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Abstract—Deep convolutional neural networks (CNN) have the
strength in traffic-sign classification in terms of high accuracy.
However, CNN models usually contains multiple layers with a
large number of parameters consequently leading to a large model
size. The bulky model size of CNN models prevents them from
the wide deployment in mobile and portable devices in Intelligent
Transportation Systems. In this paper, we design and develop a
portable convolutional neural network (namely portable CNN)
structure used for traffic-sign classification. This portable CNN
model contains a stacked convolutional structure consisting of
factorization and compression modules. We conducted extensive
experiments to evaluate the performance of the proposed Portable
CNN model. Experimental results show that our model has
the advantages of smaller model size while maintaining high
classification accuracy, compared with conventional CNN models.

Keywords—Convolutional neural networks; Portable; Factoriza-
tion; Model Compression; Intelligent Transportation Systems

I. INTRODUCTION

Traffic-sign recognition plays an important role in develop-
ing Intelligent Transportation Systems (ITS) [10]. Traditional
methods for traffic sign recognition are mainly based on ma-
chine learning algorithms, including support-vector-machine
(SVM) classifiers with LIPID (local image permutation interval
descriptor) [16] and sparse reprentations [9]. Moreover, it is
shown in [6] and [12] that Multilayer perceptrons (MLP)
perform high accuracy and achieve low false positive rates
when identifying the characters in speed-limit signs in [1].

Recently, deep convolutional neural network (CNN) mod-
els show the advantages in learning complicated and hierar-
chical features of massive image data [8]. For example, the
work of [4] proposes a Multi-column deep neural network
(MCDNN) structure, which has superior performance than
other machine learning models in German Traffic Sign Recog-
nition Benchmark (GTSRB) [11]. Meanwhile, other deep CNN
models such as VGG [14], GoogleNet [15], ResNet [5] also
demonstrate the outstanding performance in image classifica-
tion.

However, deep CNN models usually contains multiple
layers with a large number of parameters. As a result, CNN
models typically have a large model size. Moreover, they also
require using strong processing devices (e.g., Graphics Pro-
cessing Units) to train the models. In addition, the large model
size of CNN models also results in the huge communication

overhead in distributed CNN model-training [7]. Therefore,
these drawbacks hinder the wide deployment of CNN models
in mobile and portable devices in ITS, e.g., Portable Navigation
Devices (PND) or Roadside Units (RSU). It is necessary
to design a lightweight CNN model while maintaining high
accuracy in traffic-sign classification.

In this paper, we design and develop a lightweight CNN
model for traffic-sign classification. In particular, our model
consists of a stacked convolutional structure which consists
of factorization and compression layers. Our model has the
merits including the smaller model size than conventional
CNN models while maintaining high accuracy in traffic-sign
classification. For example, the proposed Portable CNN model
has model size of 5.8 MB, which are much smaller than other
conventional CNN models. Meanwhile, the accuracy of the
proposed model is 98.62% outperforming other models.

The main research contributions of this paper can be
summarized as follows.

• We put forth a stacked convolutional structure con-
sisting of factorization and compression modules. In
particular, portable CNN model is mainly composed of
three paths and a compression layer; three paths main-
ly refer to the simple convolution path, the factoriza-
tion path and the short-cut path. Then, we concatenate
the outputs from these paths to the compression layer.
This design can significantly reduce the complexity
of CNN model while maintaining high predication
accuracy.

• We conduct extensive experiments based on a realistic
traffic-sign dataset. We evaluate the performance of
the proposed portable CNN model with other repre-
sentative CNN models including MCDNN [4] model,
VGG-16 [14] and AlexNet [8]. Our model outper-
forms the conventional models in terms of higher
classification accuracy and smaller model size. In
addition, we also conduct extensive experiments to
investigate the impact of parameters on the proposed
portable CNN model.

The remainder of this paper is organized as follows. Sec-
tion II describes our model structure. Experimental results are
presented in Section III. We conclude the paper in Section IV.
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Fig. 1: Portable CNN Model consists of factorization convolution layers and compression layers.

II. PORTABLE CONVOLUTIONAL NEURAL NETWWORKS

A. Overview of architecture

In this paper, we present a portable CNN model, which
consists a major component: portable factorization and com-
pression module (namely portable FCM) as shown in Fig. 1.
The portable FCM consists of three paths concatenated with a
compression layer where three paths mainly refer to the simple
convolution path, the factorization path and the short-cut path.

We then briefly describe the working procedure of the
portable CNN model.

1) Preprocessing. The recent study [2] shows that the class-
imbalance problem in input data sets is detrimental to
CNN models. Meanwhile, the traffic-sign data sets such
as German Traffic Sign Recognition Benchmark (GT-
SRB) [11] often contain blur, distorted and blemished
images, consequently affecting the performance of CN-
N models. Therefore, we adopt data oversampling and
augmentation methods [3] to solve the class-imbalance
problem and noisy data.

2) Standard convolution. We choose a standard convolution
structure to process the traffic-sign images. The standard
convolution structure consists of several convolutional
layers, pooling layers and a fully-connected layer. The
convolutional input is an m × m × r image, where m
denotes the height (and the width) of image and r denotes
the number of channels (e.g., r = 3 in RGB model
because of red, green and blue channels. Meanwhile, we
choose b filters, each of which has a size of n×n× q in
the convolutional layer, where n is typically smaller than
the dimension of the input image and q is equal to the
channels.

3) portable FCM. We present a new building block called
portable FCM. It is a key component in our portable
CNN model. This network module is mainly composed
of three paths concatenated with a compression layer,
where the three paths refer to the simple convolution path,
the factorization path and the short-cut path. The simple
convolution path is similar to a common convolution layer
in a typical CNN while the factorization consists of a
depth-wise convolution and a point-wise convolution con-
sequently reducing the complexity of models. The short-
cut path can help to mitigate the gradient-loss problem

[5]. Then, we concatenate the outputs from these paths
with a compression layer.

4) Factorization convolutional layer. In this layer, the con-
ventional convolution is decomposed into the depthwise
convolution and the pointwise convolution. Moreover,
we also optimize the convolution stride to reduce the
computing cost.

5) Fully-connected layer. We next employ a fully-connected
layer which consists a number of neurons to extract the
main features of traffic signs. The calculation procedure
is similar to that in the standard convolution layer. In
particular, we denote the number of neurons by β, which
is tuneable in our experiments.

B. Portable FCM

In this section, we introduce the portable FCM which is
a core building block in our portable structure. We define
the portable FCM as follows. A portable FCM is mainly
comprised of three paths concatenated with a compression
layer among which the simple convolution path can improve
the performance of the model via standard convolution; the
factorization path can reduce the computing cost and portable
the model by factorization convolution; the short-cut path can
make the features skipping some designated layers directly like
a highway, consequently improving the effect of information
transferring. Finally, the model concatenates the output of these
three paths to the compression layer. Fig. 2 illustrates the
working mechanism of the portable FCM. We next describe
the technical details of these components as follows.

1) Simple convolution path: Simple convolution path is a
channel connecting the input data to compression layer via a
standard convolution. The simple convolutional filter size is 3
× 3 in our model. This path can improve the performance and
the stability for our model.

2) Factorization path: Factorization path is a channel in
order to build the portable model via factorization convolution.
Unlike the standard convolutional layer, a factorization convo-
lutional layer is decomposed into the depthwise convolution
and the pointwise convolution via a factorization convolution
in this layer. The depthwise convolution essentially factorizes
the standard convolution into M depthwise convolutional fil-
ters, each with a size of DK ·DK . The pointwise convolution
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Fig. 2: Portable FCM consists of three paths concatenated with
a compression layer

combines two outputs of depthwise convolution through N
pointwise convolutional filters, each with a size of 1× 1. This
path can reduce the computing cost for our model. We calculate
the computational cost of the factorization convolution and
evaluate the cost reduction in contrast to the standard convo-
lution operation.

3) Short-cut path: Short-cut path is equivalent to a green
channel using a short-cut connection. The short-cut connection
which can skip the designated training layers by mapping
low-level feature directly to high-level feature; this manner
is similar to ResNet [5]. Meanwhile, it can achieve deeper
network and higher performance via solving the gradient loss
problems.

4) Concatenate to compression layer: After obtaining three
output data from three paths, we concatenate and compress
them using compression layer. Compression layer employs
a Concatenated Rectified Linear Unit (CReLU) proposed in
[13] to design a compression convolution filter. Compared
with conventional activation functions such as Rectified Linear
Units (ReLU), CReLU can decrease the extra and unnecessary
computational cost. Therefore, the compression layer can sig-
nificantly overcome the drawbacks of ReLU with a simple but
effective modification.

In particular, a negation operation and a concatenation
operation are conducted before invoking the ReLU activation
function in contrast to conventional ReLU activation function.
Moreover, CReLU can also help to reduce the redundant filters.
Specifically, we can compress the CNN model via halving the
number of the filters by using CReLU compression layer.

III. EXPERIMENT

In this section, we conduct the experiments to evaluate the
performance of the proposed portable CNN model. We first
describe basic experimental settings in Section III-A. We then
evaluate the performance of the proposed portable CNN model
by comparing with conventional CNN models in Section III-B.
Moreover, we also evaluate the impacts of parameters on the
performance of the proposed portable CNN model in Section
III-C.
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Fig. 3: Examples from GTSRB Dataset

A. Experimental Settings

1) Dataset description.: We conduct our experiments
on German Traffic Sign Recognition Benchmark (GTSRB)
dataset [11], which has been widely used in evaluating classi-
fication algorithms in traffic sign recognition. GTSRB dataset
contains more than 50,000 traffic sign images, which have been
categorized into 40 classes. We select three major categories:
Speed-limit signs, Direction signs and Attention signs. Fig. 3
shows some selected examples from each of the datasets. The
number of traffic signs in each category is different from each
other (i.e., the class-imbalance problem). Therefore, we first
preprocess the dataset via the aforementioned oversampling
and data augmentation. To simplify our discussion, we name
the dataset containing Speed-limit signs as GTSRB-1, the
dataset containing Direction signs as GTSRB-2, the dataset
containing Attention signs as GTSRB-3 and the dataset con-
taining all the three categories of traffic signs as GTSRB-T
(GTSRB Total).

2) Comparison algorithms.: We evaluate the performance
of the proposed portable CNN model with other conventional
CNN models as described as follows.

MCDNN [4] is a multi-layer CNN model used for GTSRB
dataset and performed excellent (won the final phrase in the
German traffic sign recognition benchmark with even better
accuracy than human recognition in 2011). This model consists
of 6 layers (i.e., 2 convolutional layers, 2 pooling layers and
2 fully-connected layers) .

AlexNet was proposed and developed by Krizhevsky,
Sutskever and Hinton [8]. It consists of totally 8 layers: 5 con-
volutional layers and 3 fully-connected layers. The activation
function is ReLU.

VGG-16 was proposed and developed by Simonyan and
Zisserman [14]. This model significantly increases the number
of layers in CNN architectures to 16 layers (the 19-layer
version is named as VGG-19). It consists of 13 convolutional
layers and 3 fully-connected layers.

Factorization-Net is a CNN model with a single factoriza-
tion convolutional layer. It can be regarded as a special case of
our proposed portable CNN model without compression layer.

3) Performance metrics.: We conduct the experiments by
considering two performance metrics: classification accuracy
and model size. In particular, the classification accuracy is
defined as the ratio of the number of correct classifications
to the total number of classifications. To evaluate the model
size, we mainly consider the total number of parameters of the
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Fig. 4: From left to right: Accuracy rates and loss rates of
portable FCM were shown. Left: The accuracy rate of training
set is 96.65% and validation set accuracy is 97.26% after
running 10 times iterations on GTSRB-T dataset. Right: Loss
of training set is 0.135 and that of validation set is 0.096 after
10 epochs.

trained models and the file size of the trained models (in terms
of MB).

B. Experimental results

Table I presents the performance comparison of our pro-
posed portable CNN model with other conventional CNN mod-
els. It is worth noting that the experiments are conducted on
four datasets: GTSRB-1, GTSRB-2, GTSRB-3 and GTSRB-T.
In the experiments, we choose the number of the factorization
convolutional layers to be α = 4 and the number of of neurons
in the fully connected layer to be β = 256. Factorization-Net
has the same number of the factorization convolutional layers
as our model.

Accuracy. It is shown in Table I that portable CNN model
outperforms other existing models in all the four datasets
(GTSRB-1, GTSRB-2, GTSRB-3, GTSRB-T). For example,
the accuracy of portable CNN model in GTSRB-T is 98.62%,
the highest accuracy among all the models even though M-
CDNN and VGG-16 also achieve the close accuracy values.
The performance improvement of the proposed portable CNN
model may attribute to the excellent features of portable
CNN model such as reducing the unnecessary and redundant
parameters, which may affect the accurate classification on
traffic signs.

Model size. Table I also gives the comparison on the model
size between the proposed portable CNN model and other
conventional models. It is shown in Table I that portable CNN
model has much smaller model size than other models. For
example, portable CNN model has the file size of 5.8 MB
with 713,259 parameters, which is about 5.2× smaller than
AlexNet and 20.5× smaller than VGG-16 with comparable
classification score. portable CNN model has even smaller
model size than MCDNN model, which has shallower structure
than AlexNet and VGG-16.

C. Impacts of parameters

We then investigate the impacts of various parameters on
the performance of portable CNN model.
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Fig. 5: From left to right: Accuracy rates and loss rates of
Factorization-Net running on GTSRB-T are shown after 10
times iterations. Left: The accuracy rate of training set is
97.71% and validation set accuracy is 98.46% after 10 times
iterations. The result is just little reduction with the accuracy
of the baseline model [4]. Right: Loss rates mean the result
of the model convergence. For Factorization-Net, the loss of
training set is 0.0717 and that of validation set is 0.0603.

TABLE II: Comparison with computational cost

Convolution type Computational cost
Standard convolution 2,359,296

Factorization convolution 335,872

1) Effect of Portable FCM: We evaluate the impact of
portable FCM on the entire structure. Table I shows that the
portable FCM can reduce the model size while maintaining the
high accuracy. For example, the model size can be reduced to
4.4 MB, even smaller than that of Factorization-Net model size
(6.1 MB) while it maintains almost the highest accuracy like
MCDNN model. Furthermore, Fig. 4 shows the accuracy rates
and the loss rates.

2) Effect of factorization convolution: In CNN, compu-
tational cost is an important factor that influences the effi-
ciency of the CNN structure. Next, We compare with the
computational cost between a standard convolution in M-
CDNN and a factorization convolution in Factorization-Net.
For Factorization-Net (Table I), we factorize the standard
convolution filter by factorization convolution which consists
of depthwise convolution and pointwise convolution.

Compared with the computational cost of standard convo-
lutions, it is 7× cost reduction for factorization convolution.
In addition, we can see the performance in Table I that
after factorization convolution processing, Factorization-Net
model size is 6.1 MB. Compared with the model size of
conventional CNN structure, such as MCDNN [4] (19.7 MB),
our factorization experiment reduced model size by 3.23×.
In Figure 5, it describes a processing of Factorization-Net
training. It shows that the perfomance is just little reduction
comparing with MCDNN.

3) Effect of Portable CNN: We then investigate the impact
of portable CNN. We evaluate three structures of Factorization-
Net, portable FCM and portable CNN. The experiments were
also conducted on data GTSRB-T only.

Table III presents the results. It is shown in Table III
that portable FCM can reduce the redundant parameters while



TABLE I: Performance comparison with other conventional CNN models.

Models Model Size No. of
Parameters

Accuracy
(GTSRB-1)

Accuracy
(GTSRB-2)

Accuracy
(GTSRB-3)

Accuracy
(GTSRB-T)

MCDNN 19.7 MB 2,466,507 97.95% 97.79% 97.21% 98.50%

AlexNet 30.2 MB 3,889,835 95.02% 96.60% 95.53% 96.31%

VGG-16 118.8 MB 15,291,499 96.52% 97.29% 97.70% 98.60%

Factorization-Net 6.1 MB 754,373 96.75% 95.61% 94.95% 97.71%

portable CNN 5.8 MB 713,259 97.09% 97.33% 97.32% 98.62%

TABLE III: Evaluation with structures

Model Accuracy
(GTSRB-T)

Model Size No. of
Parameters

Factorization-Net 97.71% 6.1 MB 754,373
portable FCM 96.65% 4.4 MB 540,843
portable CNN 98.62% 5.8 MB 713,259

maintaining high classification accuracy. Furthermore, our pro-
posed portable CNN model outperforms other models in terms
of highest accuracy after combining factorization convolutional
layers. This result implies that the proposed CNN is highly
portable and it may be used in mobile scenarios.

4) Effect of Number of Neurons in Fully-Connected Layer :
We also investigate the impact of the number of neurons in the
fully-connected layer. Similarly, we conduct the experiments
on dataset GTSRB-T only. In particular, we denote the number
of neurons in the fully-connected layer by β. We vary the
value of β from 64 to 256. Meanwhile, we also compare
the performance with other conventional models when other
parameters are fixed.

It is shown in Table IV that the proposed portable CNN
outperforms other conventional models in terms of highest
accuracy when the number of neurons in the fully-connected
layer is varied from 64 to 256.

Next we evaluate the number of neurons in the fully-
connected layer, β. We can see in Table IV, after we investigate
the classification results with GTSRB dataset, the results
shown that when β = 256, the experimental accuracy is the
highest.

TABLE IV: Evaluation with number of neurons in the fully-
connected layer

β AlexNet VGG-
16

MCDNN Factorization-
Net

Portable CNN

β = 64 78.29% 89.34% 96.17% 82.66% 96.66%
β = 128 93.51% 96.82% 97.85% 96.54% 97.60%
β = 256 96.31% 98.60% 98.50% 97.11% 98.62%

IV. CONCLUSION

In this paper, we put forth a portable convolutional neural
network used in traffic-sign classification. In particular, this
model contains a stacked structure, in which several portable
FCMs alternate with factorization convolutional layers. Our
model has the merits including the small model size while
maintaining high classification accuracy. For example, the pro-
posed portable CNN model has model size of 5.8 MB, which
are much smaller than other conventional CNN models. Mean-
while, the accuracy of the proposed model also outperforms
other models. This is mainly because the optimized design
on convolution layers and compression layers, consequently
removing the redundant parameters. In the future, we will
further evaluate the performance of the proposed CNN models
by deploying the model in mobile embedded platforms, which
have inferior computing capability to PC platforms.
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