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Summary

Neuroendocrine (NE) cells are found in a majority of the body organs. In the 

gastrointestinal (GI) tract, enterochromaffin cells (EC) constitute the largest NE cell 

population and they are distributed from the cardia to the anus. The EC cell population 

includes several different sub-populations, and morphological differences in shape, 

luminal endings and secretory granules suggest region-specific functions. The main 

secretory product of EC cells is serotonin and EC cells account for more than 90 % of 

all serotonin synthesized in the body. Serotonin is thought to be released from the EC 

cell by degranulation at the base of the cell as a response to luminal stimuli acting on 

the apical part of the cell. Serotonin functions as a key regulator of regional blood flow, 

motility and secretion in the gut. The embryological origin of EC cells is still under 

debate. Many researchers today believe that EC cells are derived from a local mucosal 

stem cell. In paper (I) we described a new method for visualizing morphologically intact 

mucosal EC cells. Some EC cells made contact with mucosal cells via axon-like, 

infranuclear cytoplasmatic extensions, while others had extensions that connected with 

underlying neurons. A third EC cell type had no or only short and blunt extensions. The 

serotonin released from these EC cells may reach targets such as neighboring cells or 

fenestrated capillaries through diffusion. EC cells were found to have striking 

morphological similarities with serotonergic neurons, thus indicating that they are 

derived from the neural crest. The finding of EC cells in mitosis, also makes the local 

mucosal stem cell theory less plausible.  

Carcinoid tumors arising from the EC cell produce large amounts of serotonin 

and other hormonally active substances, giving rise to the carcinoid syndrome. The 

major features of the carcinoid syndrome are flushing, diarrhea, asthma and the 

carcinoid heart disease. Carcinoid heart disease occurs in more than 65 % of patients 

with the carcinoid syndrome and is characterized by fibrous thickening of cardiac 

valves, leading to heart failure. Whether serotonin is directly responsible for these 

cardiac abnormalities has so far been unknown. In order to address this issue we 

injected rats with high doses of serotonin once daily for three months (II). For the first 

time we could show that serotonin administration leads to a carcinoid heart-like 
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condition in rats, thus proving the relationship between serotonin and heart valve 

disease.

Serotonin is a well-known mitogen with proliferative effects on different cells of 

mesenchymal origin as well as macrophages via specific serotonin receptors. Two key 

cell types involved in bone metabolism are the mesenchymally derived bone forming 

osteoblasts and the bone-resorbing osteoclasts derived from the monocyte/macrophage 

lineage. It was recently shown that osteoblasts and osteoclasts have functional serotonin 

receptors. In paper (III) we performed in vitro experiments demonstrating that serotonin 

induces proliferation of human bone marrow stem cells, human osteoblasts and murine 

preosteoblasts. Serotonin also increased osteoclast differentiation and activity. This 

effect, however, seemed to be opposed by the finding that serotonin induced an increase 

in the OPG/RANKL ratio in osteoblast cell culture medium, indicating an inhibitory 

effect on bone resorption. A regulatory function for serotonin in bone became even 

more likely when we found that osteoblasts and osteoclasts expressed tryptophan 

hydroxylase 1 (Tph 1), the rate-limiting enzyme in serotonin synthesis, indicating that 

they are able to produce serotonin. We also investigated the effects of the selective 

serotonin reuptake inhibitor (SSRI) fluoxetine on bone metabolism in vitro. Fluoxetine 

inhibited osteoblast proliferation and reduced the OPG/RANKL ratio, indicating an 

overall negative effect on bone metabolism. These results may be of clinical importance 

as fluoxetine is the most used antidepressant drug worldwide. To evaluate possible 

effects of serotonin on bone formation in vivo, a long-term study with daily, low dose 

serotonin injections was performed in growing rats (IV). After three months, a 

significant increase in bone mineral density (BMD) developed. Micro-computed 

tomography ( CT) scans were performed to study bone architecture. In the serotonin 

group, the femoral cortex was thicker, whereas the trabecular bone volume was lower 

compared to controls, indicating a decrease in bone resorption or/and increased 

apposition of endosteal bone. These data were in accordance with the fact that the 

serotonin dosed animals had stiffer bones in mechanical tests. The in vivo findings may 

be explained by the serotonin-induced increase in proliferation of osteoblastic cells and 

elevated OPG/RANKL ratio induced by serotonin in vitro.
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Introduction

1.1 Endocrine cells of the gut 

In 1902, Bayliss and Starling were the first to introduce the concept that chemical 

messengers (hormones) played an important role in the control of physiologic functions 

(1). It is now well established that normal secretory, absorptive and motor functions of 

the GI tract are controlled by a complex combination of regulatory mechanisms that are 

chemically mediated. These so-called regulatory chemical messengers (gut hormones 

and neurotransmitters) are usually either biogenic amines or polypeptides, and are 

normally present in the nerve terminals of the myenteric plexuses and in endocrine cells 

dispersed within the mucosal lining of the gut. Endocrine cells within the gut epithelium 

from the stomach to the rectum represent the largest population of hormone producing 

cells in the body (2). They are scattered as individual cells throughout the mucosa, 

comprising approximately 1 % of the cells lining the GI lumen. 

Feyrter was the first to describe the “diffuse neuroendocrine cell system” in 

1938 (3). During the 1960s, gastrointestinal endocrine cells were found to express 

markers for neuronal differentiation, including those involved in the biosynthesis of 

neurotransmitters, as well as showing ultrastructural properties common to those of 

neurons. In 1969, Pearse described the amine precursor uptake and decarboxylation 

properties of NE cells and introduced the APUD concept, and he also proposed that 

APUD cells stemmed from the neural crest (4). The resemblance between gut endocrine 

cells and nerve cells gave birth to the “paraneuron” concept (5). The microvilli were 

regarded as the sensory part of the nerve cell, the cell body as the signal transport 

portion and the exocytosed secretory granules as the message. The hypothesis that NE 

cells are of neural crest origin has been opposed by others, and using embryonic cell 

tracing techniques they conclude that NE cells are derived from a common endodermal 

stem cell (6-8). 
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1.2 The enterochromaffin (EC) cell 

In 1870 Heidenhain described the chromaffin (from their ability to stain a brownish 

color with chromic salts) cells in the gut (9). Later Kultschitzky described them as 

basigranular acidophil cells and as a result the cells were named Kultschitzky cells (10). 

The term enterochromaffin cell was first used by Ciaccio in 1907 (11). The functional 

significance of these cells remained obscure until Masson observed their affinity for 

silver salts (argentaffinity) and suggested that they probably served an endocrine 

function (12). 

 EC cells are distributed all along the gastrointestinal tract, from the cardia to the anus. 

They comprise the major population of gut endocrine cells and play a pivotal role in 

several aspects of gut function including secretion, motility and sensation (13, 14). EC 

cells synthesize, store and release the biogenic amine serotonin (5-hydroxytryptamine 

(5-HT)) as well as a variety of peptides (15-19). The biochemical pathway for serotonin 

synthesis initially involves the conversion of the essential amino acid tryptophan to 5-

hydroxytryptophan by the enzyme tryptophan hydroxylase (Tph). This enzyme provides 

the rate limiting step for serotonin synthesis. The subsequent metabolic step in the 

synthesis of serotonin involves the decarboxylation of 5-hydroxytryptophan into 5-

hydroxytryptamine by the action of the enzyme 5-hydroxytryptophan decarboxylase. 

EC cells accumulate serotonin in secretory vesicles via vesicular monoamine transporter 

1 (VMAT-1) (20). In the secretory vesicles, serotonin is colocalized with 

chromogranins, which are acidic proteins with diverse functions such as amine storage 

proteins and pro-hormones in enteroendocrine cells (21-24). Most EC cells are of the 

“open” type with apical cytoplasmatic extensions which project into the glandular 

lumen with short microvilli (Fig. 1). These structures represent the anatomical basis for 

the cell response to physical or chemical variations in luminal content (25). EC cells 

have been referred to as “taste buds of the gut” and are believed to function as sensory 

transducers that activate mucosal processes of both intrinsic and extrinsic primary 

afferent neurons through their release of serotonin from granule stores located at the 

base of the cells (14, 26). Secreted serotonin may also influence adjacent cells by 

paracrine actions and exert hormonal effect on distant cells via the blood circulation. EC 
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cells with cytoplasmatic processes sometimes projecting into adjacent glands have been 

shown, suggesting a role for EC cells in functional synchronization of neighboring 

glands (27, 28). After release, most of the serotonin is rapidly transported by the cell 

membrane-bound serotonin transporter (5-HTT) into a number of cell types, with 

platelets serving as a reservoir. It has been estimated that the adult human body has 

about 5 to 10 mg of serotonin, 90 % of which are in the intestine and the rest in blood 

platelets and the brain. The free circulating fraction of serotonin is very low due to a 

rapid degradation to 5-hydroxyindoleacetic acid (5-HIAA) by monoamine oxidase in 

the liver and lungs.   

Figure 1.   Left, diagram illustrating the hypothesis regarding initiation of the peristaltic reflex. A 

bolus in the intestinal lumen exerts pressure on the mucosa that causes serotonin to be 

secreted from enterochromaffin (EC) cells. The serotonin enters the lamina propria, where it 

reaches serotonin receptors on the terminals of submucosal sensory neurons. Serotonin thus 

participates in the initiation of the peristaltic reflex. Right, diagram showing how a luminal 

stimulus acts on EC cell microvilli, leading to degranulation of infra-nuclear stores of serotonin 

(illustration by Sarah Bååth Krantz). 
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From a historical perspective a number of histochemical techniques have been 

used to visualize EC cells (29, 30). Nowadays immunohistochemical staining 

techniques using antibodies specifically directed against serotonin represent a very 

convenient, reproducible and specific method for the visualization and identification of 

EC cells. 

1.3 The carcinoid syndrome 

Carcinoid tumors were first described by Lubarsch in 1888, when he reported the 

autopsy findings of two patients with multiple tumors in the distal ileum (31). The term 

carcinoid was introduced in the literature by Oberndorfer in 1907 in his description of a 

class of malignant tumors that behaved less aggressively than the more common 

adenocarcinomas of the GI tract (32). The exact nature of the tumor was not determined 

until 1928 when Masson described its origin as the enterochromaffin cell (33). A 

syndrome associated with these neoplasms was independently reported by Isler and 

Rosenbaum in 1953 and Thorson in 1954 (34-36). The carcinoid syndrome is caused by 

biologically active tumor products, such as serotonin, dopamine, cathecholamines, 

bradykinin and tachykinins (37-40). The primary tumor, most often located in the ileum, 

rarely gives any symptoms. If metastases to the liver occur, however, the tumor 

products drain into the caval system via the hepatic veins, thus bypassing inactivation 

by the liver. The result is that large amounts of tumor products enter the blood 

circulation and the carcinoid syndrome develops, typically consisting of episodic skin 

flushing, diarrhea, bronchoconstriction, sweating, abdominal cramping, and valvular 

heart disease. 

1.4 Carcinoid heart disease 

Carcinoid heart disease describes cardiac and vascular changes associated with the 

carcinoid syndrome. Fibrous plaques on the endocardial surface of the valvular cusps 

and the cardiac chambers, and on the intima of the great veins and arteries occur. The 

plaques contain deposits of myofibroblasts, fibroblasts, and smooth muscle cells in a 
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myxoid matrix (41). Carcinoid plaques are seen in areas subjected to the greatest 

concentrations of tumor products (42, 43). The cause of carcinoid heart disease is 

unknown, but serotonin was early mentioned as a possible agent involved in the 

pathogenesis (44). Among patients with the carcinoid syndrome, those with the highest 

levels of tachykinin and serotonin in serum and 5-HIAA in the urine are prone to 

develop heart valve changes (45-48). In addition to its role as a regulator of secretive 

processes, serotonin has been found to modulate cell proliferation in fibroblasts, 

valvular subendocardial cells and other cells of mesenchymal origin (49-53). 

 Serotonin produces its effects through a variety of membrane-bound receptors 

(54). With the exception of the 5-HT3 receptor, which is a ligand-gated ion channel, 5-

HT receptors belong to the G-protein-coupled receptor (GPCR) super family and, with 

at least 14 distinct members, represent one of the most complex families of 

neurotransmitter receptors. Human heart valves have been shown to express mRNA for 

the 5-HT1B, 1D, 2A and 2B receptors (55, 56). Fenfluramine, a serotonergic drug used as an 

appetite suppressant, was withdrawn from the market in 1997 because it induced a 

valvular heart disease similar to that seen in the carcinoid syndrome (57). This effect 

may be mediated via the 5-HT2B receptor (56, 58).  It has also been shown that ablation 

of the 5-HT2B receptors in mice leads to abnormal cardiac development with hypoplastic 

ventricles (59). On the other hand, the 5-HT2A receptor seems to be involved in 

upregulation of transforming growth factor-  and stimulation of glycosaminoglycan 

production in sheep aortic interstitial cells (60). In conclusion, several in vitro studies 

point out serotonin as the major pathogen in carcinoid heart disease, in vivo however, 

this has not been verified. 

1.4 The skeleton 

Bone is a specialized connective tissue that makes up, together with cartilage, the 

skeletal system. These tissues serve three main functions: 1. mechanical: support and 

site of muscle attachment for locomotion, 2. protective: for vital organs and bone 

marrow; and 3. metabolic: as a reserve of ions, especially calcium and phosphate. 

Anatomically, two types of bones exist in the skeleton: flat bones (skull bones, scapula, 
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mandible and ileum), and long bones (tibia, femur and humerus). The skeleton is 

composed of an outer layer of compact or cortical bone with low porosity and the inner 

trabecular (cancellous) with high porosity (Fig. 2 and 3). The skeleton consists of 

approximately 80 % cortical bone, largely in peripheral bones, and 20 % trabecular 

bone, mainly in the axial skeleton.  

The diverse functions of bone are reflected in its composition. Bone tissue is 

composed of an extracellular matrix (largely mineralized), collagen and cells 

responsible for the formation and maintenance of the bone matrix.  The cells of the bone 

maintain the structure of the skeleton and adapt it to mechanical demands placed upon 

it. Powerful systems organize and control the numbers, location, and work efficiency of 

cells involved in bone metabolism.  

Figure 2. A human long bone 

(femur) (illustration by Sofie 

Gustafsson). 
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Figure 3. Structure of trabecular bone (with permission from professor Philip Sambrook, 

University of Sydney). 

1.6 Bone cell function, modeling and remodeling

While trabecular bone accounts for the minority of total skeleton tissue, it is the site of 

higher bone turnover because its total surface is greater than that of cortical bone. In a 

growing individual bone continuously changes its shape, structure, and mass by two 

types of bone formation, endochondral and periosteal apposition, determining the length 

and width of the bones (61). During this process called modeling, the bone formation 

exceeds bone resorption. In adulthood the process of bone remodeling maintains the 

mechanical integrity of the skeleton. Remodeling is a strict coupling of bone resorption 

and formation. This process continues throughout life, in order to replace damaged bone 

with new bone (62-64). If this balance of bone formation and resorption is disturbed 

(un-coupled), pathological states with loss of bone like osteoporosis or with increased 

bone mass like osteopetrosis, may develop (65-67).  

The process of bone remodeling involves three different cell types that can 

respond to various environmental signals. The osteoblast is situated on the bone surface 

at sites of active bone matrix formation (Fig. 4). It originates from a local mesenchymal 
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stem cell and in cell culture, osteoblasts are nearly indistinguishable from fibroblasts 

(68-70). Osteoblasts produce bone matrix proteins including type I collagen, the most 

abundant extracellular bone protein, and also takes charge of mineralization of the 

tissue. Other cells in the osteoblastic lineage are the osteoblast precursor cells (pre-

osteoblasts), bone lining cells, and osteocytes. Pre-osteoblasts are located near bone 

formation sites, and can rapidly develop into mature osteoblasts. In adult bone some 

surfaces are not actively involved in bone formation or resorption. These surfaces are 

covered with a thin layer of flattened cells, the bone lining cells. Bone lining cells are 

formed from osteoblasts when bone formation stops, but are thought to have the ability 

to re-differentiate into active osteoblasts when needed (71). Osteocytes are considered 

to be osteoblasts that were trapped in the bone matrix that they produced. They possess 

several long extensions that can contact other osteocytes, osteoblasts, lining cells or/and 

osteoclasts and their precursors. It has been suggested that osteocytes sense mechanical 

load to bone, and thus participate in the modulation of bone (72, 73). 

 Osteoclasts are multinucleated, bone resorbing cells originating from 

hematopoetic mononuclear cells (74). They are usually found in contact with a calcified 

bone surface and within a lacuna (Howship`s lacunae) that is the result of its own 

resorptive activity. Bone remodeling follows an ordered sequence. In this cycle, bone 

resorption is initiated by recruitment of osteoclasts. Osteoclasts have a membrane called 

the ruffled border through which hydrochloric acid and lysosomal enzymes are released, 

causing bone resorption. This resorptive phase is followed by a bone formation phase 

where osteoblasts fill the lacunae produced by osteoclasts with osteoid, which is 

subsequently mineralized to form new bone matrix. 

 The functions of osteoblasts and osteoclasts are closely linked. Cells from the 

osteoblast lineage synthesize and secrete molecules that initiate and control osteoclast 

differentiation. It is known that two hematopoetic factors are crucial for 

osteoclastogenesis, the polypeptide growth factor M-CSF-1 (Macrophage-Colony 

Stimulating Factor-1) and Receptor Activator of NF B Ligand (RANKL), a member of 

the TNF super-family. Both are expressed by osteoblasts and their immature precursors 

(75, 76). RANKL activates its receptor, RANK, which is expressed on osteoclasts and 

their precursors. Thus, RANKL promotes osteoclast formation and activation and 

prolongs osteoclast survival by suppressing apoptosis (77).   
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Figure 4. Diagram showing the different cell types involved in bone remodeling 

(illustration by Sarah Bååth Kranz). 

Osteoprotegerin (OPG) is a secretory glycoprotein that is also expressed by the 

osteoblast and its precursors. It inhibits osteoclast differentiation and activation by 

binding to RANKL and preventing it from activating RANK (78). The balance between 

RANKL and OPG is regulated by multiple factors including cytokines, growth factors, 

systemic hormones and transcriptional factors, which together determines the overall 

osteoclast function (79-81).

Recently, signaling molecules present in the peripheral nervous system and 

mechanisms controlled by the central nervous system, have been shown to be involved 

in the regulation of bone metabolism (82-84). Studies on nerve terminals in bone have 

demonstrated the presence of several neuropeptides (85). In the 1990s, Rahman et al.

showed effects of bradykinin and vasoactive intestinal peptide (VIP) on bone cell 

activity in vitro (86, 87). A few years later two groups, almost simultaneously, 

discovered that glutamate could act as a signaling molecule in bone, and it is now 

recognized that both osteoclasts and osteoblasts can be regulated by glutamate (88-92). 
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Receptors for the neuropeptides VIP and pituitary adenylate cyclase-activating 

polypeptide (PACAP) have been demonstrated on both osteoblasts and osteoclasts and 

activation of these receptors causes profound changes in the activity of the cells (93, 

94). It has also been shown that leptin is expressed in and secreted from primary 

cultures of human osteoblasts and promotes bone mineralization, (95) and recently it 

was demonstrated that ghrelin stimulates bone formation (96). In 2000, functional 

serotonin receptors in both osteoblasts and osteocytes were demonstrated (97). 

Furthermore, 5-HTT was demonstrated in rat osteoblasts (98).

1.7 Biomechanics of bone

The strength of bone and its ability to resist fracture is dependent on its mass and 

geometry, but also on intrinsic (material) properties of the bone tissue itself (99). The 

mineral content provides strength and stiffness to the tissue, but at increasing levels of 

mineralization, the tissue can become more brittle, reducing the energy required for 

fracture (100, 101). The collagen matrix also contributes to a large extent to the 

mechanical properties of bone (101). It has been shown that changes in collagen 

structure contribute to the age-associated reduction in bone toughness and an increased 

fracture risk independent of BMD (102). Bone fragility can be defined as the 

susceptibility to fracture. The biomechanical definition of bone fragility include at least 

three components: strength, brittleness and work to failure. A fourth measure, stiffness, 

is also used to assess mechanical integrity of bones. When a force (load) in a known 

direction is placed on a structure, the displacement (deformation) of the structure can be 

measured and plotted on a force-displacement curve (Fig. 5A). Bone strength (ultimate 

force) is defined as the height of the curve, and describes the maximum force the bone 

can sustain before it breaks. The energy it can store before fracture, or work to failure, is 

the area under the curve. 

 Skeletal disease can cause fragile bones by affecting bone structure in different 

ways. Osteopetrosis, with an increased bone mass, causes stiff, brittle bones (Fig. 5B). 

They absorb very little energy before breaking (reduced work to failure) and are 

therefore more susceptible to fracture resulting from trauma. In osteomalacia with a 
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deficiency of vitamine D and calcium, the bone tissue becomes soft, which also leads to 

reduced work to failure. These bones, however, can deform considerably before 

breaking. An ideal drug to cure bone fragility would improve strength and decrease 

brittleness (Fig. 5C). 

Figure 5. Diagrams showing force-displacement curves. A; the height of the curve represents 

the strength, the area under the curve is the work to failure (U), the maximum slope of the curve 

is the stiffness (S) and the width of the curve is the ultimate displacement (reciprocal of 

brittleness). B; osteopetrosis reduces the displacement before failure and thus increases 

brittleness. Osteomalacia decreases brittleness but reduces the force at failure and thus 

weakens bone. C; an ideal treatment for bone fragility. 
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Aims of the studies 

1. To develop a new technique for visualization of morphologically intact gut mucosal 

cells.

2. To study the morphology of the enterochromaffin cell in different parts of the rat 

gastrointestinal tract. 

3. To examine the expression of serotonin receptors in rat aortic valves. 

4. To create a carcinoid syndrome-like condition in rats and investigate whether heart 

valve changes similar to those seen in the carcinoid heart disease appear. 

a. By echocardiography. 

b. By histological and immunohistological examinations. 

5. To describe the effects of serotonin and the selective serotonin reuptake inhibitor 

fluoxetine on bone metabolism in vitro.

a. By investigating the effects of serotonin and/or fluoxetine on proliferation of 

human and murine osteoblastic cells in vitro.

b. By investigating the effects of serotonin and/or fluoxetine on proliferation, 

differentiation and activity of human and murine osteoclastic cells in vitro.

c. By examining the expression of serotonin receptors and the serotonin transporter 

in human osteoclasts, and the rate limiting enzyme in serotonin synthesis (Tph) 

in osteoblasts and osteoclasts in vitro.

d. By examining the release of factors modulating bone metabolism from 

osteoblasts treated with serotonin and/or fluoxetine in vitro.
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6. To study the consequences on bone of long-term administration of serotonin to 

growing rats. 

a. By measuring the bone mineral density with DXA. 

b. By examining the femurs with micro-computed tomography. 

c. By studying the histology of bones with histomorphometry. 

e. By performing mechanical testing on femurs. 
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Methodological considerations 

The details of all procedures have been described in each paper and only general 

comments concerning the different methods will be given. 

1.1 Dispersion of formalin-fixed gut mucosal cells 

Dispersion of tissues is done to obtain a single-cell suspension with all the different cell 

types composing the tissue. Traditionally, dispersion of gut mucosa cells has been done 

using a fresh and unfixed organ. To disperse mucosal cells from the stomach or the 

intestinal wall, a combination of proteolytic enzymes, acalcemia and mechanical force 

is needed (103-105). What is unique about the method used in paper I is that the 

different parts of the GI tract were fixed in formalin before dispersion, which results in 

morphologically intact cells in the cell suspension. To accomplish the dispersion of 

mucosal cells from formalin-fixed tissue we created a modified method based on the 

principals of enzymatic, chemical and mechanical detachment, and segregation of cells.  

1.2 Immunohistochemical staining 

Immunohistochemistry is a method using specific antibodies to detect molecules in their 

in situ localization on a tissue slide or in cell smears. The principle of 

immunohistochemistry has been known since the 1930s, but it was not until 1941 that 

the first immunohistochemistry study was reported (106). All stainings used in this 

thesis were done by the EnVision-system (DAKO, Glostrup, Denmark). The EnVision-

system is based on dextran polymer technology. This chemistry permits binding of a 

large number of enzyme molecules (horseradish peroxidase or alkaline phosphatase) to 

a secondary antibody via the dextran backbone. The benefits are many, including 

increased sensitivity, minimized non-specific background staining and a reduction in the 

total number of assay steps as compared to conventional techniques. In brief, the 

protocol was as follows; i) Application of primary antibody; ii) Application of enzyme 
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labeled polymer; iii) Application of the substrate chromogen. In paper I, specific 

antibodies directed against serotonin were used, whereas antibodies directed against Ki-

67 were used in paper II. The antigen Ki-67 is a ubiquitous nuclear protein expressed in 

G1-, S-, and G2-phases of the cell cycle, but not in the G0-phase, and is therefore a

measure of the growth fraction of cells (107-109).  

1.3 Animal studies 

All animals used were female Sprague Dawley rats. The reason for working only with 

female rats was that I had developed a rat allergy. The allergens produced by rats are 

well characterized, and it is believed that the urine of adult male rats is the most 

important source of allergen (110). In paper I, the animals were sacrificed without any 

prior treatment or procedures. Paper II and IV were in vivo studies to investigate the 

biological effects caused by long-term administration of serotonin (5-

Hydroxytryptamine Creatinin Sulfate Complex, Sigma-Aldrich). Serotonin is well 

recognized as an unstable compound and decomposes quickly if treated improperly. 

Temperature, pH, and some metal ions are known to affect its degradation. As serotonin

can not be administered orally, we first performed long-term infusion with serotonin 

using mini pumps. However, due to degradation of serotonin in the pumps, no 

detectable increase in plasma serotonin occurred (unpublished observation). The 

problem was overcome by daily subcutaneous injections of freshly dissolved serotonin.

1.4 Blood and microdialysis sampling 

Serotonin is stored in platelet granules, and free circulating levels of serotonin are very 

low. Due to degranulation of platelets during blood sampling, large amounts of 

serotonin may leak out and cause a false, elevated serotonin concentration in plasma. 

Special techniques to prepare platelet-poor plasma (PPP) have therefore been developed 

(111, 112).

Microdialysis is based on diffusion through a semi-permeable membrane. The 

microdialysis catheter mimics a blood capillary. The tubular dialysis membrane is
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continuously perfused by a liquid that equilibrates with the surrounding interstitial fluid 

(Fig. 6). After insertion of the microdialysis catheter into the tissue, dialysate samples

can be continuously collected. The technique has been in use since the 1980s, and 

collection of serotonin from the brain is well established. It has also been used for 

determination of free serotonin in other tissues and in blood (113-117). 

Figure 6. The tip of a microdialysis catheter. The perfusion fluid is guided through the double-

lumen shaft (a). In space (b) the dialysis takes place between the inner outlet tube and the 

surrounding tubular outer dialysis membrane. The dialysate is collected (c). 

1.5 High-performance liquid chromatography (HPLC) 

Serotonin concentrations in paper II and IV were determined by HPLC. The technique 

was developed in the late 1960s and early 1970s (118). HPLC separates compounds that 

are dissolved in solution. HPLC instruments consist of a reservoir of mobile phase, a 
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pump, an injector, a separation column, and a detector. A small amount of liquid sample 

is injected into a moving stream of liquid (called the mobile phase) that passes through a 

column packed with particles of stationary phase. Separation of a mixture into its 

components depends on different degrees of retention of each component in the 

column. The extent to which a component is retained in the column is determined by its 

partitioning between the liquid mobile phase and the stationary phase.  

1.6 Echocardiography 

Cardiac ultrasonography (echocardiography) is a non-invasive tool for imaging the heart 

and surrounding structures. The evolution of ultrasonography dates back to 1880, when 

Pierre and Jacques Curie discovered piezoelectricity (119). The pioneers of 

echocardiography were Inge Edler, a cardiologist at Lund University in Sweden, and 

Hellmuth Hertz, a Swedish physicist (120). During the 1970s, Liv Hatle and Bjørn 

Angelsen in Trondheim, Norway, established the clinical use of ultrasound doppler 

(121). Diagnostic ultrasound employs pulsed, high frequency (>20 000 Hz) sound 

waves that are reflected back from body tissues and processed by the ultrasound 

machine to create characteristic images. In paper II, a GE Vingmed Ultrasound system 

Five scanner with an 8-MHz phased array probe was used to examine if leakage over 

heart valves existed. The examination was mainly performed as earlier described (122-

125).

1.7 Reverse-transcriptase polymerase chain reaction (RT-PCR) 

In 1969, the Norwegian scientist Kjell Reppe presented a new method for “repair 

replication” at a conference in New Hampshire, which described the principles for what 

we today call PCR (126). Accordingly, Kleppe was the first to describe the theoretical 

basis of PCR, and later Kary Mullis developed it into a technique that has became one 

of the most useful techniques in molecular biology (127). Kary Mullis, but 

unfortunately not the original inventor Kjell Reppe, was awarded the Nobel Prize in 

Chemistry in 1993 for this achievement (128, 129). RT-PCR is the most sensitive 
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technique for detection of mRNA. In papers II-IV, we have used this technique to look 

at expression of serotonin receptors, the serotonin transporter and Tph in total RNA 

extracted from tissue or cell cultures. 

1.8 Cell cultures 

Primary human osteoblasts (NHOst cell system, Cambrex, Walkersville, MD, USA) and 

human mesenchymal stem cells (MSC) isolated from the iliac crest and human 

osteoclasts differentiated from human peripheral blood mononuclear cells (PBMC) were 

used in paper III. In the same paper, two immortalized cell lines, the murine MC3T3-E1 

preosteoblasts and murine RAW264.7 osteoclasts were also used. Primary cell cultures 

are initially established by dissociation of a tissue into single cells. Most cells will die as 

a result of their limited life span, which is characteristic for all somatic cells. By 

exposing normal, mortal cells to radiation, chemical carcinogens or certain oncogenic 

viruses they can be made immortalized. These cells can be dissociated by proteolytic 

treatment and subcultured (or passaged) into fresh cultures. In contrast to most primary 

cultures, immortalized cell lines are able to grow at low cell density and allow the 

cloning of single cells into homogeneous populations. However, they invariably display 

abnormal karyotypes, are in many respects already preneoplastic, and may undergo 

spontaneous transformation. Proliferation of cultured cells depends on numerous 

nutrients that are routinely supplied by a synthetic medium and on many other 

components including growth factors that are typically provided by supplementing the 

medium with serum. As serum contains large amounts of serotonin, cell culture studies 

looking at the effects of serotonin on proliferation, differentiation and release of 

mediators must be done using serotonin depleted media.  

In vitro results from cell cultures must be interpreted very carefully. In fact, cell 

lines are poor models of their in vivo counterpart. Receptors and signal transduction 

proteins are differentially expressed during embryogenesis, growth and even under 

different physiological conditions. The effects of a compound may therefore vary at 

different cell stages. Lack of circulating hormones, neurotransmitters and paracrine 

signals from neighboring cells can also make results from cell culture studies difficult to 
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interpret and firm conclusions for in vivo effects should not be drawn. Yet, to define 

mechanisms, simplified systems are necessary. The biological relevance of the findings, 

however, needs to be validated in living animals or in the human organism.  

1.9 Dual X-ray absorptiometry (DXA) 

DXA, a technique for measuring bone mineral density (BMD) and soft tissue 

composition (body fat and lean tissue mass), was used in paper IV (130). A DXA 

scanner produces two X-ray beams, each with different energy levels. One beam is high 

energy while the other is low energy. The amount of x-rays that passes through the 

tissue is measured for each beam and it will vary depending on the thickness of the 

tissue. Based on the difference between the two beams, the BMD, fat content and lean 

mass can be measured.  

1.10 Micro-computed tomography ( CT)

Measuring the BMD alone is not sufficient to understand how a compound or a disease 

may affect bone composition and fracture risk. In paper IV, we therefore studied the 

bone architecture by μCT (131-133). Based on the architecture, μCT can also be used to 

determine the strength and stiffness of the bone sample (134). 

1.11 Mechanical testing 

Strength and stiffness are important mechanical properties of bone. These properties can 

best be understood by examining the bone under loading. In paper IV, a three-point 

bending test was used to determine the mechanical properties of rat femurs. The test 

was performed, with a few modifiations, as earlier described (135).  
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Results and discussion 

1.1 Cells dispersed from formalin-fixed mucosa retain their 

morphological characteristics 

In paper I, the results of a new method for visualization of morphologically intact gut 

mucosal cells are shown. Due to the formalin-fixation prior to dispersion, the mucosa 

cells maintained their 3-dimensional features. The morphological description of GI 

mucosal cells has more or less been based upon histological examination of thin 

sections, resulting in 2-dimensional images (13, 136). Serial sectioning makes it 

possible to create 3-dimensional reconstructions of the histological anatomy, but the 

techniques are very time-consuming and the resulting 3-dimensional computer 

reconstructions are not telling the full truth (28).

In contrast, the current method is easy to perform and the whole procedure is done 

in a few hours. Using cell-specific antibodies, the different cell types of the cell-

suspension smears can be visualized and their morphology thus studied.  

1.2 The enterochromaffin cell has a neuron-like appearance 

EC cells have traditionally been described as bottle-shaped with apical extensions 

towards the gut lumen. A few studies have shown that they sometimes possess basal 

processes directed towards the submucosa as well (27, 28, 137). We found that 

practically all EC cells posessed projections towards the lumen and that “closed” EC 

cells, without luminal contact, are very rare. This finding underlines that EC cell 

function is to sense and respond to changes in the luminal content (14). A large 

population of EC cells, especially in the colon and in the rectum, had very long 

extensions, projecting from the base of the cells as well. These extensions were directed 

towards the base of neighboring cells and in some cases also into the lamina propria. A 

few EC cells had extensions that connected with neuron-like structures. All EC cell 
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extensions, the luminal as well as those at the base of the cells, had serotonin containing 

granules throughout their whole length. The EC cells thus have the anatomic basis to 

sense changes in the gut content and directly pass on the information to neighboring 

cells, the capillary net or to neuron endings in the lamina propria, using serotonin as the 

messenger. These findings are in accordance with the paraneuron concept which points 

out the resemblance between neuroendocrine cells and neurons (5). It has been 

suggested that EC cells are lacking in vertebrates only when there is an innervation of 

the gut mucosa by nerve fibers containing high concentrations of serotonin (138-140). 

As EC cells have serotonin-containing axon-like projections that probably make 

synaptic contact with other cells and neurons, it is tempting to suggest that EC cells are 

specialized serotonergic neurons. Differentiated EC cells with the ability to divide were 

also found, casting further doubt on a role for a local mucosal stem cell in EC cell 

renewal (141). The striking resemblance between EC cells and serotonergic neurons 

indicates that they may be neural crest derived, as stated already in the 1960s (4). It is 

therefore possible that the well accepted local stemcell theory, suggesting that all gut 

mucosal cells derive from a common local stemcell, may be wrong (7, 142). 

1.3 An animal model for the carcinoid syndrome  

By injecting rats with high doses of serotonin a carcinoid syndrome-like condition was 

created (paper II). The carcinoid syndrome is caused by high circulating levels of 

vasoactive substances secreted by carcinoid tumors arising from EC cells. The major 

pharmacologic agent causing diarrhea in the carcinoid syndrome has been proven to be 

serotonin (143). Substances like histamine, kinins and tachykinins have been reported to 

cause the periodical flushing seen in the carcinoid syndrome, but a correlation to high 

levels of serotonin and catecholamines has also been shown (39, 144-146). In the 

current study, clinical signs as loose stools and flushing were seen as a result of 

serotonin injections. The flushing appeared only a few minutes after the injections, 

indicating a direct correlation between serotonin and flushing. 

 Determination of free serotonin in plasma is hard to accomplish due to 

degranulation of the serotonin storages in platelets. Despite that protocols to avoid 
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platelet degranulation were followed, serotonin levels were extremely high in PPP 

(10 940 ± 739.2 nM) after serotonin injections. To be sure that the high PPP serotonin 

levels seen reflected the free circulating serotonin levels, microdialysis in the femoral 

muscles was performed. The basal level of serotonin in microdialysate was below the 

detection limit for the HPLC method used in paper II. The improved HPLC method 

used in paper IV, however, showed that microdialysate from the femoral muscles in a 

control rat contained 2.8 nM serotonin, which was less than one 10th of the serotonin 

level seen in PPP (51.8 nM) of control rats. Serotonin injections resulted in a peak 

concentration in microdialysate after 2 h (302 ± 11 nM), and thus a 100-fold increase 

compared to control. The serotonin concentration remained manifold increased for more 

than 6 hours. The serotonin injections induced a carcinoid-like syndrome both regarding 

clinical signs and the level of free circulating serotonin. Microdialysis seems to be the 

most accurate way to collect samples for determination of free circulating serotonin.  

1.4 Serotonin administration induces a carcinoid heart-like 

condition in rats

Echocardiographic examination of rats with hyperserotoninemia demonstrated that a 

similar heart valve leakage as seen in the carcinoid heart disease had developed (43). 

The echocardiographic results correlated with the histopathological findings of 

thickened and retracted aortic cusps with carcinoid heart-like plaque formation. Rat 

aortic cusps expressed mRNA for the 5-HT1A, 2A and 2B receptors, confirming that one or 

more of these receptors may be involved in the pathogenesis of carcinoid heart disease 

(55, 56, 60, 147). The 5-HTT was also expressed, indicating that SSRIs like fluoxetine 

have the potential to affect heart valves via a local increase in serotonin (148, 149). No 

clinical studies, however, have so far been able demonstrate any negative cardiac effects 

of these drugs (150). The fact that long-term serotonin administration induces a 

carcinoid heart-like disease in rats, suggests that serotonin is the agent causing the 

carcinoid heart disease in humans.  
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1.5 Serotonin affects bone metabolism   

It has previously been shown that functional serotonin receptors are present in 

osteoblast precursors, osteoblasts and osteocytes (97). In paper III, we demonstrated 

that the proliferative effect of serotonin on preosteoblasts was mediated, at least partly, 

through binding to 5-HT2 receptors and activation of the PKC pathway. In MSC and 

NHO cells, 5-HT2A receptor expression was found to be up-regulated by serotonin, 

indicating that this receptor is involved in the proliferation induced by serotonin in these 

cells. The effect of serotonin was biphasic, which is also known from studies on other 

cell types (151-153). Serotonin also affected osteoclast proliferation in vitro. A direct 

stimulation of osteoclast proliferation as well as differentiation and activity in a 

resorption pit assay was seen. On the other hand, serotonin increased the OPG/RANKL 

ratio in osteoblast cultures. The OPG/RANKL system is known as the most potent 

regulator of osteoclast formation and activity (76, 154), indicating that the overall effect 

of serotonin on osteoclast activity in vivo may be inhibitory. As demonstrated in paper 

IV, serotonin administration leads to higher BMD and thicker cortex in the femur 

metaphysis in growing rats. The femur perimeter, however, was not different from 

control rats and the bone marrow volume was lower, indicating that the increased 

cortical thickness could be due to an increased apposition of endosteal bone or perhaps 

also result from a reduced osteoclast activity leading to less endosteal bone resorption. 

 The changes in bone architecture also altered mechanical properties in femurs 

collected from serotonin dosed rats. As a result of a thicker cortex and less trabecular 

bone, the bones were stiffer.

 Both osteoblasts and osteoclasts expressed Tph 1, indicating that they, like 

fibroblasts and macrophages, may be able to produce serotonin (155, 156). It is thus 

possible that serotonin is a coupling factor, regulating osteoblast and osteoclast activity.
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1.6 Fluoxetine affects bone metabolism in vitro

As shown in paper III, fluoxetine induced proliferation of human MSC and osteoblasts, 

as well as murine MC3T3-E1 preosteoblasts in nM concentrations. On the contrary, M

concentrations had an inhibitory effect on MSC and MC3T3-E1 cell proliferation. The 

proliferative effect seen at lower concentrations may be of less importance as the serum 

levels of fluoxetine in patients treated with this drug are 0.65–2.5 M (fluoxetine + 

norfluoxetine) and the bone marrow concentration of fluoxetine may be as high as 100 

M (157). Fluoxetine had a similar direct effect on osteoclast proliferation and also on 

osteoclast differentiation and activity; at nM concentrations osteoclast proliferation, 

differentiation and activity were increased, whereas concentrations > 1 M were 

inhibitory. On the other hand, fluoxetine suppressed the OPG/RANKL ratio at all 

concentrations, indicating increased osteoclast formation and activation. Fluoxetine has 

been shown to affect bone mass negatively in rats, and in humans there are indications 

for an increased fracture risk and reduced growth in children using the drug (158-161).  

The overall fluoxetine effect on bone thus seems to be negative both in vitro and in vivo.

Fluoxetine did not induce serotonin elevation in the media and addition of 

serotonin to the media tended to reverse the fluoxetine effects on osteoblast 

proliferation. In addition, antagonists of the 5-HT2 receptors also reversed fluoxetine-

induced effects. It is therefore plausible that fluoxetine exerts direct effects on bone 

cells via 5-HT2 receptors and not indirectly through inhibition of serotonin reuptake by 

blocking 5-HTT. Fluoxetine has been demonstrated to have affinity for these receptors, 

which supports this theory (148, 149, 162). 
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Conclusions

1 Dispersion of formalin-fixed gut mucosa is a new method to 

investigate single gut mucosa cell morphology. 

2 EC cells have a neuron-like appearance. 

3 Daily subcutaneous injections with serotonin results in a carcinoid 

syndrome-like condition in rats. 

4 Long-term hyperserotoninemia leads to a carcinoid heart-like 

condition in rats. 

5 Serotonin directly affects proliferation of osteoblastic cells via 

binding to 5-HT2 receptors and subsequent activation of the PKC 

pathway.

6 Serotonin increases the OPG/RANKL ratio in vitro.

7 Serotonin affects osteoclast proliferation, differentiation and 

activation in a bell-shaped manner in vitro.

8 Long-term hyperserotoninemia results in a higher total body BMD in 

rats.
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9 Long-term hyperserotoninemia leads to a thicker femoral cortex and 

a smaller bone marrow cavity in rats. 

10 Long-term hyperserotoninemia alters bone mechanical properties in 

rats.

11 Fluoxetine has a biphasic effect on osteoblast and osteoclast 

proliferation in vitro.

12 Fluoxetine reduces the OPG/RANKL ratio in vitro.

13 Fluoxetine seems to have an overall negative effect on bone 

metabolism in vitro.
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Abstract

Background: Enterochromaffin (EC) cells in the gastrointestinal tract have important 

functions as regulators of secretion, motility and sensation. The EC cell has 

traditionally been described as bottle-shaped with basally located stores of serotonin. 

Stimuli acting on the apical membrane trigger serotonin release, which in turn 

activates the sub-epithelial sensory nerve terminals. To better describe the EC cells 

appearance we developed a new method for visualization of mucosal cells.

Methods: The stomach, small intestine and large intestine were excised from Sprague 

Dawley rats and then fixed in formalin. The organs were everted and filled with 

pronase solution. Single cells and aggregates of formalin-fixed mucosal cells were 

collected by scraping the mucosa off the muscularis mucosa. EC cells were visualized 

by staining for immunoreactivity against serotonin. 

Results: EC cells with luminal extensions and very long (up to 80 M) basally 

located axon-like extensions, sometimes connecting to neuron-like structures were 

found. Other EC cells had no or only short and blunt basal extensions. Dividing, 

serotonin-containing EC cells were also seen.

Conclusions: These findings may be of importance to further understand EC cell 

function in gastrointestinal physiology. The new method described can easily be 

applied to better visualize the morphology of other mucosal cells as well. 

Key words: Enterochromaffin cells, immunohistochemistry, morphology,

neuroendocrine
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Introduction 

The EC cells of the gut are characterized by their high content of serotonin (5-

hydroxytryptamine (5-HT)). They comprise the major population of gut endocrine 

cells and play a pivotal role in several aspects of gut function including secretion, 

motility and sensation [1]. EC cells are distributed all along the gastrointestinal tract, 

from the cardia to the anus [2]. Serotonin producing tumours arising from EC cells 

lead to the carcinoid syndrome [3] and hyperserotoninemia has also been shown to 

cause a carcinoid heart like disease [4]. The EC cell population seems to include 

several different sub-populations [5]. Morphological differences in shape, luminal 

endings and secretory granules suggest region-specific functions. Most EC cells are of 

the “open” type with apical cytoplasmatic extensions which project into the glandular 

lumen with short microvilli. These structures represent the anatomical basis for the 

cell response to physical or chemical variations in luminal content [6]. EC cells are 

believed to function as sensory transducers that activate mucosal processes of both 

intrinsic and extrinsic primary afferent neurons through their release of serotonin [1].

In biopsies from human duodenum, fibres showing serotonin 

immunoreactivity (IR) at the base of EC cells have been seen [7]. These fibres were 

proposed to be either infra-basal projections of the cells or branches of the enteric 

nervous system. Cytoplasmic processes sometimes projecting into adjacent glands 

have also been shown, suggesting a role for EC cells in functional synchronization 

among neighbouring glands [8,9]. Synaptic contact between EC cell extensions and 

underlying nerve fibres has not been demonstrated. 

To further investigate the appearance of EC cells we have developed a method 

for visualization of formalin-fixed, single mucosal cells and described the 
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morphology of EC cell sub-populations in different regions of the rat gastrointestinal 

tract.  

Materials and Methods

Buffers

Buffer A consisted of: NaCl 80 mM, KCl 5.0 mM, NaH2PO4 0.5 mM, 

Na2HPO4 1.0 mM, N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES) 

50 mM, glucose 11 mM, NaHCO3 20 mM, ethylenediaminetetraacetic acid (EDTA) 

2.0 mM and bovine serum albumin (BSA) 10 g/L. Buffer B was analogous to buffer 

A, but contained CaCl2 1.0 mM and MgCl2 1.5 mM instead of EDTA and BSA 1.0 

g/L. Both buffers were adjusted to pH 7.4. 

Cell fixation and isolation 

The animal experiments were approved by the Animal Welfare Committee of 

the University Hospital of Trondheim, Norway. Female Sprague-Dawley rats 

(Møllegaard’s Breeding Center, Skensved, Denmark) (~200 g) were housed under 

standard conditions with free access to food and water. The rats were killed by gas 

(CO2) and the different parts of the gastrointestinal-tract (rectum, colon, ileum, 

jejunum, duodenum and antrum) were collected and washed clean of content in 0.9 % 

saline. The organs were then fixed in 4% buffered formaldehyde at room temperature. 

After fixation the sacks were carefully everted and filled with pronase solution (7.5 

mg/mL buffer A) (Merck cat no 1074330001, Darmstadt, Germany) until maximally 

extended and put in buffer A. The dispersion was performed at 37 C, one hour for the 

antrum and 30 minutes for the intestine. Cell suspensions were prepared by gently 

scraping the mucosa off the muscularis mucosa and dissolving it in buffer B.  
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Whole wall specimens from the rectum, colon, ileum, jejunum, duodenum and 

antrum were fixed by immersion in 4% buffered formalin. Following dehydration of 

the specimens and embedding in paraffin, 10 μm thick sections were cut 

perpendicularly to the mucosal surface.  

Immunohistochemistry

 Cell smears for immunohistochemistry were prepared by placing a drop of 

each cell suspension on glass slides, followed by air drying over night. The cells were 

then rehydrated and treated with 3% hydrogen peroxide for 10 min to block 

endogenous peroxidase activity. Rat monoclonal anti-serotonin (ab6336, Abcam 

Limited, Cambridgeshire, UK) was diluted (1:75) in PBS containing 0.25% Triton X-

100 (Calbiochem, San Diego, CA, USA) and 0.25% BSA (Sigma, St Louis, MO, 

USA). The cell smears were incubated with primary antiserum for 2 hours at room 

temperature. An EnVision-HRP kit (K5007, Dako, Glostrup, Denmark) and an AEC 

peroxidase kit (SK4200; Vector, Burlingame, CA, USA) were used to visualize the 

immunoreaction. We also performed immunohistochemistry on 10 M sections from 

paraffin embedded tissue. Except for deparaffinization the procedure described above 

was used for serotonin immunostaining of the sections as well. Most preparations 

were lightly counterstained with hematoxylin.

Results

In the rectum, the vast majority of EC cells was of the “open” type with 

luminal extensions. In some cases the dispersed EC cells were still attached to one or 

more mucosal cells. Two morphologically distinct subpopulations of EC cells were 

found. One of the subpopulations had a luminal extension and two or more relatively 
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short (10-15 m) and blunt basal extensions containing serotonin granules (Fig. 1A).

The body and nucleus of these cells appeared to lie in the glands. The other 

subpopulation had very long (50-80 m) and thin basal extensions (Fig. 1B). The 

basal extensions had serotonin containing granules and often demonstrated a terminal 

button with accumulation of serotonin. The cell bodies were in some cases located 

outside the glands but the cells were still in contact with the lumen via slender luminal 

projections. The EC cells in the colon also comprised two distinct sub-populations 

similar to those seen in the rectum (Fig. 2). In a few cases we found EC cells with 

long basal extensions and terminal buttons connecting to neuron-like (dendrites?) 

structures without serotonin IR. In traditional histological sections from the colon, 

basal extensions seemed to surround the glands. Serotonin positive fibres were also 

seen in the lamina propria (Fig. 3). 

In the ileum, jejunum and in the duodenum (Fig. 4A), most cells had an apical 

projection but no basal extensions. When present (~ 10 %), the basal extensions were 

shorter than in the large intestine but they had a similar appearance, with serotonin 

containing granules and sometimes terminal buttons. 

The antral EC cells constituted a less homogeneous population (Fig. 4B). 

Some cells had luminal projections and short basal extensions. Others had a spider-

like appearance with multiple extensions. As these cells rarely were attached to 

neighbour cells, the direction of the extensions could not be determined. When whole 

antral glands were preserved, EC cells in contact with other EC cells were 

demonstrated. EC cells without distinct projections were seen in less then five percent 

of all examined parts of the gastrointestinal tract. These could represent a mature 

“closed” type of EC cells or perhaps non-mature EC cells. A few serotonin IR cells 

undergoing mitosis were also demonstrated (Fig. 5). 
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Discussion

This study demonstrates a new technique for visualization of formalin-fixed 

gut mucosa cells. Despite its simplicity, it elicits new insights concerning three-

dimensional features at the single mucosa-cell level. We have applied the method to 

describe the appearance of EC cells in different parts of the rat gastrointestinal tract, 

but it can easily be applied on other mucosal cells as well.

The dispersed formalin-fixed EC cells possessed very long and extremely thin 

extensions, indicating that the dispersion technique had been gentle. Serotonin 

negative mucosal cells did not show basally located elongations. It is not likely that 

this difference between serotonin positive cells and other mucosal cells was due to 

artefacts. The protease digestion and mechanical dispersion may affect the cell 

anatomy to some extent, major morphological features, however, seem to be 

preserved.

Prior studies using thymidine labelling have suggested that EC cells are 

renewed by self-proliferation [10-12]. These results were confirmed in our study by 

the finding of dividing EC cells. Previous descriptions of EC cells have been based on 

standard specimen preparation, sectioning and histological examination, which results 

in a 2-dimensional picture. We found EC cells with basal projections as long as 80 

M and only 0.1 M thick. As these projections seemed to be headed in different 

directions, traditional techniques, including serial sectioning, may have failed to fully 

visualize them [2,5,9]. While EC cells have been described as open or closed 

regarding their contact with the gut lumen [5], the present study illustrates that most 

EC cells seem to have luminal contact, even when the body of the cell lies outside the 

gland. This is not surprising as EC cells are believed to sense and respond to 

variations in luminal content. In some cases however, especially in antrum, the EC 
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cells were not attached to neighbour cells after dispergation, making it difficult to 

determine whether they were of the closed or open type. 

The resemblance between gut endocrine cells and nerve cells gave birth to the 

“paraneuron” concept [13]. The microvilli were regarded as the sensory part of the 

nerve cell, the cell body as the signal transport portion and the exocytosed secretory 

granules as the message. In recent studies, serotonergic neurons in the medulla and in 

the midbrain have been found to act as chemoreceptors [14] and others have shown 

that mouse taste buds use serotonin as a neurotransmitter [15]. From an evolutionary 

perspective, it has been suggested that EC cells in vertebrates are lacking only where 

there is an innervation of the gut mucosa by nerve fibres containing high 

concentrations of serotonin [16-18]. We found that EC cells have serotonin-

containing axon-like projections, sometimes connecting with neuron-like structures. 

The idea that EC cells are of neural crest origin was first put forward by Pearse et.al.

[19] and has later been supported by others [20]. This theory, however, has later been 

opposed and most researchers in the field now believe that gut neuroendocrine cells 

are derived from a local endodermal stem cell [21,22]. If the endodermal stem cell 

theory is correct, sensory serotonergic neurons in the gut mucosa have been replaced 

during evolution by EC cells, which have striking morphological similarities with 

neurons, but different embryological origin. As shown in this study, serotonin-

producing EC cells like adult endocrine cells in the pancreas [23] and 

enterochromaffin-like cells in the stomach [24], are able to divide. The fact that 

differentiated EC cells can replicate cast further doubt on the idea that mucosal stem 

cells have a role in EC cell renewal.

As dispersed mucosal cells have lost contact with underlying structures, the 

targets for the basal EC cell extensions were not possible to demonstrate. In 
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traditional histological sections, however, serotonin IR fibres were seen in the lamina

propria and similar fibres seemed to surround glands. It is likely that these fibres 

represent the projections that we found at the base of dispersed formalin-fixed cells. 

The EC cell may thus function as a primary neuron, sending its message to neurons in 

lamina propria [25,26]. Others have proposed that EC cells send instant paracrine 

messages to neighbouring cells through long cytoplasmatic extensions and thus 

initiate a functional synchronization among neighbouring gland cells [8,9]. A similar 

function has also been proposed for somatostatin producing cells in the stomach [27]. 

The third and fourth type of EC cells that we found had only short and thick basal 

extensions or no basal extensions at all. These cells had large amounts of serotonin 

stored in basally located granules. A possible function for these cells could be to 

release their hormonally active content to fenestrated capillaries or perhaps also work 

paracrine on cells in the lamina propria.

The current work gives new important insights in EC cell morphology. These 

findings might be helpful in order to further understand the EC cells role as a 

regulator of gastrointestinal physiology. The method described can also be used to 

isolate and visualize other morphologically intact GI mucosal cell types. 
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Figure 1.  Photomicrographs showing serotonin immunolabelled, formalin-fixed EC 

cells (red) dispersed from the rectal mucosa. (A) Cells with luminal projections and 

thick basal projections with accumulation of serotonin containing granules. (B) Cells 

with long and slender, axon-like, basally located extensions with serotonin containing 

granules. The EC cells are in some cases attached to neighbour mucosa cells. 
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Figure 2.   Photomicrographs showing serotonin immunolabelled, formalin-fixed EC 

cells (red) dispersed from the colonic mucosa. All cells have luminal projections. 

Left, four cells with one or two basally located, axon-like projections are seen. The 

fourth cell from the left connects with a neuron-like structure. Right, a cell with short 

and blunt basal projections. The EC cells are in some cases attached to neighbour 

mucosa cells.
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Figure 3.   Photomicrographs of 10 μm thick serotonin immunolabelled colon 

sections. Left, a serotonin containing fibre in the lamina propria. Right, EC cells with 

extensions surrounding the gland. Counterstained with haematoxylin. 
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Figure 4.   (A) Photomicrographs showing serotonin immunolabelled, formalin-fixed 

EC cells (red) dispersed from the small intestine. Left, EC cells with luminal 

projections, but no basal extensions. These cells have an accumulation of infra-

nuclear serotonin containing granules. Right, three EC cells with both apical and basal 

extensions. (B) EC cells dispersed from the antral mucosa. Left, two cells with 

luminal extensions and short serotonin containing basal extensions. In the middle, a 

more spider-like cell with multiple thin extensions. Right, two EC cells located in a 

gastric gland. The EC cells are in some cases attached to neighbour mucosa cells. 
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Figure 5.   Photomicrographs showing serotonin immunolabelled, formalin-fixed EC 

cells dispersed from the jejunal mucosa. Left, a dividing cell with a non-granulated 

serotonin positive cytoplasm. Right, three EC cells with an immature appearance.  
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Abstract

      Recent studies have proposed a role for serotonin and its transporter in regulation of bone 

cell function. In the present study we examined the in vitro effects of serotonin and the 

serotonin transporter inhibitor fluoxetine “Prozac” on osteoblasts and osteoclasts. Human 

mononuclear cells were differentiated into osteoclasts in the presence of serotonin or 

fluoxetine. Both compounds affected the total number of differentiated osteoclasts as well as 

bone resorption in a bell-shaped manner. RT-PCR on the human osteoclasts demonstrated 

several serotonin receptors, the serotonin transporter and the rate limiting enzyme in serotonin 

synthesis, tryptophan hydroxylase 1 (Tph1). Tph1 expression was also found in murine 

osteoblasts and osteoclasts, indicating an ability to produce serotonin. In murine 

preosteoclasts (RAW264.7) serotonin as well as fluoxetine affected proliferation and NF B

activity in a biphasic manner. Proliferation of human mesenchymal stem cells (MSC) and 

primary osteoblasts (NHO), and 5-HT2A receptor expression were enhanced by serotonin. 

Fluoxetine stimulated proliferation of MSC and murine preosteoblasts (MC3T3-E1) in nM 

concentrations, μM concentrations were inhibitory. The effect of fluoxetine seemed direct, 

probably through 5-HT2 receptors. Serotonin-induced proliferation of MC3T3-E1 cells was 

inhibited by the PKC inhibitor (GF109203) and was also markedly reduced when antagonists 

of the serotonin receptors 5-HT2B/C or 5-HT2A/C were added. Serotonin increased OPG and 

decreased RANKL secretion from osteoblasts, suggesting a role in osteoblast-induced 

inhibition of osteoclast differentiation, whereas fluoxetine had the opposite effect. This study 

further describes possible mechanisms by which serotonin and the serotonin transporter can 

affect bone cell function.
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Introduction

Serotonin (5-hydroxytryptamine or 5-HT) is a well-known amine neurotransmitter. Outside 

the central nervous system serotonin is mainly produced by the enterochromaffin cells of the 

gut and participates in the regulation of intestinal motility, fluid secretion and regional blood 

flow (1). After release, serotonin is rapidly taken up by an active transport mechanism into a 

number of cell types, with platelets serving as the major reservoir. Serotonin is a vasoactive 

substance with an important role in systemic blood pressure regulation (2) and mediates its 

actions by interacting with multiple serotonin receptor subtypes (3). Studies on cell cultures 

have shown that serotonin has mitogenic effects on fibroblasts (4), smooth muscle cells (5) 

and vascular endothelial cells (6) mediated through 5-HT2 receptors. We recently 

demonstrated that long-term administration of toxic doses of serotonin leads to a carcinoid 

heart like condition with myofibroblast proliferation and plaque formation on heart valves in 

rats (7). Serotonin administration also induced a significant increase in bone mineral density 

compared to control rats, indicating that serotonin has a positive effect on bone formation (8). 

   The 5-HT1A and 5-HT2 receptors have been demonstrated in both monocytes and 

macrophages, and serotonin is known to exert direct effects on the immune system (9). It has 

also been suggested that platelets and macrophages are able to produce serotonin (10, 11). 

Our group and others have previously demonstrated functional serotonin receptors and 

serotonergic pathways in bone cells (12-14). An increased expression of 5-HTT in 

RAW264.7 cells stimulated with RANKL has been described and fluoxetine seemed to inhibit 

differentiation in these cells, suggesting reduced bone resorption (14). In a recent study 

however, long-term treatment with the 5-HTT inhibitor (selective serotonin reuptake 

inhibitor, SSRI) fluoxetine led to reduced bone accrual in growing mice (15).  
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   Receptor activator of NF B Ligand (RANKL) and its inhibiting decoy receptor 

osteoprotegerin (OPG) are central in osteoclast regulation (16, 17). RANKL, secreted mainly 

by osteoblastic stromal cells, is necessary for osteoclast formation from its committed 

precursors, which bear its receptor RANK. The cytokine IL-6 also has osteoclastic actions, 

acting via RANKL/OPG alterations (18). Activation of RANK leads to activation of 

downstream signaling pathways including NF B, p38 kinase, and c-Jun N-terminal kinase 

(JNK) (19). Stimulation of JNK subsequently elicits the activation of the transcription factor 

c-Jun (20). c–Jun forms activator protein-1 (AP-1) complexes with cFos, an essential 

transcription factor for osteoclast formation (21). The AP-1 complex is also known to be 

involved in regulation of osteoblast proliferation and differentiation (22).

   The aim of the present study was to investigate the effects of serotonin and fluoxetine on 

human and murine osteoblast as well as osteoclast proliferation and differentiation. We also 

wanted to examine which intra-cellular pathways might be involved. In addition, we have 

studied OPG, RANKL release from serotonin and fluoxetine-treated murine preosteoblasts.

Materials and methods

Cells

     MC3T3-E1 (murine preosteoblasts, ATCC) cells were maintained in -MEM (Invitrogen) 

supplemented with 10 % fetal calf serum (FCS) (Biological Industries), 1 mM Na- pyruvate 

(Gibco), 0.1 mg/ml L-glutamine (Gibco) and 10 U/ml penicillin/streptomycin (Gibco). 

RAW264.7 (murine preosteoclast, ATCC) cells were maintained in DMEM with 4.5 g/l 

glucose (Gibco), supplemented with 1 mM Na- pyruvate, 0.1 mg/ml L-glutamine, 10 U/ml 

penicillin/streptomycin and 10 % FCS. The IL-6 dependent mouse hybridoma cell line B9 

4



was cultured in RPMI 1640 (Gibco) medium containing 10 % FCS, 2-mercaptoethanol (50 

M) and IL-6 (1 ng/ml)(Biosource). All cell studies were performed with a cell passage less 

then 25. 

   MC3T3-E1 cells were differentiated by addition of ascorbic acid (25 μg/ml) (Sigma) and -

glycerophosphate (3 mM) (Sigma) to the growth medium (23-25). RAW264.7 cells were 

differentiated by addition of sRANKL (50 ng/ml) (Research Diagnostics, INC) and M-CSF 

(50 ng/ml) (Research Diagnostics, INC).  

   Human mesenchymal stem cells (MSC) were isolated from the iliac crest (MSC). 

Lymphoprep (AXIS-SHIELDPoC A/ S, Oslo, Norway) was used to isolate the mononuclear 

cells from the bone marrow. The mononuclear cells were pelleted and cultured in MEM 

Alpha medium (Invitrogen life technologies, Grand Island, USA) with 20 % FCS, 100 U/ ml 

penicillin, and 0.1 mg/ ml streptomycin. The cells were maintained in humidified 95% air 5% 

CO2 atmosphere at 37oC. Half of the medium was changed twice weekly and the cells were 

subcultured using 0.05% trypsin with 0.01% EDTA prior to experiments. Donor recruitment 

and acquisition of human bone marrow were performed in accordance with a protocol 

approved by the local ethical committee.  

   Commercially available primary human osteoblasts from both femur and tibia of different 

donors (NHOst cell system, Cambrex, Walkersville, MD, USA) were grown in Osteoblast 

Growth Media (OGM, Cambrex). Osteoblasts cultured to facilitate mineralization were 

exposed to hydrocortisone hemisuccinate (200 nM) and -glycerophosphate (10 mM) 

(Cambrex) in the ambient medium. The phenotype of the cells was characterized based on the 

expression levels of alkaline phosphatase (ALP), collagen type 1, osteocalcin and CD44, and 

formation of mineralization nodules. 
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RT-PCR

   Total RNA was isolated from human osteoclasts differentiated from human peripheral blood 

mononuclear cells (PBMC) using RNeasy Midi Kits (Qiagen). RT-PCR was performed on 

total RNA from human osteoclasts according to standard procedures using the One-step RT-

PCR Kit (Qiagen), and 40 cycles of amplification. For analysis of Tph1 mRNA from MC3T3-

E1 and RAW264.7, 1 μg of total RNA was subjected to cDNA synthesis using M-MuLV 

Reverse Transcriptase (Applied Biosystems) and oligo-dT primer, according to the 

manufactures protocol. The cDNA was amplified using the HotMaster Taq DNA Polymerase 

Kit (Eppendorf).

   PCR-products were cloned into the pCRII-TOPO vector using the TOPO TA Cloning Kit 

(Invitrogen) for sequencing, according to the standard protocol. Vectors containing PCR 

products were transformed by heat shock into One Shot DH5  -T1 cells (Invitrogen), and 

isolated by the SpinClean Plasmid Miniprep Kit (Mbiotech). Products were sequenced using 

the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) according to the 

manufactures protocol. Primers are listed in Table 1. 

   MSC and NHO Cells were lysed in lysis/binding buffer (100 mM Tris-HCl, pH 8.0, 500

mM LiCl, 10 mM EDTA, pH 8.0, 0.5 mM dithiothreitol [DTT], and 1% sodium dodecyl 

sulfate [SDS]). mRNA was isolated using magnetic beads [oligo (dT)25] as described by the 

manufacturer (Dynal AS, Oslo, Norway). Beads containing mRNA were re-suspended in 10

mM Tris-HCl, pH 8.0, and stored at -70°C until use. One μl of the mRNA-containing solution 

was applied directly to obtain a first-strand complementary DNA (cDNA) using the iScript 

cDNA Synthesis Kit which contains both oligo(dT) and random hexamer primers (Bio-Rad, 

Hercules, CA, USA). RT-PCR reactions were performed and monitored using iCycler iQ 

(Bio-Rad, Hercules, CA, USA). The 2X iQ SYBR Green Supermix was based on iTaq DNA 
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polymerase (Bio-Rad, Hercules, CA, USA). cDNA samples were analyzed for the genes of 

interest and the reference genes GAPDH. The amplification program consisted of a pre-

incubation step for denaturation of the template cDNA (3 min 95 C), followed by 50 cycles 

consisting of a denaturation step (15 s 95 C), an annealing step (30 s 60 C) and an extension 

step (30 s 72 C). After each cycle, fluorescence was measured at 72 C. A negative control 

without cDNA template was run in each assay. Samples were run in duplicate. To allow 

relative quantification after PCR, standard curves were constructed from the standard 

reactions for each target and housekeeping genes by plotting Ct values, i.e. the cycle number 

at which the fluorescence signal exceeds background, versus log cDNA dilution. The Ct 

readings for each of the unknown samples were then used to calculate the amount of either the 

target or housekeeping relative to the standard. mRNA levels were calculated as the ratio of 

relative concentration for the target genes relative to that for the mean between housekeeping 

genes. Oligonucleotide primer sequences used for the real-time RT-PCR and the specific 

parameters are shown in Table 1. Real-time efficiencies were calculated from the given slopes 

in the iCycler software using serial dilutions, showing all the investigated transcripts high 

real-time PCR efficiency rates, and high linearity (r > 0.99) when different concentrations 

were used. PCR products were subjected to a melting curve analysis on the iCycler and 

subsequently 2 % agarose/TAE gel electrophoresis to confirm amplification specificity, Tm

and amplicon size, respectively (see Table 1).  

Human osteoclast differentiation

   Osteoclasts were differentiated from PBMC (26), isolated from buffycoat. Separation of 

PBMC was performed essentially as described by Bøyum (27). Cells were seeded into 24-

well dishes, 500 000 cells/well in -MEM including M-CSF and RANKL (50 ng/ml), and 
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dexamethasone (0.01 M) (Sigma). Assays were performed in triplicate. The medium was 

replaced at day six and nine. After 12 days the cells were stained for tartrate resistant acid 

phosphatase (TRAP) using the Sigma diagnostics acid phosphatase kit (Sigma), as described 

by the manufacturer. TRAP positive, multinuclear (three or more nuclei) cells were regarded 

as genuine osteoclasts. The 5-HT2A/C receptor antagonist ketanserin and fluoxetine were 

purchased from Sigma. To develop into osteoclasts, PBMC cells need serum in addition to 

differentiation factors in the medium. Since FCS is known to contain rather high levels of 

serotonin (14), we determined the amount of serotonin contamination in the media using a 

serotonin RIA kit (Dianova AS, Nesbru Norge). The sensitivity for the kit was 4 ng/ml. 

   In order to investigate direct osteoclast activity a pit resorption assay was performed. The 

PBMC cells were seeded on BioCoat Osteologic Discs (BD Biosciences) and cultured as 

described above. Bone resorption was determined with the BD Biocoat Osteologic Bone Cell 

Culture System (BD Biosciences) according to the manufacturer.  

Proliferation assays 

   Cell proliferation ELISA, BrdU (chemiluminiscence) kit (Roche Molecular Biochemical’s) 

was used for the proliferation assays on murine bone cells. Two thousand cells/well were 

seeded in 96-well plates, and cultured for 24 h. Then the cells were washed once with 180 l

serum-free medium, before addition of new serum-free medium containing test substances. 

After five h, BrdU was added, and the cells were cultured for additional 18 h before 

incorporation of BrdU was measured as described by the manufacturer. Light emission of the 

samples, expressed as relative luminescence units (RLU), was measured in a micro-plate 

luminometer (Fluoroskan Ascent FL, Labsystems). The PKC inhibitor GF 109203x, the PKA 
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inhibitor H89 and the CAMK inhibitor W7 were obtained from Calbiochem, whereas the 5-

HT2B/C receptor antagonist SB206553B was obtained from Sigma. 

Human bone marrow cells and primary osteoblasts were seeded in 48 wells plates and 

cultured to 50 % confluency. The cells were incubated for 12 and 48 h with serum-free 

medium containing serotonin and fluoxetine and pulsed with 1 mCi 3H-thymidine per well 12 

h prior to harvest. The medium was removed and the cells washed twice with ice-cold 1 x 

PBS and twice with ice-cold 5 % TCA to remove unincorporated 3H-thymidine. The cells 

were solubilized in 500 ml NaOH (1M), and 400 ml of the solubilized cell solution was 

transferred to 8 ml of Insta-gel II Plus liquid scintillation fluid (Perkin Elmer, Applied 

Biosystems, Foster City, CA) and measured for 3 min in a liquid scintillation counter 

(Packard 1900 TR). 

Plasmids and luciferase assays 

   pFOSLuc transfection and luciferase assay in MC3T3-E1 cells: Fifteen thousand cells/well 

were seeded in 96-well plates and transfected with 0.12 g luciferase reporter plasmid per 

well (pcFos reporter-plasmid (nucleotides –327 to –288 of the human cFos promoter) (28), a 

generous gift from Dr. Ugo Moens (University of Tromsø, Norway)), using 0.35 l Fugene 

transfection reagent (Roche Molecular Biochemical’s, Germany). After cultivation for 24 h, 

cells were treated with agonist for six h. Then the cells were washed twice in PBS before 

addition of 20 l lysis buffer. Luciferase activity was measured by the Turner Luminometer, 

model TD-20/20 (Turner Designs) using the Luciferase reporter Assay System (Promega Inc., 

USA).

   pBIIXLuc and pFOSLuc transfection in RAW264.7 cells: The NF B-driven plasmid 

pBIIXLuc contains two copies of a HIV-NF B sequence cloned upstream of the mouse fos
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promoter and Photinus pyralis luciferase coding sequence, and was kindly provided by Dr. 

M. Jättelä (Danish Cancer Society, Copenhagen, Denmark). One day before the transfection, 

RAW264.7 cells were seeded in 96-well plates (50 000 cells per well). Cells were transfected 

using 0.1 μg luciferase reporter plasmid and 0.3 μl Fugene Transfection Reagent per well. 

After cultivation for 24 h, cells were treated with agonist for 6 h in serum-free medium. The 

cells were then washed with PBS followed by lysis in 15 l lysis buffer. Luciferase activity 

was measured.  

OPG, RANKL and IL-6 release assays 

Release of OPG, IL-6, RANKL and amount of total protein were studied in medium 

samples collected from MC3T3-E1 cells. Thirty thousand cells in 0.5 ml MEM-  supplied 

with 10 % FCS/well were seeded in 24-well plates. After 24 h, cells were washed and 

cultured in 0.5 ml serum-free medium for an additional 24 h. Then fresh serum-free medium 

containing test substances was added. Cells were cultured up to 72 h, medium samples were 

harvested and frozen (-20°C) until release assays were performed. 

   The concentration of OPG in culture media was determined by ELISA. Briefly, 96-well 

plates were coated with 2 μg/ml anti-mouse-OPG-antibody (R&D Systems). The OPG 

standard curve was generated using recombinant mouse OPG (R&D Systems) in two-fold 

dilutions from 2000 to 31.25 pg/ml. The secondary antibody was biotinylated anti-mouse 

OPG (200 ng/ml) (R&D Systems), and detection was carried out using streptavidin-

horseradish peroxidase (R&D Systems) in combination with OPD-substrate tablets (Dako). 

Samples were then incubated for 20 minutes in the dark after which the reaction was stopped 

by addition of 1 M H2SO4, and absorbance was measured at 490 nm. Minimum detectable 

concentration of mouse OPG was 10 pg/ml. According to the manufacturer no significant 
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cross-reactivity or interference has been observed. Intra-assay and inter-assay variability were 

less than 15 % and 9 %, respectively. 

   RANKL concentrations in culture media were determined by an immunoassay kit for 

quantitative determination of free sRANKL (mouse and rat; Biomedica), according to the 

manufacture’s protocol.  

   Concentrations of IL-6 in the culture medium were determined by a bioassay utilizing the 

IL-6 dependent mouse hybridoma cell-line B9. Recombinant human IL-6 (Biosource) was 

used as a standard. Fifty l of standard or sample were added as triplicate to a 96-well plate. 

After that mouse hybridoma B9 cells were seeded (5000 cells/well) and incubated for 3 days. 

The growth of cells was assessed by a (3-(4.5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) / phenazine methosulfate 

(PMS) reduction assay essentially as described by Buttke (29). Briefly, medium was removed, 

cells were washed with PBS and 20 l/well of MTS/PMS solution, (2 ml MTS (2 mg/ml in 

PBS) (Promega) and 100 l PMS (0.92 mg/ml in PBS) (Acros Organics)), were added, and 

plates were incubated for 4 h. The optical density of each well was measured at 490 nm. 

Minimum detectable concentration of IL-6 was typically 5 pg/ml, and intra-assay and inter-

assay variability were both less than 15 % for all measured samples.  

   Total protein in medium was determined using Sigma Microprotein PR assay kit with a 

Protein Standard Solution Calibrator (Sigma Diagnostics, Dorset, UK). Analyses were 

performed using Cobas Mira chemistry analyzer. Thirty μl of medium were mixed with 200 

μl substrate. Intra-assay and inter-assay variability were less than 2.4 % and 3.2 % 

respectively. The assay detection range was 10-2000 mg/l. 
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Lactate dehydrogenase (LDH) activity 

   LDH activity in the culture media after incubation was used as an index of cytotoxicity. 

After incubation with serotonin or fluoxetine, the culture media were collected, centrifuged at 

500 x g for 5 min at 4ºC, and the supernatant was stored at 4 C. LDH activity was determined 

spectrophotometrically according to the manufacturer's kit instructions (Cytotoxicity 

Detection kit, Roche Diagnostics, Manheim, Germany), and presented relative to the activity 

in the medium of untreated cells. 

Statistics 

   All experiments were repeated three times and the data are presented as means ± SEM. All 

data were tested for normality with Shapiro-Wilk. Normally distributed parameters were 

tested by means of Student’s T test, while parameters that were not normally distributed were 

tested with Mann-Whitney U test. Significance was assumed at p values lower than 0.05.

Results

Serotonin receptors are expressed in human osteoclasts and tryptophan hydroxylase is 

expressed in both osteoclasts and osteoblasts 

   In human PBMC differentiated into osteoclasts, the expression of 5-HT2A, B and C -receptors,

5-HTT and Tph1 was shown; the 5-HT1A receptor however was not expressed. The calcitonin 

receptor was expressed, confirming that osteoclasts had developed (Fig. 1A). Undifferentiated 
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as well as differentiated (1, 2, 3 and 4 weeks) murine preosteoclasts and preosteoblasts also 

expressed Tph1, indicating that they may be able to produce serotonin (Fig. 1B). Human MSC 

expressed 5-TH1A and 5-TH2A and NHO cells the 5-HT2A receptor. The 5-HT2B and C-

receptors, however, were not found to be expressed in these cells (data not shown). 

Serotonin stimulates osteoclast differentiation and proliferation 

Previous studies have demonstrated that monocytes express serotonin receptors (30, 31). 

We therefore examined if serotonin and its transporter could influence differentiation of 

osteoclast precursors into osteoclasts. PBMC cells were incubated with serotonin (0.01-50 

M) or fluoxetine (0.001-10 M) (Sigma) in addition to osteoclast differentiation factors. 

Furthermore, the effect of ketanserin (0.1-1 M) (Sigma) on serotonin (10 M)-induced

osteoclast differentiation was examined. We found that serotonin as well as fluoxetine 

increased the total number of differentiated human osteoclasts as well as osteoclast activity 

(Fig. 2). At higher concentrations however, the effect of fluoxetine was inhibitory. Ketanserin 

inhibited the serotonin-induced osteoclast differentiation, demonstrating involvement of 

receptors 5-HT2A and/or 5-HT2C. The control media contained serotonin (0.08 M), due to 

contamination from FCS.  

   To confirm the data on human osteoclasts we performed a proliferation assay on RAW264.7 

cells. When serotonin (0.01-50 M) or fluoxetine (0.001-10 M) was added to the RAW264.7 

medium, the number of preosteoclasts also increased or decreased in a bell-shaped manner 

(Fig. 3).  Serotonin was not detectable in media from untreated RAW264.7 cells or in media 

from cells treated with fluoxetine. 
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Serotonin and fluoxetine activate cFOS and NF B in murine preosteoclasts 

   To investigate which intracellular pathways are activated by serotonin and fluoxetine in 

osteoclasts, RAW264.7 cells were transfected with pBIIXLuc and pFos. RANKL was used as 

positive control for NF B activation. Both cFos and NF B were activated by serotonin and 

fluoxetine in RAW264.7 cells indicating a role in osteoclast formation for these transcription 

factors (Fig. 4). The NF B activation was most pronounced at 0.01 M for both substances 

(251 % for fluoxetine and 212 % for serotonin compared to control). At higher serotonin and 

fluoxetine concentrations NF B activation was absent, but cFos remained activated. 

Serotonin and fluoxetine have a dose-dependent effect on osteoblast and bone marrow stem 

cell (MSC) proliferation 

   Serotonin enhances the proliferation of both NHO and MC3T3-E1 cells in a bell-shaped 

dose-dependent manner (Fig. 5A and C). Serotonin also induced a similar dose-dependent 

activation of pFosLuc in MC3T3-E1 cells (Fig. 5B), and to a lesser degree serotonin induced 

proliferation of MSC cells (Fig. 5D). 

   The PKC inhibitor GF 109203x (3.5 M) reduced serotonin-induced proliferation, 

indicating involvement of this signaling pathway, the PKA inhibitor H89 (10 M) and the 

CAMK inhibitor W7 (10 M), however, had only marginal effects (Fig. 6A). The 5-HT2A/C 

receptor antagonist ketanserin and the 5-HT2B/C receptor antagonist SB206553B inhibited 

serotonin-induced osteoblast proliferation in a concentration dependent manner (Fig. 6B). The 

different inhibitors and antagonists used had no influence on proliferation of MC3T3-E1 cells 

in the absence of serotonin.

    As 5-HTT expression is found in osteoblasts we examined the effects of fluoxetine on MSC 

and osteoblast proliferation. Fluoxetine seemed to stimulate proliferation of MSC and 
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MC3T3-E1 cells at low concentrations, at higher concentrations, however, the effect was 

inhibitory (Fig. 7). This inhibitory effect could partly be reversed by ketanserin and 

SB206553B. In NHO cells fluoxetine (0.01 M) stimulated proliferation, higher 

concentrations, however, did not affect the proliferation rate. Addition of serotonin to the 

media reversed fluoxetine-induced inhibition of proliferation of MC3T3-E1 cells and the 

enhanced proliferation by fluoxetine of NHO was also reversed by serotonin. Serotonin was 

not detectable in cells cultured with fluoxetine or in control media. Measurements of LDH in 

the media confirmed that the effect of high-dose fluoxetine was inhibitory and not cytotoxic 

(data not shown). Both serotonin and fluoxetine induced an acute (24h) decrease (to 58-85 % 

of control) in the expression of 5-TH2A receptor mRNA followed by an enhanced expression 

(to 130-186 % of control) after 48 h in  MSC, however, due to few donors and large variation 

in response between donors the effects failed to be significant.  In NHO cells, 5-TH2A receptor 

mRNA expression was enhanced significantly by serotonin. The maximum effect was seen 

with serotonin 1 M, (264 % of control) after 24 h and (429 % of control) after 7 days (results 

not shown). 

Opposite effects of serotonin and fluoxetine on OPG and RANKL release from osteoblasts 

   Serotonin reduced the RANKL release from MC3T3-E1 (Fig. 8A). The most pronounced 

effect (to 38 % of control), was detected after 72 h incubation. Serotonin (1 M) increased the 

OPG release (to 180 % of control) after 72 h (Fig. 8B). Fluoxetine had a divergent effect with 

a more than three fold- increase in RANKL release at the most and decrease to 43 % of 

control in OPG release (Fig. 8-D).  
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Discussion

   In this study we demonstrate that serotonin induced proliferation of human primary 

osteoblasts (NHO) and to a lesser extent also of human MSC cells. We also find that serotonin 

induced proliferation and differentiation of MC3T3 E1 preosteoblasts. Previously we have 

shown that functional serotonin receptors are present in osteoblast precursors, osteoblasts and 

osteocytes (12). Serotonin induces proliferation in cells originating from mesenchymal stem 

cells (smooth muscle cells, fibroblasts etc) via the 5-HT2 receptors (32, 33), with subsequent 

activation of different signaling pathways in a cell specific manner (34). The proliferative 

effect of serotonin on preosteoblasts seemed to be mediated, at least partly through binding to 

5-HT2 receptors and via activation of the PKC pathway. In MSC and NHO cells, 5-HT2A

receptor mRNA expression was found to be up-regulated by serotonin, indicating that this 

receptor is involved in the proliferation induced by serotonin in these cells. In all experiments 

we found a biphasic increase in proliferation, with a maximum at about 1 M, while higher 

concentrations led to inhibition. This tendency is known from studies on other cell types (35-

37). Serotonin activated the cFos promotor in the MC3T3 E1 cells indicating that this 

transcription factor is involved in serotonin induced proliferation of osteoblasts. 

   Serotonin might exert its effects on bone via the blood circulation, as platelets are the main 

site of storage. However a direct effect via serotonergic neurons, innervating bone tissue is 

also possible. We showed that osteoblasts and osteoclasts expressed mRNA for Tph1, the 

rate-limiting enzyme in serotonin synthesis. We therefore propose that osteoblasts and 

osteoclasts are capable to produce serotonin, and that serotonin may act via autocrine and 

paracrine mechanisms. We could not find detectable levels of serotonin in serum-free 

osteoblast and osteoclast cell cultures, and also not after addition of fluoxetine. In vivo, bone 
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cell serotonin production may be regulated by hormonally active substances, not present in

vitro, or may be under neuronal control.  

   The therapeutic range for fluoxetine in serum is 0.65–2.5 M (fluoxetine + norfluoxetine). 

A recent study indicated that the bone marrow concentration of fluoxetine can be as high as 

100 M in patients taking the drug (38). The same study also showed that traces of fluoxetine 

could be detected in bone marrow three months after termination of medication. We found 

that fluoxetine induced proliferation of human MSC, osteoblasts and murine MC3T3-E1 

preosteoblasts in nM concentrations. Except for in human osteoblasts, however, M

concentrations had an inhibitory effect. If the fluoxetine concentration in bone marrow is as 

high as 100 μM, our findings indicate that MSC cells and preosteoblast proliferation will be 

reduced in patients taking the drug. From earlier studies it is known that fluoxetine in addition 

to be a serotonin reuptake inhibitor also has affinity to 5-HT2A and C receptors (39-41). The 

fact that addition of serotonin together with fluoxetine did not enhance the effect, but slightly 

inhibited fluoxetine effects, suggests that the fluoxetine effect is direct and not indirect 

through inhibition of serotonin reuptake. As the fluoxetine effects could be, at least partly, 

blocked by the 5-HT2B/C receptor antagonist SB 206553 in MC3T3-E1 cells, we believe that 

the fluoxetine effect could be direct on 5-HT2 receptors. The 5-HT2A receptor was expressed 

in MSC and NHO cells, and the expression seemed to be modulated by fluoxetine. Taken 

together, these data suggest that fluoxetine exerts its effects on proliferation of murine 

preosteoblasts, human MSC and primary osteoblasts via 5-HT2 receptors, however, species 

differences seem to exist.  

   We show that serotonin stimulated differentiation of human monocytes into osteoclasts. 

Addition of the 5-HT2A/2C receptor antagonist ketanserin inhibited serotonin induced 

differentiation in human osteoclasts suggesting that differentiation of monocytes into 

osteoclasts is partly mediated through the activation of the 5-HT2A/2C receptor.
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   Fluoxetine (1-3 M) has been shown to reduce osteoclast differentiation in vitro (14). Our 

study confirmed that fluoxetine leads to a reduction in osteoclast differentiation and activity in 

μM concentrations, in the nM-ranges, however, osteoclast differentiation and activation 

seemed increased. Most pro- and anti-osteoclastogenic cytokines act primarily through the 

osteoblast to alter the levels of RANKL and OPG, the balance that determines overall 

osteoclast formation. The serotonin-induced augmentation of OPG and decrease of RANKL 

release found in the present study suggest a role in osteoblast-mediated inhibition of 

osteoclast generation. Fluoxetine reduced the OPG/RANKL ratio at all concentrations, 

indicating an osteoclastic mechanism in μM concentrations as well. No evidence of 

differences in resorptive indices in 5-HTT null mice was shown in vivo (15). If the fluoxetine 

effect on bone is direct through activation of serotonin receptors, the comparison with 5-HTT 

null mice is less relevant. Mice receiving fluoxetine, however, also had reduced bone mass 

but increased bone resorption at the distal femur was not shown (15). We found that 

fluoxetine in μM concentrations inhibited proliferation of MSCs and preosteoblasts, which 

may explain why fluoxetine treated mice, had a deficit in bone formation (15). 

   We demonstrate that both fluoxetine and serotonin activated NF B activity in RAW264.7 

cells even in the absence of RANKL. Battaglino et al. have previously shown that serotonin 

stimulated, whereas fluoxetine had an inhibitory effect on NF B activity in RAW264.7 cells 

(14). We found the effect to be dose-dependent and to vanish at higher concentrations for both 

compounds. The dose-dependent effect of fluoxetine and serotonin on osteoclast generation 

can thus be regulated via NF B activation. We also found that the transcription factor cFos 

was positively involved in serotonin- and fluoxetine-induced effects on osteoclast formation.  

   Taken together, serotonin and fluoxetine may affect osteoblast and osteoclast formation 

both positively and negatively in vitro, via different mechanisms. Their effects are markedly 

concentration-dependent. In vivo serotonin and fluoxetine seem to have opposite effects on 
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BMD (8, 15). Despite the limitations of in vitro approaches (immortalized phenotype, clonal 

nature of cultures, and lack of circulating hormones), the current study presents possible 

mechanisms for the serotonin and fluoxetine induced bone alterations seen in vivo. Studies to 

determine the levels of serotonin and fluoxetine in bone marrow will be important to draw 

further conclusions from in vitro results. In vivo, under normal conditions, serotonergic 

mechanisms probably balance each other. Disruption of such a balance with serotonin 

interacting medications might interfere with normal bone metabolism. Medications interacting 

with the serotonergic system are becoming more and more common in clinical practice. 

SSRIs like fluoxetine are used in the treatment of depression and anxiety syndromes, 5-HT1A

receptor agonists in the treatment of migraine, while 5-HT3 receptor antagonists are used for 

chemotherapy-induced emesis. Recently, serotonin receptor interacting medications for 

treating irritable bowel syndrome also became available. These drugs are often prescribed for 

long periods of time. Little is known about the long-term effects on the skeleton using these 

medications and further investigation in this field is very important.  

   During the last years increasing interest has been directed against the bone modulating role 

of serotonin. Our data further underline that serotonin and its transporter exert important 

functions in bone remodeling.  
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            TABLE I 

Primer sets used in RT-PCR. 

Primers mRNA position                      Sequence                  Product length        Tann

mTph1 1370-1389 5’-AGTTGCGGTATGACCTTGAT-3’ 
1561-1543 5’-AGGCGAGAGACATTGCTAA-3’ 192 bp           60 C

h5-HT1A 1067-1086 5’-GCTGGCTGCCCTTCTT-3’ 
 1232-1213 5’-TTAAACGCGTTTTGAAAGTC-3’ 166 bp           54 C

h5-HT2A 1520-1538 5’-GACAATAGCGACGGAGTGA-3’
 1943-1923 5’-GGCAATAGGTAACCAACTCAA-3’     424 bp          54 C

h5-HT2A 917-936 5’-TCTTTCAGCTTCCTCCCTCA-3’  
 1139-1120 5’-TGCAGGACTCTTTGCAGATG-3’ 223 bp  58 C

h5-HT2B 1317-1336 5’-TGGCAGAGAACTCTAAGTTT-3’  
 1513-1493 5’-CTGCCAGTTCTGCTATACATA-3’ 197 bp           52 C

h5-HT2C 3638-3658 5’-ACGCTTGACAGTTACTTACAC-3’ 
 3906-3890 5’-GGCAAGGCAGGTAGACT-3’     269 bp           52 C

h5-HTT 2023-2038 5’-CTTGGGTTACTGCATAGGAAC-3’  
2181-2166  5’-GCATTCAAGCGGATGT-3’                   159 bp           52 C

hTph1         1057-1076 5’-CCCTTTGATCCCAAGATTAC-3’   
1267-1248  5’-CATTCATGGCACTGGTTATG-3’         211 bp           50 C

hCalcitonin 2535-2554 5’-CTTGTGGTTGACCGCTTGTT-3’   
receptor      2733-2714           5’-ATTTCAGGTGCCAGTAACGA-3’        199 b            58 C

M13Reverse         5’-CAGGAAACAGCTATGAC-3’                                    55 C

GAPDH   5’-TGCACCACCAACTGCTTAGC-3’ 
    5’-GGCATGGACTGTGGTCATGAG-3’                     60 C
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Figure 1. Gel electrophoresis of representative PCR products from one-step RT-PCR for 

serotonin receptors, 5-HTT and Tph1. (A) RT-PCR analysis of 5-HT1A (166 bp), 5-HT2A (424

bp), 5-HT2B (197 bp), 5-HT2C (269 bp), 5-HTT (159 bp), Tph1 (211 bp) and the calcitonin 

receptor (180 bp) expression in human PBMC cultured with RANKL and MCSF for 12 days. 

PCR reactions without reverse transcriptase (-RT) were used as negative controls (B) RT-

PCR analysis for mouse Tph1 (192 bp) expression in MC3T3-E1 cells and RAW264.7 cells at 

different differentiation stages. - RT was performed on a pool of RNA samples from MC3T3-

E1 or RAW264.7 cells respectively. The DNA ladder (L) was 100 bp.  
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Figure 2.  Serotonin and fluoxetine affect osteoclast differentiation and activation. (A) Human 

PBMC were cultured in medium with M-CSF and RANKL for 12 days in the presence of 

fluoxetine, (B) corresponding resorption pit assay. (C) An equivalent experiment with 

different serotonin concentrations and the 5-HT2A/C receptor antagonist ketanserin, (D) 

corresponding resorption pit assay. Data are presented as % of control (no addition) values. *p 

< 0.05. ¤Decrease in serotonin induced differentiation, p < 0.05.  
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Figure 3. Serotonin and fluoxetine enhance proliferation of murine preosteoclasts. (A) 

RAW264.7 cells treated with serotonin in different concentrations. (B) RAW264.7 cells 

treated with fluoxetine in different concentrations. Data are presented as % of control (no 

addition) values. *p < 0.05. 
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Figure 4. Fluoxetine and serotonin activate NF B and cFos in RAW264.7 cells. (A) 

Fluoxetine (0.01 M) and serotonin (0.01 M) activate NF B, at 10 M however none of the 

compounds were effective. (B) Fluoxetine and serotonin induce cFos activation. *p < 0.05. 
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Figure 5. Serotonin stimulates osteoblast proliferation. (A) Proliferation assay on murine 

MC3T3-E1 cells treated with serotonin. (B) Assay on pFOSLuc transfected MC3T3-E1 cells 

given serotonin. (C) Proliferation assay on differentiated, human NHO cells and (D) human 

bone marrow stem cells (MSC). Data are presented as % of control (no addition) values. *p < 

0.05.
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Figure 6.  Effects of serotonin receptor and intracellular signaling pathway inhibition on 

serotonin induced proliferation of MC3T3-E1, preosteoblasts. (A) The PKC inhibitor GF 

109203 and to a lesser extent the PKA inhibitor H89 as well as the CAMK inhibitor W7 

inhibit serotonin induced proliferation. (B) The 5-HT2B/C receptor antagonist SB206553 and 

the 5-HT2A/C receptor antagonist ketanserin inhibit serotonin induced proliferation. Data are 

presented as % of control (no addition) values. *p < 0.05. 

31



Figure 7. Effects of fluoxetine on proliferation in MC3T3-E1, NHO and MSC cells. (A) At 

lower concentrations fluoxetine seems to have a slight stimulating effect, whereas higher 

doses inhibit proliferation of MC3T3-E1 cells. (B) The effect of ketanserin (KET), SB 206553 

(SB) and serotonin (Ser) on fluoxetine (1 M) induced inhibition of proliferation in MC3T3-

E1 cells. (C) The effect of fluoxetine alone and in combination with serotonin on NHO cell 

proliferation. ** indicates a significant reduction in fluoxetine induced proliferation, p < 0.05. 

(D) The effect of fluoxetine alone in combination with serotonin on MSC proliferation. Data 

are presented as % of control (no addition) values. *p < 0.05. 
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Figure 8. Serotonin and fluoxetine effects on RANKL and OPG release in MC3T3-E1 cells. 

(A) Inhibition of RANKL and (B) stimulation of OPG release by serotonin. (C) Stimulation 

of RANKL and (D) inhibition of OPG release by fluoxetine. Data are presented as % of 

control (no addition) values. *p < 0.05. 
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Microabstract

To investigate possible effects of serotonin on bone, rats were injected with serotonin 

s.c. for 3 months. BMD, femoral cortical thickness and stiffness were significantly 

higher in serotonin treated animals compared to controls. These findings show that 

serotonin affects bone metabolism, architecture and mechanical properties in vivo.

Abstract

Introduction: New evidence suggests a control of bone mass by the central nervous 

system. Many studies indicate a role for the nervous system in embryonic skeletal 

development, during fracture healing, and during remodeling after insertion of 

implants. We have previously shown that functional serotonin receptors are present in 

bone cells and that serotonin stimulates proliferation of osteoblast precursor cells in

vitro. In the present study we investigated the effects of serotonin on bone tissue in 

vivo.

Methods: Ten 2-month old female Sprague-Dawley rats were injected with serotonin 

subcutaneously (5mg/kg) once daily for 3 months. Controls received saline. Using 

microdialysis and HPLC, free circulating serotonin levels were measured. DXA scans 

were made after three months of serotonin administration . Bone architecture and 

mechanical properties were investigated by μCT, histomorphometry and mechanical 

testing.

Results: A long-lasting hyperserotoninemia with a >10-fold increase in serotonin 

appeared. Total body BMD was significantly higher (0.1976 ± 0.0015 vs. 0.1913 ± 

0.0012 g/cm2) in rats receiving serotonin. Cortical thickness measured by μCT 

analysis was also higher, whereas trabecular bone volume was lower. Interestingly, 

the perimeter and cross-sectional moment of inertia (MOI), a proxy for geometrical 
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bone strength, were the same in both groups. These data suggest that serotonin 

reduces resorption or increases apposition of endosteal bone. Mechanical testings 

showed that femoral stiffness was higher in serotonin dosed animals, while the energy 

absorption remained unchanged, indicating less deformation at fracture. As a result of 

a reduced body fat content (28.08 ± 7.20 vs. 42.96 ± 8.49 g), the body weight was 

lower in serotonin rats (305.5 ± 4.0 vs. 321.8 ± 5.3 g).

Conclusion: Hyperserotoninemia led to a higher BMD, altered bone architecture and 

changes in bone mechanical properties in growing rats, demonstrating that serotonin 

may have important effects on bone in vivo. 
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Introduction 

Skeletal remodeling is a highly regulated process that involves both formation and 

resorption of bone. Increasing interest has been directed towards peptide and amine 

hormones and their effects on bone cellular growth and differentiation. Studies on 

nerve terminals innervating bone have demonstrated the presence of several 

neuropeptides, including calcitonin gene related peptide (CGRP), vasoactive intestinal 

polypeptide (VIP), substance P, and neuropeptide Y.(1) Functional receptors for leptin 

and VIP have been demonstrated in osteoblasts and in osteoblastic cell lines.(2)

Serotonin (5-hydroxytryptamine or 5-HT) is a well-known amine neurotransmitter. 

Outside the central nervous system serotonin is mainly produced by the 

enterochromaffin cells of the gut and participates in the regulation of intestinal 

motility, fluid secretion and regional blood flow.(3) After release, serotonin is rapidly 

transported by the cell membrane bound serotonin transporter (5-HTT) into a number 

of cell types, with platelets serving as the major reservoir. Serotonin mediates its 

actions via multiple serotonin receptor subtypes.(4)  Until now seven serotonin receptor 

families (5-HT1-7)  have been characterised, and each is further divided into several 

subtypes. Studies on cell cultures have shown that serotonin has mitogenic effects on 

fibroblasts,(5) smooth muscle cells(6) and vascular endothelial cells(7) mediated through 

5-HT2 receptors. We recently demonstrated that long-term administration of high 

serotonin doses leads to a carcinoid heart like condition with myofibroblast 

proliferation and plaque formation on heart valves in rats.(8) In 2001 we were the first 

to demonstrate functional serotonin receptors in both osteoblasts and osteocytes.(9)

Furthermore, the expression of the serotonin transporter (5-HTT) has been 

demonstrated in rat osteoblasts and in osteoclasts.(10,11) Later we showed that 
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serotonin induced proliferation of osteoblasts and osteoclasts in vitro as well as 

increased BMD in rats in vivo.(12)

 As serotonin can affect bone cells via different mechanisms in vitro we 

hypothesized that it would also have effects on bone in vivo. In order to investigate 

the long-term impact of serotonin on BMD, architecture and mechanical properties we 

injected 2-month old female rats with serotonin subcutaneously (s.c.) daily for 3 

months, and then performed DXA scans, μCT, histomorphometry and mechanical 

testing.

Materials and methods 

Animals

The Animal Welfare Committee at Trondheim University Hospital approved this 

study. Twenty, 2-month old Sprague-Dawley female rats (200 g) were housed solely 

in wire-top cages with aspen woodchip bedding from B&K Universal Ltd. Room 

temperature was 24 ± 1°C with a relative humidity of 40 % to 50 % and a 12-hour 

light/dark cycle. The Rat and Mouse Diet of B&K and tap water were provided ad

libitum. Before all procedures (except for serotonin injections), the animals were 

anesthetized with 2 ml/kg body weight of a combination of fluanison (2.5 mg/ml), 

fentanyl (0.05 mg/ml), and midazolam (1.25 mg/ml). Serotonin (5-

Hydroxytryptamine Creatinin Sulfate Complex) purchased from Sigma-Aldrich was 

freshly dissolved in physiological saline (5 mg/ml) before injection. Ten rats were 

given daily serotonin injections s.c (5 mg/kg); 10 controls received saline. To avoid 

trauma and ulcers of the neck skin, the animals were immobilized in a specially built 

cage during the injections, which were given strictly subcutaneously with a 30-gauge 

BD syringe. At euthanization, the animals were weighed and decapitated. 
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In order to perform microdialysis, an additional experiment on 7 rats was carried out.  

Microdialysis 

To describe the pharmacokinetics of the serotonin administration protocol, a short-

term study on 7 animals was performed. Four animals were given daily serotonin 

injections (5 mg/kg s.c) for 10 days, 3 controls were given saline. Microdialysis was 

performed to determine the free fraction of circulating serotonin. We assumed that the 

interstitial serotonin level (collected from the femoral muscle) would reflect free 

circulating serotonin. Two hours before the final 10th serotonin injection, a 

microdialysis probe (CMA 20, 10 mm membrane length, 0.5 mm outer diameter, 20 

kDa cutoff; CMA Microdialysis AB, Stockholm, Sweden) was implanted in the 

femoral muscles. The microdialysis probes were perfused with PBS at a flow rate of 1 

μl min-1 using a microinfusion pump (CMA 107, CMA Microdialysis AB, Stockholm, 

Sweden). After a 30-minute equilibration period, baseline samples were collected for 

60-minutes. Then serotonin was injected s.c followed by microdialysate sampling in 

60-minute fractions for 5 hours. The samples were protected from light during the 

whole procedure and immediately frozen at -80°C until further analysis. In vitro

recovery of serotonin was 59.3 ± 3.2 % (mean ± SD).  

High-performance liquid chromatography (HPLC) 

The microdialysis samples were analyzed with an Agilent 1100 SL LC/MS-system 

consisting of  a G1354A quaternary pump with degasser, a G1367A well plate 

autosampler; a G1316A thermostatted column compartment and a G1956B single 

quadropol mass selective detector. Serotonin was monitored using selected ion 

monitoring on m/z 160. The samples were transferred to vials and added 10 % of the 
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sample with 1 % formic acid to stabilize serotonin. Fifteen l of sample were injected 

on a 50 mm x 2.1mm Agilent Eclipse XDB-C18 with 1.8 micron particle size. The 

mobile phase was made up of 5 % Methanol and 95 % 25 mM of formic acid. 

Quantitation was done with external standard using the Agilent Chemstation software. 

The detection limit for serotonin in microdialysis samples was found to be 1.1 nM. 

Mean for a sample with theoretical value of 5 nM was 4.94 with a standard deviation 

of ± 0.32 nM. 

Double X-ray absorptiometry (DXA) measurements in vivo

The femur and total body BMD (g/cm2) were measured in anesthetized animals by 

means of DXA, using a Hologic QDR 4500A with a small animal software. BMD 

measurements were performed in duplicate at the start and end of the study. The 

coefficients of variation (CV) were: total body BMD (< 0.52 %), femur BMD (< 1.29 

%), area (<0.53 %), BMC (<0.55 %), body fat content (1.41 %) and lean body mass 

(0.20 %). 

Bone architecture 

Bone architecture was analyzed by means of micro-computed tomography ( CT)

scanning. Femoral head and part of the metaphysis (fig. 1) of the dissected femurs 

were scanned in a SkyScan 1072 microtomograph (SkyScan, Antwerp, Belgium), 

with a voxelsize of 11.89 m. Scans were processed, and three-dimensional 

morphometric analyses of the femurs were done using free software of the 3D-

Calculator Project (http://www.eur.nl/fgg/orthopaedics/Downloads.html). The data-

sets were separated in femoral head and metaphysis. In the metaphysis, cortical 

volume (Ct.V), and cortical thickness (Ct.Th) were measured. In the femoral head, 
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trabecular bone volume (BV), total bone marrow volume, including trabeculae (TV), 

trabecular bone volume fraction (BV/TV), trabecular thickness (Tb.Th),(13)

connectivity density (CD),(14) and structure model index (SMI) were determined.(15)

Cross-sectional moment of inertia (MOI) was determined over the complete data-set 

(femoral head + metaphysis). The mean of the periosteal perimeter was calculated for 

part of the metaphysis. 

Bone histomorphometry

In order to investigate bone resorption, Tartrate-Resistent Acid Phosphatase (TRAP) 

staining was used to stain osteoclasts, as described.(16) Eight sequential, longitudinal 

sections from each animal were used for TRAP stainings. To study bone formation, 

Goldner staining was performed to stain unmineralized matrix. 

Mechanical testing  

The left femurs were thawed in Ringers  solution for mechanical testing of the 

diaphysis. The diaphyses were fractured 18.7 mm from the femoral condyles in three 

point cantilever bending as previously described.(17) The proximal femur was fixed in 

a clamp, the cam of the rotating wheel engaged the femoral condyles and a fulcrum 

positioned anteriorly 18.7 mm from the condyles was the third point of force 

application (Fig. 2) All tests were done at a loading rate of 0.095 radians/second (5.43 

degrees/second).(18) The load in the test apparatus, an MTS 858 Mini Bionix

Axial/Torsional Test System (MTS Systems Corporation, Minnesota, USA), was 

measured with a MTS Test Star TM Sensor Cartridge Force 250 N load cell and 

registered in MTS Test Star II software. 
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Ultimate moment, ultimate energy absorption, stiffness and deflection were read 

directly or calculated from the computer recordings. 

Statistical analysis

Data shown are expressed as means ± SEM. All data were tested for normality with 

Shapiro-Wilk. Normally distributed parameters were tested by means of Student’s T 

test, while parameters that were not normally distributed were tested by Mann-

Whitney U test. Significance was assumed at p values lower than 0.05.

Results

Serotonin measurements and clinical signs 

The serotonin injections induced clinical signs, including flushing, loose stools and 

drowsiness. The flushing and drowsiness lasted 3 - 4 hours after the injections. In 

dialysate collected from the femoral muscles, only one out of three control rats had a 

detectable serotonin (2.9 nM). In dialysate sampled 1 hour prior to the 10th injection, 

one out of four serotonin receiving animals had detectable serotonin (9.2 nM) in the 

femoral muscles. Two hours after the 10th injection, the serotonin level reached a peak 

(56.8 ± 9.6 nM) (Fig. 3). 

Body fat content and bone mineral density

An interesting finding was the weight-loss induced by serotonin. At the end of the 

study the serotonin treated animals weighed less than the controls (305.5 ± 4.0 vs. 

321.8 ± 5.3 g, p = 0.02). This was a result of a lower body fat content (28.08 ± 7.20 

vs. 42.96 ± 8.49 g, p = 0.0008), as the lean body mass remained unchanged (Fig. 4A-

B). Despite the lower body weight, the serotonin treated animals had higher total body 
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BMD (0.1976 ± 0.0015 vs. 0.1913 ± 0.0012 g/cm2, p = 0.004), while no difference 

was found in femoral BMD, compared to controls (Fig. 4C-D). The higher total body 

BMD in the serotonin group was a result of a lower bone area (52.99 ± 0.77 vs. 55.22 

± 0.76 cm2, p = 0.035), total body BMC, however, was not different compared to 

controls. No difference in body weight or parameters measured by DXA was 

observed between the groups at baseline. 

Bone architecture 

In the metaphysis, cortical thickness (Ct.Th) was significantly higher in the rats 

receiving serotonin versus controls (fig. 5A). On the other hand, trabecular bone 

volume (BV) as well as total bone marrow volume (TV) in the metaphysis were found 

to be significantly lower in the serotonin group compared to the control group (fig. 

5B-C). Trabecular bone volume fraction (BV/TV) (fig. 5D) and trabecular thickness 

(Tb.Th) remained unchanged, indicating that BV decreased due to a smaller TV. All 

other parameters studied were not significantly different in the metaphysis. In the 

femoral head no significant differences were found, although BV and TV showed the 

same trend as in the metaphysis. 

Bone histomorphometry 

All sections studied for TRAP staining were found to be negative (data not shown). 

Osteoclast activity may be very low, since bone turnover may already be low in rats 

of this age. Furthermore, no positive staining for unmineralized matrix was found in 

the sections (data not shown), which may also be due to a low bone turnover state or 

due to the fact that mineralization is known to occur very quickly in rodents. 
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Serotonin alters rat bone mechanical properties 

Consistent with the phenotypes of altered BMD and architecture, femurs from rats 

receiving serotonin had altered mechanical properties. In comparison with controls, 

mean stiffness of the femur in three-point bending was 12.3 % higher (Fig. 6). Bones 

from the serotonin rats tended to absorb more energy before breaking, but there was 

no statistical difference. There were no significant differences in ultimate bending 

moment or deflection in the femoral shaft. The lengths of the femurs were similar in 

the two groups. 

Discussion

We present here, for the first time, a study concerning long-term serotonin effects on 

bone in growing rats. In vitro studies have suggested that serotonin is a regulator of 

bone metabolism. The present work shows that serotonin has important in vivo effects 

on bone as well.

 Hormones like grehlin and leptin are involved in brain-gut regulation and 

recently they have been shown to have effects on bone metabolism and BMD.(19,20)

Serotonin found in the blood circulation is mainly produced by the enterochromaffin 

cells of the gut. More than 99 % of circulating serotonin is stored in platelet granules. 

As the free fraction of serotonin is believed to be biologically active, it is crucial to 

avoid platelet degranulation during blood sampling when serotonin measurements are 

to be done. We have previously demonstrated that sampling by microdialysis in 

femoral muscles gives a more accurate determination of the free fraction of 

circulating serotonin.(8) In this study we also used microdialysis combined with an 

improved HPLC technique to collect and analyze serotonin in femoral muscles. We 

found that the serotonin injections induced hyperserotoninemia, with a peak > 10 
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times higher than controls, 2 hours after the injection. The hyperserotoninemia lasted 

> 5 hours. 

A disturbance in central serotonin regulation has been implicated in eating and 

body weight disorders and drugs with affinity for serotonin receptors have been used 

in treatment of obesity.(21). Serotonin has been shown to reduce food intake and 

weight gain, and a role for hypothalamic serotonergic receptor mechanisms in 

mediation of these effects has been suggested.(22) In the present work we confirm that 

serotonin is a potent weight reducing substance, also when injected s.c. We also found 

that the low body weight was due to a reduced body fat content. 

Serotonin can reach bone cells and bone cell precursors via the blood 

circulation, but may also affect bone tissue via serotonergic neurons. The higher total 

body BMD (determined by DXA) that we find in serotonin dosed animals may 

therefore be mediated directly through serotonin receptors on cells involved in bone 

metabolism.(9,11) Although femur BMD measurements by means of DXA did not 

show significant changes, detailed high resolution μCT scans revealed that serotonin 

administration did affect bone architecture of the femur. Changes in the proximal 

head and the metaphysial region were similar, although they only reached significance 

in the metaphysis. This can be explained by the fact that normal bone turnover and 

adaptation of bone architecture are very high in the metaphysis of growing animals, 

making this region prone to react on drugs, chemicals and hormones. We found that 

moment of inertia and the perimeter of the metaphysis were unchanged, while cortical 

thickness was significantly higher in the serotonin group. On the other hand, we 

demonstrated that serotonin administration led to a lower trabecular bone volume, 

indicating that the effect of a higher cortical thickness is reversed by lower trabecular 

bone volume, resulting in similar moment of inertia in both groups. It is also possible 
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that there are changes in the distribution of trabecular bone in the marrow space that 

explains that there is no difference in MOI. For instance, the normal animals could 

have more trabecular bone close to the cortex while the serotonin animals have more 

evenly distributed trabecular bone. The unchanged trabecular bone volume fraction 

indicates that trabecular bone volume was lower solely because of a smaller total bone 

marrow volume. These results indicate that bone metabolism in the metaphysis of the 

femurs was affected by serotonin. Our hypothesis is that endosteal resorption was 

decreased during growth in rats receiving serotonin leading to higher cortical 

thickness, lower total bone marrow volume, and lower trabecular bone volume. This 

is in accordance with our in vitro findings showing an increased OPG/RANKL ratio 

(indicating an inhibitory effect on osteoclast activity) in medium collected from 

osteoblasts treated with serotonin (in press). The fact that no osteoclasts could be 

detected in the sections of both control as well as serotonin rats, does not exclude a 

difference in resorption at a given time point during serotonin administration. Another 

possible explanation for the changes seen in bone architecture could be that serotonin 

induces an increased endosteal bone apposition in growing rats, which could be 

explained by our previous findings showing that serotonin induces osteoblast 

proliferation in vitro.(12)

 Furthermore, we demonstrated that the stiffness of the femurs from the 

serotonin animals was increased while bone toughness remained unchanged. The 

increase in stiffness is probably due to the slightly enlarged cortical thickness, with 

more bone at the endosteal side. These results indicate less deflection and a slightly 

more brittle bone in the serotonin dosed animals. 

Serotonin is a regulator of craniofacial morphogenesis, and 5-HTT is present 

in developing craniofacial mesenchyme in mice where it is thought to influence the 
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morphogenetic effects of serotonin.(23) In a recent study, long-term administration of 

the 5-HTT inhibitor (selective serotonin reuptake inhibitor, SSRI) fluoxetine led to 

reduced bone accrual in growing mice.(24) Only a couple of reports on fracture risk 

and SSRI treatment have been published, and they suggest an increased fracture risk, 

even though the mechanism behind is unknown.(25-27) Another study demonstrated 

decreased growth in children during therapy with SSRI.(28) Taken together these 

studies indicate that serotonin is involved in bone development and bone turnover. 

This is the first in vivo study showing that serotonin administration affects bone 

metabolism in rats. Serotonergic mechanisms are highly preserved through evolution 

and species differences are small. It is therefore likely that changes similar to those 

seen in rats receiving serotonin would develop in humans with hyperserotoninemia. 

Further investigation is needed to understand the physiological role for serotonin in 

bone metabolism.  

In conclusion this study, for the first time, demonstrates that long-term 

serotonin administration leads to increased BMD, altered bone architecture and 

changes in mechanichal properties in growing rats.  
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FIG. 1.  A typical μCT-scan image. Areas for the separate data-sets of femoral head 

and metaphysis are depicted. 
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FIG. 2.  Mechanical properties of the femoral midshaft were investigated using a 

three-point anterior bending test.
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FIG. 3.  Serotonin levels in dialysate from femoral muscles in animals given daily 

subcutaneous serotonin injections (5 mg/kg) for 10 days. Dialysate was collected 1 

hour before and 5 hours after the 10th serotonin injection ( ). Values are mean ± SEM;  

n = 4. 
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FIG. 4.  Influence of long-term serotonin administration on body weight, fat content, 

BMD and bone area compared to controls. Results are shown as mean ± SD; n = 10. 

(A) Body weights were significantly lower in serotonin dosed animals compared to 

controls (ap = 0.02). (B) The body fat content was significantly lower (bp = 0.0008). 

(C) Total body BMD was significantly higher in the serotonin group (cp = 0.004). (D) 

Total body bone area was significantly lower in the serotonin group (dp = 0.035). 
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FIG. 5. μCT scanning data of femoral head and metaphysis. Data are shown as 

means ± SEM; n = 10. (A) Cortical thickness [Ct.Th] is significantly higher in the 

metaphysis of serotonin dosed rats versus controls (ap = 0.009). (B) The serotonin 

dosed rats had significantly lower trabecular bone volume [BV] in the metaphysis (bp

= 0.035). (C) Total bone marrow volume [TV] was significantly lower in the 

metaphysis of serotonin dosed animals (cp = 0.002). (D) Trabecular bone volume 

fraction [BV/ TV] is similar in both groups. 
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Fig. 6.   Femoral midshaft mechanical properties in control and serotonin dosed rats. 

(A) Energy absorption and (B) stiffness. aStatistically significantly higher compared 

to controls (p < 0.05). (C) Load-graph showing break point. Data are shown as means 

± SEM; n = 10. 
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