
12

Exploring and Expanding GSE Education with Open Source
Software Development

RUNE HJELSVOLD and DEEPTI MISHRA, The Norwegian University of Science and Technology,

Department of Computer Science

Global software engineering (GSE) courses traditionally require cooperation between at least two universities
so as to provide a distributed development environment to the students. In this study, we explore an alter-
native way to organize a global software engineering course where students work on open source software
development (OSSD) projects rather than in a multi-university collaboration setting. The results show that
the new setup may provide core GSE challenges as well as challenges associated with software development
outsourcing and challenges related to working on large open source software. The present article compares
the experiences gained from running a combined GSE and OSSD course against the experiences gained from
running a traditional GSE course. The two alternatives are compared in terms of students’ learning outcomes
and course organization. The authors found that a combined GSE and OSSD course provides learning op-
portunities that are partly overlapping with, and partly complementary to, a traditional GSE course. The
authors also found that the combined OSSD and GSE course was somewhat easier to organize because most
of the activities took place in a single university setting. The authors used the extended GSE taxonomy for
the comparison and found it to be a useful tool for this, although it had some limitations in expressive power.
Therefore, two additional relationship dimensions are proposed that will further enrich the extended taxon-
omy in classifying GSE (and OSSD) projects.

CCS Concepts: • Software and its engineering → Software development process management; Agile

software development; Open source model; Programming teams;

Additional Key Words and Phrases: Global software engineering, GSE Education, GSE Taxonomy, Open
Source Software Development, Software Development Outsourcing, OSS

ACM Reference format:

Rune Hjelsvold and Deepti Mishra. 2019. Exploring and Expanding GSE Education with Open Source Software
Development. ACM Trans. Comput. Educ. 19, 2, Article 12 (January 2019), 23 pages.
https://doi.org/10.1145/3230012

1 INTRODUCTION

Software engineering students are required to attain more than just content knowledge. Their
learning should include mastering skills and attitudes for developing software for real world us-
age, which is difficult to achieve inside classrooms alone. Global competition, the need for flex-
ibility, the need for new types of expertise, and the struggle for cost efficiency, drives software

This study was partly funded by Excited—the Centre for Excellent IT Education (https://www.ntnu.edu/excited).
Authors’ addresses: R. Hjelsvold and D. Mishra, The Norwegian University of Science and Technology, Department of
Computer Science, Teknologiveien 22, 2815 Gjøvik, Norway; emails: {rune.hjelsvold, deepti.mishra}@ntnu.no.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2019 Copyright held by the owner/author(s).
1946-6226/2019/01-ART12
https://doi.org/10.1145/3230012

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.

https://doi.org/10.1145/3230012
https://www.ntnu.edu/excited
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3230012


12:2 R. Hjelsvold and D. Mishra

development companies to engage in distributed software projects (Lacity et al. 2009; Persson
et al. 2009; Mishra and Mishra 2010, 2011, 2012). Therefore, the skill set that the learner attains must
be what the software industry currently requires (Mishra and Yazici 2011). As a result, global soft-
ware engineering has emerged as a part of the academic curriculum in computer science degrees.
Academia is trying to simulate real world experiences by having students work in cross-university,
distributed teams while developing software. These projects may have real or fake customers.

In the paper “How Best to Teach Global Software Engineering? Educators are Divided.”
(Beecham et al. 2017), Sarah Beecham interviews five different educators. These interviews show
that educators are divided about the best way to organize a global software engineering (GSE)
course. Some educators consider it important that such courses include global virtual collabora-
tions in multisite, cross-university settings. Others suggest that students could be introduced to
GSE through the participation in global open source projects.

A course on global software engineering has been offered at the Gjøvik campus of our university
since 2013. The course was the result of an international collaboration with the Tampere University
of Technology, Finland, until 2015, allowing for geographically distributed teams. The collabora-
tion came to an end in 2016, however, due to lack of student interest at the partner university.
As a consequence, our university decided to explore the open source software [OSS] development
(OSSD) alternative.

The MOODLE project1 was chosen as the basis for the OSSD alternative for the course. In
MOODLE’s governance model, the MOODLE headquarters (HQ) is responsible for maintaining
the software. Therefore, the students experienced working in a setting that resembles a software
development outsourcing setting: the student teams acted as distant teams choosing tasks defined
by the headquarters, implementing them according to the standards and procedures defined by the
headquarters, and submitting their code to the headquarters for code review and eventual release.

In this article, we will share our experiences from exploring the OSSD alternative. We will
present and discuss the innovative parts of the course. We will also make a systematic compari-
son, although based on small sample sets, of this new way of running the course with the former,
multi-university, distributed team approach (the traditional GSE education approach). The paper
is based on a rather small case study but we still consider it a useful contribution to an interesting,
but still unanswered, question in the GSE education community.

1.1 Motivation and Research Questions

The main motivation for the article is to study whether OSSD is a viable alternative for GSE edu-
cation. This study aims to explore the following research questions:

• How well can core GSE issues be covered when organizing GSE education projects as OSSD
projects, and to what degree may research literature be used to fill possibly missing parts?

• What software outsourcing experience may students get from participating in OSSD
projects?

• What additional global issues may students experience from participating in OSSD?
• What are the additional challenges for the teaching staff when using OSSD rather than the

traditional multi-university approach?

1.2 Article Organization

This article is organized as follows: we will first present a short review of papers related to GSE
and OSSD in general followed by a short review of papers discussing the use of OSSD in GSE

1https://MOODLE.com/.

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.

https://MOODLE.com/


Exploring and Expanding GSE Education with Open Source Software Development 12:3

specifically. We will then describe how this study was set up and the empirical data we collected
through the study. Based on these data, we compare the use of OSSD in GSE education with the
more common approach of having distributed software development teams. A summary of the
lessons learned and some ideas for future work conclude the paper.

2 LITERATURE REVIEW

In their systematic review, Clear et al. (2015) adopted the following definition for GSE/Global Soft-
ware Development (GSD):

In GSD, stakeholders from different national and organizational cultures and time
zones are involved in developing software . . . and tasks at various stages of the soft-
ware lifecycle may be separated and implemented at different geographic locations
coordinated through the use of information and communication technologies . . .

As mentioned before, GSE educators are divided in their views on how to best run GSE courses.
Sarah Beecham interviewed five different educators about how best to teach global software en-
gineering (GSE). In these interviews (Beecham et al. 2017), Clear and Damian emphasized the
need for such courses to include global virtual collaborations in multisite, cross-university set-
tings. However, they also cautioned that such an educational environment will require additional
effort, strategic work, and instructor resilience when it comes to setting up, teaching, and assessing
student work.

In the same interview, Barr highlighted several challenges of conducting a GSE course in cross-
university settings, such as course design and organization; class management; sustainability, scal-
ability and reusability; students’ different work ethics and skill levels; and different communica-
tion and development tools in different universities. He proposed the participation in global open
source projects as an alternative way to introduce students to GSE since open source software
projects generally are globally distributed projects. Says Associate Professor John Barr:

If the OSS project is indeed global, students are introduced to GSE challenges and can
participate in the GSE process—GSE education’s major goals. (Beecham et al. 2017).

An open source project is not the same as a GSE project in a commercial company. It may still, how-
ever, meet core GSE education’s learning objectives (Beecham et al. 2017). Running GSE courses
as OSSD projects give some additional benefits:

• It may require less organizational and teaching efforts (Beecham et al. 2017).
• An open source project is a real project for a solution that is often in widespread use and

therefore it is highly motivating (Beecham et al. 2017).
• It mitigates many GSE educational constraints and reduces many institutional challenges

(Beecham et al. 2017).
• Developers on OSSD projects usually have to get to know a potentially large legacy code

base (Smith et al. 2014; Fagerholm et al. 2013; among others).

2.1 GSE Education in Cross-University, Distributed Teams

Clear et al. (2015) asserted that, to be considered GSE education, software engineering education
must address the notions of distance common in the GSE literature:

• Geographic distance
• Temporal distance
• Cultural distance (which they further divided into linguistic and institutional distances)

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



12:4 R. Hjelsvold and D. Mishra

The 82 papers reviewed by Clear et al. (2015) appeared to report on projects where two or
more universities collaborate on a rather equal basis and where each development team acts as an
autonomous unit.

In their paper, Šmite et al. (2014) presented a taxonomy for GSE built on the same notions of
distance. This taxonomy defines a legal entity as a special type of institutional distance element
concerned with whether the development is conducted within the same company (insourcing) or
with another company (outsourcing). The review conducted by Clear et al. (2015) did not include
outsourcing when coding the reviewed papers, thereby indicating that outsourcing is not a topic
typically covered in GSE education.

Britto et al. (2016) have suggested an extension to the Šmite taxonomy that adds a “setting”
dimension further divided into four all new on-site dimensions describing the characteristics of
the individual GSE sites and two all new relationship dimensions. The taxonomy is intended to
make it easier to analyze and compare results from different GSE studies.

The systematic review conducted by Clear et al. (2015) identified 45 top recommendations to
GSE educators. Among these are to use self-organizing teams, to encourage a reflective attitude in
students, and to require regular status meetings and/or reports. The review also lists agile methods
as being recommended by GSE education researchers. Reflection in agile teams is a topic studied
in more detail by Babb et al. (2014). They distinguished between reflection-in-action, which is the
reflection done by the team members as they solve actual project issues, and reflection-on-action,
which is post-action reflection and evaluation of the teamwork. They proposed a Reflective Agile
Learning Model (REALM) where they suggested reflective and learning opportunities related to
agile practices.

We have followed the recommendations of using agile methods, self-organizing, and reflecting
teams in our project.

2.2 Teaching Outsourcing

Outsourcing is recognized as a significant challenge in the GSE research community:

• Moe et al. (2012) studied three companies that terminated their offshore outsourcing devel-
opment work to find the main reasons for termination. They found that disappointingly low
software quality was the main reason for termination, and attributed this to a large degree
to communication and motivation issues.

• Kumar and Thangavelu (2013) also studied factors that impact the quality of code developed
through outsourcing and draw the following conclusion:

Our empirical study revealed that offshore and onsite teams knowledge sharing and
knowledge transfer has been key determinant to create a significant impact of GSD
project outcome. Kumar and Thangavelu (2013)

• The study conducted by Kannabiran and Sankaran (2011) shows that requirements uncer-
tainty has significant impact on the quality of the code developed through offshoring (off-
shore outsourcing) while process maturity and trained personnel have moderate impact.

There is not much research present on outsourcing education. Gotel et al. (2007) reported on a
global software development project where students from three globally distributed educational
institutions collaborated. In their set-up, three teams of US students were tasked to develop dif-
ferent software products for Cambodian clients, while subcontracting the database component to
third-party teams of Indian students. The project specifically demonstrated that cultural distance
is an issue students also have to handle in outsourcing projects. Clear et al. (2015) noted the value
of outsourcing as a strategy to address mixed team skills, by allowing student teams to pay to

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



Exploring and Expanding GSE Education with Open Source Software Development 12:5

outsource parts of their project to a global developer (Long 2010). They further noted this was not
without its challenges, for instance, two of the teams had bad attitudes related to the use of an out-
source programmer. They were unwilling to bring this third party into the team as a contributing
partner (Long 2010).

Honig and Prasad (2007) developed and implemented an outsourcing experience for students in
an advanced software engineering course in which students at two universities were organized in
teams where each local team would have their own project, but with a team at the other university
as the outsourcing centre. One of the main lessons learned in this project is that the students
learned to acknowledge the fact that outsourcing requires extra attention and team resources to be
successful. While 92% of the students agreed (or agreed strongly) to the statement that outsourcing
was primarily a way to save money when asked before the projects started, only 67% shared this
view at the end of the project, indicating the students have acquired a deeper and more diverse
understanding of the pros and cons of outsourcing.

From the outsourcing literature, we conclude that communication and information-sharing is-
sues are key challenges in software outsourcing, that trained personnel are important for the suc-
cess of such projects, and that students may acquire a deeper, more diverse understanding of the
pros and cons of outsourcing from participating in an outsourcing project.

2.3 Open Source Software Development Education

Finding and choosing the right project for OSSD in software engineering education is challenging
(Smith et al. 2014). For GSE it is even more challenging as the projects should give the students
the opportunity to experience challenges that are important to the very global aspect of GSE, and
not include too many non-GSE related challenges. Large code bases are one aspect of software
engineering not specific to global projects and therefore may be considered a non-GSE challenge.
Large-coded bases, however, are quite typical for real GSE projects.

Onboarding is a term used to describe how new developers acquire the knowledge, skills, and
behaviors needed to become productive. In their study of onboarding in open source software,
Fagerholm et al. (2013) described the importance of OSS this way:

In many application domains, engagement with OSS is an inevitable part of the com-
puting business. In order to participate in existing software ecosystems (such as An-
droid or the LAMP stack), companies may need to adopt open source development
and licensing approaches in order to combine their offering with the infrastructure
provided by the ecosystem. Another reason to participate in open source projects is
to be able to conduct projects of a size that exceeds the capabilities of an individual
organisation.

The Undergraduate Capstone Open Source Projects (UCOSP) is one of the larger OSSD education
programs (Stroulia et al. 2011; Holmes et al. 2014). In UCOSP, teams of five to eight undergradu-
ate students geographically distributed across Canada, and possibly other parts of North America,
work together on OSSD projects. By 2014, 400 students had participated in the program over the
course of five years (ten terms) according to Holmes et al. (2014). UCOSP has three primary learn-
ing objectives (Holmes et al. 2014):

• Giving students experience in working on real distributed OSSD projects as full members
of the development teams.

• Giving students the opportunity to integrate and apply the skills they have learned in a real
development setting

• Giving students the opportunity to develop and improve their technical communication
skills in a real development setting where the majority of the interaction takes place online.

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



12:6 R. Hjelsvold and D. Mishra

Fig. 1. Challenges related to GSE, OSSD, and outsourcing.

The UCOSP program does not seem to emphasize the GSE aspects of OSSD specifically. The teams
are distributed, but the geographic, temporal, and cultural distances are rather limited and do not
seem to be addressed explicitly by the educators.

Organizing OSSD educational activities raises some issues that are not seen in typical GSE edu-
cation. The aforementioned onboarding is one such issue. The UCOSP program recommends using
experienced developers from the actual OSSD communities as mentors that will help the teams
learn the specifics of the given OSSD project. Other researchers, such as Fagerholm et al. (2013),
emphasized that teams should have some freedom to organize their work, within the constraints
of the actual OSSD project, and therefore recommend having self-organized teams. Fagerholm
et al. (2013) conclude:

We thus find support for the hypothesis that onboarding support increases the chance
of developers to be exposed to, select, and perform tasks in a proactive and self-directed
manner in open source projects. We assume that this applies in other kinds of GSD
settings where the organisational and team structure is similar.

2.4 Revisiting GSE Education in the Context of OSSD

There is not much literature on combining GSE and OSSD in education. It may therefore be useful
to revisit some of the fundamentals of GSE education.

GSE Challenges. As pointed out by Clear et al. (2015), GSE education should be focusing on
geographic, temporal, and cultural differences. There are, however, global challenges related to
outsourcing and there are OSSD challenges that are relevant to GSE and GSE education. Figure 1
shows some of the major challenges related to GSE, outsourcing, and OSSD. In the figure, out-
sourcing is separated from the core GSE challenges, even though it is one of the dimensions in the
extended GSE taxonomy. The reason for this is outsourcing is often included implicitly—and many
times only incidentally—as a part of GSE studies, in a form of role-play between teams and sites.

The GSE Distances. The GSE distances mentioned above cannot alone be used to describe the
differences between various types of GSE and OSSD projects. The members of a multi-site GSE
project working around the clock, for instance, may, according to the Šmite et al. (2014) taxonomy

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



Exploring and Expanding GSE Education with Open Source Software Development 12:7

Fig. 2. Comparing different types of projects using the new dimensions.

for GSE, be classified as having long geographic distance and large temporal distance. An OSSD
project may have developers scattered around the world working on a new feature to be included
in the future version of the software system. Such a project could also be classified as having long
geographic distance and large temporal distance. There are, however, significant differences in the
impact these distances may have on the two projects. Šmite et al. (2014) already discussed how
global and temporal differences need to be considered in relation to whether the project is an
onshore or an offshore project.

One project characteristic that may be of use when comparing GSE and OSSD projects is the
degree to which site activities need to be coordinated. A typical case for GSE projects, for instance,
is the need for fine-grained cross-site coordination because activities at the various sites are
tightly coupled. A typical case for an OSSD project, on the other hand, is coarse-grained cross-site
coordination because of the loose coupling between the individual developers.

Another difference that we may need to consider when comparing OSSD and GSE projects is
the overall project structure, the superstructure. A typical GSE project, for instance, consists
of two or more groups of developers—each group located at one physical site. A typical case for
OSSD projects, however, is having developers working individually and not as part of a co-located
sub-team. There are GSE and OSSD projects with mixed superstructures too, where some team
members are co-located and some work individually. Figure 2 illustrates how GSE, OSSD, and
GSE/OSSD project may be classified according to these new dimensions.

Section 5 gives a more in-depth comparison of a GSE and a GSE/OSSD course with respect to
the extended GSE taxonomy (Britto et al. 2016) along with proposed additional dimensions.

3 COURSE ORGANIZATION AND DATA COLLECTION

The traditional GSE version of the course was presented and discussed in Sievi-Korte et al. (2015)
therefore its details will not be discussed in this article. In this section, we will describe the details
of the GSE/OSSD version.

3.1 Course Details

The global software engineering course is a mandatory third semester course in a two-year inter-
national master program at our university.

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



12:8 R. Hjelsvold and D. Mishra

3.2 Participants

Twelve master degree students—seven domestic and five of Eastern European origin—signed up for
the GSE/OSSD version of the course. Students must possess a bachelor degree in computer science
(CS) to be accepted into the master program. All students were familiar with agile methodologies,
Scrum, and the JIRA2/Confluence3/Git4 tools from earlier projects in the master program, but none
had former experience in GSE or OSSD. The students formed two teams of mixed nationality. Both
teams used JIRA as an issue tracker and sprint planner with planning poker functionality in order
to manage the Scrum development process. They also used Slack5 and other tools such as Google
Hangouts6 and Skype7, for communication among the team members. Students tried to meet face-
to-face as much as they could but, due to other course commitments, they often had to conduct
online meetings.

3.3 Procedure

Initially, students were introduced to the course and to the MOODLE learning management system.
The student teams explored open issues (requirement specifications) announced by the MOODLE
HQ. The students were free to choose their own issues, but their choices had to be approved by
the educators. The students were recommended to choose issues that did not require deep and
advanced MOODLE system knowledge. One of the student teams chose to select issues listed in
the MOODLE issue tracker8 and decided to work on the mobile version of the MOODLE for the
following reasons:

• The possibility of high interaction with the MOODLE community.
• The experience of an open and global development environment.
• The product will be useful for the MOODLE community.

The other team preferred to work on a MOODLE plug-in that gave them independence in terms
of working on their own with comparatively less interaction with the MOODLE community, but
at the same time to being able to contribute in an open-source project.

The teams worked according to the standards/conventions specified by the MOODLE HQ. After
internal code review and testing, the teams submitted their code to the MOODLE HQ for accep-
tance testing.

The teams followed the SCRUM development model with two-week sprints. Students were re-
quired to present their progress, the challenges they faced, and their reflections in seminars held
at the end of each sprint.

In parallel to the development work, each team studied research papers related to major areas
in GSE such as project management issues including risk management, communication and co-
ordination issues, cultural issues in GSE, and the like. These research papers were selected and
allocated to the teams by the course lecturers. Table 1 shows the topics and papers assigned to
each team. The projects consisted of six sprints in total. Papers were assigned to the students in
four of these six sprints.

At the end of the course, there was a final sprint presentation. Additionally, each team de-
livered a final report summarizing the team’s contributions and reflections. Furthermore, each

2https://www.atlassian.com/software/jira.
3https://www.atlassian.com/software/confluence.
4https://git-scm.com/.
5https://slack.com/.
6https://hangouts.google.com/.
7https://www.skype.com/.
8https://tracker.moodle.org/.

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/confluence
https://git-scm.com/
https://slack.com/
https://hangouts.google.com/
https://www.skype.com/
https://tracker.moodle.org/


Exploring and Expanding GSE Education with Open Source Software Development 12:9

Table 1. Research Papers Allocated to Teams

Sprint Research topic Team 1 Team 2

1 Project and Risk
Management

Šmite (2014)* and Casey
(2010)*

Shrivastava and Rathod (2015)
and Hossain et al. (2009)

2 Software process model
for GSE and OSS

Gary et al. (2011) and
Lavazza
et al. (2010)

Kroll et al. (2014a), Kroll et al.
(2014b) and Richardson et al.
(2012)*

3 Software quality in GSE
and OSS

Tervonen et al. (2013)* and
Jabangwe and Šmite (2012)*

Moe et al. (2012)* and Barney
et al. (2011)*

5 Cultural issues and
competency requirements
for GSE

Schlichter and Persson
(2014)*, Sonne et al. (2013)*
and Søderberg et al. (2013)*

Holtkamp et al. (2015)* and
Holtkamp and Pawlowski
(2015)

*outsourcing also discussed.

team member was required to submit an individual report, summarizing personal experiences and
reflections.

3.4 Data Collection and Analysis

The present research is qualitative in nature and, as such, requires the methods pertinent to such
data analysis. We refer to Nkwi et al. (2001) for a definition of qualitative research. To be more
specific, this work employs the methods of the qualitative thematic analysis presented by Aronson
(1994) and described in detail by Guest et al. (2012). This procedure includes getting familiar with
the data, generating initial codes, searching for themes, reviewing themes, defining and naming
themes, and producing the report (Braun and Clarke 2006).

This work is a case study focused on an exhaustive analysis of an isolated situation as well as a
comparison of different cases. According to Randolph (2007), the goals of any given case study are
to develop an in-depth understanding of a case, or multiple cases, and to gain insight into the inter-
action between the phenomenon and the case. In a case study, the researchers use several sources
of evidence, such as archival records, direct observations, interviews, and documents. Then they
analyze that data through pattern-matching and explanation-building, and through addressing
rival interpretations.

In the present study, data is collected from the students’ final reports as well as material col-
lected during the seminars held after each sprint. The collected material mostly consists of video
recordings from the seminar, and slides and other presentation material used by the students in
their presentations.

This research was designed as an inductive thematic analysis—described in Chapter 1 in Guest
et al. (2012)—where the main category was initially defined as GSE challenges with sub-categories
of geographic, temporal, and socio-cultural distance. However, while examining the data, addi-
tional categories and subcategories emerged and therefore the list of the main categories was
widened by adding:

• Outsourcing challenges with the sub-categories of requirements uncertainty and product
quality;

• OSSD challenges with one sub-category, onboarding.

The data was examined to identify and classify the various challenges faced by students accord-
ing to the abovementioned categories and sub-categories. It took a few iterations to reach to these
final categories and sub-categories.

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



12:10 R. Hjelsvold and D. Mishra

4 RESULT

During the project, both teams produced code that was submitted to the MOODLE HQ as candi-
dates for future release. One team developed a Chess9 plug-in that is now offered as a MOODLE
plug-in. Furthermore, this team added new features to the Atto10 text editor, such as creating a
syntax highlighter. The other team worked on various issues, such as adding features for brows-
ing user courses by category, creating a status indicator for online users available for messaging,
adding a download progress bar, adding support for nested order on forum discussions, and many
more. One of the issues was merged into the main branch; some are waiting to be peer-reviewed
by the MOODLE team; whereas some are already peer-reviewed but require some additional work.

In this section, we will discuss the core GSE, the outsourcing, and the OSSD challenges students
raised during the biweekly seminars as well as in their final reports. Other challenges experienced
by educators while running these courses will be covered towards the end of the section.

4.1 CORE GSE Challenges

Geographic Distance. Geographic distance often creates various communication, coordination,
and control issues within collaborating teams. In this course, students faced such challenges due to
the distance between a student’s team and the MOODLE team. Most of these issues were related
to communication (including communication through documentation) with the MOODLE HQ,
but students also faced some intra-team communication and coordination difficulties when they
worked individually and met only through Skype, as some of the teams chose to do. These are
quotes from the students:

“First lesson that I’ve learned is that communication is a key factor in GSE. And
also this can help avoid wrong interpretation of tasks and doing extra work.”

“Despite the many attempts to be in constant contact with the Moodle team, the
communication channel between the latter and the former was rather poor.”

“The lack of transparency regarding process and communication lead to a lot of
uncertainty in this project.”

The team working on the MOODLE mobile app faced challenges arising from incomplete
documentation:

“Proper documentation of the process and workflow of the project as well as clear
problem description when reporting issues in the tracker are problems that need
to be addressed.”

The other team, however, did not face any major issues in this regard because this team worked
on plug-ins, which in many ways are separate elements and not part of the core focus of the
MOODLE community.

“Most features and concepts in Moodle are well documented and we were able to
work on our own without any major outside help.”

Some communication and coordination problems occurred between students when team mem-
bers worked individually and conducted online meetings.

9https://moodle.org/plugins/block_chessblock.
10https://moodle.org/plugins/editor_atto.

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.

https://moodle.org/plugins/block_chessblock
https://moodle.org/plugins/editor_atto


Exploring and Expanding GSE Education with Open Source Software Development 12:11

“The whole group meeting was very short, and that might be a result of partici-
pants was a bit shy. Even if we were comfortable with each other from meeting
in person. We learned that a project team need some run-in time in order to have
good communication in Skype.”

“Dealing with depending issues where the initial task were under-estimated be-
came a bottleneck as others had to wait.”

One student summed up communication issues as follows:

“With more transparency, clearer issue descriptions and accessible communication
channels, issues can be estimated more accurately, the team can be more produc-
tive, and features can be mainlined quicker.”

Our main observation here is that students did face GSE-type communication issues during the
OSSD project, and did experience the importance of continuous and timely communication when
there is a geographic distance between collaborating partners. Furthermore, the students did see
how essential clear and complete documentation is to avoid any misinterpretation of tasks that
can lead to frustration and loss of productivity within the team.

As described above, the two GSE/OSSD teams chose different types of OSSD development work.
The two teams did have similar GSE experiences even though developing a plug-in by its nature
requires less coordination than adding features to an existing module, which is mostly a differ-
ence in task granularity. A plug-in is at a coarse level of granularity while adding features to an
existing module is at a finer level of granularity. The biggest difference we could find was that the
team working at a finer level of granularity needed to understand more of the existing MOODLE
software and was suffering more from incomplete documentation.

The main lesson learned for us as GSE educators is that, if possible, one should choose OSSD
projects that are highly responsive and that emphasize the importance of good documentation.

Temporal Distance. Students experienced long response times from the MOODLE HQ when sub-
mitting code or asking questions. It is difficult to say whether the long response time is due to the
time difference between the local team and the MOODLE HQ, or due to the project being an OSSD
project. Quotes from students:

“In some cases, it could take several days (and in some cases no response) be-
tween any interaction from the MOODLE team after one of our team members
commented on an issue. Additionally, feedback on pull requests were significantly
slow where it could take over a week before any feedback was provided on pull
requests.”

The teams also reflected on the wider impact of the long response time from MOODLE HQ:

“The delay is very challenging when the project is running for limited period of
time, in our case one semester.”

“It is challenging to plan when you do not know when the feedback will come and
how much change will it require, if any.”

Considering the above mentioned challenges, our main lesson learned is to choose the open
source development project carefully, picking one with an active development community.

Socio-cultural Distance. The teams experienced and reported some cultural and trust issues
within each team due to the fact that the teams were multicultural, but these were rather

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



12:12 R. Hjelsvold and D. Mishra

minor since the students had known each other for more than a year and had been working to-
gether on development projects before:

“Even with a relatively similar group of people we experienced small cultural dif-
ferences, for example, some of the international students were uncomfortable eat-
ing in front of the rest of the team while working together.”

“In the beginning the team had less work sessions which led to some degree in
disorganisation and reduction in trust across the team. This has to do with the
unavailability of other members when somebody needed help.”

“Our team consists of a culturally diverse team, but this did not cause any major
challenge for us. Everyone quickly adopted to the diverse team and addressed any
challenges as soon as they arrived.”

“Most of us had the added benefit of knowing each other before we began.”

As these teams did not work closely with other open source developers involved in MOODLE
project, the socio-cultural issue was not significant, which could be the case otherwise. Our main
lesson learned is that an OSSD project may not expose the students to significant socio-cultural
issues if the students do not work tightly with other developers in the OSS community.

Kroll et al. (2016) reported similar results from a collaborative project involving graduate stu-
dents from different universities in different countries. They found that geographic, temporal, and
socio-cultural distance resulted in communication, coordination, and control challenges.

4.2 Outsourcing Challenges

An OSSD project is not an outsourcing project per se. In the MOODLE governance model, the
MOODLE HQ is responsible for the roadmap and for quality assurance. There are, therefore, sim-
ilarities between the experiences of a local development group working jointly on MOODLE de-
velopment and what an outsourced team may experience.

Requirements Uncertainty. Incomplete and ambiguous issues/specifications from the MOODLE
HQ resulted in the teams doing work that was later dropped or had to be redone.

“Communication is essential, and this became more visible in this project where
the MOODLE Mobile team did, in many cases, not provide proper and clear issue
descriptions.”

“Their lack of transparency and bad issue descriptions is a problem that may be
found in GSD projects as well, particularly offshore outsourced projects.”

“They have poor and outdated descriptions on their issue tracker.”

“At the beginning of the project, some issues were overestimated because of cre-
ating duplications of what was already done. Some issues were interpreted incor-
rectly. Therefore, having someone from the Moodle team during sprint planning
can improve process a lot in different aspects.”

Our main observation here is that students did experience the importance of the quality of re-
quirement specifications for software outsourcing through their participation in an OSSD project.

As mentioned earlier, the lesson learned is that one should ideally select an OSSD project that
offers clear and complete documentation, to prevent requirement challenges.

Product Quality. one of the teams reported any quality management issues:

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



Exploring and Expanding GSE Education with Open Source Software Development 12:13

“By strictly following the conventions and standards provided by Moodle, we be-
lieve that the software quality alignment among the team members was in place.”

“To ensure that we delivered standard and high quality solutions, it was necessary
that all the team members understood the various standards defined by Moodle.
Therefore, proper quality requirements of the contributions were defined.”

It is more common for the main company to experience quality issues in the work product de-
livered by an outsourced team instead of the outsourced team itself. As some of the work products
are already peer-reviewed successfully and included into the main code base, it can be considered
that standards established by MOODLE HQ are clear and well defined and that both teams prop-
erly followed these standards and delivered high quality code. Our main observation, therefore,
is that the students, through their participation in an OSSD project, did experience how impor-
tant standards for software development are for the quality of the code produced in a software
outsourcing context.

Other studies (Carmel and Agarwal 2001; Damian and Zowghi 2003) also reported similar re-
sults: that geographic distribution leads to loss of cohesion and lack of common understanding of
requirements between offshore and on-site development teams. Moreover, it also impacts transfer
of knowledge of requirements among personnel and developers (Helén and Nahar 2011).

Moe et al. (2012) reported the lack of quality as a main challenge and the most common reason
for termination of offshore outsourcing development work in their study of three companies. Sig-
nificant product quality problems were not encountered in the present study. As reported earlier,
the reason may be that the standards established by MOODLE HQ are clear and well defined and
that both teams properly followed these standards and delivered high quality code. This is sup-
ported by Kumar and Thangavelu (2013) that offshore and onsite teams knowledge-sharing and
knowledge-transfer have significant impact on the product quality.

4.3 OSSD Challenges

Onboarding. The teams had only two formal roles: the scrum master and a build master. The
build master role was important due to the MOODLE software complexity.

The teams ran stand-up meetings regularly, although not daily. Both teams ended up having
stand-up meetings more regularly toward the end of the project as they saw the benefit of this
when working with the quite complex software configuration of MOODLE.

Setting up the development environment was mentioned by most of the students as one of the
major challenges.

“The team often had issues when building or setting up the project.”

“Clear documentation on how to set up the project and get it up and running, is an-
other important aspect for global software development projects that we identified
while working with Moodle mobile.”

“An open source project with the aim of allowing anyone to contribute has to have
proper documentation. This will allow newcomers to avoid wasting considerable
amount of time (as our team did) in discovering the project setup process.”

It is considered beneficial to the performance of an outsourced team to have someone from the
core team working with the local team; someone who is familiar with the software architecture.
The two student teams also saw this as beneficial:

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



12:14 R. Hjelsvold and D. Mishra

“In our case having someone from the MOODLE team—not necessary physically
located with us—on early stages can accelerate the development process on early
stages of the development. Someone who understands the whole architecture of
the system and can explain how things work. It can prevent wasting resources and
time that our team spend on experimenting and exploring things.”

One of the teams faced initial problems related to the selection of issues from the MOODLE
issue tracker.

“We started with random issue picks. We have been faced with some problems
because of it, for example, dependencies with other issues, issues assigned to other
developers, uncertainty of the complexity, not understanding the task properly,
etc. Therefore, we changed strategy by investigating more thoroughly on the issue
before picking them.”

Both teams encountered problems related to estimation even though students had worked on
two large projects earlier and therefore had some experience in estimation for software developed
locally:

“Work estimation when dealing with open source project turned out to be prob-
lematic in our project.”

“The next challenge we faced was a high level of incorrect estimations for sprints.
This was due to the team’s unfamiliarity with PHP and Moodle. Only time and
experience gained by working in the two had any real impact on the estimation
accuracy.”

“During almost all the sprints, we had issues with problems of underestimating
and overestimating issues. The best solution that we found was exploring of each
task more before estimating it.”

“This could also potentially improve our issue estimates, as they were inconsis-
tently being over and underestimated, because of lack of knowledge and poor de-
scriptions.”

Our main observation is that choosing an OSSD project with a rather large code base pushed the
students to extend their skills in setting up the development environment, in picking issues for the
team to work on, and in accurately estimating the efforts needed to complete these tasks. These
are not GSE specific skills, but the students needed to apply their newly acquired GSE experiences
when improving on these skills.

Similarly, Fagerholm et al. (2013) stated that a major challenge in an OSSD project is getting
newcomers onboard into the project effectively, and concluded, based on a large collaborative
program with several participating open source communities, companies, and universities, that
onboarding support increases the chance for developers to be exposed to, select, and perform
tasks in a proactive and self-directed manner.

4.4 Combining hands-on Experience and Research Papers

In the beginning, the teams delegated the paper reading to one or two team members who would
present the paper during the seminars. This approach did not result in good discussions and deep
reflection among the other students. Therefore, the structure of the paper presentation sessions
was modified, requiring the group collectively to discuss the papers before the seminar and to lead
the discussion during the seminar.

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



Exploring and Expanding GSE Education with Open Source Software Development 12:15

The discussions at the seminars and the final reports indicate that students mostly considered
the paper sessions useful—even though it meant less time for development work as they had to
use some of the time allocated to the course to reading papers. Some of the students found it
challenging:

“Reading scientific papers and developing at the same time leads to a bad experi-
ence as it takes our attention away from being able to focusing on development.”

On the other hand, they considered the papers mostly relevant to the issues they were experi-
encing in their development work, but thought that some of the papers had too much overlap in
terms of contributions:

“I also found the papers we read useful, as they explained challenges and how they
could be handle. Reading these side-by-side with the development made it much
easier to understand the papers and the challenges the papers mentioned and the
ones we as a team had to handle.”

“However, reading through papers and having experience of working on the
project with the focus on global development gave me much deeper understanding
of issues connected with cultural differences, trust, time zones etc.”

Students generally seemed to consider the practical GSE/OSSD project to be helpful in compre-
hending GSE/OSSD research papers. Some students found that having to study research papers
was distracting to the development work, although no student mentioned it being distracting from
the experience of GSE work. Our main observation is, therefore, that a combination of practical
GSE/OSSD development work and reflection on GSE/OSSD-related research papers seemed to be
mutually beneficial: on one hand, the research papers gave the students the opportunity to reflect
on their own experiences from the development work with a basis in the research literature. On
the other hand, the research papers gave the students the possibility to reflect on GSE issues and
challenges that they did not directly experience in their development project.

5 DISCUSSION INCLUDING A COMPARISON OF A GSE/OSSD
WITH A TRADITIONAL GSE COURSE

In this case study, we have documented the educators’ and the students’ experiences from using
OSSD as the basis for a GSE course that formerly was offered as a traditional GSE course with dis-
tributed teams. In this section, we will discuss and compare the two approaches to GSE education
based on our experiences.

Table 2 shows the classification of the two versions of the course based on the extended GSE
taxonomy, while Table 3 compares other project characteristics. As can be seen in this table, 14
students participated in the traditional GSE course. Only five of these students were working in
truly global teams. The sample size is not large enough to draw firm conclusions. The study still
gives us a basis for exploring the differences between the two types of GSE courses.

5.1 Students’ Learning Outcome

In this section, we will compare what the students reported in the GSE/OSSD setup compared to the
traditional GSE setup. The GSE/OSSD students reported that they did experience—and had to plan
for how to deal with—communication, project management, requirements, and cultural challenges
caused by the GSE setup. The number and types of issues, however, were somewhat different from
what the traditional GSE students experienced. The differences were to a large degree caused by
the differences in cross-site coordination needs and in superstructure, as discussed in Section 2.4.

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



12:16 R. Hjelsvold and D. Mishra

Table 2. Course Classification According to the Extended GSE Taxonomy (Britto et al. 2016)

Setting Dimension OSSD Version GSE Version

Site Software process type Agile Agile
Power distance Small Small
Uncertainty avoidance Weak Weak
Language distance Medium Medium

Relationship Software (SW) process distance Similar11 Equal
Communication model Low synchronicity Balanced synchronicity
Location Offshore Offshore
Legal entity Outsourcing Insourcing
Geographic distance Far Far
Temporal distance Large Small

Table 3. Comparative Data of 2013 and 2016

Traditional GSE GSE with OSSD

Number of students 14 (5) 12
Tools Jira, Confluence, Git, IRC Jira, Confluence, Git, Slack
Sprint duration 4 weeks 2 weeks
Roles Scrum Master, Product

Owner, Build Master
Scrum Master, Build Master

Final product/Team

Contributions

Quiz Game Team A: a Chess plug-in, a
Syntax highlighter
Team B: MOODLE Mobile

Geographic Distance. Both the GSE/OSSD teams and the traditional GSE teams experienced that
geographic distance was a major challenge in GSE.

For the traditional GSE team the issues were related to team members at the two locations not
knowing the team members at the other location. The issues were also linked to cultural differences
between the student cultures at the two locations. The students needed help from the supervisors
to resolve the problems caused by these issues.

For the GSE/OSSD teams, though, the issues were mostly related to communication with the
MOODLE HQ. There were two communication issues: first, the MOODLE HQ had objectives and
priorities that were not clearly communicated in documents and other written information. Sec-
ond, the students were experiencing long response times from the MOODLE HQ resulting in de-
creased team productivity. As suggested by Stroulia et al. (2011) and Fagerholm et al. (2013), some
of the problems mentioned above, such as problems communicating with the MOODLE HQ, may
potentially be solved by having someone from the OSSD project willing to act as a mentor and
team lead for a group of students.

Temporal Distance. Time difference was not a significant issue for the traditional GSE teams
because the time difference between Norway and Finland is just one hour.

The GSE/OSSD teams, however, experienced long response times. The reason is more likely
due to the project being an OSSD project, and less likely due to the time difference between the
MOODLE HQ and development teams. In order to avoid such issues, if possible, one should choose
an open source project with an active development community, which is open to new contributors,

11https://docs.moodle.org/dev/Process.

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.

https://docs.moodle.org/dev/Process


Exploring and Expanding GSE Education with Open Source Software Development 12:17

and ready to engage with them on a continuous basis. Time difference could have been a more
significant issue for the GSE/OSSD if there had been tighter interaction between the MOODLE
HQ and the development teams.

Socio-cultural Distance. The traditional GSE teams were experiencing significant cultural
challenges—mostly because of different expectations regarding workload, and project manage-
ment and control.

The GSE course was part of the curriculum of an international Master’s program. Some com-
munication and coordination problems similar to those traditional GSE teams are facing were also
reported within the Norwegian teams, due to the multicultural nature of the teams. One of the
teams observed minor socio-cultural issues within GSE/OSSD teams although students knew each
other quite well and had been working together on earlier projects. A multi-cultural team may ex-
perience cultural challenges even if they know each other and have been working together before,
and should therefore be aware of potential cultural issues and be prepared to deal with such issues
promptly. Moreover, student teams did not work tightly with other OSS developers, which other-
wise could have potentially caused significant socio-cultural issues. The socio-cultural difference
may be the cause of more issues in other OSSD projects.

Outsourcing Issues. Requirements uncertainty and product quality are often core issues in out-
sourcing projects. When it comes to requirements uncertainty, the traditional GSE teams were
given the freedom to develop a quiz game from scratch and had one of the team members being
the quiz game product owner who maintained the backlog. The GSE/OSSD teams, however, could
pick tasks from the MOODLE issue tracker, and experienced problems because the requirements
associated with these issues were poorly defined. It is therefore preferable to choose a project
where the project’s requirements are written in a clear and complete fashion in order to avoid
misunderstandings and delay.

The GSE/OSSD teams reported that software quality was not a significant issue because there
are well-defined conventions and standards for the produced code as well as for the development
and quality assurance processes in MOODLE. The traditional GSE teams, however, had no such
standards available and the teams experienced more serious product quality problems. It is crucial
that projects have well-documented quality standards and guidelines for the contributing members
to follow. Further, students should be encouraged to comply with these quality standards from the
beginning of the project rather than this being an afterthought.

Onboarding. The GSE/OSSD teams faced the challenges of contributing to a project with a large
and complex existing code base. Therefore, the process of building the software became a major
challenge. The traditional GSE teams did not experience such issues. However, they did encounter
challenges related to tools due to lack of experience running projects using agile methods or with
the project management tools (such as Git, Confluence, and JIRA) and most of their problems were
not GSE specific. It seems that the distress caused by such issues can be reduced by including a
learning stage, thereby making it easier for the students to become familiar with the tools and
technologies of the project. In the case of an OSSD project, having a mentor from within the
project, can be an added advantage that may help the students complete this learning stage faster.
Additionally, students and supervisors should be aware of the fact that OSS systems generally are
larger and more complex than most of the software systems on which the students have been
working, and the students are likely to experience that the team needs to spend more resources
solving a task than what they initially believe.

Both types of teams also experienced estimation challenges. For the GSE with OSS teams these
challenges mostly had a GSE origin, such as unfamiliarity with a large and complex code base
and long response times from the MOODLE HQ. The traditional GSE teams did not have much

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



12:18 R. Hjelsvold and D. Mishra

experience in agile projects and only some of the estimation problems were due to GSE. Students
should analyze not only the complexity of the requirements when they are selecting an issue to
implement, but should also be aware of its dependence on other tasks that may be unfinished and,
possibly, assigned to other team/OSSD contributors.

5.2 Course Organization

During this course, we found that involving students in research paper discussions can add value
to hands-on GSE/OSSD project work. Some students, however, felt that the paper session required
too much of their time and attention that they would prefer to spend on development work. Un-
fortunately, we did not include research papers in the traditional GSE version of the course and
therefore cannot elaborate on how useful research papers may be as a supplement to hands-on
project work in this case.

The course organizer found it easier to organize a GSE course when the course is run within
one university and not as a collaborative effort between universities. Less coordination effort was
needed on course planning, teaching/supervision, and student assessment. MOODLE worked quite
well as a platform for a GSE course even though a more responsive OSS community would have
been beneficial to the students. The students did however acquire experience that will be useful
for future participation in GSE projects.

The main challenges for a course organizer with this model are the need for onboarding sup-
port, and the lack of means to help students if they do not receive timely responses from the OSS
community. In most cases, instructors would have no or little control of actions taken by the OSS
community, and therefore may need to have contingency plans in place for risk management.

During the four years of running a course on GSE, we have also learned that the learning out-
come depends on the student’s proficiency in the agile methodology and the project management
tools. Students with low proficiency have a tendency to focus more on challenges that are non-
global. This is the main reason two software development courses were added to the master’s
program in 2015, and the reason the GSE with OSSD teams were familiar with the agile method-
ology and the chosen project management tools.

5.3 The Extended GSE Taxonomy

In this study, we have used the extended GSE taxonomy (Britto et al. 2016) for comparing two dif-
ferent GSE settings. We found the taxonomy extensions (i.e., the four site and the two relationship
dimensions) relevant when comparing the two settings. We did not, however, identify any specific
power distance or uncertainty avoidance challenges from the taxonomy in our settings. This could
be because Norway is classified as having a small power distance index and a weak uncertainty
avoidance index, as is Finland.

From an analytical point of view, we consider it an expressive weakness that the two dimen-
sions, power distance and uncertainty avoidance, are only defined as site dimensions. In com-
parison, software process gives rise to two dimensions in the taxonomy, i.e., one site dimension
(software process type) and one relationship dimension (software process distance). This means
that the taxonomy can be used to classify the software processes at each of the sites as well as
the pairwise differences in software processes at the involved sites. For power distance and un-
certainty avoidance, however, there are no relationship dimensions. In our study, we could have
observed larger power distance and/or uncertainty avoidance challenges, for instance, if one of the
sites were classified as having large power distance and/or strong uncertainty avoidance indexes.
The lack of relationship dimensions means that the taxonomy does not provide a classification of
the difference in power distance (weak–weak, weak–strong, or strong–strong) or the difference in
uncertainty avoidance (small–small, small–large, or large–large) between the pair of sites.

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



Exploring and Expanding GSE Education with Open Source Software Development 12:19

In Table 2, we have shown that a traditional GSE course may not seem too different from a
GSE/OSSD course when compared according to the dimensions of the GSE taxonomy. As discussed
in Section 2.4, however, such a comparison, may not address all the differences between GSE and
GSE/OSSD projects that would be of importance when choosing a suitable project for a course in
global software engineering. Therefore, we propose two additional relationship dimensions that
should be helpful in classifying GSE (and OSSD) projects:

• Superstructure: This dimension specifies how individual developers and teams are con-
nected. We propose to classify superstructures as one of:
◦ Group-group: The project consists of two or more groups of developers—each group

located at one physical site. This is the typical superstructure for GSE projects.
◦ Individual-individual: Developers work as individuals that usually never meet physi-

cally. This is the typical superstructure for OSSD projects.
◦ Mixed: Some developers are collocated and work in a corresponding group while some

developers work remotely.
• Cross-site coordination: This dimension specifies the granularity of the cross-site coor-

dination needs. We propose to classify cross-site coordination needs as one of:
◦ Fine-grained: Project activities at the various sites are tightly coupled and need frequent

coordination. This is the typical case for GSE projects.
◦ Coarse-grained: Project activities are loosely coupled and need occasional coordination.

This is the typical case for non-critical OSSD activities.
◦ Medium-grained: Project activities are somewhat loosely coupled and need regular co-

ordination although not so frequent. This is the typical case for critical OSSD develop-
ment activities.

The superstructure for the GSE projects was group-group as they were typical GSE projects,
whereas the superstructure chosen for GSE/OSSD projects was mixed, where individual MOODLE
developers could contribute to the work done by our teams in collaboration with the MOODLE
HQ. The cross-site coordination was coarse-grained in our GSE/OSSD projects due to non-critical
OSSD activities. The previous years’ GSE projects, on the other hand, experienced fine-grained
cross-site coordination, as do most traditional GSE courses.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this project, we have explored the integration of OSSD into a GSE course as an alternative to
establishing cross-university collaboration—to what degree core GSE issues can be covered, and to
what degree other global issues such as OSS itself and software outsourcing can be addressed. We
have also explored the option of including research papers into the course in addition to hands-
on development work. Our experience indicates that students can be exposed to challenging GSE
issues in a single-university setting. The experiences students encounter, however, are different
and so are the challenges that course organizers meet when compared to traditional, distributed
team GSE courses. We will summarize these differences and challenges below.

Students attending a traditional, distributed team GSE course will experience core GSE chal-
lenges related to geographic, temporal, and socio-cultural distances. Our study indicates that stu-
dents attending a single-university GSE course based on OSS may also experience challenges re-
lated to geographic, temporal, and socio-cultural differences. Table 2, for instance, shows that the
two versions of the course had the same classification in six of the ten dimensions of the extended
GSE taxonomy and only differed in four of the dimensions. Our analysis, however, shows that the
extended taxonomy does not suffice in showing crucial differences between the projects. The con-
sequences of geographic and temporal distances for the teams’ GSE experiences, for instance, will

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



12:20 R. Hjelsvold and D. Mishra

depend heavily on the suggested cross-site coordination dimension. Our GSE/OSSD project had
coarse-grained cross-site coordination needs. Therefore, our GSE/OSSD students had a different
experience of these distances than typical GSE students where the cross-site coordination needs
are fine-grained.

GSE students will, as in other software engineering projects, also face challenges related to
project management, requirements, and quality issues. Our study indicates that an OSSD project
may introduce the students to other software engineering issues and challenges relevant in global
settings, such as those related to software outsourcing and onboarding. In traditional distributed
team GSE setups, students may experience challenges in acquiring user requirements, in choosing
coding conventions and standards, and in setting up a quality assurance system. In a GSE/OSSD
context, students may need to develop skills to estimate and choose tasks from an OSSD issue
tracker, may be expected to learn and comply with existing coding conventions and standards,
and may face a complex code base, and may need to follow detailed quality assurance procedures.

In this study, we experienced that less time and effort was spent on course organization when
the course was run as a single-university, OSSD course and not a traditional, distributed team GSE
course. The main challenge is the onboarding: working on open source projects can be challenging
for students, especially if they have not worked in open source projects earlier or are unfamiliar
with the technology. Therefore, there is a need for a learning stage before the actual implemen-
tation of tasks should start. The course organizer also needs to be aware that the students may
experience challenges related to the OSSD community that the organizer cannot resolve easily
because it is outside of the organizer’s control. Our experience confirms the findings of Smith
et al. (2014), that it is challenging for the course organizers to find and select an OSSD project of
appropriate size and complexity. The MOODLE project, for instance, turned out to interact less—
and less frequently—with the students than what we expected.

In this study, we found that students had different opinions on the benefits of including research
papers into a GSE course. Some students would rather spend their time and efforts on the devel-
opment work only, while other students saw the combination of studying research papers and
doing development work as mutually beneficial. Most student feedback, however, was positive
and suggested that combining actual GSE project work with studying research papers added an
additional value to the experience. This suggests that GSE course designers should consider adding
research papers to cover relevant issues that students may not experience directly in their hands-
on projects, such as onboarding, outsourcing, and OSSD, to help students understand a larger part
of the global software engineering picture.

One limitation of this study is the results are based on the data collected from only one site. It was
not feasible to seek out the experiences of developers at MOODLE HQ. As they are the ones who
are ultimately responsible for product quality and maintenance, it would be valuable to gather their
view of the challenges and to compare that with the present results. Case studies are often criticized
for lack of reliability, due to researcher subjectivity, for instance, and generalizability. Case studies
are still considered a methodology that can be used to advance research where there are no other
easily applicable methodologies. We acknowledge that studying just one course with a limited
number of students is a rather weak basis for strong conclusions and recommendations. However,
we still think our case study suggests that using OSSD as a basis for advanced software engineering
education can successfully give the students experience in dealing with core global collaboration
issues. At the same time, OSSD projects may expose the students to issues that are relevant in the
global software development world but are usually not faced in traditional GSE education.

As mentioned at the very beginning of this article, OSSD has been suggested as the basis for
GSE education (Beecham et al. 2017). In this case study, we have observed that students did get
to experience some core GSE challenges as well as other challenges related to global software

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



Exploring and Expanding GSE Education with Open Source Software Development 12:21

engineering. Our main lesson learned, however, is that the nature of the OSS project and the com-
munity will influence, and may limit, what GSE challenges the students will meet. We also learned
that the teaching staff has little control over what happens inside the community. In the future,
we would want to see more research on the combination of OSSD and GSE—especially on projects
run together with OSS communities that are active and responsive to the students’ requests and
contributions to make the students experience more of the issues related to fine-grained cross-site
coordination.

ACKNOWLEDGEMENT

Our appreciation goes to the students of this course whose insights and comments helped in this
study. We also like to thank the editor, associate editors, and reviewers for their great efforts in
improving the quality of this article.

REFERENCES

Jodi Aronson. 1994. A pragmatic view of thematic analysis. The Qualitative Report 2, 1 (1994), 1–3.
Jeffry Babb, Rashina Hoda, and Jacob Nørbjerg. 2014. Embedding reflection and learning into agile software development.

IEEE Software 31, 4 (2014), 51–57.
Sebastian Barney, Claes Wohlin, Panagiota Chatzipetrou, and Lefteris Angelis. 2011. Offshore in-sourcing: A case study on

software quality alignment. In Proceedings of the 2011 IEEE 6th International Conference on Global Software Engineering

(ICGSE’11). IEEE Computer Society, Washington, DC, 146–155.
Sarah Beecham, Tony Clear, Daniela Damian, John Barr, John Noll, and Walt Scacchi. 2017. How best to teach global

software engineering? Educators are divided. IEEE Software 34, 1 (2017), 16–19.
Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualitative Research in Psychology 3, 2

(2006), 77–101.
Ricardo Britto, Claes Wohlin, and Emilia Mendes. 2016. An extended global software engineering taxonomy. Journal of

Software Engineering Research and Development 4, 1, Article 3 (2016).
Erran Carmel and Ritu Agarwal. 2001. Tactical approaches for alleviating distance in global software development. IEEE

Software 18, 2 (2001), 22–29.
Valentine Casey. 2010. Virtual software team project management. Journal of the Brazilian Computer Society, Special Issue

on Global Software Development 16, 2, 83–96.
Tony Clear, Sarah Beecham, John Barr, Mats Daniels, Roger McDermott, Michael Oudshoorn, Airina Savickaite, and John

Noll. 2015. Challenges and recommendations for the design and conduct of global software engineering courses: a
systematic review. In Proceedings of the 2015 ITiCSE on Working Group Reports (ITICSE-WGR’15). 1–39.

Daniela Damian and Didar Zowghi. 2003. RE challenges in multi-site software development organisations. Requirements

Engineering 8, 3 (2003), 149–160.
Fabian Fagerholm, Patrik Johnson, Alejandro Sánchez Guinea, Jay Borenstein, and Jürgen Münch. 2013. Onboarding in

open source software projects: A preliminary analysis. In Proceedings of the 2013 IEEE 8th International Conference on

Global Software Engineering Workshops. 5–10.
Kevin Gary, Andinet Enquobahrie, Luis Ibanez, Patrick Cheng, Ziv Yaniv, Kevin Cleary, Shylaja Kokoori, Benjamin Muffih,

and John Heidenreich. 2011. Agile methods for open source safety-critical software. Software: Practice and Experience

41, 9 (2011), 945–962.
Olly Gotel, Vidya Kulkarni, Long Chrea Neak, Christelle Scharff, and Sopheap Seng. 2007. Introducing global supply chains

into software engineering education. In Proceedings of the 1st International Conference on Software Engineering Ap-

proaches for Offshore and Outsourced Development (SEAFOOD’07), Bertrand Meyer and Mathai Joseph (eds.). Springer-
Verlag, Berlin, 44–58.

Greg Guest, Kathleen M. MacQueen, and Emily E. Namey. 2012. Applied Thematic Analysis, 1st ed. SAGE Publications.
Milla Helén and Nazmun Nahar. 2011. Key barriers of globally distributed software products development. In Proceedings

of the 2011 PICMET Conference: Technology Management in the Energy Smart World (PICMET’11). 1–13.
Reid Holmes, Michelle Craig, Karen Reid, and Eleni Stroulia. 2014. Lessons learned managing distributed software engi-

neering courses. In Companion Proceedings of the 36th International Conference on Software Engineering (ICSE Companion

‘14). ACM, New York, 321–324.
Philipp Holtkamp, Jussi P. P. Jokinen, and Jan M. Pawlowski. 2015. Soft competency requirements in requirements engi-

neering, software design, implementation, and testing. Journal of Systems and Software 101 (2015), 136–146.
Philipp Holtkamp and Jan M. Pawlowski. 2015. A competence-based view on the global software development process.

Journal of Universal Computer Science 21, 11 (2015), 1385–1404.

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



12:22 R. Hjelsvold and D. Mishra

William L. Honig and Tejasvini Prasad. 2007. A classroom outsourcing experience for software engineering learning.
SIGCSE Bulletins 39, 3 (2007), 181–185.

Emam Hossain, Muhammad A. Babar, and June Verner. 2009. How can agile practices minimize global software develop-
ment co-ordination challenges? In Proceedings of the European Conference on Software Process Improvement (EuroSpi’09).
Springer, 81–92.

Ronald Jabangwe and Darja Šmite. 2012. An exploratory study of software evolution and quality: before, during and after
a transfer. In Proceedings of the 2012 IEEE 7th International Conference on Global Software Engineering. 41–50.

G. Kannabiran and K. Sankaran. 2011. Determinants of software quality in offshore development—an empirical study of an
Indian vendor. Information and Software Technology 53, 11 (2011), 1199–1208.

Josiane Kroll, Ita Richardson, and Jorge L. N. Audy. 2014a. FTS-SPM: a software process model for follow the sun devel-
opment: preliminary results. In Proceedings of the 2014 IEEE International Conference on Global Software Engineering

Workshops. 21–26.
Josiane Kroll, Ita Richardson, and Jorge L. N. Audy. 2014b. Proposing a software process model for follow the sun develop-

ment. In Proceedings of the 26th International Conference on Software Engineering & Knowledge (SEKE’14). 412–415.
Josiane Kroll, Caroline Q. Santos, Leticia S. Machado, Sabrina Marczak, and Rafael Prikladnicki. 2016. Challenges and

lessons learned on preparing graduate students for GSE work: Brazilians’ perceptions on a multi-site course experience.
In Proceedings of the 11th IEEE International Conference on Global Software Engineering Workshops (ICGSE Workshops’16).
37–42.

S. Arun Kumar and Arun K. Thangavelu. 2013. Factors affecting the outcome of global software development projects: an
empirical study. In Proceedings of the 2013 International Conference on Computer Communication and Informatics. 1–10.

Mary C. Lacity, Shaji A. Khan, and Leslie P. Willcocks. 2009. A review of the IT outsourcing literature: Insights for practice.
Journal of Strategic Information Systems 18, 3 (2009), 130–146,

Luigi Lavazza, Sandro Morasca, Davide Taibi, and Davide Tosi. 2010. Applying SCRUM in an OSS development process: an
empirical evaluation. In Agile Processes in Software Engineering and Extreme Programming (XP’10), A. Sillitti, A. Martin,
X. Wang, E. Whitworth (Eds.). Springer, Heidelberg, 147–159.

James Long. 2010. Outsourcing in next generation technical software engineering education. In Proceedings of the 2010

American Society for Engineering Education Annual Conference and Exposition. 3364–3376.
Alok Mishra and Ali Yazici. 2011. An assessment of the software engineering curriculum in Turkish universities: IEEE/ACM

guidelines perspective. Croatian Journal of Education 13, 1 (2011), 188–219.
Deepti Mishra and Alok Mishra. 2012. A global software inspection process for distributed software development. Journal

of Universal Computer Science 18, 19 (2012), 2731–2746.
Deepti Mishra and Alok Mishra. 2011. A review of non-technical issues in global software development. International

Journal of Computer Applications in Technology 40, 3 (2011), 216–224.
Deepti Mishra and Alok Mishra. 2010. A software inspection process for globally distributed teams. In On the Move to

Meaningful Internet Systems: OTM 2010 Workshops (OTM’10), R. Meersman, T. Dillon, P. Herrero (Eds.), Lecture Notes
in Computer Science, Vol. 6428. Springer, 289–296.

Nils B. Moe, Darja Šmite, and Geir K. Hanssen. 2012. From offshore outsourcing to offshore insourcing: Three stories. In
Proceedings of the 2012 IEEE 7th International Conference on Global Software Engineering. 1–10.

Paul N. Nkwi, Isaac K. Nyamongo, and Gary W. Ryan. 2001. Field Research Into Socio-cultural Issues: Methodological Guide-

lines. Research International Center for Applied Social Sciences, Research, and Training.
John S. Persson, Lars Mathiassen, Jesper Boeg, Thomas S. Madsen, and Flemming Steinson. 2009. Managing risks in dis-

tributed software projects: an integrative framework. IEEE Transactions on Engineering Management 56, 508–532.
Justus J. Randolph. 2007. Multidisciplinary Methods in Educational Technology Research and Development. Hämeenlinna,

Finland, Häme University of Applied Science Press.
Ita Richardson, Valentine Casey, Fergal McCaffery, John Burton, and Sarah Beecham. 2012. A process framework for global

software engineering teams. Information and Software Technology 54, 11 (2012), 1175–1191.
Bjarne R. Schlichter and John S. Persson. 2014. Trust in co-sourced software development. In Proceedings of the Mediter-

ranean Conference on Information Systems, Verona, Italy. 1–11.
Suprika V. Shrivastava and Urvashi Rathod. 2015. Categorization of risk factors for distributed agile projects. Information

and Software Technology 58 (2015), 373–387.
Outi Sievi-Korte, Kari Systä, and Rune Hjelsvold. 2015. Global vs. local—experiences from a distributed software project

course using agile methodologies. In Proceedings of the 2015 IEEE Frontiers in Education Conference.
Darja Šmite. 2014. Distributed project management: Ten misconceptions that might kill your distributed project. In Software

Project Management in a Changing World, G. Ruhe and C. Wohlin (Eds.). Springer Verlag, 301–320.
Darja Šmite, Claes Wohlin, Zane Galviņa, and Rafael Prikladnicki. 2014. An empirically based terminology and taxonomy

for global software engineering. Empirical Software Engineering 19, 1 (2014), 105–153.

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.



Exploring and Expanding GSE Education with Open Source Software Development 12:23

Thérèse Mary Smith, Robert McCartney, Swapna S. Gokhale, and Lisa C. Kaczmarczyk. 2014. Selecting open source soft-
ware projects to teach software engineering. In Proceedings of the 45th ACM Technical Symposium on Computer Science

Education (SIGCSE’14). 397–402.
Anne-Marie Søderberg, S. Krishna, and Pernille Bjørn. 2013. Global software development: commitment, trust and cultural

sensitivity in strategic partnerships. Journal of International Management 19, 4 (2013), 347–361.
Tine Sonne, Anne-Marie Søderberg, and Thomas Tøth. 2013. Negotiating and spanning boundaries in offshore outsourcing:

Indian and Danish perceptions of intercultural collaboration. In Proceedings of the International Academy of International

Business Annual Meeting 2013 (AIB’13).
Eleni Stroulia, Ken Bauer, Michelle Craig, Karen Reid, and Greg Wilson. 2011. Teaching distributed software engineering

with UCOSP: the undergraduate capstone open-source project. In Proceedings of the 2011 Community Building Workshop

on Collaborative Teaching of Globally Distributed Software Development (CTGDSD’11). ACM, New York, 20–25.
Ilkka Tervonen, Antti Haapalahti, Lasse Harjumaa, and Jouni Similä. 2013. Outsourcing software testing: A case study in

the Oulu area. In Proceedings of the 2013 13th International Conference on Quality Software. 65–74.

Received April 2017; revised April 2018; accepted May 2018

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 12. Publication date: January 2019.


