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Abstract

We consider a Bayesian model for inversion of observed amplitude variation with

offset (AVO) data into lithology/fluid classes, and study in particular how the choice

of prior distribution for the lithology/fluid classes influences the inversion results.

Two distinct prior distributions are considered, a simple manually specified Markov

random field prior with a first order neighborhood and a Markov mesh model with a

much larger neighborhood estimated from a training image. They are chosen to model

both horizontal connectivity and vertical thickness distribution of the lithology/fluid

classes, and are compared on an offshore clastic oil reservoir in the North Sea. We

combine both priors with the same linearised Gaussian likelihood function based on

a convolved linearised Zoeppritz relation and estimate properties of the resulting two

posterior distributions by simulating from these distributions with the Metropolis–

Hastings algorithm.

The influence of the prior on the marginal posterior probabilities for the lithol-

ogy/fluid classes is clearly observable, but modest. The importance of the prior on

the connectivity properties in the posterior realisations, however, is much stronger.
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The larger neighborhood of the Markov mesh prior enables it to identify and model

connectivity and curvature much better than what can be done by the first order

neighborhood Markov random field prior. As a result, we conclude that the poste-

rior realisations based on the Markov mesh prior appear with much higher lateral

connectivity, which is geologically plausible.

Key words: Computing aspects, Inverse problem, Inversion, Mathematical formulation,

Seismics.

Introduction

From seismic data one can predict elastic properties and lithology/fluid classes (LFC) in

a reservoir. This is an inverse problem and for a given seismic data set many solutions

exist. Different methods have been used for inverting seismic data to elastic properties and

lithology/fluid classes, both deterministic approaches such as optimisation-based methods

(Aster et al., 2011; Sen and Stoffa, 2013) and probabilistic approaches such as Bayesian

inversion (Tarantola, 2005). Using the Bayesian framework, a linearised relation between

the data and the elastic properties is commonly used and a Gaussian likelihood function

is adopted, see for example Buland and Omre (2003), Gunning and Glinsky (2007) and

the discussion in Grana et al. (2017). When inverting to elastic properties the prior is

also often assumed to be Gaussian, in which case the posterior becomes Gaussian with

analytically available mean and covariance, see again Buland and Omre (2003). When

inverting to lithology/fluid classes, other priors have to be used. In particular Rimstad and

Omre (2010) define a hierarchical prior, where a Markov random field (Kindermann and

Snell, 1980; Hurn et al., 2003) is used to model the lithology/fluid classes and conditional

on these the elastic properties are assumed to be Gaussian with mean and covariance
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functions depending on the lithology/fluid classes. Grana and Della Rossa (2010) consider

a Gaussian mixture prior for the elastic attributes to include multi-modality and skewness

in the prior model where the effect of the lithology/fluid classes is summed out. With

a non-Gaussian prior the posterior is no longer analytically available and Markov chain

Monte Carlo (Gilks et al., 1996; Robert and Casella, 1999; Gamerman and Lopes, 2006)

must typically be used to estimate properties of the resulting posterior distribution. It is

also challenging to specify lateral connectivity and spatial dependency laterally for non-

Gaussian priors, and often the inverse problem is solved trace-by-trace before a smoother

is applied afterwards (Connolly and Hughes, 2016).

To specify a prior that reflects available prior information in a spatial problem like

inversion of seismic data can be difficult. The properties of a Gaussian field is analytically

well understood, so by adopting a Gaussian prior as in Buland and Omre (2003) the prior

specification process is simplified. Eidsvik et al. (2004) consider a one dimensional problem

and assume a Markov chain prior to predict geological attributes from well log data, and

Fjeldstad and Omre (2017) use a similar model to predict lithology/fluid classes and elastic

attributes from seismic data. The properties of Markov chains are also analytically avail-

able, which again simplifies the specification of a reasonable prior. For most non-Gaussian

spatial prior models the situation is less favorable. In Rimstad et al. (2012) a discrete

Markov random field prior is used for the lithology/fluid classes. The properties of discrete

Markov random fields are analytically not available, which makes it difficult to verify the

properties of the chosen prior. To cope with the problem of specifying non-Gaussian spatial

prior models it has in geostatistics become common practice to estimate the prior model

from a so-called training image. A training image is from an outcrop or a constructed scene

assumed to have the same spatial structure as the phenomenon under study. The idea is to

estimate a prior model from one or more training images, see the discussion in Mariethoz
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and Caers (2014). Various multiple-point statistics models (Guardiano and Srivastava,

1993; Strebelle, 2002; Journel and Zhang, 2006; Zhang et al., 2012) have been defined to

implement this idea. These models are algorithmically defined. The nodes in a lattice are

visited in a random order and when a node is visited, the value in that node is simulated

conditional on values in previously visited nodes, where the conditional distribution used

is estimated from the training image. There are two serious complications associated with

the use of multiple-point statistics models. First, the number of conditional distributions

that has to be estimated from the training image is enormous, and the information content

in a typical training image is not sufficient to estimate this number of parameters. Emery

and Lantuéjoul (2014) are discussing this issue mathematically. Second, the models are

only algorithmically defined and no simple to evaluate expressions are available for the

estimated model. The implication of this is that if we want to use the estimated model

as a prior and generate realisations conditional on some observed data, it is in general not

clear how to do this. Since we have no analytical formula for the prior, we neither have

an expression for the posterior. This issue is also discussed in Toftaker and Tjelmeland

(2013). As alternatives to the multiple-point statistics models Arnesen and Tjelmeland

(2017) and Luo and Tjelmeland (2017) introduce procedures for fitting Markov random

fields and Markov mesh models, respectively, to a given training image. For these model

classes explicit expressions for the distributions are available, so to simulate from a corre-

sponding conditional distribution Markov chain Monte Carlo procedures can for example

be employed.

The purpose of this article is to demonstrate how inversion of seismic data into litholo-

gy/fluid classes can be accomplished in a Bayesian framework by estimating a prior model

for the lithology/fluid classes from a given training image, and combine this with a lin-

earised and Gaussian likelihood function. We fit a Markov mesh prior model to a training
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image as discussed in Luo and Tjelmeland (2017) and use Markov chain Monte Carlo to

simulate from the resulting posterior distribution as discussed in Rimstad et al. (2012).

A Markov mesh prior is used for lithology/fluid prediction also in Stien and Kolbjørnsen

(2011), but they specify manually the neighborhood and interaction structures and fit only

the parameter values to the training image. In our fitting procedure we fit both the neigh-

borhood and interaction structures and the parameter values to the given training image.

To focus on the methodological aspects we consider a situation with only two lithology/fluid

classes, oil sand and shale. In particular we compare the results from our procedure with

what we get by instead using a simpler manually chosen Markov random field prior.

The article has the following layout: First we present the data set and the associated

training image, and we analyse and introduce our Bayesian model formulation. A Gaussian

likelihood function is defined, and its properties are discussed. We introduce the Markov

mesh and Markov random field priors, and in specific focus on how we fit the Markov mesh

prior to the given training image. Next, a sampling algorithm for the posterior distribution

is discussed. The two priors are tested on a real 2D section case study in the North Sea.

Finally, we discuss the posterior properties of the two priors and provide some closing

remarks.

Methodology

The objective is to demonstrate and compare two different prior models in a Bayesian

framework to predict lithology/fluid classes in the subsurface. In this section, we introduce

the data set and formulate the inverse problem in a Bayesian setting, define a likelihood

function and the two priors, and discuss posterior simulation.
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Figure 1: Near (left) and far (right) offset seismic data used for lithology/fluid prediction.

Data set and Bayesian model formulation

In this article we consider a seismic section from the Alvheim field in the North Sea, which

is a clastic oil reservoir. The Alvheim field is characterised by a complex sand lobe geometry

and is buried approximately 2 km below the sea floor. In the analysis we use one near and

one far offset seismic data represented in a 105× 51 lattice G = {(i, j)|i = 1, . . . , 105; j =

1, . . . , 51}. The stacked sections were generated from pre-stack time migrated (PSTM)

common depth gathers (CDP), see Rimstad et al. (2012) for further processing details.

The seismic data are shown in Figure 1. The horizontal and vertical resolutions are about

100 m and 4 ms, respectively. We let dij, (i, j) ∈ G denote a vector of size two containing

the observed near and far offset seismic data in node (i, j) ∈ G, and let d be a vector where

all dij, (i, j) ∈ G are stacked on top of each other. We model two lithology/fluid classes, oil

sand and shale. For each node (i, j) ∈ G we let κij ∈ {0, 1} denote the lithology fluid class

in node (i, j), where κij = 0 and κij = 1 represent shale and oil sand, respectively. We

let κ be a vector of all κij, (i, j) ∈ G stacked on top of each other. To estimate a Markov

mesh prior distribution for κ we use a training image from Lang and Grana (2017). The
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Figure 2: Training image that we use to estimate a Markov mesh prior distribution for the

spatial distribution of lithology/fluid classes, κ. Black and yellow represent shale and oil

sand, respectively.

training image is from a reservoir with similar characteristics and is shown in Figure 2.

To model the relation between κ and d we first introduce a vectorm= {mij , (i, j) ∈ G}

of elastic properties, where mij is a vector of length two. We let the first element in mij

be the product of the density ρ and the pressure-wave velocity vp in node (i, j) and let the

second element be the vp/vs ratio in the same node, where vs is the shear-wave velocity.

For the three variables κ, m and d we adopt a Bayesian model. We let p(κ) denote a

prior distribution for κ and let p(m|κ) denote the conditional distribution for the elastic

parameters m given the lithology/fluid classes κ. Finally, we assume the seismic data d to

be conditionally independent of κ when the elastic properties m are given. We let p(d|m)

denote the conditional distribution for the seismic data d given elastic properties m. The

p(d|m) represents a probabilistic formulation of the forward model. Bayes theorem then

gives

p(κ|d) ∝ p(κ)p(d|κ), (1)
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where

p(d|κ) =

∫
p(m,d|κ)dm =

∫
p(m|κ)p(d|m)dm. (2)

In the following we first outline the details of p(m|κ) and p(d|m), which is used to specify

the likelihood p(d|κ), and thereafter specify the prior p(κ) before we describe the Markov

chain Monte Carlo procedure we use to simulate from p(κ|d).

Likelihood model

Following Grana et al. (2017) and Fjeldstad and Omre (2017) we adopt a linearised and

Gaussian likelihood for the forward model for d given κ. More specifically, we assume each

of p(m|κ) and p(d|m) to be Gaussian, the conditional mean of d given m to be a linear

function of m, and the conditional covariance matrix of d given m not to be a function

of m. In the following we outline the distributions p(m|κ) and p(d|m) in more detail,

starting with p(m|κ).

We assume m|κ to be Gaussian and

E[mij|κ] = µκij and Cov[mij|κ] = Σκij , (3)

where µ0 and Σ0 are the conditional mean and covariance for mij if node (i, j) contains

shale (κij = 0), and µ1 and Σ1 are corresponding quantities when node (i, j) contains oil

sand (κij = 1). Moreover, we assume a separable correlation function ρ((i, j), (k, l)) for

m|κ, but we do not allow the correlations to depend on the lithology/fluid classes κ.

For the forward model p(d|m) we use a convolved linearised approximation of the

Zoeppritz equation (Buland and Omre, 2003) based on Aki-Richards formulation that is

valid for weak vertical contrasts (Aki and Richards, 1980). The vector d is then formed

from m in several steps. First, all vertical first-order contrasts or differences mij−mi−1,j

are formed by pre-multiplying m with a matrix D. Thereafter, reflection coefficients are
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Figure 3: Wavelets used for the near (left) and far (right) offset seismic data. The x- and

y- axes show vertical distance and wavelet values, respectively.

formed by pre-multiplying Dm with a block diagonal matrix A, where all the blocks are

identical 2× 2 matrices containing coefficients in the Aki-Richards formulation. The mean

value of the seismic data are then formed via a convolution of each column of ADm with

wavelets. Different wavelets are used for the near and far offset seismic data as shown

in Figure 3. These wavelets are estimated from data in a well in the same reservoir as

the seismic data is coming from. This well is, however, located some distance away from

the seismic section we are studying. The effect of the convolutions can be written as pre-

multiplying ADm with a matrix W . Finally, a zero mean Gaussian error term ε with a

fixed covariance matrix Σε is added to WADm. Thus, d|m is Gaussian with

E[d|m] = WADm and Cov[d|m] = Σε. (4)

With the Gaussian distributions specified above for p(m|κ) and p(d|m) it follows

from standard properties of the Gaussian distribution that also p(d|κ) becomes Gaussian.

Moreover, expressions are available for the mean E[d|κ] and the covariance Cov[d|κ] as

function of κ, µ0, µ1, Σ0, Σ1, ρ(·, ·), W , A, D and Σε.
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Prior models

The main purpose of this article is to demonstrate how a Markov mesh model fitted to

a training image can be used as prior in a Bayesian model for lithology/fluid prediction.

However, we also want to study how the inversion results change when using such a prior

relative to what we get by using a simpler manually specified prior. To fit a Markov mesh

model to a training image involves extra working and computing time, so there is no reason

to do so unless it results in a significant change in the inversion results. In the following

we first specify the class of Markov mesh models and briefly discuss the procedure we

use to fit the model to the training image in Figure 2. Thereafter we describe a simpler

manually specified prior we use for comparison, the profile Markov random field introduced

in Ulvmoen and Omre (2010).

Markov mesh prior

An introduction to the class of Markov mesh models can be found in Abend et al. (1965)

and the more general class of partially ordered Markov models is defined in Cressie and

Davidson (1998). In the following description we limit the attention to binary fields and

introduce the necessary notions to define homogeneous Markov mesh models defined on a

rectangular lattice.

Let G = {(i, j)|i = 1, . . . , n1; j = 1, . . . , n2} be a rectangular lattice, to each node

(i, j) ∈ G of which we associate a binary variable κij ∈ {0, 1}. We let κ = (κij : (i, j) ∈ G)

denote the collection of all these binary variables and use κλ = (κij : (i, j) ∈ λ) to denote

the collection of binary variables in a set λ ⊆ G of nodes. The Markov mesh model is

based on numbering the nodes in G from 1 to nm in the lexicographical order. Without
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loss of generality, the distribution of κ can then be expressed as

p(κ) =
∏

(i,j)∈G

p(κij|κρij), (5)

where ρij is the set of all nodes coming before node (i, j), i.e.

ρij = {(k, l) ∈ G : nk + l < ni+ j}. (6)

The set ρij is called the predecessor set of node (i, j). The central assumption in Markov

mesh models is that p(κij|κρij) has a Markov property in that

p(κij|κρij) = p(κij|κνij), (7)

where νij ⊆ ρij is called the sequential neighborhood of node (i, j). Following Luo and

Tjelmeland (2017), we assume that all the sequential neighborhoods are generated via a

translation of a template sequential neighborhood τ . The set τ can best be thought of as

the sequential neighborhood of node (0, 0) in a infinite lattice. More precisely, τ should

contain a finite number of elements and

τ ⊂ {(i, j) : i ∈ Z−, j ∈ Z} ∪ {(0, j) : j ∈ Z−}, (8)

where Z = {0,±1,±2, . . .} and Z− = {−1,−2, . . .} are the sets of all integers and all

negative integers, respectively. Given the set τ we assume the sequential neighborhood νij

to be generated by translating each element in τ a distance (i, j) and, if necessary, dropping

elements falling outside the lattice G. Mathematically, νij is then given as

νij = (τ ⊕ (i, j)) ∩G, (9)

where the translation operator ⊕ is defined as

τ ⊕ (i, j) = {(k + i, l + j) : (k, l) ∈ τ}. (10)
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Constructing νij in this way, the sequential neighborhoods for all nodes sufficiently far away

from the lattice borders will have the same form.

Still following Luo and Tjelmeland (2017), we model p(κij|κνij) by assuming the logit

transformation of p(κij = 1|κνij) to be given by

logit
[
p(κij = 1|κνij)

]
= ln

(
p(κij|κνij)

1− p(κij = 1|κνij)

)
= θ(ξ(κ, τ, (i, j))), (11)

where ξ(κ, τ, (i, j)) ⊆ τ is the set of elements (k, l) ∈ τ associated to a node with oil sand

in the sequential neighborhood for node (i, j), i.e.

ξ(κ, τ, (i, j)) = {(k, l) ∈ τ : (i+ k, j + l) ∈ G and κi+k,j+l = 1}, (12)

and θ(·) is a pseudo-Boolean function (Hammer and Holzman, 1992; Grabisch et al., 2000)

to be specified. One should note that, as we assume the same function θ(·) for all nodes

(i, j) ∈ G we get a homogeneous model. Moreover, one should note that the definition

of ξ(κ, τ, (i, j)) implies that for nodes (i, j) close to the boundary of the lattice, so that

(τ⊕ (i, j))\G 6= ∅, the conditional distribution p(κij|κνij) becomes as if one had an infinite

lattice where all variables associated to nodes outside of G were zero.

The last step in specifying the Markov mesh model is to choose the function θ(·). This

is a real valued function, where the argument is a subset of τ specifying for which sequential

neighbors the associated binary variable is equal to one. Without loss of generality, the θ(·)

can be uniquely expressed in terms of a collection of interaction parameters {β(λ) : λ ⊆ τ}

by

θ(λ) =
∑
λ?⊆λ

β(λ?) for λ ⊆ τ . (13)

The number of interaction parameters is 2|τ |, where |τ | is the number of elements in τ .

Unless |τ | is very small the number of parameters necessary to specify θ(·) is thereby very

large. We still follow Luo and Tjelmeland (2017) and limit the number of model parameters

12
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Figure 4: The sequential neighborhood (left) and the corresponding Markov random field

neighborhood (right) for the fitted prior p(κ). The nodes marked with a dot are (sequential)

neighbors of the node marked with a cross.

by restricting many of the interaction parameters to be zero. More specifically, for some

Λ ⊆ Ω(τ), where Ω(τ) is the set of all subsets of τ , we assume β(λ) = 0 for all λ 6∈ Λ.

Thus, we specify the Markov mesh model by choosing the sets τ and Λ and the interaction

values {β(λ) : λ ∈ Λ}.

To fit the Markov mesh model specified above to the training image in Figure 2 we

adopt the Bayesian procedure introduced in Luo and Tjelmeland (2017), including the

hyper-parameter values used in that article. A prior is specified for τ , Λ and {β(λ) :

λ ∈ Λ} and assuming the training image to be a sample from the specified Markov mesh

model, a Metropolis–Hastings algorithm is used to generate samples from the resulting

posterior distribution for τ , Λ and {β(λ) : λ ∈ Λ}. When we conditioned on the training

image in Figure 2, the convergence of the Metropolis–Hastings algorithm was so slow

that we were unable to obtain convergence within a reasonable computation time. As

a pragmatic approach to obtain a reasonable prior p(κ) we simply run the Metropolis–

Hastings algorithm in Luo and Tjelmeland (2017) for a large number of iterations and

used the last values for τ , ∆ and {β(λ) : λ ∈ Λ} in this run to define the prior p(κ). The

resulting p(κ) prior has |τ | = 9 sequential neighbors and |∆| = 31 interaction parameters

that are allowed to differ from zero. The sequential neighborhood τ is illustrated in Figure

4, while the complete specification of τ , ∆ and {β(λ) : λ ∈ Λ} is given in an Appendix.
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Figure 5: Four independent realisations from the Markov mesh prior fitted to the training

image shown in Figure 2. Black and yellow represent shale and oil sand, respectively.

The best way to understand the properties of the prior is perhaps to look at realisations

sampled from p(κ), four of which are shown in Figure 5. We see that the fitted prior is

reproducing large continuous areas of shale and oil sand as seen in the training image, but

the boundaries between shale and oil sand is less horizontal in the realisations from the

prior than in the training image.

Profile Markov random field prior

The profile Markov random field prior was first defined and used for seismic inversion in

Ulvmoen and Omre (2010), see also Rimstad and Omre (2010). Even though the prior class

14



is defined for categorical variables, in our description of the model we limit the attention

to the binary variable case.

Let again G = {(i, j)|i = 1, . . . , n1; j = 1, . . . , n2} be a rectangular lattice, where in

each node we associate a binary variable κij ∈ {0, 1}. We let Cj = {(i, j) : i = 1, . . . , n1}

be the set of nodes in profile or column j of the lattice G and let κCj
= (κij : (i, j) ∈ Cj)

denote the collection of the binary variables associated to this column. The collection of all

the binary variables except the ones in column j we denote by κ−Cj
. The profile Markov

random field prior is then specified by first adopting the Markov property

p(κCj
|κ−Cj

) = p(κCj
|κCj−1

,κCj+1
), (14)

i.e. given the values in columns j − 1 and j + 1, the values in column j are independent

of the values in the remaining columns. Secondly, the profile Markov random field prior

assumes p(κCj
|κCj−1

,κCj+1
) to be a Markov chain down along the column,

p(κCj
|κCj−1

,κCj+1
) = p(κ(1,j)|κ(1,j−1), κ(1,j+1))×

n∏
i=2

p(κ(i,j)|κ(i−1,j), κ(i,j−1), κ(i,j+1)), (15)

where the conditional distribution p(κ(i,j)|κ(i−1,j), κ(i,j−1), κ(i,j+1)) is the same for all val-

ues of i and j. The values we have used for the transition probabilities are defined in

Table 1. Rimstad and Omre (2010) describe the structure used to specify these values.

The basic idea is that these values should represent high probability for lateral continu-

ity of oil sand and shale. The initial distribution p(κ(1,j)|κ(1,j−1), κ(1,j+1)) are set equal

to p(κ(i,j)|κ(i−1,j) = 0, κ(i,j−1), κ(i,j+1)), i.e. conditioning on shale being present above the

lattice. Correspondingly, p(κ(i,j)|κ(i−1,j), κ(i,j−1), κ(i,j+1)) for the left and rightmost columns

j = 1 and j = n are defined by conditioning on shale being present outside the lattice.
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Table 1: Values used for p(κ(i,j)|κ(i−1,j), κ(i,j−1), κ(i,j+1)) in the specification of the profile

Markov random field prior.

κi,j−1 = 0, κi,j+1 = 0 κi,j−1 = 0, κi,j+1 = 1

κij = 0 κij = 1

κi−1,j = 0 0.9877 0.0123

κi−1,j = 1 0.8339 0.1661

κij = 0 κij = 1

κi−1,j = 0 0.6539 0.3461

κi−1,j = 1 0.1056 0.8944

κi,j−1 = 1, κi,j+1 = 0 κi,j−1 = 1, κi,j+1 = 1

κij = 0 κij = 1

κi−1,j = 0 0.6539 0.3461

κi−1,j = 1 0.1056 0.8944

κij = 0 κij = 1

κi−1,j = 0 0.0425 0.9575

κi−1,j = 1 0.0028 0.9972
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Posterior model and simulation algorithm

For each of the Markov mesh and profile Markov random field priors we obtain a posterior

distribution for the lithology/fluid classes κ, given in (1). To explore and estimate proper-

ties of the two posterior distributions we adopt the Metropolis–Hastings algorithm (Gilks

et al., 1996; Robert and Casella, 1999; Gamerman and Lopes, 2006). Since the wavelets

in the likelihood model induce strong dependencies between different κij’s in the same col-

umn, a simple single-site updating scheme would give a Markov chain with a long burn-in

and slow mixing. We therefore adopt the proposal scheme previously used in Rimstad and

Omre (2010) and propose in each iteration new values for all lithology/fluid classes in one

column. Using notation from the discussion of the profile Markov random field prior, the

joint full conditional for the lithology/fluid classes in column j is

p(κCj
|κ−Cj

,d) ∝ p(κCj
|κ−Cj

)p(d|κ). (16)

To sample from this distribution is, however, computationally very expensive due to the

long range dependencies in κCj
induced by the wavelets in the likelihood model. Still

following Rimstad and Omre (2010) we therefore adopt the approximation scheme specified

in Larsen et al. (2006) to construct an approximation p?ν(κCj
|κ−Cj

,d) to p(κCj
|κ−Cj

,d),

where ν is an algorithmic tuning parameter, and generate potential new values for κCj

by sampling from p?ν(κCj
|κ−Cj

,d). The p?ν(κCj
|κ−Cj

,d) is a higher-order Markov chain

and thereby by construction easy to sample from. In general the approximation quality

grows with ν, but so does the computation time required for simulating one realisation

from p?ν(κCj
|κ−Cj

,d). Based on preliminary runs of the Metropolis–Hastings algorithm

we find a value for ν which gives reasonable acceptance rates for the Metropolis–Hastings

algorithm.

To run the Metropolis–Hastings scheme discussed above we first need to have expres-
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sions for p(κCj
|κ−Cj

) for each of the two priors. For the profile Markov random field prior

this is by construction given by (14) and the values in Table 1. To obtain p(κCj
|κ−Cj

) for

the Markov mesh prior we first need to reformulate the Markov mesh model as a Markov

random field. The resulting Markov random field has a neighborhood system where the

set of neighbors to node (i, j) ∈ G is

∂ij = νij ∪

 ⋃
(k,l)∈G:(i,j)∈νkl

(νkl ∪ {(k, l)})

 . (17)

For nodes sufficiently far away from the lattice borders the ∂ij becomes as shown in Figure

4(b). When the prior p(x) is formulated as a Markov random field it is straightforward to

find the corresponding p(κCj
|κ−Cj

) by first ignoring potential functions for cliques which

do not include any node in Cj and thereafter plugging in values for x−Cj
in the remaining

potential functions. In particular, for the Markov mesh sequential neighborhood used in

this study, p(κCj
|κ−Cj

) becomes a third-order Markov chain.

The second factor in (16) is a high dimensional multivariate Gaussian density. To be

able to evaluate this efficiently it is essential that we have chosen the correlation structure of

d|κ to be separable. For each of the two priors we run the Metropolis–Hastings algorithm

scheme for the resulting posterior distribution for a large number of iterations. We use

standard output analysis to identify and discard a burn-in period. In the next section we

use the κ realisations after the burn-in period to estimate and compare properties of the

two posterior distributions.

North Sea Case study

Recall that the objective is to assess the posterior of the lithology/fluid classes κij ∈ G

given seismic AVO data d in a clastic oil reservoir in the North Sea. That is, we want to
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assess the posterior p(κ|d) given in (1), for the two prior models discussed earlier. Note

that the two posteriors will not be identical since the priors are different.

To study and compare the properties of the two posterior distributions we can first

look at the posterior realisations shown in Figure 6. The left and right columns show

four realisations from each of the two posteriors. Realisations from the posterior when

using the Markov mesh prior are shown in the left column, whereas the realisations in

the right column is based on a model with the profile Markov random field prior. The

eight realisations are quite similar, but when studying them in more detail one can observe

that with the Markov mesh prior there seems to be more skewed and curved structures

than when using the profile Markov random field prior. Since the Markov mesh prior

has much larger neighborhoods than the profile Markov random field prior, this is not

really surprising. With larger neighborhoods, and corresponding larger cliques, it becomes

possible for the model to identify skewed and curved structures.

The upper row in Figure 7 shows the result of estimating in each node the marginal

posterior probability of oil sand. In each node the probability is estimated as the fraction

of the realisations where the node has oil sand. Again the left and right images are results

when using the Markov mesh and profile Markov random field priors, respectively. The

two probability maps are similar, but somewhat more continuity of skewed and curved high

probability areas can be observed when using the Markov mesh prior. In the middle row

of Figure 7 the probabilities in the upper row is rounded to the nearest integer to get an

estimate of the most probable lithology/fluid class in each node. Again we can observe

somewhat more continuity of skewed and curved oil sand areas when using the Markov

mesh prior. The histograms in the lower row of Figure 7 are simply probability histograms

of the estimated marginal posterior probabilities shown in the upper row of the same figure.

We can observe that when using the profile Markov random field prior, somewhat more
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Figure 6: The left column shows four independent realisations from the posterior distri-

bution when using the Markov mesh prior. The right column shows correspondingly four

independent realisations from the posterior distribution when using the profile Markov

random field prior. Black and yellow represent shale and oil sand, respectively.
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Figure 7: Upper row: Estimated posterior marginal probabilities for oil sand when using the

Markov mesh (left) and the profile Markov random field (middle) priors. The colour scale

is shown in the rightmost plot. Middle row: Estimated marginal posterior mode for each

node. Black and yellow represent shale and oil sand, respectively. Lower row: Probability

histograms of estimated posterior marginal probabilities when using the Markov mesh (left)

and the profile Markov random field (right) priors.

21



0.0 0.4 0.8

2
3

0
0

2
2

0
0

2
1

0
0

2
0

0
0

Probability

T
im

e
 (

m
s
)

0.0 0.4 0.8

2
3

0
0

2
2

0
0

2
1

0
0

2
0

0
0

Probability

T
im

e
 (

m
s
)

0.0 0.4 0.8

2
3

0
0

2
2

0
0

2
1

0
0

2
0

0
0

Probability

T
im

e
 (

m
s
)

Figure 8: Estimated marginal probabilities for oil sand in three traces. Results when using

the Markov mesh and profile Markov random field priors are shown by red and blue lines,

respectively. The left, middle and right plots show the marginal probabilities in traces

j = 15, j = 30 and j = 45, respectively.

marginal posterior probabilities are close to zero and one than when using the Markov

mesh prior.

To study the marginal probabilities a little more we have chosen three traces, or

columns, j = 15, 30 and 45, and in Figure 8 plotted the marginal probabilities. The es-

timated posterior marginal probabilities when using the Markov mesh and profile Markov

random field priors are plotted in red and blue, respectively. More than in Figure 7 we can

here see how close the two posterior probabilities are for most of the nodes. In a few of the
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nodes, however, the difference is quite clear.

The continuity of oil sand is very important for fluid flow in a petroleum reservoir. We

can get some understanding of how the prior influences this continuity by studying Figure

7, but to study the continuity in more detail we need to summarise how this continuity is

in each posterior realisation. To do this, we have manually picked four nodes with very

high posterior probability for oil sand both when using the Markov mesh and the profile

Markov random field priors. These four nodes are marked with a red bullet in Figure 9, one

row for each of the four chosen nodes. For each of these four nodes and for each posterior

realisation we identified all other nodes with oil sand which through other oil sand nodes

had contact with the chosen node. Thereby we could estimate the posterior probability

that any node was in contact with the chosen node as the fraction of the realisations where

this occurred. The resulting estimated probabilities are visualised in Figure 9. The left and

right columns are again the results when using the Markov mesh and the profile Markov

random field priors, respectively. In the three upper rows we can see a lot more continuity

in the posterior realisations when using the Markov mesh prior than when using the profile

Markov random field prior. In the lower row the situation is for some reason reversed.

To study this type of continuity more generally, not only for the four hand picked nodes

used in Figure 9, we finally repeat the exercise of finding all nodes in a realisation with oil

sand connected to a particular node, but now the particular node is sampled at random

among all nodes with oil sand. For each realisation and each particular node we find the

number of oil sand nodes connected to the particular node. In Figure 10 we show the

resulting estimated posterior probabilities for the randomly chosen particular node to be

connected to more than η other oil sand nodes, as a function of η. The red and blue curves

are the results when using the Markov mesh and the profile Markov random field priors,

respectively. We see that the curve related to the Markov mesh prior lies consistently
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Figure 9: For each node, estimated posterior probabilities that there is contact (via other

oil sand nodes) between this node and the node marked with a red filled circle. The plots

in the left and right columns are when using the Markov mesh and the profile Markov

random field priors, respectively. The colour scale is as defined by the legend in Figure 7.
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Figure 10: As a function of a number of nodes η, estimated posterior probability for a

random oil sand node to be connected (via other oil sand nodes) to at least η other oil

sand nodes. The η is along the x-axis and the estimated probability is along the y-axis.

Results when using the Markov mesh and profile Markov random field priors are shown in

red and blue, respectively.
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clearly above the curve related to the profile Markov random field prior, showing that the

Markov mesh prior produces more posterior continuity of oil sand than the profile Markov

random field prior.

Discussion

In this article we have, for a particular seismic data set in the North Sea and two particular

prior models for the lateral connectivity of the lithology/fluid classes, studied how the prior

influences the posterior properties. When focusing on the posterior marginal probabilities

we found, for most nodes, that the prior had little influence. When focusing on poste-

rior continuity of oil sand, however, we found that the prior had a quite strong influence

on the results. Not surprisingly, the prior with the largest neighborhoods produced the

largest posterior continuity. When evaluating whether to use a simple prior with a small

neighborhood or to use a more complicated prior with a larger neighborhood one should

therefore first decide what posterior properties that are of interest. If the focus is only

on the posterior marginal probabilities, a simple prior is perhaps sufficient. If the focus is

on fluid flow, however, spatial continuity is crucial and it may be beneficial with a more

complicated prior which is better able to capture spatial continuity.

When deciding what prior to use one should also take into account the computational

resources necessary to simulate from the posterior distribution. A more complicated prior

typically gives a posterior which requires more computation time to explore. With our

implementations, sampling from the posterior when using the Markov mesh prior required

approximately 20 times more computation time compared to when using the profile Markov

random field prior. However, our implementation of the sampling when using the Markov

mesh prior was partly in Matlab and partly in C++ and a lot of the computation time here

was just overhead in the communication between Matlab and C++. Our implementation
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of the sampling algorithm when using the profile Markov random field prior was entirely

in Matlab, so we did not have the same overhead in this case. If we had implemented also

the sampling algorithm when using the Markov mesh prior entirely in Matlab we expect

this algorithm would have required a factor between 3 and 5 more computation time than

that for the profile Markov random field prior. That the sampling when using the Markov

mesh prior requires more computation time than when using the profile Markov random

field prior should come as no surprise, since the Markov mesh prior has a much larger

neighborhood than the profile Markov random field prior.

The study presented in this article is quite limited. The model includes only two

lithology/fluid classes and we have considered only one seismic section. It is of interest

also to study the effect of using a prior with a larger neighborhood when the model represent

more than two lithology/fluid classes. The profile Markov random field prior is already

defined with more than two lithology/fluid classes and the Markov mesh construction

used here can easily be extended to such a situation. To condition on a seismic cube

is also of interest. Then the lithology/fluid classes need to be represented on a three

dimensional lattice and the prior models need to be defined for such a situation. Again the

profile Markov random field prior is already formulated in such a situation. The Markov

mesh formulation used here can also be extended to a three dimensional lattice, but the

effectiveness of such a formulation need to be further studied.
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Fitted Markov mesh prior, p(κ)

The Markov mesh model fitted to the training image in Figure 2 has template sequential

neighborhood τ = {(−1, 0), (0,−1), (−1, 2), (0,−2), (−3,−1), (0,−3), (−1, 4), (0,−4), (−2,−4)}

and ∆ and {β(λ) : λ ∈ Λ} are as specified in Table 2.
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Table 2: The elements λ in the set Λ and the associated interaction parameters β(λ).

λ ∈ Λ β(λ)
∅ −4.33884

{(−1, 0)} 3.27479
{(0,−1)} 2.96595

{(−1, 0), (0,−1)} −0.460735
{(−1, 2)} 1.49237

{(−1, 2), (0,−1)} −1.10759
{(0,−2)} 1.99035
{(−3,−1)} −1.43573
{(0,−3)} 3.06786

{(−1, 0), (0,−3)} −3.44258
{(0,−3), (0,−1)} −2.03335

{(−1, 0), (0,−3), (0,−1)} 1.95605
{(0,−3), (0,−2)} −1.02729
{(−1, 4)} 2.90431

{(−1, 0), (−1, 4)} −3.42674
{(−1, 4), (0,−1)} −0.404195
{(−1, 2), (−1, 4)} 0.268767
{(−1, 4), (0,−3)} −2.73426

{(−1, 0), (−1, 4), (0,−3)} 2.96929
{(−1, 4), (0,−3), (0,−1)} 1.95346

{(0,−4)} 2.1858
{(−1, 0), (0,−4)} −0.355664
{(0,−4), (0,−2)} −1.61185
{(0,−4), (0,−3)} −1.23267

{(−1, 0), (0,−4), (0,−3)} 0.606075
{(0,−4), (0,−3), (0,−2)} 2.03717
{(−1, 4), (0,−4)} −4.01512

{(−1, 0), (−1, 4), (0,−4)} 3.80173
{(−1, 4), (0,−4), (0,−3)} 2.6053

{(−1, 0), (−1, 4), (0,−4), (0,−3)} −1.64379
{(−2,−4)} −0.717159
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