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Abstract—In this paper, new approximate analytical models of 

graphene-based micro-and nanostrip transmission lines are given. 

These models are based on the representation of the mentioned 

lines by a parallel-plate waveguide embedded into an effective 

frequency-dependent permittivity media. Our theory allows 

analytical calculation of complex propagation constant and 

characteristic impedance of the main quasi-TM mode of graphene 

strip transmission lines. The developed approach is verified by 

comparisons with the thin-film lossy microstrips, for which the 

measurements and theory are available for frequencies up to 1 

THz and with parallel-plate graphene waveguides. For very-

narrow lines, the developed model is improved by a correction 

tuning technique. The obtained analytical formulas for complex 

propagation constant and characteristic impedance are interesting 

for calculations of electronically controlled graphene-based 

interconnects, microwave and millimeter wave attenuators, 

antennas, and transistors. 

 
Index Terms— graphene microstrip line, graphene nanostrip 

line, an analytical model  

 

I. INTRODUCTION 

RAPHENE material [1] is interesting in the developments of 

new electronics and optoelectronics, including microwave 

and terahertz transistors [2]-[4]. An attractive feature of 

graphene components is their low signal delay and the 

possibility of tuning of their parameters using the electric or/and 

magnetic biasing of graphene’s chemical potential and the 

conductivity of graphene layers [4],[5].  For instance, even loss 

of graphene interconnects can be decreased, tuning the chemical 

potential that is shown in measurements and simulations [6],[7]. 

Many linear and nonlinear graphene devices are published for 

analog microwave integrations [2],[4],[8],[9]. 

 Similarly to that made for conventional electronics, the 
models of graphene components for computer-aided design 
(CAD) software tools should be created for the design system 
libraries [5]. The most analytically studied transmission line is 
the parallel-plate waveguide, where the graphene-one-atom 
layers are separated by a dielectric and biased by electric or/and 
magnetic fields [10]-[15]. Approximate analytical models for 
graphene microstrips are unknown, unlike conventional 
microstrips. There are some papers on numerical simulations 
using the integral equation method, technique of Fourier 
transform, method of lines, and the use of commercial software 
tools are published [5],[13]-[21]. Experimental results on 
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graphene-based components are with electronically controlled 
antennas, attenuators, filters, field-effect transistors [4]. Some 
papers are on the measurements of graphene microstrip 
transmission lines [21]-[23]. 

Analytical calculation of microstrip interconnects [24],[25] 
encounters some difficulties caused by the known and still 
unsolved problems in the theory of printed transmission lines 
complicated by loss properties of scalar or anisotropic graphene 
layers.  

In this paper, a new approximate analytical physics-based 
model of graphene microstrip proposed allowing to calculate the 
complex propagation constant and characteristic impedance.   

II. THEORETICAL MODEL OF A GRAPHENE 

MICROSTRIP LINE 

The cross-section of the modeled graphene microstrip line 

is shown in Fig. 1a.  

 

Fig. 1. Cross-sections of the studied integrated transmission lines. a) 

Graphene microstrip (nanostrip) line; b) Equivalent parallel plate model of 

graphene microstrip (nanostrip) line with the ideal magnetic walls placed at the 

effective width ( )effw f  from each other; c) Thin-film microstrip line. 
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The atomic-thick graphene signal strip conductor (in grey 

color) of the width w  placed on the surface of the substrate of 

the relative permittivity  r , relative permeability 1r = , and 

the height h .  

In general case, the graphene layer properties are 

anisotropic and described with a conductivity tensor   [18], 

[26]: 

 
11 12

21 22

  
.

  

 


 

 
=  
 

  (1) 

Another side of this substrate is covered with a thin metal 

layer of the specific conductivity 
( )
1

s
  and thickness 1t , or it can 

be assumed as a perfect conductor with 
( )
1 .

s
 =     

The first theories of conventional microstrip lines relate to 

the beginning of the 50th of the last century when, firstly, the 

strip-line cross-section was transformed into a parallel plate 

geometry on a complex plane, and the potential, electric field, 

and characteristic impedance of the main transversal 

electromagnetic (TEM) mode were calculated. Microstrip lines 

have the layered dielectric design, and they can be calculated 

by the method of conformal mapping only in an approximate 

manner. For this purpose, the line is filled by an effective 

dielectric media uniformly, and again the same method allows 

to calculate the modal parameters. The hybrid nature of mode 

is considered by introducing the frequency-dependent effective 

permittivity. To analyze the microstrip discontinuities, the 

microstrips are represented by parallel-plate waveguide filled 

by the effective modal permittivity, and even multi-modal 

diffraction effects are described in this manner using the 

mathematical means or equivalent circuits of discontinuities 

[27]. 

Loss calculation in microstrips is a rather challenging 

problem, especially in a wide frequency band. Many models are 

known and used in engineering practice. One of them is our 

parallel-plate approximation validated by published 

measurement at frequencies up to 150 GHz, and by 

comparisons with some numerical simulations up to 1 THz 

[24],[25]. In this model, parallel-conductor plates are 

substituted by equivalent impedance walls, and no field is 

supposed outside the cross-section of this parallel-plate 

waveguide filled with an effective permittivity media and limed 

by magnetic walls placed at a certain effective distance effw  

from each other. The theory gives the complex propagation 

constant and characteristic impedance, and it is accurate for the 

wide thin-film conductor and electrically thin-substrate 

microstrips used in microwave integrated electronics. 

Direct application of this model to graphene microstrip 

shows its inaccuracy because electromagnetic (EM) field 

penetrates the atomically thin graphene, and it is strong over 

this layer, and, at the difference to conventional conductors, this 

field should be considered when we are formulating a parallel-

plate model of the graphene microstrip line. 

The main idea of this contribution is that the parallel-plate 

geometry of the microstrip model is embedded into the uniform 

effective permittivity media (Fig. 2), and it allows to obtain 

analytical expressions for the complex modal propagation 

constant and characteristic impedance. Otherwise, placing this 

mentioned geometry into a layered media allows getting the 

dispersion equations solved only numerically regarding 

complex longitudinal propagation constant zk  . 

  Before to provide the EM treatment for this model (Fig. 2), 

let’s consider the parameters of all components of this 

equivalent waveguide.  It is supposed that it is filled with the 

effective frequency-dependent permittivity media ( )eff f (see 

Appendix A for the calculation formulas), and it is of the 

effective frequency-depending width ( )effw f . 

 Considering the anisotropic graphene and lossy ground 

conductor represented with its surface impedance, the field of 

the main mode in the parallel-plate waveguide (Fig. 1b) is 

hybrid, and it has all six field components. This field is written 

using two vector potential functions for each layer, supposing 

the independence of the field according to the x −  direction: 

 
( ) ( ) ( ) ( )1,2 1,2

0, ,zjk z

yy z y e−
= Φ y   (2) 

 
( ) ( ) ( ) ( )1,2 1,2

0, zjk z

yy z y e−
= Ψ y   (3) 

where zk  is the unknown longitudinal propagation constant.  

For our further treatment, we need only the fields 

0 0x zE E = +E x z  and  0 0x zH H = +H x z , which are 

tangential to the plates of the waveguide (Fig. 1b): 

 

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1,2 1,2
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0
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x z y
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z

r

E y z jk y e

yk
E y z e

f y

H y z jk y e

yk
H y z e

y

 

 

−

−

−

−

= 

 
= −



= 


= −



  (4) 

with 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1

1

2

2

cos sin ,

cos sin ,

,y

y

y y y

y y y

jk y h

y

jk y h

y

y A k y B k y

y C k y D k y

y Ee

y Fe

− −

− −

 = +

 = +

 =

 =

  (5) 

where 1j = − , 0  is the vacuum absolute permittivity, 0  and 

r  are the vacuum absolute and media’s relative permeabilities, 

correspondingly, ( )2 2

0 effy r zk k f k = − , 0k c= , c  is the 

light velocity in mm/s, and 2 f = , and f  is the driving 

frequency in Hertz. The constants , , , , , ,A B C D E F and  zk  are 

unknown, and they are obtained from the boundary conditions.  

The first two of them are on the tangential to the boundary 

fields 
( ) ( )1

0y =E   and 
( ) ( )1

0y =H  matched at the surface of 
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the ground layer using the Leontovich’s boundary condition that 
gives two equations: 

 ( ) ( ) ( ) ( ) ( )1 1 1

10 0 0sy Z y 
 = + =  =
 

E H n   (6) 

where 
( )1

sZ  is the surface impedance of the ground layer 

specified below in formula (13), 1n  is the normal vector to the 

boundary 1 and oriented along the y − axis. 

Other four boundary equations are written for the graphene 

layer supposing its zero thickness: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 1

2 1 2

2

0,y h y h

y h y h y h

 

  

= − = =

= − = = =

E E

H H E
.  (7) 

These boundary conditions (6) and (7) give the six linear 

algebraic equations regarding A , B , C , D , ,E F . The 

determinant of this homogeneous system delivers a 

transcendental equation for the propagation constant zk  of the 

treated waveguide (Fig. 2) filled with ( )eff f  and being 

equivalent to the graphene microstrip line (Fig. 1a). This system 

order can be decreased down to four if the ground layer is 

considered being perfect. 

 

A. Anisotropic Graphene-Perfect Ground Layer Line 

In this case, the two potential functions for two layers are: 

 

( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )
( )

1

1

2

2

cos ,

sin ,

,

.

y

y

y y

y y

jk y h
y

jk y h
y

y B k y

y D k y

y Ee

y Fe

− −

− −

 =

 =

 =

 =

  (8) 

These functions provide the fields satisfying the boundary 

condition on the ideal metal; the other four equations are on the 

boundary with the graphene layer (see Equ. (7)). It gives the 

following eigenvalue equation regarding the longitudinal 

propagation constant zk : 

 

( )

( )

( ) 12

0 0

     0              sin                   0                           -1

sin             0                                                   0

cosdet
     0                   

y

y

y y y

r e

k h

k h j

k k h jk 

   

−

−

( )

( )
( )

11
0

22
21

0

0
      

cos               0           1           -

y

ff r

y
y

eff

k
j

f

k
k h

f


 




 

 
 
 
 
 
  =

+ 
 
 
 − +
 
 

 

 (9) 

Supposing that the substrate is electrically thin,  1yk h , 

( )sin ,y yk h k h  ( )cos 1,yk h   the analytical treatment of the 

determinant (9) gives: 

 

 

 
( )

2 22
112

0 00 eff

( 1) 1
0.y y

r rr

h h j
k k h

k f




    

 −
+ − + = 

 
  (10) 

This quadratic eigenvalue equation is solved regarding yk  

analytically, and one of the roots corresponds to the quasi-TM 

main mode of the considered transmission line.  It is seen that 

although 12  and 
2,1   are not seen in this formula, the 

influence of anisotropy of conductivity remains in hybrid nature 

of the main mode caused by this conductivity, and it needs to 

be considered in the theory of graphene microstrip line if its 

conductivity is anisotropic that is in correspondence to the 

conclusion of [18]. 

The longitudinal propagation constant zk  is derived 

immediately from ( ) 2

0 effz r yk k f k = −  choosing the 

needed branch of the imaginary part of this propagation 

constant properly. 

For calculation of the characteristic impedance for the main 

mode, the boundary equations (6) and (7) should be solved if 

the propagation constant zk   is found from (9) or (10). Then, 

this parameter is found as a relationship between the graphene 

current and line voltage. An example of such formulas is shown 

below.  

 

B. Scalar Graphene-Imperfect Ground Layer Line 

Another important variant is the biasing of the graphene 

layer by only the electric field.  At sub-Terahertz region, 

graphene, according to the opinions of many authors, can be 

described by scalar conductivity 2 . Then, in the parallel-plate 

waveguide, the electric and magnetic types of modes can be 

classed independently regarding the y − axis [14],[15]. 

Consider the correspondence of these modes to the main 

mode of the graphene microstrip line. It is obvious that this 

mode should have a strong 
yE  component similarly to the 

conventional microstrip. Due to the loss in ground and 

graphene, the main mode should have the longitudinal 

component of the electric field, and this mode can be related to 

the quasi-TM modes [24],[25]. Then, to model this main mode 

of graphene microstrip, the  yE −  lowest mode of equivalent 

the parallel plate waveguide is used for our further treatment. 

To describe this mode, the following potential functions are 

chosen: 

 

( )

( ) ( )

1

2

cos sin ,

.y

y y y

jk y h
y

A k y B k y

Ce
− −

 = +

 =

  (11) 

Using (4) and (11) for only 
( ) ( )1,2

,e y zΦ and the boundary 

conditions (6) and (7), one can obtain the following eigenvalue 

equation for zk : 
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( ) ( )
( )

( )

( )

( )

2

0 eff

1

0 eff

cos            -sin           1

det sin         cos                       0

                            0        

y

y y

y y

y

s

k
k h k h

f

k h k h j

k
jZ

f



 

 

 
− − 
 
 
− = 
 −
 
 
 

 (12) 

where 

 
( ) ( ) ( )1 1

0 1 1cot ,s MZ jZ k t= −   (13) 

( ) ( )
( )

( )

1

1 0

0

1

1
2

r

M s
Z j

 


= + , and 

( ) ( )
1

1

0 1

1

2
s

r

j
k

  

−
= , 

( )1

r is the conductor’s relative permeability constant, 
( )
1

s
  is the 

ground conductor’s specific conductivity, and 1t  is the ground 

conductor thickness. 

The scalar  conductivity 2  of an isolated carbon sheet is 

calculated using one of the known approximate formulas, for 

instance, from [18]: 

 
( )

( )2
bias

2 2 1
ln 2 1 cosh ,

cB

B

Eje k T

k Tj




   −

   −
= +     −    

  (14) 

which is valid for ,B ck   . In this formula, e  is the 

electron charge, Bk is the Boltzmann constant, T  is the absolute 

temperature in Kelvin,  is the reduced Planck constant,   is 

the scattering rate constant, m  is the electron mass, and 

( )biasc E  is the graphene chemical potential that can be 

controlled applying the biasing electric field biasE . 

Supposing that the substrate is electrically thin and 

1yk h , the analytical treatment of the determinant (12) gives 

 
( )( ) ( )

( )

( )
( ) ( )

3 22

2

0 eff0 eff

1

1 12

0 eff

1
0.

y y

s

y s s

h h
k k

ff

Z
k j hZ jZ

f



  



 

−

 +
+ + − =  

 

  (15) 

Analysis of this equation shows that the conductivity 

parameter 2  is a coefficient multiplying the cubic term. It 

means that solution may be highly sensitive towards the 

inaccuracy of graphene conductivity model. An additional 

means of accuracy control is the calculation of the determinant 

(12) at the root found with (15). 

This cubic equation is solved analytically with the 

Cardano's formulas [28]. If 
yk is found, the longitudinal 

propagation constant zk  is derived immediately from 

( ) 2

0 effz r yk k f k = −  choosing the needed branch of the 

imaginary part of this propagation constant properly. 

In Matlab, the roots of the cubic equation are derived using 

the function roots, and it gives three values of complex 
yk . The 

first two of them are equal, and they are the sought mode 

transversal propagation constant 
yk  . The third complex root is 

small in its value, and it gives the longitudinal propagation 

constant zk  with ( ) ( )0 fRe z e f rk k f   and the negligibly 

small imaginary part of this constant. 

If the boundary equation problem has been solved, the 

characteristic impedance for this mode is obtained as: 

( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )

( ) ( )
eff

1 1

0 0

2 1 2

2

0 0

h h

y y

c w w

x x z

E y dy E y dy
U

Z
I

H y h H y h dx E y h dx

= = =

= − = =

 

 

 

 (16) 

with  

 

( ) ( )
( )

( ) ( )

( ) ( )
( )

( )

2
2 1

0 eff

2

2

0 eff

,

.

z

y y

yz

z

jk
E y y

f

djk
E y

f dy

 

 

−
= 


=

  (17) 

As seen from (15), the calculation of complex propagation 

constant zk  in wide frequency band requires the formulas for 

loss-less microstrip line that take into account the frequency 

dependence of the effective permittivity ( )ffe f and the 

effective strip width ( )effw f . In Appendix A, these engineering 

formulas are chosen considering many published papers 

according to the Author’s experience and comparisons with the 

available numerical and experimental data.  

III. VERIFICATION OF THE DEVELOPED MODEL  

A. Comparisons with the Thin-film Lossy Microstrip Line 

Full-wave, Analytical, and Measurement Results 

Equ.  (15) is obtained for infinitely thin graphene strips 

embedded into uniform effective dielectric media. This 

technique has not been known before, and it should be tested. 

For instance, it can be verified with the results known for thin-

film microstrips [24],[25],[29],[30]. Before to compare, the 

correspondence infinitely thin resistive microstrip model 

should be found to the thin-film ones. For this purpose, the 

conductivity 2  is calculated from the specific conductivity of 

signal conductors of testing microstrips as 
( )2

2 2s t =  where 

2t  is the conductor thickness.   

The comparisons are shown in Figs 2-6 obtained for 

microstrips with 4.7 and 2.74w h = . The ground layer is lossy 

for all calculations, and it is modeled according  (13). For these 

thin film microstrips, the experimental, full-wave and analytical 

results are given at frequencies up to 1 THz.  
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Fig. 2.  The real part of zk  versus frequency. Solid violet line: formula (15); 

dash-dot black line: ideal conductor microstrip [31],[32],[33]; dash black  line: 

thin-film microstrip analytical model  [24],[25], and Appendix B; red circles: 

full-wave from [29]. Microstrip data: 2.7,r = 1,r =   tan 0.015, =

1.7 m,h = 8 m,w =
1 2 0.8 m,t t = = ( ) ( ) 4 1

1 2 2.5 10  Sim mm
s s

  −= =    . 

 

 
Fig. 3.  Microstrip total (conductor+dielectric) loss 

t  versus frequency. Solid 

violet line: formula (15); dash black line: thin-film microstrip analytical model 
[24],[25], and Appendix B; red circles: full-wave data from [28]. Microstrip 

data: 2.7,r = 1,r = tan 0.015, = 1.7 m,h = 8 m,w =
1 2 0.8 m,t t = =  

( ) ( ) 4 1

1 2 2.5 10  Sim mm .
s s

  −= =     

 

 

Fig. 4.  The real part of zk  versus frequency. Solid violet line: formula (15); 

dash-dot black line: ideal conductor microstrip calculated according to 

[30],[31],[32]; dash black line: thin-film microstrip analytical model [24],[25], 

and Appendix B; red circles: numerical data from [30]; crosses: measurements 

from [30]. Microstrip data: 2.7,r = 1,r =   tan 0.015, = 2.7 m,h =

7.4 m,w =  1 2 0.8 m,t t = =  
( ) ( ) 4 1

1 2 3 10  Sim mm
s s

  −= =    . 

 

 
 

Fig. 5.  Microstrip total (conductor+dielectric) loss t  versus frequency. Solid 

violet line: formula (15); dash black line: thin-film microstrip analytical model 

[24],[25], and Appendix B; red circles: full-wave data from [30]; crosses: 

experimental from [29]. Microstrip data: 2.7,r = 1,r =  tan 0.015, =

2.7 m,h =  7.4 m,w =  1 2 0.8 m,t t = = ( ) ( ) 4 1

1 2 3 10  Sim mm
s s

  −= =   . 
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Fig. 6. The complex characteristic impedance of thin-film microstrip line versus 
frequency. Positive values are for the real part, and negative ones are for the 

imaginary part. Solid violet line: formula (16); dash black line: the approximate 

model of thin-film microstrip from [24],[25]; Red circles: full-wave results 

from [29]. Microstrip data are the same as at Figs. 3 and 4. 

It is seen that the zero-thickness analytical model calculates 

the phase constant of the main mode and its characteristic 

impedance with good accuracy in the large frequency range 

comparing the full-wave, experimental, and approximate 

analytical results.  

The loss is computed with less accuracy especially at 

frequencies over 100 GHz, and its reason is obvious. The 

thickness of all conductors and the skin effect must be taken 

into account in such thin-film microstrips. In the case of 

graphene lines with the atomically-thin signal conductor, this 

effect is expected to disappear, and this wide strip graphene 

lines should be calculated with good accuracy. 

 

B. Modeling of Wide Graphene Microstrips and Comparisons 

with the Parallel-plate Analytical Results  

The ultimate case of a wide-strip line is the parallel-plate 

waveguide treated analytically in many papers 

[5],[10],[12],[14],[17]. In [10], an analytical formula is given 

for a parallel-plate graphene line (see [10], p. 2, formula (15)). 

It is obtained under the assumptions 1yk h and  

0 1y rk   . Its both plates made of graphene layers, but 

this formula is pertinent to calculate the odd TEM mode of this 

waveguide. In this case, the cross-section of this line can be 

separated by an ideal electric wall. Our model can calculate this 

geometry as well, and the analytical results of G.W. Hanson 

compared with our simulation of a very wide ( )8w h = air-

filled strip line. The results (Fig. 7) are close to each other at 

increased frequencies, but different at low ones because our 

theory is free of the restriction 0 1y rk    .  

As seen from our simulations and published parallel-plate 

modeling, the graphene line has a rather strong loss at low-

frequency microwaves. This loss is decreased with frequency  

 
Fig. 7. The imaginary and real part of propagation constants versus frequency. 

Solid black lines: analytical results according to   Hanson’s formula;  dash violet 

line: our results. The waveguide geometry and graphene’s data:  0.5 μm,h =  

20 μm,w =  1, 1,r r = =  tan 0, =  0,c =  0.5 ps, =  300 K.T =  

 

and with the chemical potential controlled by the electric DC 

field.  

Figs.  8, 9 shows the complex propagation constant and 

characteristic impedance for two values c . It is seen that 

growing this parameter leads to the loss decrease compared 

with those brought by imperfect ground (Fig. 8). At the same 

time, it allows tuning the characteristic impedance to the values 

typical for conventional microstrips (Fig. 9) at the difference to 

the lines based on carbon nanotubes. 
 

 
Fig. 8. Normalized complex propagation constant of microstrip line versus 

frequency. Positive values are for the real part, and the negative one is for the 
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imaginary part. Dash black line 0 eV;c =  solid blue line 10 eV.c =  Other 

parameters: 300 K,T =  0.5 ps, =   3.9, 1,r r = =  tan 0, = 1.7 μm,h =  

8 μm,w =   
1 0.8 μm,t =  

( ) 4 1

1 2.5 10  Sim mm .
s

 −=     

 

 

 
Fig. 9. Complex characteristic impedance versus frequency. Positive values are 
for the real part, and the negative one is for the imaginary part. Dash black line 

0 eV;c =  solid blue line 10 eV.c =  ( )Re 50 OhmcZ   is at 20.7 GHz for 

10 eV.c =    Other parameters of microstrip and graphene are the same as at 

Fig. 8. 
 

On Fig. 10, it is shown the S-matrix element dependence 

of a short length ( )1 mmL =  of a graphene microstrip joined 

to  50-  ports.  

 
Fig. 10. The dependence of modules of the transmission (S21) and reflection 

(S11) coefficients of a length of the graphene transmission line. Parameters of 

microstrip and graphene conductors are the same as at Fig. 9. 
 

It is seen that the reflection coefficient minimum occurs at 

a frequency near 30 GHz if the real impedance part of graphene 

microstrip characteristic impedance is tuned to 50-  at 20.7 

GHz. 
 

C. Comparisons with the Full-wave Simulations of the 

Narrow Graphene Micro- and Nanostrip Lines  

The available in the literature full-wave results are for 

narrow-width ( )2 3w h  − microstrip graphene lines which 

are difficult to be modeled by the equivalent parallel-plate 

approach. Usually, it is improved using the correction factors as 

in [24],[25]. The reason is that the ideal microstrip is modeled 

with the effective permittivity model. If the conductors have 

loss their conductivity should be substituted by its effective 

value one. Such models are not available, and up to now, the 

conductivity of conductor-surface impedances have been 

corrected empirically matching the models to the full-wave or 

measurement results. Physically, the currents in narrow strips 

are seriously distorted by edges and current-crowding effect, 

and the resistance of strips increases. The nonuniform 

distribution of current on the ground conductor can be taken as 

well [34]. To compensate it, the equivalent conductance of strip 

should be introduced. In practical modeling, the conductance of 

the strip can be reduced using the empirically found coefficients 

similarly to [24],[25].  

To test our model, a very narrow ( )0.2w h =  nanostrip is 

chosen as the worst-case scenario for our approach. This line is 

simulated using the integral equation method in [18]. As 

expected, our model provides the rather large difference, 

especially at frequencies below 100 GHz for the real (Fig. 11) 

and imaginary (Fig. 12) parts of propagation constant, and the 

equivalent parallel-plate model in the case of narrow strips 

should be corrected.  

 

Fig. 11.  The real part of normalized propagation constant versus frequency. 

Solid violet line: analytical calculations according (15). Red circles: simulations 
taken from [18] with graphical accuracy. Dash violet line: calculations with 

corrected graphene conductivity ( )0.1sK = . Microstrip parameters: 

Page 7 of 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

8 

3.9, 1,r r = = 1,r =   tan 0, =  0.5 μm,h =  100 nm,w =  300 K,T =   

0.5 ps, =  0,c =  ( )
1 ,

s
 =   and 2  is calculated according  (14). 

 

The correction approach is chosen according to the above-

described mechanism of the influence of non-uniformity of the 

current distribution along the strip width.  By introducing the 

equivalent strip conductivity and correction of its value by 

0.1sK = , it is allowed to tune the results close to the full-wave 

calculations (Figs. 11 and 12). Of course, to make a complete 

tuning technique, there are more full-wave results needed to be 

obtained for a variety of microstrip geometries and physical 

parameters.   

 
 
Fig. 12.  The imaginary part of normalized propagation constant versus 

frequency. Solid violet line: analytical calculations according (15). Dash violet 

line: calculations with corrected graphene conductivity ( )0.1sK = ; Red circles: 

full-wave simulations taken from [18] with graphical accuracy. Microstrip 

parameters: 3.9,r = 1,r =  tan 0, =  0.5 μm,h =  100 nm,w =  

300 K,T =   0.5 ps, =  0,c =  
( )
1 ,

s
 =   and 2  is calculated according  

(14). 

 

Because of the approximate nature of our modeling 

approach, it has some other limitations. For instance, the 

trigonometrical functions are represented by only first terms in 

their expansions considering the smallness of their arguments 

1yk h . Accuracy can be increased considering more terms 

in analytical formulas if such solutions are available, or the 

equations (9) and (12) should be used.   

The formula (15) is obtained considering the quasi-TM 

mode approximation. At increased frequencies, the six-field-

component theory should be used. The skin effect models of the 

ground conventional conductors should be reconsidered as well 

using the Drude model of metals, for instance. Dielectric 

parameters would be better taken from the measurements at 

terahertz frequencies. For graphene applications, a conductivity 

theory of graphene placed on the surface of dielectrics is highly 

required. Otherwise, the conductivity parameters should be 

obtained from the measurements and populated for specified 

manufacturing technology. 

IV. CONCLUSION 

The approximate analytical formulas for complex 

propagation constant of graphene thin-substrate micro- and 

nanostrip transmission lines have been obtained, analyzed, and 

simulated. The first one is given for the tensor-conductivity 

graphene strips and ideal ground, and the second one is for 

“scalar” strip and imperfect ground layer. It has been shown that 

at the frequencies, where the strip conductivity is anisotropic, 

even the thin substrate microstrips are influenced by this 

anisotropy, and it needs to be modeled using the hybrid 

representation of EM field. Scalar conductivity micro- and 

nanostrip lossy lines, for which the full-wave and measurement 

results are available in the literature, have been modeled using 

the obtained analytical formulas, and good correspondence has 

been found in comparisons up 1 THz for wide-strip lines. It has 

been proposed to obtain the engineering formulas with 

empirically found correction factors for the narrow-strip 

graphene lines using the full-wave and measurement results. 

The obtained results can be used in practical calculations of 

graphene and lossy thin-film micro- and nanostrip lines, and as 

a means for the initial approximation of complex roots of 

eigenequations in full-wave computations. 

 

V. APPENDIX A  

To calculate the graphene microstrip line with above-given 

formulas, the ideal microstrip line parameters are needed. Ones 

of them are given in [33], and they are verified up to 1 THz 

comparing the numerical full-wave results from [29].  

Considering that zk =  , then, for an ideal microstrip 

 ( ) eff

eff eff1.5

0 1 4

r
f

k F

 
 

−

−
= = +

+
  (18) 

where 

2
4 1

0.5 1 2 lg 1rhc w
F

f h

  −   
= + +  +   

    

, and eff   is the quasi-

static effective permittivity of the microstrip line. This quasi-

static permittivity is calculated according to the well-known 

engineering formulas [31]. 

 eff

1 1 10
1

2 2

ab

r r

u

 


−
+ −  

= + + 
 

  (19) 

where   

( )
2 34

4

521 1 1
,  1 log log 1

49 0.432 18.7 18.1

u u
u w h a

u

 +  
= = + + +  

+    

 , 
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0.053

0.9
0.564

3

r

r

b




 −
=  

+ 
 . 

The characteristic impedance calculations require the 

frequency-dependent effective width ( )effw f  [25],[31] 

 ( ) ( )

1
2

eff eff 1
c

f
w f w w w

f

−

  
 = + − +  
   

 where  (20)

( )

( )

2

eff eff eff

eff eff

0.7528

120 60 2
,  2 ,  log 1 ,

30.666
6 2 6 exp .

c c

c

h p
w f c w Z

u uZ

p
u




 



 
  = = = + +  

  
 

  
= + − −  

   

  

In (20), the thickness of the one-atom graphene strip layer is 

ignored.  

VI. APPENDIX B 

Approximate analytical formulas for calculation of 

complex propagation constant zk  and characteristic impedance 

cZ  of the main mode in thin-film microstrip lines are proposed 

and verified with measurements and full-wave simulations in 

[24] and [25]. For the convenience of Readers, it is shown 

below. 
 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
21 2 1 22 2 0 eff

0 eff 0 eff( )z s s s s

j f
k k f Z K Z Z K Z j f

h

 
   − +  +   

 (21) 

where 
( )1,2

sZ  is the surface impedance of conductors calculated 

according (13). The correction coefficient K  is defined for 

narrow microstrip lines: 

 
1,  3...4

0.72,  3...4

w h
K

w h


= 


 . (22) 

The frequency dependent effective permittivity ( )eff f   is with 

formulas from Appendix A. The dielectric loss d  is calculated 

using formulas of M.V. Schneider [32]: 

 
( )

( )  
 eff

0eff

1 tan
27.3 ,  dB mm

1 mm

r
d

r

f

f

 


 

−
=

+
  (23) 

where 0  is the wavelength in vacuum. The conductor loss c    

is derived as  

 ( )( )( )( )  10lg exp 2 Im 1 mm , dB mm .c zk l = − −   =   (24) 

The total loss t  is a sum of these partial losses. 
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