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In the process industry, various types of degradation occur in processing plants, resulting in significant 

economic losses. Modeling of degradation is important because it provides quantitative insights for con- 

sideration of degradation impacts in the operations of process manufacturing. This paper studies batch 

processes that show a periodic pattern for the evolution of degradation. A new data structure, the cam- 

paign, is applied for data-driven modeling of the periodic batch-to-batch evolution of degradation using 

a new multiway partial least squares approach, and it is further employed to predict the evolution of 

degradation in a series of batch runs. The proposed approach is illustrated and applied in a comprehen- 

sive industrial case study. The example illustrates the efficacy of the proposed model and presents a fair 

potential for applications of degradation prediction. 

© 2019 The Authors. Published by Elsevier Ltd. 
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. Introduction 

In process manufacturing, degradation refers to detrimental

hanges of physical conditions in processes that evolve with time,

se, or external causes, and has always been one of the main con-

erns in processing plants ( BSI, 2001 ). Fouling as typical degrada-

ion occurs in many production scenarios and results in degraded

fficiency, widely in units such as chemical reactors, coal-fired util-

ty boilers, compressors, heat exchangers, etc. ( Yeap et al., 2004;

eruel et al., 2005; Cicciotti et al., 2014; Wang et al., 2015; Urru-

ia, 2016 ). Other types of degradation in mechanical systems, such

s cracking, deformation, and wear, are discussed and illustrated

ith examples in Martin et al. (1983) , Zmitrowicz (2006) and

iang et al. (2008) . For the existing plants that have degradation

ssues, many solutions have been developed to minimize the nega-

ive impact of degradation on production from the perspectives of

rocess control. Among them, various types of degradation models

re developed for different types of degradation processes ( Yeap

t al., 2004; Teruel et al., 2005; Cicciotti et al., 2014; Wang et al.,

015; Wu et al., 2018 ). Further, control and optimization frame-

orks that incorporate degradation models are developed and ap-
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lied in a variety of processes ( Radhakrishnan et al., 2007; Xenos

t al., 2016; Biondi et al., 2017; Lozano Santamaria and Macchietto,

018; Dalle Ave et al., 2019; Wu et al., 2019a ). 

In the field of process control, one of the essential parts of han-

ling degradation issues is modeling of degradation-related mech-

nisms. Modeling of degradation is usually custom-made. In some

cenarios, the difficulties in the online measurement of degree of

egradation lead to the use of monitoring and state-estimation ap-

roaches for detection or indication of degradation ( Cicciotti et al.,

014; Wu et al., 2019b ). When a degradation indication is available,

t is possible to build a degradation model where the degree of

egradation is a function of some influencing factors ( Gorjian et al.,

010 ). This type of factors-based model can simulate the evo-

ution of degradation in different time scales. Some factor-based

ouling models have been developed for continuous processes in

eruel et al. (2005) and Radhakrishnan et al. (2007) , which can be

aken as maintenance tools to show the evolution of fouling in the

ext months by giving the future operating and scheduling param-

ters. The degradation model in Zhang et al. (1999) is used for the

stimation of fouling in batch reactors, which focuses on the foul-

ng evolution in each single batch run and, therefore, cannot pre-

ict fouling in future batches. 

Degradation models focus on systems’ patterns and dynamics

hat relate to degradation and, therefore, have been considered

s a special type of soft sensors in industrial practice. Like other
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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soft-sensor applications, modeling of degradation must adapt to

various types of processes and process industry data that are

characterized by missing values, data outliers, data collinearity,

etc ( Kadlec et al., 2009; Yin et al., 2015 ). Degradation models

can be classified into first-principle models and data-driven mod-

els. The approaches using first-principle models account for the

physical and chemical mechanisms of the process, requiring ad-

equate process knowledge. In many cases, first-principle models

describing process dynamics are not reliable in practical scenar-

ios due to a lack of complete process understanding and un-

known process parameters. In comparison with first-principle ap-

proaches, data-driven approaches require less understanding of the

process and aim to describe the real process conditions from his-

torical data. These approaches show good performance in many

scenarios of applications, and different data-driven methods for

soft sensing, such as principal components analysis (PCA), partial

least squares (PLS), and artificial neural networks, are reviewed in

Kadlec et al. (2009) and Yin et al. (2015) . Among those approaches,

PCA and its regression model, PLS, or projection to latent structures

described in Geladi and Kowalski (1986) and Abdi (2010) are widely

applied to the modeling of high-dimensional industrial data. Fur-

thermore, degradation models have been applied with an increas-

ing interest in reliability analysis to evaluate and predict reliability

of systems such as time-to-failure and the probability of failures

to occur ( Gorjian et al., 2010 ). Classification of degradation models

in reliability analysis can be found in Gorjian et al. (2010) , where

the models are often application-specific using different types of

modeling methods. 

Batch processes are commonplace in the process industry.

These are processes that produce a finite amount of output ma-

terials over a finite time period, and is typically repeated. These

traits differentiate them from continuous processes and allow op-

erations to adjust recipes and raw materials in each batch run. In

many industrial batch processes, the lack of understanding of non-

linear dynamics and limited specific measurements leads to dif-

ficulties for building first-principle models and any use of con-

ventional estimation techniques in the modeling of degradation

( Zhang et al., 1999 ). Furthermore, the discrete operation aspect of

batch processes gives a three-way matrix form of data that does

not fit into modeling methods based on two-dimensional data.

To apply multivariate analysis on batch processes, unfolding tech-

niques are developed to unfold the three-dimensional matrix into

a two-dimensional matrix leading to multiway PLS and multiway

PCA approaches, which are widely used in monitoring and mod-

eling of batch processes ( Nomikos and MacGregor, 1994; 1995;

Flores-Cerrillo and MacGregor, 2004; Wold et al., 2010; Keivan

Rahimi-Adli, 2016 ). Moreover, further topics in the multiway PLS

approaches, such as missing data estimation, multimode, and ro-

bust model, are discussed to improve the performance of batch-

wise modeling ( Nelson et al., 1996; Arteaga and Ferrer, 2002; Nel-

son et al., 2006; Wang and Srinivasan, 2009; Wang, 2011 ). On the

other hand, the long-term trend of batch-to-batch data draws at-

tention and has been considered for application-specific modeling

in literature. Considering batch-to-batch startups that shows non-

stationary and nonidentically distributed process data from batch

to batch, Yan et al. (2015) adopted a nonparametric signal decom-

position techniques to obtain the short-term intrabatch variations

for multivariate statistical process monitoring. Wu et al. (2018) de-

veloped a degradation model to capture the long-term trend of

fouling between batches. 

This paper focuses on the modeling of degradation evolution

in batch processes, which provides prediction of batch-to-batch

degradation. In a degraded batch system, the condition of degra-

dation is a trigger for the maintenance after a certain number of

batch runs. A degradation model can simulate the evolution of

degradation in different conditions of batch production and, there-
ore, provides new possibilities for optimization of batch produc-

ion, such as scheduling of multiproduction and maintenance op-

rations. It is observed that some batch-to-batch degradation fol-

ows a periodic pattern growing from zero degradation to high

egradation repeatedly, and the concept of campaign is introduced

o denote a sequence of batches following such a periodic pat-

ern ( Wu et al., 2018 ). A novel multiway PLS approach is pro-

osed to model the evolution of degradation by considering vari-

tions from campaign to campaign, which presents good abilities

or the prediction of degradation in future batches. The main con-

ribution in this paper is the proposal of a new model formula-

ion for the prediction of batch-to-batch degradation. We adapt

he multiway approach used typically for batch analysis to the

odeling of campaign-structured data. We extend our previous

ork in Wu et al. (2018) in several ways, most importantly by

ntroducing the concept of subcampaigns to improve data align-

ent. Moreover, an industrial case study, significantly extended

rom Wu et al. (2018) , is illustrating the application of the new

ampaign-based PLS model to predict the degradation in the form

f a fouling indicator. 

The paper is structured as follows. Section 2 revisits the batch

ata structure and the multiway approach and introduces the con-

ept of the campaign for batch processes and its data structure.

ew data alignment and unfolding methods are introduced to ad-

ust the campaign-structured data and fit it into a multivariate

nput–output model. Subsequently, a general campaign-based PLS

odel structure is presented along with a prediction framework

ased on missing data estimation methods. Section 3 presents a

ase study about fouling in a chemical batch plant in which the

roposed approach is applied to model and predict the evolu-

ion of fouling. Moreover, discussions about the application in the

ouling example are provided. Finally, conclusions are drawn in

ection 4 . 

. Methodology 

.1. Revisit of multiway approaches for batch data analysis 

Multiway approaches including multiway PLS and multiway

CA are extensions of standard multivariate data analysis meth-

ds to handle batch data that are in a three-dimensional structure

 Nomikos and MacGregor, 1994; 1995 ). To illustrate, consider all

vailable batch data from Batch 1 to Batch Q , which consists of

atch initial conditions, process trajectories, and batch final qual-

ties, as illustrated in Fig. 1 . The initial condition matrix ( Q × I )

efers to the measurements (total number I ) related to recipe-

ased initialization of each batch run, such as initial tempera-

ures, raw material charges and properties, etc. The process tra-

ectories are several measurements (total number of types J ) such

s temperatures, pressures, flowrates, etc., being made frequently

hroughout the duration ( T q ) of each batch run, where the sub-

cript q ∈ { 1 , 2 , . . . , Q} denotes the batch index, leading to a three-

imensional structure ( Q × J × T q ). The batch final quality matrix

 Q × F ) refers to critical product specifications (total number F )

n each batch run. Moreover, the final quality is usually affected

y the batch operation which are shown in the form of process

rajectories and initial conditions. For the three-dimensional data

rising from batch processes, multiway approaches typically ap-

ly an unfolding method first to transform trajectories into a two-

imensional matrix. As an example, the unfolding method called

atchwise unfolding (BWU) rearranges the presentation of trajecto-

ies from batch to batch, in which each of the vertical slices ( Q × J )

f trajectory data is put side by side to the right to create a new

wo-dimensional structure as shown in Fig. 1 (a) ( Nomikos and

acGregor, 1994; 1995 ). The initial conditions and the unfolded

rajectories are, in the next step, taken into the input matrix of
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Fig. 1. (a) Batch data structure and batchwise unfolding; (b) alignment of batch 

data. 

b  

o  

m  

p  

e  

a  

e

 

d  

j  

r  

c  

c  

t  

d  

c  

u  

t  

w  

R  

m  

a  

a  

w  

m  

s

2

 

b  

a  

t  

d  

n  

c  

d  

d  

w  

r  

m  

c  

p  

l  

u  

Fig. 2. Structure of campaign data and campaignwise unfolding; B i is an indicator 

saying the corresponding data is from Batch i . 
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oth PCA and PL S models. Additionally, PL S models consider an

utput matrix that includes batch final qualities. These empirical

odels can be of use to applications of batch monitoring and final

roduct quality prediction, and the online prediction can be further

mployed for the midcourse correction of ongoing batches ( Yabuki

nd MacGregor, 1997; Flores-Cerrillo and MacGregor, 2002; Wold

t al., 2010; Keivan Rahimi-Adli, 2016 ). 

One of the challenges in applying multiway approaches in batch

ata analysis is the variation of batch duration. The number of tra-

ectory measurements of each batch varies according to batch du-

ation T q , leading to uneven row lengths in the input matrix ac-

ording to the unfolding method, as presented in Fig. 1 (a). Typi-

ally, changes in operating conditions result in varying batch dura-

ion. Data alignment becomes necessary for the modeling of batch

ata so that variables or scores at any point during a batch can

orrespond to those at the same state in other batches. A widely

sed approach for data alignment is to use the time or find a signal

hat increases monotonically from a given starting point to an end,

hich is taken as a maturity indicator ( Wold et al., 2010; Keivan

ahimi-Adli, 2016 ). By aligning the unfolded data according to the

aturity indicator with the number of new samples in each batch

s T A , the row length for each unfolded trajectories is kept even

s Fig. 1 (b) shows. One can also use landmarks for each batch,

hich describe representative features of trajectory data such as

inimum and maximum values, average numbers of process mea-

urements over a period ( Wold et al., 2010 ). 

.2. Campaign structure for degradation evolution 

We introduce the notion of a campaign to denote a series of

atches that repeats in a periodic pattern. In this paper, campaigns

re batch series between any two neighboring maintenance actions

hat restore a degradation mechanism. Usually, the growth rate of

egradation in the batch production is not so fast that mainte-

ance has to be done after each batch. Instead, the maintenance is

arried out after a series of batches when the accumulated degra-

ation reaches a threshold. The maintenance restores the degra-

ation condition in the batch unit, leading to a periodic pattern

here the degree of degradation grows from zero to a high level

epeatedly. The evolution of degradation in each campaign shares

any similarities with the within-batch dynamics of batch pro-

esses. First, both campaigns and batches are processed in a re-

eated pattern. Each batch run in a normal operation mode fol-

ows a certain batch trajectory, which is in a time series, and ends

p with a product that meets the quality requirements. Compared
o that, each campaign from a multipurpose batch plant consists of

 series of batches following a production sequence in each batch

nit, and those batches contribute to the growth of degradation

ntil a maintenance operation restores the degree of degradation.

econd, both campaigns and batches share similar variations on

he length of the series. The duration of each batch varies due to

he change of operating conditions, while the length of the batch

eries in each campaign changes due to different growth rates of

egradation. 

As stated above, we use the campaign concept to group batch

eries between two neighboring maintenance operations so that

he grouped batch series present a qualitatively similar degrada-

ion evolution in each campaign. By rearranging the unfolded and

ligned batch data, we propose a campaign data structure that

iles the two-dimensional unfolded batch data according to the

rouped batch series as illustrated in Fig. 2 . B q indicates the cor-

esponding data are from Batch q , while the subscript cn in B cn 

enotes the index of the last batch in Campaign n . The aligned

nd unfolded data are from Fig. 1 (b) with a new total number K.

 n refers to Campaign n ∈ { 1 , 2 , . . . , N} , where N is the total num-

er of the campaigns. M n is the number of batches in Campaign n .

orresponding to the final quality in batch data, the final degrada-

ion of a campaign is defined as the degree of the degradation in

he last batch of the campaign that can be measured or indicated.

he number of degradation indicators or measurements for each

atch is one and can be extended with multiple ones in specific

ases. The degree of degradation is often affected by other earlier

atch operations within the same campaign due to the evolution

echanism. 

.3. Multiway approach for campaign-based degradation modeling 

Because frequent degradation measurements or indicators are

ypically not available, modeling the batch-to-batch evolution

f degradation becomes a favorable option for the purpose of

egradation prediction and is the one chosen here. This type of

egradation model considers the contribution of each batch to the

verall evolution of degradation instead of the continuous-time

ithin-batch dynamics of degradation in each individual batch.

he proposed campaign data structure is developed based on the

eature of degradation evolution, the repeated pattern from cam-

aign to campaign, and leads to a new modeling of degradation
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1 The small-data problem refers to the scenario that the product has a lim- 

ited production history, which is common in process manufacturing ( Tulsyan et al., 

2018 ). 
by integrating the structure of the campaigns. In such a campaign-

based degradation model, the campaign data consist of a series

of individual batch data. Because the batch data have shown a

three-dimensional structure with batch indexes, process variables,

and time instants, the campaign data are also multidimensional

and have an additional dimension, campaign indexes. Similarly, in

regard to the case of batch data, the campaign data have to be un-

folded into a two-dimensional structure for multivariate data anal-

ysis. An unfolding method called campaignwise unfolding (CWU) is

proposed in Wu et al. (2018) . With the application of the unfolding

method and data alignment on batch data, CWU considers the

three-dimensional campaign data based on results of batchwise

unfolded data, as Fig. 2 shows, and the unfolded batch data of each

campaign is further unfolded into one line by putting the vertical

slices ( N × K ) side by side to the right. Similar to the batchwise

unfolding method that enables further modeling and analysis

among batches, the campaignwise unfolding method provides the

appropriate data structure to model the variations of “trajectories”

from campaign to campaign with regard to the evolution of degra-

dation. In such a model, the final degradation for campaigns is

taken as the output. The unfolded batch data reflecting batch oper-

ations of each campaign are taken as the inputs. Furthermore, the

unfolding method can generate many columns in the input matrix

of campaign degradation models. Though PLS methods may be

able to handle this, it is often not necessary to choose all unfolded

data from the same campaign as inputs; for example, some time-

dependent measurements (batch trajectories) repeat patterns from

batch to batch and are irrelevant to the evolution of degradation. 

The number of batches in each batch series of a campaign can

be different, and, therefore, the CWU-based unfolded campaign

data in Fig. 2 have an uneven row length in the two-dimensional

structure, resulting in difficulties for further modeling. Unlike con-

tinuous time series in batch data, it is difficult to merge discrete

batch samples or decompose one batch sample into several ones

for data alignment due to the discrete nature of the batch series.

Furthermore, the batch series contributes to the degradation evo-

lution in the form of production sequences, and it does not make

sense to remove any batch samples in the middle of the sequences.

Wu et al. (2018) proposed to use the last M batches of each cam-

paign for degradation modeling, and, therefore, the model takes

the same number of batch samples for each campaign requiring

no further alignment. However, this method only enables part of

the campaign features to be captured in the model and is hard to

determine the starting batch of a new campaign for prediction. A

new data alignment method is required to improve the campaign-

wise modeling of degradation. 

A new data resampling method is proposed here for the align-

ment of campaign data by generating subcampaigns from cam-

paigns. A subcampaign is a fixed-length batch series belonging to a

single campaign and is resampled by shifting a M -length window

within each campaign batch series, as Fig. 3 shows. Take Campaign

C 1 as an example. Many subcampaigns are generated from C 1 S 1 to

 1 S c1 −M+1 , where the subscripts in C 1 S 1 denote the campaign in-

dex and the index of the corresponding subcampaign. The number

of subcampaigns from one campaign depends on the lengths of the

campaign and the subcampaigns. Some campaigns generate many

subcampaigns, while others have less or even no subcampaigns.

The length of a subcampaign, M , is application-related, and, nor-

mally, M should be small enough to generate a considerable num-

ber of subcampaigns from limited amounts of campaign data. Be-

sides, M means the maximum prediction horizon in a subcampaign

PLS model, which can be found in the next subsection, and more

discussion about M can be also found in the case study section.

In degradation models based on the subcampaign unfold data as

Fig. 3 shows, the new final degradation is defined as the measure-

ments or indicator of degradation after the last batch of the sub-
ampaign and is taken as the output, which is different from the

nal degradation of campaigns. Similar to the batch modeling in

ig. 1 , initial conditions of one subcampaign refer to degradation-

elevant measurements before the starting batch of this subcam-

aign and are added as inputs in the degradation models. By mod-

ling on the subcampaign data, the starting batch for the predic-

ion of degradation evolution does not suffer the limitations ob-

erved by using the last M batches of campaigns for the data align-

ent; that is to say the first batch of one subcampaign can be

ssigned to the first batch or any middle one in an ongoing cam-

aign. In addition, the subcampaign concept may help alleviate the

small-data problem 

1 ”. Applying multivariate modeling to a small

ata set may lead to overfitting and lack of data representations,

o the subcampaign resampling method generates larger data sets

rom a limited historical campaign data leading to an improved so-

ution. 

.4. Degradation prediction using subcampaign PLS model 

The PLS approach is employed to model degradation dynamics

sing the subcampaign data, as Fig. 3 illustrates. The model input

onsists of a series of unfolded subcampaign data and initial condi-

ions for subcampaigns, which reflect the variations from subcam-

aign to subcampaign; and the indicator for the final degradation

f subcampaigns is selected as the output. The model expression is

resented as follows: 

 = T P � + E 
(1)

Y = T C � + F 

where the input matrix X ∈ R 

L ×(M i + M u ) is a collection of L sub-

ampaign row vectors x l ∈ R 

(M i + M u ) ×1 : 

 = 

⎡ 

⎢ ⎢ ⎣ 

x 

� 
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x 

� 
2 
. . . 

x 

� 
L 
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⎥ ⎥ ⎦ 

= [ X i , X u ] , X i = 
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⎢ ⎢ ⎣ 

x 
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. . . 
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x 
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. . . 
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u 
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(2)

hat is, X consists of the initial conditions and unfolded sub-

ampaign data and is divided into blocks X = [ X i , X u ] , where X i 

s a collection of the initial condition data of subcampaigns x i 
l 
∈

 

M i ×1 and X u is a collection of the unfolded data of subcam-

aigns x u 
l 

∈ R 

M u ×1 . Moreover, x u 
l 

consists of M unfolded batch data

 

u � 
l 

= [ x ub � 
(l , 1 ) 

, x ub � 
(l , 2 ) 

, . . . , x ub � 
(l , M ) 

] , and x ub 
(l , m ) 

represents the vector of

he m th unfolded batch data in Subcampaign l . The output ma-

rix Y ∈ R 

L ×M y is a collection of final degradation indicator vectors

 l ∈ R 

M y ×1 . The the score matrix T ∈ R 

L ×A is a collection of vectors

l , and τl corresponds to the values of the scores for the l th sub-

ampaign. The matrices Y and T are presented as follows: 

 = 

⎡ 

⎢ ⎢ ⎣ 

y � 1 

y � 2 
. . . 

y � L 
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⎥ ⎥ ⎦ 

, T = 
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⎢ ⎢ ⎣ 

τ� 
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τ� 
2 
. . . 

τ� 
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⎥ ⎥ ⎦ 

(3)

 ∈ R 

(M i + M u ) ×A and C ∈ R 

M y ×A are the loading matrices where the

imension of the PLS model is denoted by A . A second ma-

rix W ∈ R 

(M i + M u ) ×A , called âǣweight matrix,âǥ helps calculate the

cores T during the parameter estimation of the PLS model, and

he score matrix T is defined by T = XW s , where W s = W (P � W ) −1

 Geladi and Kowalski, 1986 ). Both the input data X and the out-

ut data Y are preprocessed by centering and unit variance scal-

ng, and the loading matrices { P, C, W } and score matrix { T } of the
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Fig. 3. Subcampaign unfolded data; B i is an indicator saying the corresponding data is from Batch i . 
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s  
LS model are estimated using the nonlinear iterative partial least

quares (NIPALS) algorithm ( Geladi and Kowalski, 1986; Westerhuis

t al., 1998 ). A multiblock PLS model as a variation of the stan-

ard PLS model is applied by dividing X into several blocks, such

s X i and X u , and assigns weights to different input blocks for im-

roving the interpretability of the model ( Westerhuis et al., 1998 ).

iven a new subcampaign data vector x n , the corresponding out-

ut estimate ˆ y n is calculated based on the existing PLS model as

ollows: 

n = W 

� 
s x n 

(4) 
ˆ y n = C τn 

where the score vector τn is calculated from x n , and ˆ y n is calcu-

ated from τn according to the PLS model in Eq. (1) . 

Degradation prediction using missing data estimation methods. In

he scenario of degradation prediction, an ongoing campaign is

rovided with all measurements available for the finished batches,

nd the target is to predict the evolution of degradation in the

lanned future batches. The ongoing campaign is further divided

nto different subcampaigns according to Fig. 3 , which contain dif-

erent amounts of finished batches as Fig. 4 illustrates. The sub-

ampaign PLS model obtained from the historical campaign data

s employed to predict the final degradation for those subcam-

aigns. The measurements related to the future batches of each

ubcampaign lead to missing data in the input vector x for the

ubcampaign PLS model. The new input data vector x n is fur-

her divided into two parts x n = [ x ∗� 
n , x # � n ] � , the missing data

 

# 
n , and the observed data x ∗n . The prediction of the final degra-

ation of the subcampaign ˆ y n is then calculated based only on
ig. 4. Different subcam paigns at one given time; each horizontal rectangle rep- 

esents a subcampaign, where B k is the present batch, the shaded part represents 

nished batches, and the unshaded part represents future batches. 

τ  

c  

r

τ

 

c  

 

i  

t

3

 

i  

e  

p  

i  
 

∗
n . In the literature, several missing data estimation methods,

uch as the conditional mean regression (CMR) and the trimmed

core regression (TSR), have been developed to solve this problem

 Nelson et al., 1996; Arteaga and Ferrer, 2002; Nelson et al., 2006 ).

elson et al. (1996) proposed and implemented CMR for both PLS

nd PCA models. In Arteaga and Ferrer (2002) , multiple missing

ata estimation methods are compared in PCA models, and it is

oncluded that both CMR and TSR show superior performance than

thers. Furthermore, TSR has the additional advantage of a much

maller size for the inverting of the covariance matrix. 

In the CMR method, first, the covariance matrix S of the input

ector x n is calculated using the statistical covariance based on the

istorical normalized input data X as follows: 

 = Cov ( x n ) = X 

� X/ (L − 1) (5)

he loading matrix W s and the covariance matrix S are partitioned

ccording to the input vector x � n = [ x ∗� 
n , x # � n ] : 

 

� 
s = [ W 

∗� 
s , W 

# � 
s ] , S = 

[
S ∗∗, S ∗# 

S # ∗, S ## 

]
(6)

here S ∗∗ is defined as the covariance of the observed part x ∗, and

ther partitioned covariances are defined in a similar way. Accord-

ng to an assumption of normally distributed scores and Eq. (4) ,

he conditional distribution of the score also follows a normal dis-

ribution ( Nelson et al., 2006 ), given as: 

ˆ n = E( τn | x 

∗
n , W s , S) = W 

∗� 
s x 

∗
n + W 

# � 
s S # ∗S −1 

∗∗ x 

∗
n (7) 

n the other hand, the TSR method is derived by fitting a regres-

ion model between the trimmed score, τ ∗ = W 

∗� 
s x ∗, and the score

in the historical data, and the estimate of the final score is cal-

ulated using the regression model as follows ( Arteaga and Fer-

er, 2002 ): 

ˆ n = βW 

∗� 
s x 

∗
n 

(8) 
β = T � T W 

∗� 
s W 

∗
s (W 

∗� 
s S ∗∗W 

∗
s ) 

−1 

The estimates of both output y n and missing input x # n are further

alculated from the score estimate ˆ τn according to Eqs. (1) and (4) .

In the next section, a case study about a chemical batch reactor

s presented and the subcampaign approach is employed to predict

he evolution fouling in the batch production. 

. Case study 

A case study from a multipurpose chemical batch plant, which

s introduced and described in Wu et al. (2018, 2019b) , is consid-

red in this paper. First, a short description of the batch process is

rovided, and the main degradation in this unit, fouling, along with

ts indication are described. A subcampaign PLS model is built for
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Fig. 5. Batch process schematics: reaction section. 
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the fouling evolution in the series of batch runs, and the results

of the modeling, as well as the fouling prediction, are presented to

show the efficacy of the proposed approach. 

3.1. Process description 

In the considered example, the batch plant produces multiple

types of chemical products using different batch recipes. In each

batch, raw materials are discharged and blended in a vessel ac-

cording to the recipe, whereafter the blended materials are dis-

charged into a batch reactor, as shown in Fig. 5 , where the poly-

merization starts with the inflow of the initiator. Because of the

exothermic reaction, the reactor is equipped with two parallel re-

circulation loops in which pumps and heat exchangers are em-

ployed to cool the reactor. Once the reaction is finished, the prod-

uct in the reactor section is further transferred into storage tanks. 

Fouling is one of the main factors that result in production

degradation in this batch plant. During each batch, residuals of

product materials are accumulated in the inner surface of the re-

actor, the pipes, and the heat exchangers. One of the main impacts

of fouling is the reduced heat transfer from the product to the

coolant, which results in a longer batch duration due to the de-

creased cooling capacity. Moreover, the flow resistance grows due

to the residuals in the heat exchangers and the pipes, leading to

an increase in the pressure drop over the heat exchanger, and too

many residuals could even result in a flow block in the recircula-

tion loop. As a result, the units in the reactor section need to be

shut down and cleaned once the fouling reaches an unacceptable

level, and this frequently repeated scheduling of shutdowns leads

to capacity losses in the production. 

The fouling exacerbates the bottleneck of the production and,

therefore, needs to be considered when doing any scheduling for

the batch process. In Wu et al. (2019a) , fouling effects on batch du-

ration are considered in short-term scheduling of batch production

by integrating fouling models into the optimal scheduling frame-

work. The fouling model, conceptually similar but simpler than the

one developed herein, describes the fouling evolution from batch

to batch and provides predictions of fouling evolution for the batch

scheduling, and is, therefore, essential in the optimization of batch

operations when considering fouling effects. 

3.2. Fouling indication 

Some sort of indicator for the fouling condition is a requisite for

the modeling of fouling dynamics. The indicator in this example
elies on the availability of specific process measurements and the

orresponding inner mechanism. In Wu et al. (2018) , a pressure-

ased key performance indicator (KPI) is adopted to indicate the

egree of fouling in the reactor section at the beginning of each

atch run. The KPI takes measurements of the pressure drops over

he heat exchangers through the differential pressure (DP) sensors,

s shown in Fig. 5 , and reveals the variation of fouling according to

ts effects on the flow resistance. The wide range of the operating

oint brings disturbances on the use of pressure measurement for

ouling indication in each batch. As a result, a frequent indication

f fouling, which is based on the batch trajectories of the pressure

ariable, becomes difficult. This less frequent and batch-sampled

ouling KPI prevents from the effects of wide operating ranges in

atch processes but still presents irregular numbers due to changes

n batch recipes. Some recipes have relatively higher or lower KPI

alues compared with the neighboring batches using other recipes.

his is because different batch recipes take different raw materials

r different char ge amounts of the same raw materials, leading to

arying physical properties for both the reactant and the product.

he variations in batch recipes cause an inconsistent indication of

ouling for each batch and, therefore, need to be considered in the

efinement of the KPI, which is essential for further modeling of

ouling. By formulating and solving a state-estimation problem re-

arding the fouling evolution, a recipe-independent fouling KPI is

eveloped in Wu et al. (2019b) . The corresponding results are fur-

her illustrated in the following paragraph. 

The aforementioned fouling indication is applied in a set of his-

orical data. The selected data are from a relatively short and con-

entrated period (one year) and have less abnormal changes or

isturbances during the operations, which makes the system less

ime-varying and more consistent in regard to the evolution of

ouling. Because only one of the two parallel recirculation loops

as running during the picked period, the DP measurements of

he corresponding heat exchanger are taken to calculate the fouling

PI for each batch run. The batch-to-batch series of the fouling KPI

rom the historical data is presented in Fig. 6 to show the evolution

f fouling in different campaigns, where the red circles denoting

he cleaning operation divide the fouling KPI series into many cam-

aigns. The symbols, such as the star, cross, left-pointing triangle,

nd right-pointing triangle, are used to denote the recipe groups

rom RG 1 to RG 4 for the pressure measurements of batches, and

he black dotted line denotes the recipe-independent KPI obtained

rom Wu et al. (2019b) . The length of campaigns varies during

he batch production. In practice, the scheduling of shutdowns for

leaning is not only determined by the fouling conditions. Some

ampaigns are rather short, with cleanings carried out in advance

f what would be needed due to other operational issues apart

rom fouling. Those short campaigns are less representative for the

odeling and were, therefore, omitted from the modeling data set.

.3. Campaign data: data unfolding and alignment 

The proposed campaign modeling approach is employed for the

rediction of the fouling KPI in future batches of the example re-

ctor. Because of the varying length of campaigns, data alignment

s required for the modeling, and the length of subcampaigns M

s determined according to the historical data: M needs be large

nough to cover the main fouling evolution in the campaign, while

t should be small enough to fit most of the campaigns. By setting

 fixed length M , the subcampaign unfolding approach generates

any subcampaigns from the campaigns. 

According to the campaign structure, the historical subcam-

aign data consist of different layers of data, such as batch-

o-batch, within-batch, and subcampaign. The within-batch layer

ncludes trajectories of process variable measurements through-

ut the batch duration. Among them, measurements, such as



O. Wu, A. Bouaswaig and L. Imsland et al. / Computers and Chemical Engineering 128 (2019) 117–127 123 

Fig. 6. Batch-to-batch fouling KPI series denoted with batch recipes and cleaning. (For interpretation of the references to color in this figure, the reader is referred to the 

web version of this article.) 
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emperatures and flow rates, are controlled to follow the designed

atch trajectories and, therefore, are repeated from batch to batch.

ressure measurements, however, are fouling-related and receive a

irect impact from the fouling dynamics. The batch-to-batch layer

onsiders the specifications of each batch according to the recipes,

uch as the charged amounts of raw materials, the set points for

he batch control loops, and the landmarks from the trajectories

hich are relevant to the growth of the fouling after one batch.

he fouling KPI indicates the fouling condition at each batch, and

he batch-to-batch series of the KPI follows a Markov chain pro-

ess due to the fouling mechanism. The layer of subcampaign in

his example considers the initial fouling KPI and the final fouling

PI of each subcampaign. 

.4. Subcampaign PLS model for fouling prediction 

As the purpose of the modeling is to predict the fouling KPI

f future batches, the final fouling KPI of subcampaigns, which is

efined as the fouling KPI after the end batch of each subcam-

aign, is selected as the output of the subcampaign fouling model.

he batch trajectory data is not included in the input matrix be-

ause it enlarges the size of the input matrix greatly and has small

ariations in the operation that hardly contribute to the output.

he recipes during the batch production contribute to the foul-

ng evolution and, therefore, are selected as parts of the inputs for

his model. Different recipes share several similar raw materials,

hile several ingredients are specific to particular recipes. Besides,

ecipes vary in terms of the amounts of raw material additions.

s such, the recipe data matrix that contains charged amounts of

aw materials is employed, while the data for the zero charged

mounts of particular raw materials in specific recipes is not clear.

ane et al. (2001) developed a data preprocessing method for the

ecipe data in multivariate modeling. This method treats the data

ith the zero charged amounts as zero values in the normalized

ata of corresponding raw materials, and the scaling and center-

ng are employed for each ingredient data according to the types

f recipes. Seven different types of raw materials are considered

n this example, and the preprocessed recipe data are illustrated

n Fig. 7 , where the shape of normalized values from raw material

 to G shows the differences between different recipes. The initial

ouling KPI for subcampaigns affects the growth of fouling in each

ubcampaign and, as a result, is selected as one of the inputs. Fur-
hermore, the fouling KPI value of the k th batch in subcampaigns

enoted as { f k | k = 1 : M} are relevant to the output f M 

, and, there-

ore, an extracted feature of the fouling KPI series, called D-KPI,

s further employed for the subcampaign PLS model by computing

he neighboring differences of the batch KPI series df k = f k − f k −1 .

he D-KPI series provides the exact fouling growth of each batch

n one campaign, which linearly contributes to the final fouling KPI

f subcampaigns along with the initial KPI value f 0 . To sum up,

he input vector x of the M -length subcampaign model consists of

he initial fouling KPI value f 0 , the series of the recipe data vector

 r k | k = 1 : M} , and the series of the D-KPI value { df k | k = 1 : M} . 
.5. Model validation 

A latent variable software called ProMV ( MacGregor et al., 2015;

spentech, 2018 ), which is designed for multivariate modeling of

ontinuous or batch processes, is applied to build the PLS model

ere. The historical data of seven campaigns are employed to val-

date the proposed method, and the first step is to determine the

ength of the subcampaign M . Given the average length of cam-

aigns 34 and the shortest length 29, M is set to 25 in this sub-

ampaign PLS model to generate many subcampaigns from a lim-

ted number of campaigns and meanwhile to include more batches

n one subcampaign for a longer prediction horizon. Cross vali-

ation is a popular method giving guidelines for determining the

umber of components in a PLS model ( Wold, 1978 ), and the

eave-one-out method provides a general means for selecting vali-

ation sets. Since subcampaigns that belong to one campaign share

ome input data, it is reasonable to exclude all those subcam-

aigns from the set of subcampaigns for validation. This leave-

ne-campaign-out cross validation is applied and generates seven

ifferent validation and training sets. The result of the cumula-

ive variance explained in the X and Y spaces with different num-

ers of principal components is presented in Table 1 . The metric

2Y is the variance explained in Y space accounting for all valida-

ion sets, which is used to evaluate the predictive performance to

void overfitting. R2X and R2Y are the variances explained in the X

nd Y spaces for all training sets. The Q2Y value is around 69.15%

hen the number of components increases to eight and is not im-

roving critically by adding more components, and, therefore, the

umber of the principal component for the PLS model is chosen as

ight. The scatter plot of estimated and observed outputs using the
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Fig. 7. Normalized charge amounts of raw materials for different recipes. 

Table 1 

cumulative variance explained in the X and Y spaces. 

PC No. 1 2 3 4 5 6 

R2Y 49.37% 86.13% 91.12% 94.54% 97.28% 98.36% 

Q2Y −12.55% 23.18% 43.11% 53.19% 57.67% 59.85% 

R2X 14.34% 21.08% 32.03% 40.45% 44.82% 49.71% 

PC No. 7 8 9 10 11 12 

R2Y 99.34% 99.63% 99.76% 99.87% 99.92% 99.96% 

Q2Y 65.53% 69.15% 70.17% 70.89% 72.31% 73.00% 

R2X 52.53% 55.33% 58.94% 61.78% 63.86% 65.16% 

Fig. 8. Validation: output estimates and observations. 

 

 

 

 

 

 

 

 

 

Table 2 

Validation performance (RMSSE): 7 cross-validation sets. 

CV set Cam 1 Cam 2 Cam 3 Cam 4 Cam 5 Cam 6 Cam 7 

RMSSE 0.50 0.43 0.28 0.16 0.85 0.23 0.42 
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eight-component PLS model is presented in Fig. 8 , where seven

symbols represent the results of each validation data set and the

notation CV:Cam 1 denotes the validation data set consisting of

the subcampaigns from Campaign 1. The statistical results using

the root mean square error of estimation (RMSEE) are presented

in Table 2 . Among them, the estimated outputs in Cam 5 are rel-

atively higher than the observed outputs, and some results from

Cam 1 and Cam 6 are on the opposite. Cam 7 is special as it has

more than 25 subcampaigns due to the long length, in which the
orresponding training set is much smaller. The performance of

am 7 is relatively not satisfactory due to lack of training data,

hile Cam 3 and Cam 4 show good fitting performance. In gen-

ral, the performance of the fouling model can be improved with

ore training data. 

In the prediction scenario, some parts of the input vector x are

issing due to the unfinished future batches in the subcampaign.

he recipe data are relatively fixed and can be obtained in advance

ccording to the production schedule. It is always assumed that

he initial fouling KPI is known so that the prediction horizon is

ounded within M batches. The D-KPI data represent the opera-

ion status of each batch and, therefore, cannot be obtained if the

atch is not finished, which leads to the missing data in this ex-

mple. Two missing data estimation approaches are employed for

he prediction of the final fouling KPI. Five prediction sets are pro-

ided with different portions of missing data in the input vector,

nd the prediction results are illustrated in Figs. 9 and 10 by tak-

ng Cam 3 as examples. The dashed line with the circular marker

efers to the observed output in Campaign 3, and the dashed line

ith the star marker refers to the estimated output, as shown in

ig. 8 . The right-pointing triangle marker denotes the prediction

ith 20 missing batches of the subcampaign, which means that

he prediction is obtained without the last 20 batches and, there-

ore, provides a prediction horizon of 20 batches. This is similar for

ther predictions with different numbers of missing batches. The

rediction with fewer numbers of missing input data or a shorter

rediction horizon has a relatively smaller mismatch error com-

ared with the output estimate, as the RMSSEs in Table 3 show.

n addition, the prediction error compared with the observed out-

ut also becomes smaller when the prediction horizon becomes

horter. The prediction’s RMSSE compared with the observed out-

ut is around twice as large as the RMSSE compared with the esti-

ated output. That is to say, the mismatch error between the pre-

iction and observed output comes from both the model estimate

nd the missing inputs. The results also show that the missing data
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Fig. 9. Fouling KPI prediction using CMR method. 
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Fig. 10. Fouling KPI prediction using TSR method. 

Table 3 

Prediction performance (RMSSE) with missing data in the input vector. 

RMSSE Method 

Prediction horizon 

20 batches 15 batches 10 batches 5 batches 

Estimated 

output 

TSR 0.32 0.31 0.31 0.22 

CMR 0.37 0.34 0.34 0.28 

Observed 

output 

TSR 0.67 0.65 0.65 0.53 

CMR 0.66 0.63 0.62 0.60 
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stimation method TSR has slightly better performance than CMR

y presenting smaller RMSSEs. 

The estimated output from the subcampaign PLS model pro-

ides the prediction of fouling KPI after certain amount of future

atches. One can also calculate the prediction of fouling KPI series

ithin certain amount of future batches using estimates of missing

nput data. The fouling KPI at the k th batch of one subcampaign

 k can be calculated directly through the summation of the D-KPI

ata { df j | j = 1 : k } and the initial KPI of a subcampaign f 0 , which

enders a new perspective to predict the fouling KPI. The missing

ata estimation method helps to find the score estimate ˆ τ from

he observed part of the input vector, and the estimate of miss-
ng D-KPI ˆ df k can be further calculated from the estimated score.

s a result, the estimated KPI value ˆ f k is calculated for all future

atches within the prediction horizon M as Eq. (9) shows. 

ˆ f k = f i 0 + 

k ∑ 

j=1 

ˆ df j , ∀ k = k c : M (9)

here k c refers to the index of the ongoing batch in the subcam-

aign, and batches with an index larger than k c refer to the fu-

ure batches in this subcampaign. One subcampaign example, as

resented in Fig. 11 , shows the estimated KPI series { f k | k = 1 : M}
f the subcampaign C 3 S 5. The subcampaign starts from Batch 6 to

atch 30 in this campaign. The star marker refers to the estimated

utput calculated directly from the PLS model, which is close to

he value f 30 calculated from Eq. (9) . 

Some subcampaigns are resampled from the same campaign.

hese subcampaigns are different parts of the whole batch series

f the campaign and share some batches, as Fig. 3 illustrates. The

verlapped batches from different subcampaigns lead to multiple

ouling KPI predictions for the same batches. One of the solutions

o integrate multiple predictions is to give some weights for those

redictions and to calculate the corresponding weighted average
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Fig. 11. Illustration of an estimated KPI series of Subcampaign C3S5, with initial KPI 

and final KPI, compared to the actual KPI series. 
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value. To avoid notation confusion, a new notation of KPI f Bi is in-

troduced, where the subscript i refers to Batch No. i in one cam-

paign, which is calculated as Eq. (10) : 

ˆ f Bi = 

∑ 

j∈ J i 
a i j ̂

 f j 
Bi 
, ∀ i = i c : N c (10)

where ˆ f 
j 

Bi 
denotes the KPI prediction of Batch No. i from the sub-

campaign j , which is calculated from Eq. (9) ; a ij is the correspond-

ing weight of f 
j 

Bi 
and 

∑ 

j∈ J i a i j = 1 ; the subcampaign j is in the set

J i and J i refers to the set of subcampaigns that contain Batch No. i ;

notation i c denotes the absolute index of the ongoing batch in the

current campaign; and N c is the last planned batch of this cam-

paign. The weight a ij denotes the reliability of the predictions from

different subcam paigns, which can be assigned equally or based on

some available prediction indicators such as Hotelling’s T 2 and the
Fig. 12. Illustration of integrated prediction of KPI series for Campaign 3 compared to a

Batch 15; (c) prediction made at Batch 20; (d) prediction made at Batch 25. 
quared prediction error. In this validation example, the weights

re set equal for the predictions from different subcampaigns, and

he average values are calculated for those predictions of the foul-

ng KPI of the same batch in the validation set Cam 3. All available

ubcampaigns in Cam 3 are used to calculate a series of KPI predic-

ions at different periods of this ’ongoing’ campaign. The prediction

esults are illustrated in Fig. 12 . Four figures in Fig. 12 provide the

volution of the predictions. Fig. 12 (a) shows three KPI prediction

eries at the early stage of this campaign, and Fig. 12 (d) shows the

rediction series at the final stage of this campaign. A better pre-

iction performance is observed for the prediction series that has

ore observed batch data. 

.6. Discussion 

The proposed campaign-based approach provides a prediction

ramework to predict the evolution of fouling with flexible lengths

f the horizon. The measurements for prediction are incomplete in

n ongoing campaign. The missing data estimation method known

s data imputation is applied to handle the missing future data

y assuming a known correlation between the available data and

he missing data, and the correlation in this example comes from

he PLS model. The performance of the missing data estimates

s highly affected by the regression model, the noise term, ill-

onditioning in the inverting matrix, and the degree of informa-

ion in the measured variables about the unmeasured variables,

s Nelson et al. (1996) and Arteaga and Ferrer (2002) comments.

n the case study example, the missing input data are D-KPI and

how an acceptable correlation with other observed input data ac-

ording to the PLS model, which helps with the missing data esti-

ation. On the other hand, the small-data problem puts challenges

n the multivariate modeling. In this example, the amount of in-

ustrial historical data is limited, and the number of observations

as been increased leading to a sufficient PLS model. However, the
ctual KPI series: (a) prediction made at Batch 1, 5 and 10; (b) prediction made at 
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ack of a sufficiently large amount of historical data presents diffi-

ulties in the missing estimation because of the high-dimensional

egression model and leads to a less reliable estimate for the statis-

ical input covariance in the CMR method. Moreover, both the PLS

odel and the missing data estimation work as data interpolation

or those subcampaigns. The prediction performance becomes poor

f the training data set does not cover the pattern in the validation

et, which is a common challenge for all data-driven models. 

Regarding to applications, maintenance operations are usually

riggered when the degree of degradation reach a threshold, which

inks degradation models to the scheduling of maintenance. In the

xample, the fouling KPI has some thresholds for different recipes.

he last batch of Campaign 3 is using Recipe RG 1 and has a thresh-

ld of fouling KPI as five. The corresponding predicted KPI from

igs. 10 and 12 reaches around four given the planned 15 fu-

ure batches ahead, which potentially provide an early warning for

he preparation of fouling cleaning. To apply the fouling predictive

odel to batch scheduling is left as future work. 

. Conclusions 

A modeling formulation for the description of the evolution of

egradation in batch processes has been presented. The concept

f campaign is introduced to describe the periodic pattern for the

egradation evolution in batch processes. A multiway approach for

he campaign-structured data is developed by the proposal of cor-

esponding data unfolding and alignment methods. The new multi-

ay formulation combined with the mature multivariate modeling

ools provides predictions of degradation in future batches, and it

urther presents a potential for practical applications by integrat-

ng it in the optimization of batch production and maintenance.

 case study is presented to show an applicable industrial exam-

le for degradation dynamics in a chemical batch process. The pro-

osed modeling approach is applied in the case study example and

hows acceptable predictions for the fouling KPI of batch series. 
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