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Intuitive Joint Priors for Variance Parameters

Geir-Arne Fuglstad∗, Ingeborg Gullikstad Hem†, Alexander Knight‡,
H̊avard Rue§, and Andrea Riebler¶

Abstract. Variance parameters in additive models are typically assigned inde-
pendent priors that do not account for model structure. We present a new frame-
work for prior selection based on a hierarchical decomposition of the total variance
along a tree structure to the individual model components. For each split in the
tree, an analyst may be ignorant or have a sound intuition on how to attribute
variance to the branches. In the former case a Dirichlet prior is appropriate to
use, while in the latter case a penalised complexity (PC) prior provides robust
shrinkage. A bottom-up combination of the conditional priors results in a proper
joint prior. We suggest default values for the hyperparameters and offer intuitive
statements for eliciting the hyperparameters based on expert knowledge. The prior
framework is applicable for R packages for Bayesian inference such as INLA and
RStan.

Three simulation studies show that, in terms of the application-specific mea-
sures of interest, PC priors improve inference over Dirichlet priors when used to
penalise different levels of complexity in splits. However, when expressing igno-
rance in a split, Dirichlet priors perform equally well and are preferred for their
simplicity. We find that assigning current state-of-the-art default priors for each
variance parameter individually is less transparent and does not perform better
than using the proposed joint priors. We demonstrate practical use of the new
framework by analysing spatial heterogeneity in neonatal mortality in Kenya in
2010–2014 based on complex survey data.

Keywords: additive models, hierarchical variance decomposition, latent Gaussian
models, penalised complexity, joint prior distributions, variance parameters.

1 Introduction

Bayesian hierachical models (BHMs) are ubiquitous in science due to their flexibility
and interpretability (Gelman and Hill, 2007; Gelman et al., 2013; Banerjee et al., 2014).
In this paper, we consider BHMs where the latent level consists of an additive com-
bination of model components that are classified as fixed effects and random effects.
This subclass covers a range of common model classes such as generalised linear mixed
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2 Intuitive Joint Priors for Variance Parameters

models (GLMMs) and generalised additive mixed models (GAMMs) (Fahrmeir and
Lang, 2001). In additive models, the total latent variance of the sum of the random
effects decomposes into the sum of the variance contributed by each random effect, and
each random effect has a variance parameter that controls its a priori contribution. We
present a general framework for constructing joint priors for these variance parameters
for BHMs, and suggest robust shrinkage priors for the reduced class of latent Gaussian
models (LGMs) where the model components are Gaussian conditional on the model
parameters (Rue et al., 2009, 2017; Bakka et al., 2018; Krainski et al., 2018).

There is no concensus on priors for variance parameters in BHMs (Lambert et al.,
2005; Gelman, 2006; Gelman et al., 2017). The default prior in the R package INLA

(Lindgren and Rue, 2015) is an inverse-gamma distribution InvGamma(1, 5 · 10−5)
(Blangiardo and Cameletti, 2015), and the R package RStan (Carpenter et al., 2017;
Stan Development Team, 2018a) has implicit priors that are uniform on the range of le-
gal values for the parameters (Stan Development Team, 2018b). WinBUGS, OpenBUGS
and JAGS used InvGamma(0.001, 0.001) distributions in their examples (Spiegelhalter
et al., 1996; Plummer, 2017), and the Stata manual employs InvGamma(0.01, 0.01) pri-
ors (StataCorp, 2017). Conjugacy provides InvGamma(ε, ε) distributions with computa-
tional advantages, but their use may result in severe problems (Gelman, 2006) and they
are generally inappropriate for variances of random effects (Lunn et al., 2009). Gelman
(2006) proposed heavier tails through Half-Cauchy(25) distributions on the standard
deviations, and others have investigated bounded uniform densities on the variances or
the logarithms of the variances (Lambert et al., 2005) and bounded uniform priors on
the standard deviations (Martinez-Beneito, 2013). Recently, Simpson et al. (2017) pro-
posed a principle-based, robust prior termed penalised complexity (PC) prior that offers
shrinkage towards zero variance. In the case of LGMs, the PC prior is an exponential
distribution on the standard deviation.

However, general-purpose priors may not be suitable for a given application (Gelman
et al., 2017) and independent priors for each random effect cannot exploit the struc-
ture of the model (Simpson et al., 2017, Section 7). For example, in disease mapping,
prior elicitation is more meaningful for the total variance of the random effects than
their separate variances (Wakefield, 2006), and, for animal models in genetic settings,
the proportion of variability in a phenotypic trait being accounted for by genes is im-
portant (Holand et al., 2013). Further, the intraclass correlation (ICC) (McGraw and
Wong, 1996) in a random intercept model is linked to a generalised version of the coeffi-
cient of determination (Gelman and Hill, 2007), also known as R2, which expresses the
proportion of the total variance explained by the model components. However, putting
a prior on R2 requires a joint prior on the two variance parameters in the random inter-
cept model. Additionally, in the context of regression, Som et al. (2014) discuss block
g-priors where regression coefficients are partitioned and shrinkage is applied to the R2

of each partition.

Consider a simple multilevel model with responses yi,j,k|ηi,j,k ∼ Poisson(exp(ηi,j,k)),
where ηi,j,k = ai+bi,j+ci,j,k for experiment k on individual j in group i. We will term the
group effect, individual effect and measurement effect for A, B, and C, respectively, and
write the latent model as A+B+C for short hand. The total latent variance t of A+B+C
decomposes as t = σ2

A+σ2
B+σ2

C, where σ
2
A, σ

2
B and σ2

C are the variances of A, B and C,
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Figure 1: Hierarchical model decomposition. Gray boxes indicate preferred branches.

respectively. This standard parametrization facilitates independent priors on the vari-
ances and can be used to achieve the desired a priori marginal properties for the random
effects. However, it is difficult to encode a priori knowledge on joint properties such as
the size of t or preference for A over B or A+B over C in a transparent and intuitive way.

An obvious alternative is to parametrize the variance parameters as t and the pro-
portion of t assigned to each random effect (ωA, ωB, ωC), where 0 ≤ ωA, ωB, ωC ≤ 1 and
ωA+ωB+ωC = 1. This is illustrated in Figure 1a by splitting A+B+C into the models
A, B and C. This parametrization is suitable for expressing ignorance about how the
variance should be attributed to the random effects. A simple way to assign the joint
prior is to set (ωA, ωB, ωC) ∼ Dir(a, a, a), a > 0, where Dir denotes the Dirichlet distri-
bution (Balakrishnan and Nevzorov, 2003). This prior has no preference for one of the
random effects over the other and is invariant to the ordering of the random effects, and
we can select a > 0 to make the prior suitably vague. Together with the conditional
prior π(t|ωA, ωB, ωC), this implicitly defines a proper joint prior for (σ2

A, σ
2
B, σ

2
C) that is

invariant to permutations in the order of the random effects, but can incorporate prior
knowledge on t. This has a similar flavor as the Dirichlet-Laplace prior by Bhattacharya
et al. (2015), which is a global-local shrinkage prior (Polson and Scott, 2010) that in-
duces sparsity in regression. However, in this paper we will focus on random effects and
not fixed effects.

The simple split strategy is not always suitable and Riebler et al. (2016) demon-
strated that for the BYM (Besag, York and Mollié) model, which is a sum of a Besag
random effect and an unstructured random effect, a PC prior that penalises the added
complexity of the structured effect relative to the unstructured effect improves infer-
ence. For A+B+C, fewer levels of hierarchy may be preferred so that B is preferred to A
and C is preferred over A+B. This knowledge about relative complexity of the random
effects can be incorporated by splitting A+B+C hierarchically as shown in Figure 1b.
Here we first split A+B+C into A+B and C through ω1 = (σ2

A + σ2
B)/t, and then split

A+B into A and B through ω2 = σ2
A/(σ

2
A + σ2

B), where 0 ≤ ω1, ω2 ≤ 1. The joint prior
for (σ2

A, σ
2
B, σ

2
C) is then constructed by first selecting π(ω2), then π(ω1|ω2), and finally

π(t|ω1, ω2). Priors inducing shrinkage towards ω2 = 0 and ω1 = 0 can be chosen in
the lower and upper split, respectively. The shrinkage can be illustrated graphically as
shown in Figure 1c. For LGMs, PC priors offer a robust choice, but the framework is
general and other priors can be selected by the analyst. For example, if shrinkage is
only required at the top level, a Dirichlet prior for (ω2, 1− ω2) could be combined with
a shrinkage prior for ω1|ω2.
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The ideas generalize to more random effects through the selection of a hierarchical
decomposition of the model in the form of a tree, and the selection of a conditional
distribution for the attribution of the total variance to the branches for each split. The
joint prior is calculated in a bottom-up approach using these conditional distributions.
We suggest default values for the hyperparameters of the Dirichlet distribution based
on the marginal prior distributions for the proportions of variance assigned to each
branch of the split. This ensures that the default setting for the prior is well-behaved
as the number of branches in a split increases. Default values for the PC priors can
be selected based on moderate shrinkage of the proportion of variance. Additionally,
we discuss how to include expert knowledge through interpretable statements on the
total variance and the distribution of variance in the tree. The joint prior can contain
a mix of expert knowledge and default values that provide a weakly informative prior
(Gelman et al., 2008; Simpson et al., 2017). This means the prior framework with joint
priors is appropriate for default priors for software packages such as INLA and RStan.

The properties of the proposed priors are compared to the properties of default pri-
ors from software and vague priors from literature. This is a fair comparison since even
though the new priors account for model structure, they do not incorporate strong ex-
pert knowledge and are suggested to be used in a default way in Bayesian software. The
comparison is performed through three simulation studies: a simple random intercept
model with Gaussian responses, a latin square experiment with Gaussian responses, and
a spatial model with Binomial responses. To ease the presentation of the comparisons
and not overload the reader with results, we choose a set of targets for each simulation
study and compare the posteriors resulting from the different prior choices with respect
to the targets. Additional results are provided in the Supplementary Materials (Fuglstad
et al., 2019a). Furthermore, we provide example code in the Supplementary Materials
for producing results for different priors for the latin square model in Section 5.2. The
code is described in Section S4.3 in the Supplementary Materials.

We start by introducing the general framework in Section 2, then we introduce LGMs
and suitable priors for developing a new class of priors for LGMs in Section 3. The new
class of priors for LGMs is introduced in Section 4 and is applied to simulation studies
with Gaussian responses in Section 5. In Section 6 we present one simulation study with
Binomial response and explain how the approach can be used in practice. The paper
ends with a discussion in Section 7.

2 Tree-based hierarchical variance decomposition

In this section we cover basic notation, and formally introduce additive models, hierar-
chical variance decomposition, and the new framework for joint priors for variances.

2.1 Additive models

Let y = (y1, . . . , yn) be a vector of n > 0 observations. We model the expected values
E(yi) = g−1(ηi), i = 1, . . . , n, through a vector of linear predictors η = (η1, . . . , ηn) and
a link function g : R → R. We consider models where the likelihood has parameters θL
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and factors as π(y|η,θL) =
∏n

i=1 π(yi|ηi,θL). This covers models such as GLMMs and
GAMMs. We term η and its description as the latent part of the model.

We assume that the linear predictor is described as

ηi = β0 + xT
i β +

N∑
j=1

uj,kj [i], i = 1, . . . , n, (2.1)

where β0 is the intercept, xi is the vector of covariates associated with observation i,
β is a vector of coefficients, and uj = (u1, . . . , umj ) is a random vector and kj [i] is the
associated element of uj for observation i for j = 1, . . . , N . The two first terms will be
called fixed effects and the last N terms will be called random effects. To focus on the
joint prior for variance parameters, we will assume that each random effect uj has a
single model parameter, which is a variance σ2

j . In general, the random effects may have
other parameters such as correlation parameters and we discuss how to handle this in
Section 7.

We denote the vector of model parameters by θM = (σ2
1 , . . . , σ

2
N ). The BHM is com-

pleted by specifying the latent model through π(uj |σ2
j ) for j = 1, . . . , N , and the prior

π(β0,β,θL,θM). We follow common practice so that the prior satisfies π(β0,β,θL,θM) =
π(β0)π(β)π(θL)π(θM). The major improvement over common practice is that we will
develop a framework for selecting intuitive joint priors for the variance parameters that
does not require that π(θM) =

∏N
j=1 π(σ

2
j ).

2.2 Hierarchical variance decomposition

The additivity in (2.1) causes the total latent variance Var[ηi|β0,β,θM] of linear predic-
tor i to decompose as the variance contributed by each random effect Var[ukj [i]|β0,β, σ

2
j ],

j = 1, . . . , N , for i = 1, . . . , n. If random effect j is homogeneous, the variance parameter
of random effect j will be a marginal variance in the sense that Var[ukj [i]|β0,β, σ

2
j ] = σ2

j

for i = 1, . . . , n. If all random effects are homogeneous, the total latent variance of the
linear predictors is homogeneous, t = Var[η1|β0,β,θM] = · · · = Var[ηn|β0,β,θM] =
σ2
1 + . . . + σ2

N . If random effect j is heterogenous so that Var[ukj [i]|β0,β, σ
2
j ] varies for

different values of i, the variance parameter σ2
j is selected to be comparable to a marginal

variance; see the discussion in Section 3.1. We term the parameter t = σ2
1 + . . . + σ2

N

the total latent variance.

We describe the attribution of t to the individual random effects through a tree T .
The construction of T starts with a root node T0 = {1, . . . , N} that contains all the
random effects, and in the first step we introduce K1 > 1 child nodes T1, . . . , TK1 that
partition T0 into T0 = T1 ∪ · · · ∪ TK1 . We continue this recursively for each child node
until all leaf nodes are singletons. This results in a tree T with S splits where there are
Ks child nodes for split s = 1, . . . , S. We have S ≤ N − 1, where S = 1 is achieved by
directly splitting the root node to singletons as in Figure 1a and the maximum value is
achieved by only using dual splits such as in Figure 1b.

For each split s, the parent node Ps is split into Ks child nodes C1, . . . , CKs and we
will define a vector of parameters ωs = (ωs,1, . . . , ωs,Ks), s = 1, . . . , S. The child nodes
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describe a partitioning of the random effects in the parent node, and we let ωs describe
the proportion of the total variance in the parent node,

∑
j∈Ps

σ2
j , that is assigned to

each child node through

ωs =
1∑

j∈Ps
σ2
j

⎛
⎝∑

j∈C1

σ2
j , . . . ,

∑
j∈CKs

σ2
j

⎞
⎠ , s = 1, . . . , S.

We denote the K − 1 simplex by ΔK = {(x1, . . . , xK)|
∑K

k=1 xk = 1, xk ≥ 0 ∀k} so
that the restrictions are ωs ∈ ΔKs for s = 1, . . . , S. This means that the parameters
ωs,Ks are superfluous for s = 1, . . . , S, but we keep them for ease of notation and
interpretability.

For any split s = 1, . . . , S, we term a child node and its decendants as a branch of
the split. The description of the model structure through a tree structure defines a re-
parametrization of (σ2

1 , . . . , σ
2
N ) to (t,ω1, . . . ,ωS), where S is the number of splits in the

tree. The examples discussed in the introduction can be rephrased in this terminology,
and demonstrate that there is no unique selection of the tree.

Example 1 (Tree structure). Consider three random effects A, B and C with marginal
variances (σ2

A, σ
2
B, σ

2
C). Let the root node be T0 = {A,B,C}.

Figure 1a, describes the case that the root node is partitioned into three children
T1 = {A}, T2 = {B} and T3 = {C}. This leads to a reparametrization (t,ω), where
t = σ2

A + σ2
B + σ2

C and ω = (σ2
A, σ

2
B, σ

2
C)/t.

Figure 1b shows the case that T0 is first partitioned into T1 = {A,B} and T2 =
{C}, and then T1 is partitioned into T3 = {A} and T4 = {B}. This results in a
reparametrization (t,ω1,ω2), where t = σ2

A + σ2
B + σ2

C, ω1 = (σ2
A + σ2

B, σ
2
C)/t and

ω2 = (σ2
A, σ

2
B)/(σ

2
A + σ2

B). 	

2.3 Hierachical decomposition priors

The tree-based hierarchical variance decomposition facilitates the construction of joint
priors that include prior belief about the relative sizes of groups of random effects. The
tree structure must be selected so that the desired comparisons can be made. Trees
such as shown in Figure 1a are useful for expressing ignorance about the attribution
of variance to the random effects, whereas trees such as shown in Figure 1b are useful
for imposing shrinkage to one of the branches in each dual split. Generally, a tree may
consist of a mixture of splits where the analyst wants to be informative and splits where
the analyst wants to express ignorance.

We propose to construct a joint prior for the marginal variance parameters in a
bottom-up approach where the prior for a given split only depends on descendant nodes
of the parent node.

Assumption 1 (Bottom-up approach). For a tree structure with S splits, π({ωs}Ss=1) =∏S
s=1 π(ωs|{ωj}j∈D(s)), where D(s) is the set of descendant splits for split s = 1, . . . , S.
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This means that the joint prior for the decomposition uses a directed acyclic graph
so that parameters that belong to subsplits in different branches of a split are marginally
independent. We combine the prior for the decomposition of the variance with a con-
ditional prior on the total variance of the random effects to form what we will call
hierarchical decomposition (HD) priors.

Definition 1 (Hierarchical decomposition (HD) priors). Consider a BHM with an
additive latent structure with N random effects with marginal variance parameters
σ2
1 , . . . , σ

2
N . Assume that the model structure is described by a tree that recursively

partitions the set of random effects into singletons. Then a hierarchical decomposition
(HD) prior is given by

π(σ2
1 , . . . , σ

2
N ) = π(t|{ωs}Ss=1)

S∏
s=1

π(ωs|{ωj}j∈D(s)),

where t = σ2
1+. . .+σ2

N , S is the number of splits, andD(s) denotes the set of descendant
splits for the parent node in split s and ωs describes the proportions of the total variance
of a parent node assigned to its branches for s = 1, . . . , S.

3 Latent Gaussian models and priors for the splits

This section introduces LGMs and the priors we will use for the splits to build the
intuitive class of joint priors for the variance parameters for LGMs.

3.1 Latent Gaussian models

LGMs constitute a subclass of BHMs with additive latent structure where the model
components are Gaussian conditional on the model parameters. We write the additive
model in (2.1) in vector form, η = 1β0 + Xβ +

∑N
j=1 Ajuj , where 1 = (1, . . . , 1) is

a column vector of length n, X is the n × p design matrix that contains the covari-
ates for each observation as rows, and Aj are sparse n × mj matrices that select the
appropriate elements of the random effects for j = 1, . . . , N . The latent Gaussian struc-
ture is achieved by β0 ∼ N (0, σ2

I ), β ∼ Np(0, σ
2
FIp), and uj |σ2

j ∼ Nmj (0, σ
2
jΣj) for

j = 1, . . . , N . It is common to give σ2
I and σ2

F suitably vague values, and we will assume
that σ2

I and σ2
F are fixed and focus on the variance parameters σ2

1 , . . . , σ
2
N .

For non-intrinsic Gaussian random effects, such as independent and identically dis-
tributed (i.i.d.) random effects, stationary autoregressive processes and Matérn Gaus-
sian random fields, the covariance matrix Σ of the random effect u is chosen to be a
correlation matrix and the variance parameter σ2 is the marginal variance. However,
this does not work for intrinsic Gaussian Markov random fields (GMRFs) (Rue and
Held, 2005) such as the Besag model (Besag et al., 1991), the first-order random walk
and the second-order random walk (Rue and Held, 2005, Chapter 3). In this case there
is no well-defined concept of a marginal variance since they are defined through singular
precision matrices that cannot be inverted to find a covariance matrix. We follow Sørbye
and Rue (2014) and choose the variance parameter σ2 to be a representative value for
the marginal variance.
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3.2 Introducing shrinkage towards branches

Penalising complexity

The fundamental basis for introducing robust shrinkage in our proposed class of priors
are the PC priors introduced in Simpson et al. (2017), which uses a set of principles to
derive model-component-specific prior distributions. The main idea is to regard a single
model component as a flexible extension of a so-called base model. In the simplest case
of an unstructured random effect, the base model would be to remove the effect entirely
from the linear predictor by letting the variance parameter go to zero. The idea is to
follow Occam’s razor and favour a simpler, more sparse or more intuitive model as long
as the data does not indicate otherwise. The PC priors have been used successfully in
a variety of contexts such as BYM models (Riebler et al., 2016), correlation parame-
ters (Guo et al., 2017), autoregressive processes (Sørbye and Rue, 2018) and Matérn
Gaussian random fields (Fuglstad et al., 2019b).

Simpson et al. (2017) proposed to compute the complexity of the alternative model
relative to the base model using the Kullback-Leibler divergence (KLD) defined as

KLD(π(u|ξ) || π(u|ξ = 0)) =

∫
π(u|ξ) log

(
π(u|ξ)

π(u|ξ = 0)

)
du, (3.1)

where ξ is the flexibility parameter, and ξ = 0 at the base model. The KLD is conse-
quently transformed to an interpretable distance measure between two densities f1 and
f2: d(f1 || f2) =

√
2KLD(f1 || f2). In contrast to defining a prior for ξ directly, a prior

is defined for d. See Simpson et al. (2017) for detailed motivation.

We follow Simpson et al. (2017) and select an exponential distribution, where infor-
mation provided by the user is used to determine the rate λ. Usually this information
is provided by a probability statement about the tail probability of the prior,

P (X(ξ) > U) = α.

Here, X(ξ) is an interpretable transformation of the parameter of the flexible extension,
U can be thought of as a sensible upper bound, and α is a small probability. A user can
express their knowledge by constraining tail probabilities of X(ξ) as above. Selecting
U near a large plausible value for X(ξ) and α small encodes weak information about ξ
(Simpson et al., 2017). This means that it is a priori unlikely that the value of X(ξ)
exceeds U . Finally, the prior can be transformed to the corresponding prior for the
flexibility parameter ξ. An attractive feature of this principle-based construction is that
the resulting priors are proper and have a natural link to Jeffreys’ priors.

Shrinking a marginal variance parameter

In the case of a single Gaussian random effect with marginal variance σ2, the PC prior
with base model σ2 = 0 is an exponential prior on σ. The rate parameter λ can be set,
for example, by an a priori statement P(σ > U) = 0.05 so that the 95th percentile of
the prior for σ is U > 0. Then the prior is an exponential prior with rate parameter
λ = − log(α)/U which we denote as σ ∼ PCSD(U,α); see Simpson et al. (2017) for
details and derivation.



G.-A. Fuglstad, I. G. Hem, A. Knight, H. Rue, and A. Riebler 9

Shrinking a weight parameter

Consider the situation that the linear predictor only contains two random effects A and
B with variances σ2

A and σ2
B, respectively. The proportion of t = σ2

A + σ2
B assigned to

each random effect is described by ω = (1−ω, ω) = (σ2
A, σ

2
B)/(σ

2
A + σ2

B). If one a priori
prefers the attribution ω = ω0 = (1−ω0, ω0), shrinkage can be induced in the joint prior
for the variance parameters using a PC prior where ω = ω0 is the base model. Here we
apply the KLD from (3.1) to express distance from the base model ω0 to the alternative
model ω, and penalise deviations from the base model according to the difference in
model complexity.

Theorem 1 (PC prior for dual split). Let u1 and u2 be random effects of an LGM
that enter the linear predictor through A1u1 ∼ Nn(0, σ

2
1Σ̃1) and A2u2 ∼ Nn(0, σ

2
2Σ̃2).

Assume that Σ̃1+Σ̃2 is non-singular.
1 Let ω = σ2

2/(σ
2
1+σ2

2) and Σ(w) = (1−ω)Σ̃1+ωΣ̃2.
Then the distance from the base model Σ(ω0) to the alternative model Σ(ω) is given by
d(ω) =

√
tr(Σ(ω0)−1Σ(ω))− n− log |Σ(ω0)−1Σ(ω)| for 0 ≤ ω0 ≤ 1.

The PC prior for ω with base model ω0 = 0 is

π(ω) =

⎧⎨
⎩

λ|d′(ω)|
1−exp(−λd(1)) exp (−λd (ω)) , 0 < w < 1, Σ̃1 non-singular,

λ
2
√
ω(1−exp(−λ))

exp(−λ
√
ω), 0 < ω < 1, Σ̃1 singular,

where λ > 0 is the hyperparameter. We suggest to set λ so that the median is ωm = 0.25.

For base model 0 < ω0 < 1, the PC prior whose median is equal to ω0 is

π(ω) =

⎧⎨
⎩

λ|d′(ω)|
2[1−exp(−λd(0))] exp (−λd (ω)) , 0 < ω < ω0,

λ|d′(ω)|
2[1−exp(−λd(1))] exp (−λd (ω)) , ω0 < ω < 1,

where λ > 0 is a hyperparameter. We suggest to set λ so that

P(logit(1/4) + logit(ω0) < logit(ω) < logit(ω0) + logit(3/4)) = 1/2.

Base model equal to ω0 = 1 follows directly by reversing the roles of u1 and u2.

Proof. See Section S1.1 in the Supplementary Materials.

The default values in each case are specified as to place most of the prior mass in
a small interval on the ω scale around ω0, but to also ensure large deviations from ω0

are a priori plausible; in this sense they are weakly informative (Gelman, 2006; Gelman
et al., 2008). Sections 5.1 and 5.2 show that the results from the inference are stable
to changes in these hyperparameters; which in turn shows that these λ’s provide weak
information. If the analyst has expert knowledge this should be used instead of the
default values. Large ω might be 0.75 for test-retest reliability in a psychology study
(Cicchetti, 1994) but 0.4 for the genetic heritability of a trait (Shen et al., 2016).

1If this were not the case, some elements of the sum of A1u1 and A2u2 would be exactly equal and
we would choose a subset of maximal size so that Σ̃1 + Σ̃2 was non-singular for comparing the effects
of A1u1 and A2u2.
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3.3 Expressing a priori ignorance about a split

Exchangeability

In some cases the analyst does not want to express an a priori preference for any of the
branches in a split in the tree. This can be achieved indirectly through a series of dual
splits. For example, by replacing the split in Figure 1a by the series of dual splits as
shown in Figure 1b where the left-hand side has a base model of 2/3 in the first split and
the left-hand side has a base model of 1/2 for the second split. In total this is specifying
a base model of 1/3 of the total variance to each random effect, but the resulting prior
is not invariant to permutations of A, B and C in Figure 1b. See Section S2 of the
Supplementary Materials for details. When the goal is to express ignorance about the
decomposition of the variance, one can use a base model of equal attribution of the total
variance to each random effect and choose an exchangeable prior for (σ2

A, σ
2
B, σ

2
B). This

can be done, for example, through a Dirichlet prior.

Dirichlet prior

The Dirichlet prior of order K ≥ 2 with parameters a1, . . . , aK > 0 is given by

π(ω) =
1

B(a1, . . . , aK)

K∏
k=1

ωak−1
k , ω = (ω1, . . . , ωK) ∈ ΔK ,

where B is the multivariate beta function, and ΔK is the K − 1 simplex. Since there is
no preference for any random effect, we consider the symmetric Dirichlet distribution
where a1 = . . . = aK = a > 0, where a is the hyperparameter that must be selected
by the analyst. For a = 1 the prior is uniform, for a < 1 the prior has peaks at the
vertrices of ΔK , and for a > 1 the mode is ω = (1, . . . , 1)/K. The prior is invariant
to permutations of the elements of ω for any value of a > 0 and it is computationally
cheap for arbitrary dimensions K.

The hyperparameter a can be selected by considering the marginal properties of
π(ω). The marginal prior π(ω1) ∝ ωa−1

1 (1 − ω1)
(K−1)a−1, 0 < ω1 < 1, is a Beta

distribution whose quantiles are dependent both on the values of a and K. We select a
by requiring P(logit(1/4) < logit(ω1)− logit(ω0) < logit(3/4)) = 1/2. By symmetry the
same marginal properties are satisfied for ωi, i = 2, . . . ,K.

4 Hierarchical decomposition priors for LGMs

In this section we introduce the new class of intuitive joint priors for the variance
parameters in LGMs.

4.1 Accounting for model structure

In the general formulation of HD priors in Definition 1, the prior is composed of con-
ditional priors that for each split depends on all descendant splits. This is impractical
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because computing PC priors would require new KLDs to be computed every time the
prior is evaluated. We take a pragmatic approach where we decide on a set of base
models, which expresses our best prior guess, and condition on these.

Assumption 2 (Simplified conditioning). For a given tree with S splits and base models
{ω0

1 , . . . ,ω
0
S}, we replace π(ωs|{ωj}j∈D(s)) with π(ωs|{ωj = ω0

j }j∈D(s)), s = 1, . . . , S.

Under this assumption a new class of HD priors for LGMs are constructed by com-
bining intuition about shrinkage and ignorance through independent priors for the splits.

Prior class 1 (HD priors for LGMs). Assume the LGM contains N random effects with
variances σ2

1 , . . . , σ
2
N and that the hierarchical decomposition of the variance is described

through a tree with S splits. Under base models {ω0
1 , . . . ,ω

0
S}, the prior is

π(σ2
1 , . . . , σ

2
N ) = π(t|{ωs}Ss=1)

S∏
s=1

π(ωs|{ωj = ω0
j }j∈D(s)),

where the total latent variance is t = σ2
1+ . . .+σ2

N , and ωi ∈ Δls , where ls is the number
of branches in split s, s = 1, . . . , S.

For each of the S splits, the analyst can express ignorance through a Dirichlet prior
or sequence of PC priors as described in Section 3.3, or express preference to the selected
base models as described in Section 3.2. The selection of π(t|{ωs}Ss=1) must be done in
the context of the likelihood as described in Section 4.2.

This prior is computationally inexpensive since the overall prior probability density
factorises into independent conditional distributions that consist of PC priors, which
can be precomputed, and Dirichlet priors, which are cheap to compute.

We demonstrate the use of HD priors through one example where the analyst wants
to express ignorance and one example where the analyst wants to penalise complexity.

Example 2 (Non-nested random effects). Consider responses y1, . . . , yn, described by
the Gaussian linear model yi|ηi ∼ N (ηi, σ

2
R) with

ηi = μ+ h1(Agei) + h2(Weighti) + h3(Incomei), i = 1, 2, . . . , n,

where μ is the intercept, h1, h2 and h3 are smooth effects of the covariates expressed
as second-order random walks (Rue and Held, 2005), and σ2

R is the residual variance.
Assume that one has no a priori preference for the three smooth effects, and decide to
encode the decomposition of the total latent variance as shown Figure 1a, where A, B
and C represents the three smooth of covariates effects. Let ω1 denote the proportions
of variance assigned to model components and let t denote the total latent variance. We
construct an HD prior by assigning a Dirichlet prior to ω1, and handle t|ω1 as discussed
in Section 4.2. 	
Example 3 (Shrinkage in multilevel models). The latent part of the multilevel model
in Section 1 can be written in vector form as η = AAuA + ABuB + ACuC, where
AA, AB and AC are sparse matrices selecting the appropriate group, individual and



12 Intuitive Joint Priors for Variance Parameters

measurement effects, respectively. Assume we use an LGM, then u1 ∼ NG(0, σ
2
AIG),

u2 ∼ NGP (0, σ
2
BIGP ) and u3 ∼ NGPK(0, σ2

CIGPK), where G is the number of groups,
P is the number of individuals per group, and K is the number of measurements per
individual.

If we prefer shrinkage towards fewer levels in the multilevel model as shown in
Figure 1c, we decompose the total latent variance t = σ2

A + σ2
B + σ2

C through two
splits. For the split at the root node, we decompose t according to the proportions
ω1 = (σ2

A+σ2
B, σ

2
C)/t. Then in the second split we decompose σ2

A+σ2
B according to the

proportions ω2 = (σ2
A, σ

2
B)/(σ

2
A + σ2

B).

We use an HD prior where we apply base models ω0
1 = (0, 1), which prefers C

over A+B, and ω0
2 = (0, 1), which prefers B over A. Due to the desire for shrinkage

we apply PC priors and use Theorem 1 with base model ω0
2 to compute π(ω2). We

define ũ1 = AAuA + ABuB and ũ2 = ACuC. Then if we condition on ω2, the top
split in Figure 1c compares ũ1|ω2 ∼ Nn(0, (σ

2
A + σ2

B)(ω2,1AAA
T
A + ω2,2ABA

T
B)) and

ũ2 ∼ Nn(0, σ
2
3A3A

T
3 ), and the conditional prior π(ω1|ω2 = ω0

2) can be computed
using Theorem 1 with base model ω0

1 conditional on ω2 = ω0
2 . The joint prior is then

π(ω1,ω2) = π(ω1|ω2 = ω0
2)π(ω2), and an appropriate prior is chosen for π(t|ω1,ω2) as

described in Section 4.2. 	

4.2 Accounting for the likelihood

Meaningful priors for the total latent variance t depend on the likelihood and prior
beliefs about the responses in the specific application (Gelman et al., 2017). We provide
tools for expressing scale-invariance for the variances of the random effects and the
measurement error when the responses are Gaussian, or shrinkage for the total latent
variance of the random effects.

Under a Gaussian likelihood, the selection of the unit of measurement by the analyst
affects the sizes of the variances. However, when the residual variance σ2

R is expected to
be well-identified, we can define the prior on t relative to σ2

R and shrink t by preferring
to describe the total variance V = t+σ2

R in the model by σ2
R. This can be complemented

by a scale-independent Jeffreys’ prior on V to achieve a scale-invariant joint prior for
the variance parameters.

Prior class 2 (HD priors with Gaussian likelihoods). Assume an HD prior from Prior
class 1 is desired for an LGM with Gaussian responses with residual variance σ2

R. First
select the prior on the decomposition of the total latent variance t. Then augment the
tree by an extra node on the top with variance V = t + σ2

R. The new top node has
one branch with residual variance and the other branch is the subtree describing the
latent model. Let ωR = (1 − σ2

R/V, σ
2
R/V ) and assume shrinkage through a PC prior

π(ωR|{ωs = ω0
s}Ss=1) with base model ω0

R = (0, 1).

If V is assigned a scale-invariant prior, the full joint prior is

π(V,ωR, {ωs}Ss=1) ∝ π(ωR|{ωs = ω0
s}Ss=1)π({ωs}Ss=1)/V, V > 0,ωR ∈ Δ2,

and ωs ∈ Δls , where ls is the number of branches in split s, for s = 1, . . . , S.
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Proof. The scale-invariant prior is π(V |ωR, {ωs}Ss=1) ∝ 1/V , and π(ωR, {ωs}Ss=1) =
π(ωR|{ωs}Ss=1)π({ωs}Ss=1)

If the likelihood is binomial with a logit link function, a scale for the random effects
is induced through their effects on the odds-ratio. Similarly, for a Poisson likelihood
with a log link function, there is a scale for the random effects through their effects on
the relative risk. In these cases, scale-invariance is not meaningful and we can induce
shrinkage on the total variance of the random effects by using the PC prior for variance
from Simpson et al. (2017).

Prior class 3 (HD priors with shrinkage on latent variance). Assume an HD prior
from Prior class 1 is desired for an LGM where shrinkage on the total latent variance
is appropriate. First select the prior on the decomposition of the total latent variance
t. Then t can be shrunk towards 0 by a PC prior π(t|{ωs}Ss=1) with base model t0 = 0.
This results in

π(t, {ωs}Ss=1) =
λ

2
√
t
exp(−λ

√
t)π({ωs}Ss=1),

t > 0, and ωi ∈ Δls , where ls is the number of branches in split s, for s = 1, . . . , S, and
λ > 0 is a hyperparameter.

Proof. The conditional PC prior for t with base model t0 = 0 is given by π(t|{ωs}Ss=1) =
λ exp(−λ

√
t)/(2

√
t), t > 0 (Simpson et al., 2017).

We illustrate how the hyperparameter can be selected by considering the prior on
the total latent variance in the case of a Binomial likelihood.

Example 4 (Shrinking latent variance). Let logit(p) = μ + x, where x ∼ N (0, t), for
a t > 0, and μ is considered fixed. The latent variance t is difficult to interpret directly
due to the non-linear link function, but we can interpret it through the effect on the
odds-ratio, p/(1 − p) = exp(μ) exp(x). The hyperparameter λ in Prior class 3 can, for
example, be set so that the relative change in the odds-ratio, exp(x), is between 1/2
and 2 with probability 90%, P(1/2 < exp(x) < 2) = 0.90. 	

5 Case studies: Gaussian responses

In this section we investigate the performance of HD priors compared to a set of com-
monly used standard priors for two simulation studies with Gaussian responses.

5.1 Random intercept model

The random intercept model is given by yi,j = αi + εi,j for j = 1, . . . , ni, i = 1, . . . , ng,
where ni is the size of group i, and ng is the number of groups. The random intercepts are
i.i.d. Gaussian with variance σ2

α and the residual effects are i.i.d. Gaussian with variance
σ2
R. The total latent variance is t = σ2

α and the total variance is V = σ2
R + σ2

α. We
introduce the proportion of the total variance explained by the latent model ω = σ2

α/V ,
and decompose V as σ2

α = ωV and σ2
R = (1 − ω)V . We desire shrinkage towards the
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Figure 2: Model structure and prior for ω in the random intercept model with 10 in-
dividuals in each group and prior median ωm = 0.25. The prior is independent of the
number of groups. a) Tree structure, b) prior for ω, and c) prior for distance d(ω).

base model ω0 = 0 and use an HD prior based on the tree structure in Figure 2a, where
the prior on ω is calculated using Theorem 1 and we use the scale-invariant prior from
Prior class 2. The specification of the hyperparameter of the HD prior is done through
the median ωm of π(ω). The resulting prior for ω is shown in Figure 2b for ωm = 0.25
and the corresponding prior for the distance d(ω) discussed in Section 3.2 is shown in
2c. Further details can be found in Section S3.1 of the Supplementary Materials.

The intraclass correlation (ICC) for the random intercept model is given by σ2
α/(σ

2
R+

σ2
α), which equals the weight parameter ω. Thus the shrinkage of the ICC is completely

controlled in the construction of the prior and expert knowledge about the ICC can be
incorporated directly. Further, ω can be linked to a generalised version of the coefficient
of determination, R2, suggested by Gelman and Hill (2007); see Section S3.2 in the
Supplementary Materials for details.

We use the R-package RStan (Stan Development Team, 2018a) to perform the in-
ference for the simulation study. We use HD priors from Prior class 2 with shrinkage
from PC priors on ω with hyperparameters ωm = 0.25 (P-HD-25), ωm = 0.5 (P-HD-50)
and ωm = 0.75 (P-HD-75), and an HD prior from Prior class 2 where the PC prior
is replaced by a Dirichlet prior on (ω, 1 − ω) (P-HD-D) with default hyperparameter.
Additional priors are Jeffreys’ prior on the residual variance combined with different
priors on the random intercepts variance or standard deviation: the default INLA prior
InvGamma(1, 5×10−5) (P-INLA), Half-Cauchy(25) (P-HC), and PCSD(3, 0.05) (P-PC).
This gives seven joint priors. Each scenario in the simulation study consists of 500
datasets which are simulated from the random intercept model for ng ∈ {5, 10, 50},
and 10, 50, or varying number of individuals in each group. We select true values
ω ∈ {0.1, 0.25, 0.5, 0.75, 0.9} and select true total variance V = 1 in every scenario.

We evaluate the performance of the different priors with respect to posterior infer-
ence for total variance V and ICC ω. We use the bias of log(V ) and logit(ω), calculated
using the estimated median minus the true value, and the 80% empirical coverage, found
by counting the number of times the true value is contained in the 80% equal-tailed
credible interval. We use the same settings for the call to the stan function for all pri-
ors and scenarios in the simulation study. RStan reports a divergent transition for each
iteration of the Markov chain Monte Carlo (MCMC) sampler that runs into numerical
instabilities (Carpenter et al., 2017). In Figure S3.1 in the Supplementary Materials we
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Figure 3: Results for logit(ω) for the random intercept simulation study. True value of
ω shown on the x-axis, the number of groups is shown on left-hand side, and the group
size is 10. Results for P-INLA are only shown when it leads to stable inference.

report the proportion of datasets that resulted in at most 0.1% divergent transitions for
each prior and scenario. This is used as a measure of stability of the inference scheme
for each prior, and the dataset and prior combinations causing unstable inference are
removed from the study.

The results in Figure 3 are for ng ∈ {10, 50} and group size 10, and show that P-
HD-25 performs at least as good in terms of bias and coverage of logit(ω) as P-INLA,
P-HC and P-PC. The magnitude of the bias decreases and the coverage approaches
80% for all four priors when the number of groups increases, which is expected as the
amount of information about the parameters in the datasets increases. Figures S3.3–
S3.7 in the Supplementary Materials show that the HD priors perform at least as good
in terms of bias and coverage for logit(ω) as P-INLA, P-HC and P-PC also for the other
combinations of the number of groups and group sizes, and that the same conclusions
as for logit(ω) also holds for log(V ).

Furthermore, Figures S3.3–S3.7 show that the behaviour of the four HD priors is
stable with respect to the choice of ωm when group size is 10, and that P-HD-D performs
worse than P-HD-25, P-HD-50 and P-HD-75 for all values of the true weight except 0.5.
For 10 groups with two observations per group, the risk of overfitting is high because
low information about the parameters may lead to overestimating the weight parameter
and estimating spurious signals in the group effect. In this setting, P-HD-25 leads to
overfitting for true weight equal to 0.1, but underfitting for true weight equal to 0.25,
0.5, 0.75 and 0.9. P-HD-50, P-HD-75 and P-HD-D result in overfitting for true weight
equal to 0.1 and 0.25, but underfitting for true weight equal to 0.5, 0.75 and 0.9. See
Section S3.4 in the Supplementary Materials for additional details.

Figure S3.1 shows that P-INLA is the only prior that is heavily affected by divergent
transitions during the inference for scenarios with 10 or 50 groups. Part of the problem
with P-INLA is that it results in a bi-modal posterior for σ2

α; see Figure S3.2. The
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new HD priors are preferred for the random intercept model due to their intuitive
definition, where the structure of the shrinkage is directly available in Figure 2a, and
interpretability of the parametrization which aids prior elicitation.

5.2 Latin square experiment

Consider an experiment where a latin square design (Hinkelmann and Kempthorne,
1994) is used to control for two nuisance sources of noise. For example, a field split into
rows and columns where different levels of strength of a new fertilizer is applied to each
plot. We assume there are nine possible levels of the treatment so that a 9 × 9 grid of
plots is necessary for a full latin square design. We focus on random effects and exclude
fixed effects from the model, and assume that the responses can be modelled by

yi,j = αi + βj + γk[i,j] + εi,j , i, j = 1, . . . , 9, (5.1)

where α = (α1, . . . , α9) ∼ N9(0, σ
2
r I9) is an i.i.d. effect of row, β = (β1, . . . , β9) ∼

N9(0, σ
2
c I9) is an i.i.d. effect of column, γ = (γ1, . . . , γ9) is the effect of the treatment,

k[i, j] denotes the treatment assigned to row i and column j, and ε = (ε1,1, . . . , ε9,9) ∼
N81(0, σ

2
RI81) is the residual noise.

We believe that the effect of the treatment is ordered, and that the treatment effect

consists of a smooth signal of interest γ(1) = (γ
(1)
1 , . . . , γ

(1)
9 ) and random noise γ(2) =

(γ
(2)
1 , . . . , γ

(2)
9 ) we have to control for. The signal is given a second-order random walk

model described by N9(0, σ
2
RW2Q

−1
RW2), where σ2

RW2 is the variance and Q−1
RW2 is a

slight abuse of notation to describe the intrinsic second-order random walk defined by
the precision matrix QRW2, and the noise is γ(2) ∼ N9(0, σ

2
t I9). We use the constraints∑9

i=1 γ
(1)
i = 0 and

∑9
i=1 iγ

(1)
i = 0 to remove the implicit intercept and linear effect,

respectively.

We set the true standard deviations equal, σr = σc = σt = σR = 0.1, and let the
true effect of treatment be given by xi = C

(
(i− 5)2 − 20/3

)
, i = 1, . . . , 9. We entertain

three scenarios: C = 0 for no effect of treatment (S1), C = 0.05 for medium effect of
treatment (S2) and C = 0.2 for strong effect of treatment (S3). More details on the
true treatment effect is included in Section S4.1 in the Supplementary materials, see
especially Figure S4.2. We simulate 500 datasets for each scenario and analyse them
with four choices of priors.

The three default priors used are Jeffreys’ prior for σ2
R combined with

InvGamma(1, 5×10−5) for σ2
r , σ

2
c , σ

2
t and σ2

RW2 (P-INLA), or Half-Cauchy(25) (P-HC)
or PCSD(3, 0.05) (P-PC) for σr, σc, σt and σRW2. We select an HD prior from Prior
class 2 using the model structure in Figure 4a, where the triple split has a Dirichlet
prior and the two other splits have PC priors (P-HD-D3). We also decompose the triple
split into the two dual splits as shown in Figure 4b, and use a PC prior on all four
splits according to the shrinkage structure in the figure (P-HD-25). In all cases we use
default values for the hyperparameters. See Section S2 in the Supplementary Materials
for more details on changing a triple split to two dual splits. Figures S4.3, S4.4, S4.10
and S4.11 in the Supplementary Materials show that the implementation of the triple
split has little influence on the targets of the analysis.
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Figure 4: Model structure for the latin square simulation study. Gray nodes indicate
base models. (1/3, 1/3, 1/3), (1/3, 2/3), and (1/2, 1/2) indicates that the base model for
the split is a combination of the branches. a) Original, and b) alternative structure.

Figure 5: Results from the latin square experiment simulation study.

The targets of the analysis are the posterior distribution of the structured treatment
effect γ(1) and the model fit. The former will be assessed by the continuous rank prob-
ability score (CRPS) (Gneiting and Raftery, 2007) and the latter by the leave-one-out

log predictive score (LOO-LPS) − 1
81

∑81
i=1 log π(yi|y−i). The CRPS is a proper scoring

rule and given by 1
9

∑9
i=1

∫∞
−∞ (Fi(x)− I(x ≥ xi))

2
dx, where Fi is the cumulative dis-

tribution function for the posterior of γ
(1)
i , xi is the true effect of treatment i, and I is

the Heaviside function, and is estimated using the procedure of Jordan et al. (2017). We
report the proportion of datasets leading to no more than 0.1% divergent transitions for
each prior and scenario, and use this as a measure on stability of the inference. These
numbers can be seen in Figure S4.5 in the Supplementary Materials, and show that
all priors lead to similar stability. The datasets leading to more than 0.1% divergent
transitions for one or more priors are removed from the study.

The main results from the simulation study are displayed in Figure 5. Low LOO-LPS
indicates good model fit and low CRPS indicates good predictive power for the treat-
ment effect. P-INLA gives a poorer model fit than the other priors, and with respect
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to predictive power, the HD priors P-HD-D3 and P-HD-25 perform best for S2 and
S3. The high predictive power of P-INLA for S1 is due to the fact that P-INLA has a
peak at low variance and produces a posterior for the treatment effect with mean closer
to zero and lower variance. Overall, the HD prior performs well across all scenarios.
The results are stable to changes in the construction of the HD prior and the choice of
hyperparameters; see Section S4.2 in the Supplementary Materials for details. The HD
priors are preferable to the other priors because of their intuitive parametrization and
the interpretability of the a priori assumptions placed on the joint prior of the variance
parameters. Further, P-HD-D3 is preferred to P-HD-25 since they perform similar and
P-HD-D3 is more intuitive.

6 Case studies: Binomial responses

In this section we study neonatal mortality counts arising from complex surveys through
a simulation study, and show how to practically apply the HD priors.

6.1 Background

Neonatal mortality is an important indicator of health and well-being in a country and is
included in Goal 3.2 of the Sustainable Development Goals (SDGs) (General Assembly of
the United Nations, 2015), and mapping child mortality is an important area of current
research (Golding et al., 2017; Wakefield et al., 2019; Li et al., 2019). We define neonatal
mortality as the rate of deaths within the first month of life per live birth. An important
source of data for neonatal mortality is the nationally-representative household surveys
performed by Demographic and Health Surveys (DHS). The survey performed by DHS
in 2014 in Kenya targets its 47 counties, which is the relevant administrative level
for health policies (Kenya National Bureau of Statistics et al., 2015). The target of the
simulation study in Section 6.2 and the analysis in Section 6.3 is the spatial heterogeneity
in neonatal mortality in Kenya in the time period 2010 to the time of the survey.

From the survey we can extract the number of live births, bi,j,k, and the number of
neonatal deaths, yi,j,k, in household k in cluster j in county i. We also have an indicator
xi,j specifying whether the cluster is rural (0) or urban (1) and each household has an
inclusion probability πi,j,k of being included in the survey sample. See the Section S5.1
in the Supplementary Materials for more background.

6.2 Simulation study

In this section we use the n = 290 constituencies shown in Figure 6a.2 We assume
that mi = 6 clusters are visited in constituency i, i = 1, . . . , n, and consider births
bi,j and neonatal deaths yi,j in cluster j in constituency i. We assume that there are
bi,j = 25 live births in each cluster and the outcomes are simulated according to the

2Preliminary investigations revealed that 47 counties provided too little information to learn about
model structure in the data. We instead use the 290 constituencies of Kenya for the simulations study.
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Figure 6: Map and model structure for the Kenya neonatal mortality simulation study.

model yi,j |pi,j ∼ Binomial(bi,j , pi,j) for

logit(pi,j) = ηi,j = μ+ ui + vi + νi,j , j = 1, . . . ,mi, i = 1, . . . , n,

where μ is a joint intercept, u = (u1, . . . , un) has a Besag distribution with vari-
ance σ2

B and a sum-to-zero constraint, v = (v1, . . . , vn) ∼ Nn(0, σ
2
IIDIn), and ν =

(ν1,1, . . . , νn,mn) ∼ NM (0, σ2
CIM ) with M = m1 + . . .+mn = 6 · 290 = 1740.

We use the structure for the prior shown in Figure 6b to make an HD prior from
Prior class 3 with PC priors on all splits according to the base models indicated in the
figure (P-HD-25) and an HD prior from Prior class 3 where a Dirichlet prior distributes
variance to the three model components (P-HD-D). In all cases, the splits have default
hyperparameter values and we select the hyperparameter in the PC prior on total vari-
ance, t = σ2

B+σ2
IID+σ2

C, so that P(t > 3) = 0.05. Further, we use InvGamma(1, 5×10−5)
for σ2

B, σ
2
IID and σ2

C (P-INLA), Half-Cauchy(25) for σB, σIID and σC (P-HC), and the
joint prior proposed in Riebler et al. (2016) (P-PC), where σ2

B and σ2
IID has a PC prior

of the type introduced in this paper with P(σ2
B/(σ

2
B + σ2

IID) < 0.5) = 2/3 and σ2
C is

given an independent PC prior σC ∼ PCSD(3, 0.05).

Based on the final report from the survey (Kenya National Bureau of Statistics
et al., 2015) the estimated national level of neonatal mortality is 0.022 for 2010–2014,
and we set μ = logit(0.022). Further, we choose σ2

C = 0.1 and create five scenarios
by combining this with σ2

IID = σ2
B = 0 (S1), σ2

IID = 0.4 and σ2
B = 0 (S2), σ2

IID =
σ2
B = 0.2 (S3), σ2

IID = 0.04 and σ2
B = 0.36 (S4), and σ2

IID = 0 and σ2
B = 0.4 (S5). We

simulate 500 datasets for each scenario. The main targets of the simulation study are
the structured part of the spatial heterogeneity through the posterior of u, the degree
of structure in the spatial heterogeneity through ω(2) = σ2

B(σ
2
B + σ2

IID)
−1, and how well

the underlying neonatal mortality is estimated through the posterior of the intercept
μ. The performance is assessed through the CRPS (see Section 5.2) of u, the bias of
the posterior median of ω(2), and the bias of the posterior median and the coverage of
the 80% equal-tailed credible interval for μ. We use the proportion of datasets leading
to at most 0.1% divergent transitions as a measure of stability in the inference, these
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Figure 7: Main results from the Kenya neonatal mortality simulation study. Left to right:
bias of the intercept μ, CRPS of u and bias of ω(2). Scenario shown on the x-axes.

numbers can be seen in Figure S5.1 in the Supplementary Materials, and show that
P-INLA leads to more unstable inference than the others.

Figure 7 shows the main results from the simulation study. We drop datasets that
cause more than 0.1% divergent transitions for at least one of the priors from each
scenario. All priors have a tendency to overestimate the intercept, with P-INLA doing
worse than the others, P-INLA gives close to exact estimates when the true value of ω(2)

is 0 (in S2) and 1 (in S5), but performs worse than the other priors for S3 and S4. Figure
S5.2 in the Supplementary Materials shows that P-HD-25 performs better than P-HD-D
except in S3 where the Dirichlet prior is closest to the truth, and that ω(1) tends to be
underestimated under all the priors. P-HD-25 is preferred because overall it performs
at least as good as the other priors P-HC and P-PC, and P-HD-25 is an intuitive and
well-behaved prior that takes the hierarchical structure of the model into account.

6.3 Neonatal mortality in Kenya

This section follows the notation introduced in Section 6.1. The survey consists of 13183
households with one or more live births, distributed over 1593 clusters that are dis-
tributed over n = 47 counties. In total there are 376 deaths among 17664 children.
Figure 8c shows the counties and the weighted neonatal mortality by the inverse in-
clusion probabilities, and it is unclear if there is a structured spatial pattern. The
neonatal mortality is assumed to follow a survival model with constant hazard through
the first month of life, and we use a latent Gaussian model with a binomial likelihood,
yi,j,k|bi,j,k, pi,j,k ∼ Binomial(bi,j,k, pi,j,k), a logit link function, and a linear latent Gaus-
sian model

ηi,j,k = logit(pi,j,k) = μ+ xi,jβ + ui + vi + νi,j + εi,j,k, (6.1)

where μ is an overall intercept, β is the effect of urban, u is a Besag model with variance
σ2
11, v is a Gaussian i.i.d. effect of county with variance σ2

12, ν is a Gaussian i.i.d. effect
of cluster with variance σ2

2 , and ε is a Gaussian i.i.d. effect of household with variance
σ2
3 . In this model, u and v provide structured and unstructured, respectively, between-

county variation, ν provides between-cluster variation, and ε provides within-cluster
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variation. The Besag effect has a sum-to-zero constraint to make the overall intercept
identifiable. The random effects of cluster and household are necessary to account for the
dependence induced between sampled households due to the clustering in the sampling
design. We assume that there is no difference between the effect of urbanicity between
different counties.

The model has four variance parameters that must be assigned a joint prior. The
first step is to choose the tree structure. For simplicity’s sake, the alternatives to the full
model (6.1) we would entertain are first ηi,j,k = μ + xi,jβ + vi, then we would add ui,
so νi,j , and at last εi,j,k. We prefer coarser unstructured effects over finer unstructured
effects since we would like to explain the data at a coarser level if possible, and we
prefer the unstructured spatial effect over the structured spatial effect since we want
to reduce the risk of estimating spurious spatial signals. This gives the nested tree
structure in Figure 8a where the household effect, cluster effect and Besag effect are
sequentially split off from the total latent variance. We construct an HD prior based
on the tree structure with PC priors with default hyperparameter values for the splits,
and induce shrinkage on the total latent variance as in Prior class 3 with a PC prior
where P(Total variance > 11.296) = 0.05. This corresponds to a priori equal-tailed
90% credible interval of (0.1, 10) for the effect of the random effects on the odds-ratio,
exp(ui+ vi+ νi,j + εi,j,k). This allows for high variation in the data and is used because
the data is observed at the household level. The splits in Figure 8a are given PC priors
with default hyperparameters and bases models as indicated in the figure.

The model is parameterized by total standard deviation σT, and proportion of house-
hold variance to total variance of the random effects ω(1), proportion of cluster variance
to the sum of cluster and county variance ω(2), and the proportion of structured spatial
variance to county variance ω(3). The priors and posteriors of the proportions ω(1), ω(2)

and ω(3) are shown in Figure 8e. The total standard deviation has a posterior median
of 1.47, and the prior and posterior can be seen in Figure S5.3 in the Supplementary
Materials. The results show that the data only weakly informs about the proportion
of structured to unstructured spatial effects, which indicates that the data provide no
strong evidence in favor of or against a structured spatial effect. Also the posterior of
ω(2) is similar to the prior, but there is a strong signal in the posterior of ω(1) that there
is non-negligible household-level dependence. A plausible explanation for the weak sig-
nals in ω(2) and ω(3) is that there is substantial noise coming from high variance in the
household-level random effect and weak information from the Binomial likelihood due
to few successes and few numbers of trials.

As shown in Figure 8b the proportion of the total latent variance attributed to the
structured spatial effect is low and the posterior median is 0.56%. The estimated spatial
effect in Figure 8d only explains a small part of the variation seen in the observed data
in Figure 8c. One should be careful to draw conclusions about spatial variation based
on Figure 8d because the data is only weakly informative about the split between the
structured and the unstructured spatial random effects ω(3), and there is only weak
evidence for the spatial effect being different from 0 as shown in Figure S5.5 in the
Supplementary Materials. The fact that the comparisons of priors and posteriors for
ω(2) and ω(3) directly informs about the weak signal in the data is an advantage of
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Figure 8: Description of model structure, map of observed mortality, and results for
neonatal mortality in Kenya.

the parametrization through proportions of variance, and a strong argument for setting

priors on ω(2) and ω(3) rather than independent priors on the variance of each effect

since the resulting posteriors for ω(2) and ω(3) are strongly dependent on the resulting

implicit priors for ω(2) and ω(3).
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One could argue for other splits in the tree in Figure 8a such as preferring finer level
effects to coarser level effects because one does not want to estimate spurious cluster-
level or county-level effects, but the key point of this application is that it is easy
to set up the prior based on a priori assumptions and the assumptions are available
to other scientists at a glance. With the traditional approach of independent priors,
the resulting prior on the total variance of the random effects and the distribution of
this total variance to the different random effects is obfuscated. Furthermore, if expert
knowledge indicates that stronger relative shrinkage of the variances than the default
setting is needed, the medians of the conditional priors for ω(1), ω(2) and ω(3) can be
reduced.

7 Discussion

Independent priors for the variance parameters in a BHM result in an implicit prior
on the total variance of the random effects, t, and the attribution of t to the random
effects. Additive models are typically built in a modular fashion, but these implicit
priors are not consistent with respect to adding or removing random effects. In the case
of Gaussian responses, both the prior for t and the prior for t relative to the size of the
residual variance change. The proposed HD priors overcomes these shortcomings, and
respect the defined model structure and are consistent for t and the attribution of t to
the different random effects for different selections of random effects.

The HD priors admit a visual representation through trees that allow transparent
communication of the assumptions made in constructing the priors and facilitate dis-
cussion around the assumptions. The tree clearly specifices where shrinkage has been
applied, and in some cases lead to more intuitive parametrization that is more suitable
for elicitation of priors. For the random intercept model, the tree-based hierarchical
variance decomposition leads to a parameterisation in terms of t and the ICC. A prior
on these parameters is more interpretable than separate priors on the group variance
and individual variance, which obfuscates the joint effect of the priors. The increased
interpretability of joint priors compared to independent priors addresses concerns raised
about transparency for point processes where prior sensitivity is a major concern (Sørbye
et al., 2018).

The mix of robust PC priors for shrinkage and simple Dirichlet priors for expressing
ignorance, allows principled priors that respect the relative complexity of the random
effects when shrinkage is necessary, and intuitive exchangeability when no random effects
are preferred or no model structure is apparent. The simulation studies show that this
approach performs better than a completely unstructured approach with a Dirichlet
prior attributing t to the different random effects, but that Dirichlet priors perform well
for subgroups of the random effects where there is no nested structure or difference in
complexity.

HD priors with default settings for the hyperparameters performs well, but there are
corner cases like no treatment effect in the latin square experiment and no structured
spatial effect for the binomial data, which are best handled by the default INLA prior.
However, this prior has a peak in the prior distribution for low variances and generally
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performs surprisingly bad. The HD priors perform comparable to component-wise PC
priors and separate half-Cauchy priors for the marginal variances. The main benefit of
the HD priors over other default priors is their combination of intuitive graphical repre-
sentation with robust inference that behaves well across a range of different scenarios.

The calculation of PC priors is more complex in the context of correlation parame-
ters, but multivariate PC priors have been developed for more complex random effects
such as autoregressive processes (Sørbye and Rue, 2017) and spatial Matérn models
(Fuglstad et al., 2019b). These can be integrated into the HD prior framework by first
defining priors on the correlation parameters, and then constructing the joint prior for
the variance parameters with the correlation parameters fixed to reasonable values. This
follows the pragmatic mindset of Assumption 2 of producing priors that are computa-
tionally feasible, intuitive and practically useful.

A key focus for future work is to exploit sparsity in the precision matrices of the
random effects. This is important when shrinkage is desired through PC priors be-
cause many models such as random walks, Besag models, and Gaussian random fields
(Lindgren et al., 2011) have dense covariance matrices, but can be expressed through
sparse precision matrices. Assume that the total variance is split between random ef-
fects with sparse precision matrices Q1 and Q2, where Q1 corresponds to the base
model. Let 0 < ω < 1, then the KLD used in Theorem 1 consists of the trace of
Q1[(1−ω)Q−1

1 +ωQ−1
2 ], which can be computed quickly through the techniques in Rue

and Held (2010, Section 12.1.7.10), and the determinant det[Q1[(1−ω)Q−1
1 +ωQ−1

2 ]] =
det[(1 − ω)Q2 + ωQ1](det[Q2])

−1, which can be computed quickly through Cholesky
factorizations.

We aim to further broaden the advantages of the HD priors in the future by con-
structing a joint prior for the variance parameters and the fixed effects. However, this
will require re-thinking of the concept of total latent variance as it is the values of the
coefficients of the fixed effects and not their variance that determines the amount of
variance they explain. Instead of starting with the concept of marginal variances, it is
natural to begin with the classical concept of explained variance and use ideas from
block-wise g-priors (Som et al., 2014) to distribute variance inside a group of covari-
ates. In a multilevel model this would connect the attribution of explained variance
to different levels to generalised coefficients of determinations. Additionally, towards
non-parametric regression by including a combination of a linear effect of a covariate
and a smooth effect of a covariate, and explicitly putting a prior on the degree of non-
linearity (Simpson et al., 2017, Section 7). However, there are still open questions and
this addition is outside the scope of this paper.

The choice of tree structure for HD priors should be guided by the application at
hand, for example, by considering the relative complexity of the random effects. When
expert knowledge is available, the default values for the hyperparameters should be
replaced by values elicited based on expert knowledge. We believe that the advantages
of the HD priors over independent priors mean that they should be used as the default
option in software for Bayesian analysis. However, it is necessary to make the selection
and computation of HD prior for a specific problem easier for analysts. We plan to
address this by providing a separate R package, which is compatible with INLA, that
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provides a graphical user interface for selecting the tree structure and selecting priors
for the splits, and has the option to pre-compute priors for use in RStan. This will
allow analysts to experiment with different a priori assumptions and produce graphical
figures that summarize their assumptions and can be communicated to fellow scientists.
This will encourage transparancy and clarity in a priori assumptions in the scientific
community.

Supplementary Material

Supplement to “Intuitive joint priors for variance parameters”
(DOI: 10.1214/19-BA1185SUPP; .zip). The Supplementary Materials consist of a sup-
plementary document providing additional results and discussion, and example code for
the latin square model. The code is described in the Section S4.3 of the supplementary
document. http://www.some-url-address.org/dowload/0000.zip
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Besag, J., York, J., and Mollié, A. (1991). “Bayesian image restoration, with two appli-
cations in spatial statistics.” Annals of the Institute of Statistical Mathematics , 43(1):
1–20. MR1105822. doi: https://doi.org/10.1007/BF00116466. 7

Bhattacharya, A., Pati, D., Pillai, N. S., and Dunson, D. B. (2015). “Dirichlet–
Laplace priors for optimal shrinkage.” Journal of the American Statistical Associa-
tion, 110(512): 1479–1490. MR3449048. doi: https://doi.org/10.1080/01621459.
2014.960967. 3

Blangiardo, M. and Cameletti, M. (2015). Spatial and spatio-temporal Bayesian models
with R-INLA. West Sussex, United Kingdom: John Wiley & Sons. MR3364017. 2

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). “Stan: A probabilistic pro-
gramming language.” Journal of Statistical Software, 76(1). 2, 14

Cicchetti, D. V. (1994). “Guidelines, criteria, and rules of thumb for evaluating normed
and standardized assessment instruments in psychology.” Psychological assessment ,
6(4): 284. 9

https://doi.org/10.1214/19-BA1185SUPP
http://www.some-url-address.org/dowload/0000.zip
http://www.ams.org/mathscinet-getitem?mr=3873676
https://doi.org/10.1002/wics.1443
http://www.ams.org/mathscinet-getitem?mr=1988562
https://doi.org/10.1002/0471722227
https://doi.org/10.1002/0471722227
http://www.ams.org/mathscinet-getitem?mr=3362184
http://www.ams.org/mathscinet-getitem?mr=1105822
https://doi.org/10.1007/BF00116466
http://www.ams.org/mathscinet-getitem?mr=3449048
https://doi.org/10.1080/01621459.2014.960967
https://doi.org/10.1080/01621459.2014.960967
http://www.ams.org/mathscinet-getitem?mr=3364017


26 Intuitive Joint Priors for Variance Parameters

Fahrmeir, L. and Lang, S. (2001). “Bayesian inference for generalized additive mixed
models based on Markov random field priors.” Journal of the Royal Statistical Society:
Series C , 50(2): 201–220. MR1833273. doi: https://doi.org/10.1111/1467-9876.
00229. 2

Fuglstad, G.-A., Hem, I. G., Knight, A., Rue, H. , and Riebler, A. (2019a). “Supplement
to “Intuitive joint priors for variance parameters”.” Bayesian Analysis. doi: https://
doi.org/10.1214/19-BA1185SUPP. 4

Fuglstad, G.-A., Simpson, D., Lindgren, F., and Rue, H. (2019b). “Constructing priors
that penalize the complexity of Gaussian random fields.” Journal of the American
Statistical Association, 114(525): 445–452. MR3941267. doi: https://doi.org/10.
1080/01621459.2017.1415907. 8, 24

Gelman, A. (2006). “Prior distributions for variance parameters in hierarchical models.”
Bayesian Analysis, 1(3): 515–534. MR2221284. doi: https://doi.org/10.1214/

06-BA117A. 2, 9

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin,
D. B. (2013). Bayesian Data Analysis. Boca Raton, FL: Chapman and Hall/CRC.
MR3235677. 1

Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multi-
level/Hierarchical Models, volume 1. New York, New York: Cambridge University
Press. 1, 2, 14

Gelman, A., Jakulin, A., Pittau, M. G., Su, Y.-S., et al. (2008). “A weakly informative
default prior distribution for logistic and other regression models.” The Annals of
Applied Statistics, 2(4): 1360–1383. MR2655663. doi: https://doi.org/10.1214/
08-AOAS191. 4, 9

Gelman, A., Simpson, D., and Betancourt, M. (2017). “The prior can often only be
understood in the context of the likelihood.” Entropy , 19(10): 555. 2, 12

General Assembly of the United Nations (2015). “Resolution adopted by the General
Assembly on 25 September 2015.” A/RES/70/1. 18

Gneiting, T. and Raftery, A. E. (2007). “Strictly proper scoring rules, prediction,
and estimation.” Journal of the American Statistical Association, 102(477): 359–378.
MR2345548. doi: https://doi.org/10.1198/016214506000001437. 17

Golding, N., Burstein, R., Longbottom, J., Browne, A. J., Fullman, N., Osgood-
Zimmerman, A., Earl, L., Bhatt, S., Cameron, E., Casey, D. C., et al. (2017). “Map-
ping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the
Sustainable Development Goals.” The Lancet , 390(10108): 2171–2182. 18

Guo, J., Riebler, A., and Rue, H. (2017). “Bayesian bivariate meta-analysis of diagnostic
test studies with interpretable priors.” Statistics in Medicine, 36(19): 3039–3058.
MR3670407. doi: https://doi.org/10.1002/sim.7313. 8

Hinkelmann, K. and Kempthorne, O. (1994). Design and Analysis of Experiments,

http://www.ams.org/mathscinet-getitem?mr=1833273
https://doi.org/10.1111/1467-9876.00229
https://doi.org/10.1111/1467-9876.00229
https://doi.org/10.1214/19-BA1185SUPP
https://doi.org/10.1214/19-BA1185SUPP
http://www.ams.org/mathscinet-getitem?mr=3941267
https://doi.org/10.1080/01621459.2017.1415907
https://doi.org/10.1080/01621459.2017.1415907
http://www.ams.org/mathscinet-getitem?mr=2221284
https://doi.org/10.1214/06-BA117A
https://doi.org/10.1214/06-BA117A
http://www.ams.org/mathscinet-getitem?mr=3235677
http://www.ams.org/mathscinet-getitem?mr=2655663
https://doi.org/10.1214/08-AOAS191
https://doi.org/10.1214/08-AOAS191
http://www.ams.org/mathscinet-getitem?mr=2345548
https://doi.org/10.1198/016214506000001437
http://www.ams.org/mathscinet-getitem?mr=3670407
https://doi.org/10.1002/sim.7313


G.-A. Fuglstad, I. G. Hem, A. Knight, H. Rue, and A. Riebler 27

Volume 1: Introduction to Experimental Design. John Wiley & Sons. MR2129060.
doi: https://doi.org/10.1002/0471709948. 16

Holand, A. M., Steinsland, I., Martino, S., and Jensen, H. (2013). “Animal models and
integrated nested Laplace approximations.” G3: Genes, Genomes, Genetics, g3-113.
2
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