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Abstract. This work presents a novel occupancy simulation model for residential buildings.
The main contribution is that occupancy is simulated at room level, as opposed to more course
spatial resolutions in previous studies. The model is based on a time-use survey conducted in
Denmark including several thousand households. It is formulated as an inhomogeneous hidden
Markov model. The simulated occupancy profiles take into account the variables week day, time
of day, occupant age and family type. Preliminary results show that they are in good agreement
with the measurements.

1. Introduction
In the field of building energy simulation there has been an increased attention in recent years
to the modelling of occupant behaviour. The reason for this is that it has been generally
acknowledged that the behaviour of the occupants has a significant influence on the energy
performance of a building. This influence materialises in substantial differences in energy
consumption of equally designed dwellings [1, 2], which becomes a challenge for predictions
of the building energy use. The term ”building performance gap”, which has become a familiar
expression in the field of building energy simulation, describes a mismatch between estimated
and real energy consumption in buildings. This mismatch has been at least partly ascribed
to inaccurate or oversimplified representations of occupant behaviour in the simulation tools
[3]. It is therefore crucial to find models that realistically reflect the occupant behaviour and
also the diversity among occupants [4, 5]. One aspect of occupant behaviour is the presence or
more generally the location of the occupants. In building energy simulations, it is important
to represent the occupants’ location for two reasons. First, the metabolic heat gain from the
occupants has an effect on a room’s energy balance. The influence of these heat gains becomes
bigger with increasing building insulation standards, as the share of metabolic heat gains on the
total spatial heating increases. Secondly, presence is a necessary condition for many occupant
actions which have an affect on the energy consumption. Examples in residential buildings
are window opening, thermostat adjustment, cooking, use of electronic devices such as ICT
appliances or washing machine and tumble dryer. A number of occupant presence (occupancy)
models has been presented in recent years. Most of them are probabilistic models based on
measurements [6, 7, 8, 9, 10]. The majority of occupancy simulation models in literature can
be assigned to either models for office buildings or households. The number of office building
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models is higher. This can possibly be ascribed to the fact that a monitoring is easier to install
in office buildings (e.g. universities) and that occupancy patterns in offices are more straight
forward than in households.

The literature of domestic presence models is more scarce. [7] present a domestic occupancy
simulation model based on UK time-use data. The model consists of an inhomogeneous Markov
chain whose states represent the number of active (not asleep) occupants in the household. The
model’s configuration includes the distinction of weekend and weekday, and the household size.
[11] use a different approach, as in their model each occupant is individually represented by a
Markov chain. They present a 3-state occupancy model with the states ”active”, ”inactive”,
”absent” for the use of simulating domestic lighting demand. The model is based on a Swedish
time-use survey (TUS) and comprises four different inhomogeneous Markov chains; one for
each combination of weekdays and weekend days, and apartments and detached houses. In
[12], this approach is modified by differentiating the ”active” state into seven states related
to electricity consumption (cooking, dishwashing, washing, TV, computer, audio, other). [13]
propose a similar approach as [11] based on a Belgian TUS using the same three states (”active”,
”inactive”, ”absent”). In addition to the aforementioned work, the authors apply a hierarchical
clustering method to define six distinct behavioural occupancy types, each of which can be
simulated separately. [14] present a 3-state occupancy model with some additional features.
They use a higher-order Markov model that takes into account the elapsed time of the current
state. The authors argue that this improves the simulated activity durations as compared to
an ordinary Markov chain model. Moreover, they link occupants that have a high chance of
correlation to each other (e.g. spouses, parents, children) by representing the occupants by one
combined Markov chain, as done by [7].

None of the aforementioned works attempts to simulate occupancy on a spatial resolution
finer than household. In the present work, an occupancy simulation model on room-level is
presented. The states of the model represent an occupant’s location which is either a room
within the household or being not present in the dwelling (out). The model is based on a
Danish TUS from 2008/09. Since only activities but no locations are recorded in this data set, a
hidden Markov model (HMM) is applied to make statistical inference on the locations based on
the observed activities. The transitions between states follow an inhomogeneous Markov chain
to respect the diurnal rhythm of the occupants. Furthermore, the model differentiates between
weekdays and weekend days, and between six occupant categories which were identified based
on demographic features and household characteristics.

2. Data description
The data that was used in this work to train the model stems from a TUS conducted in Denmark
between March 2008 and March 2009 [15]. After filtering missing data, the survey included 4344
families with a total number of 11341 individuals, of which 8201 have written an activity diary.
Most of the individuals who conducted a diary did this for one weekday and one weekend day.
The occupant age varied from 4 years to 85 years (mean: 52.7, median: 56). In the diaries, every
10-minute interval was filled with one of forty predefined activities. Direct information about
the location of the occupants was not included in the data set. Furthermore, activities which
did not occur at least once in the diary for at least 80% of the individuals were regarded as
untypical. Diary-person-days (a sequence of 24 h for one person) that included these untypical
activities were removed. After this filtering, 28 activities and 4877 diary-person-days remained.

3. Methods
This section gives a brief overview of the employed methods in this work. In Section 3.1 and
Section 3.2, ordinary and hidden Markov chains are defined, respectively.
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3.1. Markov chains
For a finite set M = {1, 2, . . . ,m}, an m-state Markov chain is a sequence of M -valued random
variables {Xt} with

P (Xt|X(t−1)) = P (Xt|Xt−1), (1)

where X(t−1) = Xt−1, Xt−2, . . . , X0 is set of variables of {Xt} up to time t − 1. Equation
(1) is referred to as the Markov property. In words, the probability of the current time step,
conditioned on the entire history, depends only on the previous time step. The matrix of
conditional probabilities between two states i, j ∈M ,

Γi,j(t) = P (Xt = i|Xt−1 = j) (2)

is called transition probability matrix (TPM). If Γ does not depend on the time t, the process is
called a homogeneous Markov chain. Otherwise it is called an inhomogeneous Markov chain.

3.2. Hidden Markov chains
A hidden Markov chain is a probabilistic model that consists of two components: An observed
sequence {Yt} and an unobserved Markov chain {Xt}. It is assumed that Yt only depends on

the current state Xt but not on its own history Y(t−1).

P (Yt|Xt,Y
(t−1),X(t−1)) = P (Yt|Xt) (3)

The distribution of Yt|Xt is referred to as response distribution. The parameters in a HMM
are given by the set {A,B, π}, where A and B are sets of parameters that correspond to the
TPM and the response distribution, respectively. The parameter vector π is the distribution
of X0, that is, the distribution of the unobserved state in the initial time step. The Baum-
Welch algorithm, which is based on the maximum likelihood estimation principle, can be used
for parameter estimation [16, 17]. In addition to parameter estimation, in the context of HMM,
one is often interested in the most likely sequence of unobserved states for a given sequence of
observations. This sequence is referred to as global decoding and an efficient way to calculate it
is the Viterbi algorithm [16].

3.3. Description of the simulation model
In the present model, we define m = 5 states that correspond to the occupants’ locations, namely
{sleeping room, kitchen, bathroom, living room, out}. Further, there are n = 28 different
activities the occupants can follow, e.g. {sleep, work, relaxing, eating, ...}. Let {Yt} be a
sequence of observed activities and {Xt} the corresponding unobserved sequence of locations.
In order to define a HMM, we need to define a set of parameters corresponding to the transition
probabilities, the response distribution and the initial distribution, respectively, i.e. {A,B, π}.

Response distribution We define the conditional distribution of the locations given the
activities, P (X|Y ) for example as in Table 1. Using Bayes’ theorem, the response distribution
P (Y |X) can then be obtained by:

P (Y |X) =
P (Y )

P (X)
· P (X|Y ), (4)

where P (Y ) can be calculated as the relative frequency of each observed activity, and P (X) is
a normalizing factor.
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Table 1. Conditional distribution of States P (X|Y )
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sleep 1.00 0.00 0.00 0.00 0.00
work 0.00 0.00 0.00 0.00 1.00
eating 0.00 0.50 0.00 0.30 0.20
cleaning 0.25 0.25 0.25 0.25 0.00
. . . . . . . . . . . . . . . . . .

Transition probabilities The transition
probabilities in the presented model
are dependent on the time of day.
Hence, the underlying Markov chain is
inhomogeneous. To represent this time-
dependency, the four basis vectors of a
B-spline basis with a periodicity of 24 h
are used as covariates to the transition
probabilities [10]. The use of splines
has several merits in comparison to the
calculating a TPM for each time step. It
results in smooth transition probability
curves and avoids unwanted spikes in the
transition probabilities that derive from
lack of observed transitions in the data rather than from real changes in the probability over
time. Moreover, it drastically reduces the number of parameters and with this the calculation
costs of the parameter estimation. As is a common approach, we use a logit function as link
between the unbounded space of the linear covariates and the bounded space of the probabilities.
The transition probabilities are given by:

Γi,j,t =
exp(xt

′aij)∑N
h=1 exp(xt

′aih)
, i, j ∈ {1, . . . ,m} (5)

with the spline basis xt = (xt1, xt2, xt3, xt4) at time t and parameters aij =
(aij1, aij2, aij3, aij4).

3.4. Categorisation of occupants and days
In order to respect differences in behavioural patterns, the occupants were categorised in the
following six groups: (i) children (younger than 18 years), (ii) single adults, (iii) adults living with
partner, (iv) adults living with partner and children, (v) single seniors (older than 66 years) and
(vi) seniors living with partner. Of course, other constellations are possible, but are disregarded
for the sake of simplicity. The gender of the occupants was not considered. Furthermore, the
model distinguishes between four categories of days: Fridays, Saturdays, Sundays and weekdays
(Monday to Thursday). This categorisation of days was chosen over a more simple distinction
in weekdays and weekend, because the days Friday, Saturday and Sunday each have unique
occupancy patterns. For instance, on Fridays many people leave work earlier and go to bed
later, as they do not have to work next morning. On Sundays, people might go to sleep earlier
than on Saturdays, as they have to work on Monday morning. In total, this results in 24
combinations for each of which one TPM was fitted.

4. Results and Discussion
This section describes the simulation results using the above presented model. Figures 1, 2
and 3 are all based on simulations of occupant category (iv), i.e. adult living with partner
and children, on a weekday. Figure 1 show the averages time spent in each state based on one
thousand simulations. One can see that the occupant gets out of bed no earlier than 6 a.m.
and goes to bed no later than 11 p.m. in about 80 % of the cases. Between 9 a.m. and 3 p.m.
the probability, that the occupant is out, is higher than 50 %. Around 6 p.m. there is a high
chance to find the person in the kitchen, presumably preparing/having dinner. Thereafter, in
the evening, the occupant spends most of the time in the living room or out before going to bed.
Most of the bathroom visits occur either in the morning or in the evening. Figure 2 visualises
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the time spent for each activity. Activities that are in the response distribution associated with
a probability of 1 to take place inside the house are coloured in red tones. Activities with a
probability between 0 and 1 are turquoise, and activities with probability 0 are greyed out. The
black reference line in Figure 2 indicates the time spent inside the house based on the simulations
shown in Figure 1. Since this line is mainly running through the turquoise area, one can see that
the activities and states are in good agreement. Figure 3 shows one hundred simulated days.
As opposed to Figures 1, this graph shows the variability (uncertainty) of the created profiles.
On almost every day, the occupant visits the bathroom for a short period after getting out of
bed and before going to bed. In the mornings, this is mainly followed by going to the kitchen
or going out. There is a fairly regular pattern of leaving the house between 8 a.m. and 4 p.m.,
followed by period in the kitchen and living room in the late afternoon. Figure 4 shows, as an
example, an occupancy profile of a four-person household on three weekdays. The household
profile consists of four cumulated single profiles, two of category (i) and two of category (iv),
i.e. two children and two adults. It is assumed that the children and the adults (parents) share
one bedroom, respectively. One can see that the kitchen is mainly occupied in the morning and
evening. There is a peak in the living room around 9 p.m. In none of the profiles, the night sleep
is interrupted by a transition to another state which indicates that the transition probabilities
respect the occupants’ diurnal rhythm. In summary: based on the chosen response distribution,
the simulation results of the occupant locations are in agreement with the observed activities.
For a thorough validation process, ground truth data of room-level occupancy is required.

Figure 1. State distribution. Figure 2. Activity distribution.

Figure 3. Simulations.
Figure 4. Household profile.
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4.1. Limitations
The presented model has a few limitations: a) The model was trained based on Danish TUS
data. Hence, it reflects the behavioural patterns of the Danish population. It is not clear to
which extent this can be transferred to other countries. b) Ideally a Markov chain is trained
on longitudinal data. However, in this case 24-hour diaries were used. Hence there is a cut in
the observations after each 24-hour period. Fortunately, this cut occurs at 4 a.m. when almost
all occupants sleep leading to a smooth transition between diaries. c) Occupants are simulated
independently from each other. However, in reality the behaviour of occupants of the same
household are correlated. For instance, the occupants may eat together and go to sleep at the
same time. d) The distribution of an activity’s location (Table 1) was chosen intuitively. It can
be updated once more evidence is available. e) A dwelling can possibly have zero or more than
one instances of each room type. For instance, it can have no living room or two bathrooms.
This is not reflected by the model.

5. Conclusion and Outlook
To the best of our knowledge, for the first time, a room-level occupancy simulation model for
private households was presented. The model is formulated as a hidden Markov model that
makes inference of the occupants’ location based on observed activities of a Danish time-use
survey. The categorisation of occupant types makes it possible to simulate profiles of single
dwellings or larger scales such as districts. The simulation results are plausible and reflect the
underlying activity data well. However, a thorough validation of the model has not been done
yet. As discussed in the previous section, the model has certain limitations which should be
addressed. In particular, the correlation between occupants of the same household is left for
future research.
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