int

)2+∆2

)
∆√

(e2+σy
eq
int
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σ2∆2XUrd

((e2+σy
eq
int
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 Urd∆XUrd

((e2+σy
eq
int
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− σ∆2XUrd

((e2+σy
eq
int

)2+∆2)2
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κv(γe) cos(βe)√
(e2+σy

eq
int
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 Y Urd − ∆2XUrd

((e2+σy
eq
int

)2+∆2)3/2




(30)

max{‖ χ(ξ) ‖, ‖ ∂W1(ξ)/∂ξ ‖} ≤ θ1(‖ ξ ‖) ‖ ξ ‖. Next,
since G(·) is globally bounded, it is straightforward to find
a continuous non-decreasing function θ2(·) satisfying the
inequality max{‖ G(ψ̃+ψd(ξ, t)) ‖, ‖ G0(ψ0

d(t)) ‖} ≤ θ2(‖
[ξT , P̃e]

T ‖). Furthermore, Assumption 8 guarantees that
there exists a constant bm > 0 such that G(·)TG(·) ≥ bm,
regardless of the argument. Therefore, conditions (9)
(10) and (12) in Assumption A1 of [18, Theorem 1] are
satisfied. Finally, the partial derivative ∂G0(ψ0

d)/∂P̃e and
the time derivative ∂G0(ψ0

d)/∂t are analyzed to show that
condition (11) in [18, Theorem 1] is fulfilled. In particular,
∂G0(ψ0

d)/∂P̃e = 0, while ∂G0(ψ0
d)/∂t can be rewritten as

∂G0(ψ0
d)/∂t = (∂G0(ψ0

d)/∂ψ0
d)ψ̇0

d. Assumption 8 makes
sure that ∂G0(ψ0

d)/∂ψ0
d is well defined and bounded, while

continuity and boundedness of ψ̇0
d is shown by Corollary

1. Thus, the time derivative ∂G0(ψ0
d)/∂t is bounded and

there exists a non-decreasing function θ3(·) such that
max{‖ ∂W1(ξ)/∂P̃e ‖, ‖ ∂G0(ψ0

d(t))/∂t ‖} ≤ θ3(|P̃e|).
This fulfills condition (11) in Assumption A1 of [18,
Theorem 1]. All the assumptions of [18, Theorem 1] are
thus satisfied and it is therefore possible to conclude UGAS
and ULES for the origin of the system (27). Therefore the
control goal (13) is achieved with exponential converging
properties in any ball of initial conditions. Finally, the
interconnected dynamics of (19) and (27) are considered.
The complete cascaded system of (19) and (27) is given by:

[
ė1
ė2
ė3

]
= A(e2)

[
e1
e2
e3

]
+B(e2) +H(y, yint, ψd, vr,Λξ)Λξ,

(31a)

ξ̇ = χ(ξ) +G(ψ̃ + ψd)P̃e, (31b)

˙̃Pe = −γ1G
T (ψ̃ + ψd)

[
∂W1(ξ)

∂ξ

]T
, Λ ,

[
1 0 0
0 1 0
0 −λ 1

]
,

(31c)

where ζ = Λξ, with Λ > 0 non-singular. Notice that the
system (31) is a cascaded system, where the subsystem (31b-
31c) perturbs the dynamics (31a) through the interconnection
matrix H . The perturbing system (31b-31c) is UGAS and
ULES and the interconnection matrix H can be shown to
satisfy ‖H ‖≤ θ4(‖ ζ ‖)(|y|+|yint|+|vr|)+θ5(‖ ζ ‖) where
θ4(·) and θ5(·) are some continuous non-negative functions.
Therefore, applying [23, Theorem 2] and [24, Lemma 8]
concludes that under the conditions of Theorem 1 the origin
(e1, e2, e3, ξ, P̃e) = (0, 0, 0,0, 0) of the system (31) is
UGAS and ULES, or alternatively, globally κ-exponentially
stable. Hence, the objectives (11-12) are achieved with expo-
nential converging properties in any ball of initial conditions
and ψss = − tan−1(σyeq

int/∆).

VIII. SIMULATIONS

The supply ship model from [25] is used with the fol-
lowing improved linear damping matrix for maneuvering
simulation purposes:

D =

[
1.74·105[kg/s] 0 0

0 1.25·106[kg/s] 2.14·106[kg m/s]

0 −6.24·107[kg m/s] 1.35·109[kg/s2]

]
.

(32)
Notice that D > 0 and is obtained from linearization
of more complex nonlinear damping models about the
mean speed Urd. The objective is to make the vessel
follow the path P with a desired surge relative velocity
Urd = 6 [m/s] in presence of both ocean currents and
wind disturbances. The intensity of the current is |V c| =
0.9 [m/s] and its components are Vx = −0.17 [m/s] and
Vy = 0.88 [m/s], having a direction of 100.7 [deg]. Thus,
Assumption 5 is fulfilled with Vmax = 1 [m/s] and it can
be verified that Assumption 10 is satisfied with Ymin =
0.039 [s−1]. The upper limit for the wind pressure Pe is
set to Pmax

e = 570 [N/m2]. It corresponds approximately
to the dynamic pressure generated by wind having 30 [m/s]
of speed at the temperature of 10 [C◦]. This is a reason-
able upper limit since most offshore operations will not
be carried out in such harsh conditions. The pressure Pe
and its direction βe are set to Pe = 139.25 [N/m2] and
βe = 196.9 [deg]. Notice that the two disturbances act in
different directions. The wind load coefficients for the
offshore supply vessel case from [15] satisfy Assumption
7 and are chosen to define C∗X(γe), C

∗
Y (γe), C

∗
N (γe). Notice

that C∗X(γe), C
∗
Y (γe), C

∗
N (γe) are smoothened with the func-

tions trgπ,smooth and sqrsmooth from Appendix I to become
class C1 functions with bounded first derivatives. Hence,
it is possible to verify that Assumptions 8-9 are verified
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Fig. 2. Simulation of convergence and path following of the supply vessel
in presence of multiple disturbances (time interval 0− 1400 [s]).
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Fig. 3. Adaptive surge-yaw controller estimate P̂e(t) from simulations. In
this case Vx = −0.17 [m/s], Vy = 0.88 [m/s], Pe = 139.25 [N/m2]
and βe = 196.9 [deg]. The steady state attack angle is γeqe ≈ −24.8 [deg].
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side-slip angle ψss ≈ −8.0 [deg] in steady state.

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

Time [s]

V
el

oc
ity

 [m
/s]

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
−400

0

400

800

1200

1600

Cr
os

s t
ra

ck
 e

rro
r [

m
]

Relative surge velocity, ur(t)

Desired relative surge velocity, urd(t)

Cross−track error, y(t)

Fig. 5. Cross-track error y(t) and relative surge velocity ur(t) of the
vessel from simulations. Notice the overshoots caused by integral action.

with κmax
v = 0.036 [m/s2] and κ′max

v = 0.02 [m/s2].
Furthermore, the frontal and lateral projected areas above
the waterline of the supply vessel in [25] are estimated as
AFw = 282.00 [m2] and ALw = 554.90 [m2], and its
length overall is Loa = 82.45 [m]. Notice that, given the
bounds Vmax = 1 [m/s], κmax

v = 0.036 [m/s2] and κ′max
v =

0.02 [m/s2], the desired relative velocity Urd = 6 [m/s]
satisfies Assumption 11. The values for the guidance law
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Fig. 6. Adaptive surge-yaw controller estimate P̂e(t) from simulations. In
this case Vx = −0.41 [m/s], Vy = −0.80 [m/s], Pe = 382.76 [N/m2]
and βe = 286.3 [deg]. The steady state attack angle is γeqe ≈ −96.2 [deg].

integral gain and look-ahead distance are chosen to satisfy
(16-17) and are σ = 1 [m/s] and ∆ = 340 [m]. The adaptive
controller (15) is implemented with the following gains:
kur = 0.1, kψ = 0.04, kr = 0.9 and λ = 0.05. The
adaptation gains are set to γ1 = 106 and γ2 = 103. Such
high values for γ1 and γ2 are necessary to guarantee fast
convergence since the quantities 1/m11 and 1/(m22m33 −
m2

23) render κu(γe)
∗ and κr(γe)∗ very small (see Appendix

I). Finally, the supply vessel has 1600 [kN] of maximum
available thrust in surge, while the maximum rudder angle
is 35 [deg] and the maximum turning rate is 10 [deg/s].
The ship is given an initial cross track error of 1500 [m]
and initially holds zero relative velocity. Its surge axis is
parallel to the desired path. Figures 2, 4 and 5 show how the
underactuated vessel successfully follows the path P with a
constant side-slip angle ψss ≈ −8.0◦ to compensate for the
disturbances. Hence, choosing the guidance law parameters
according to the criteria (16-17) gives smooth convergence.
The relative surge velocity is shown in Figure 5 while
the rudder angle is given in Figure 4. Furthermore, Figure
3 shows the performance of the adaption law (15c). As
expected, the estimate P̂e converges to the real value. Notice
that for angles of attack that at equilibrium are close to
γeq
e ≈ ±π/2 convergence is slower as shown in Figure 6.

When γe ≈ ±π/2 the product G(γe)
TG(γe) > 0 is at its

minimum and therefore the convergence of the persistently
exciting (PE) regressor G(γe) is slower.

IX. CONCLUSIONS

Theoretical results and simulations show that the ILOS
guidance law from [9], [10] for path following purposes
of underactuated surface vessels effectively compensates for
kinematic and dynamic disturbances. The ILOS guidance
guarantees path following with global κ-exponential stability
properties in closed-loop configuration with an adaptive
surge-yaw controller, in presence of both the disturbances.
A 3DOF control plant model for maneuvering purposes has
been introduced where the disturbances are modeled as a
combination of a constant irrotational ocean current and con-
stant heading dependent wind forces. Future developments



include improvement of the proposed control plant model
and field validation of the proposed guidance law.

APPENDIX I
FUNCTIONAL EXPRESSIONS

κu(γe)
∗

= −
1

m11

AFwC
∗
X(γe), (33)

κr(γe)
∗

= −
m23ALwC

∗
Y (γe)

m22m33 −m2
23

+
m22LoaALwC

∗
N (γe)

m22m33 −m2
23

, (34)

Fur (ur, vr, r) ,
1

m11

(m22vr +m23r)r −
d11

m11

ur, (35)

X(ur) ,
m2

23 −m11m33

m22m33 −m2
23

ur +
d33m23 − d23m33

m22m33 −m2
23

, (36)

Y (ur) ,
(m22 −m11)m23

m22m33 −m2
23

ur −
d22m33 − d32m23

m22m33 −m2
23

, (37)

Fr(ur, vr, r) ,
m23d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

vr

+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m2
23

r.

(38)

The vectors hy , [hy1, hy2, hy3]T , hvr , [hvr1, hvr2, hvr3]T are:

hy1 = sin(ψ̃ + ψd), hy3 = 0,

hy2 = Urd

[
sin(ψ̃)

ψ̃
cos(ψd) +

cos(ψ̃)− 1

ψ̃
sin(ψd)

]

+ vr

[
cos(ψ̃)− 1

ψ̃
cos(ψd)−

sin(ψ̃)

ψ̃
sin(ψd)

]
,

(39)

hvr1 =
X(ũr + Urd)−XUrd

ũr
ρ(yint, y, vr)+

+ vr
Y (ũr + Urd)− Y Urd

ũr
,

hvr2 = κv(γe)

[
cos(ψ̃)− 1

ψ̃
sin(βe − ψd)

−
sin(ψ̃)

ψ̃
cos(βe − ψd)

]
, hvr3 = X(ũr + Urd),

(40)

where the limits of hy2 for ψ̃ → 0 and hvr1 for ũr → 0 exist and are finite. The
expression ρ(yint, y, vr) is defined as:

ρ(yint, y, vr) ,
∆Urd(y + σyint)−∆2vr

((y + σyint)2 + ∆2)3/2

−
σ∆2

((y + σyint)2 + ∆2)2
y −

∆Vy

(y + σyint)2 + ∆2
.

(41)

The wind coefficients from [15] can be smoothed with the following differentiable
triangular and square odd wave functions:

trgπ,smooth , cos
−1
(

(1− η) cos(γe)
)
−
π

2
, (42)

sqrsmooth ,
1

π
tan
−1

(
cos(γe)

η

)
, (43)

where η is an approximation parameter and can be set for instance to 0.01.
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