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Two novel methods for fully unsupervised human action retrieval using 3D mesh sequences are
presented. The ¯rst achieves high accuracy but is suitable for sequences consisting of clean

meshes, such as arti¯cial sequences or highly post-processed real sequences, while the second

one is robust and suitable for noisy meshes, such as those that often result from unprocessed
scanning or 3D surface reconstruction errors. The ¯rst method uses a spatio-temporal de-

scriptor based on the trajectories of 6 salient points of the human body (i.e. the centroid, the

top of the head and the ends of the two upper and two lower limbs) from which a set of

kinematic features are extracted. The resulting features are transformed using the wavelet
transformation in di®erent scales and a set of statistics are used to obtain the descriptor. An

important characteristic of this descriptor is that its length is constant independent of the

number of frames in the sequence. The second descriptor consists of two complementary sub-

descriptors, one based on the trajectory of the centroid of the human body across frames and
the other based on the Hybrid static shape descriptor adapted for mesh sequences. The ro-

bustness of the second descriptor derives from the robustness involved in extracting the cen-

troid and the Hybrid sub-descriptors. Performance ¯gures on publicly available real and

arti¯cial datasets demonstrate our accuracy and robustness claims and in most cases the results
outperform the state-of-the-art.
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matching.
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1. Introduction

Human action retrieval and recognition is a challenging problem with various

applications, such as surveillance, video games, human–computer interaction, etc.

This problem has a variety of intrinsic di±culties. Indeed, there are actions which are

tagged under a general class and their discrimination requires the extraction of

features which characterize the special details of each of them. For example, two of

the most common human actions are \walking" and \running". \Running" is es-

sentially a fast version of \walking", so the extraction of the rate of each action is an

appropriate feature to distinguish them. Other problems, such as temporal mis-

alignment, the variety of the temporal resolution of an action, or body type vari-

ability must also be taken into account when designing a system that accommodates

similar actions.

The psychological experiment of Ref. 1, using a number of point lights attached to

the human body, has shown that only a small number of critical points on the human

body is su±cient for a human to recognize an action. To this end, several technol-

ogies have been used to create skeletal data including passive stereo vision, multi-

camera systems, time-of-°ight cameras, passive optical motion capture systems as

well as Kinect-based systems.

In Fig. 1, the operational pipeline of human action retrieval using 3D mesh

sequences is shown. The process consists of two stages: the o®line stage comprises

the descriptor extraction for each sequence and its storage in a database after

indexing. The online stage is activated for a query mesh sequence; the corresponding

descriptor is extracted and the similarities between the query and the indexed

Fig. 1. Typical pipeline of human action retrieval using 3D mesh sequences.
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sequences are computed. The output of this pipeline is a ranked list ordered in

decreasing similarity.

It is evident from the pipeline that the crucial stages are: (i) the descriptor ex-

traction and (ii) the similarity measure. In this paper, we focus on the representation

of the human body as a 3D mesh, since it is more informative, while 3D scanning

techniques across time are constantly emerging. Human action retrieval using 3D

mesh sequences is an open problem which has hardly been addressed.

In this paper, two alternative methods for unsupervised human action retrieval

using mesh sequences, are presented. In the ¯rst method, the centroid and the ¯ve

extremities of the human body are determined and a set of kinematic features are

extracted from their trajectories. These extremities of the human body is the top of

the head and the ends of the upper and the lower limbs, shown in Fig. 2. The method

of Ref. 2 is extended using a wavelet-based descriptor which has the advantage of

constant size. Due to this, the similarity measure between two mesh sequences can be

extracted using accurate distance measures which are de¯ned between vectors with

the same number of components.

While the above method is notably accurate, in unprocessed mesh sequences it is

often di±cult to detect the six extremities. In view of this, we propose a second

method which is based on the trajectory of a single point, the centroid of the human

body, across frames. The centroid can be robustly extracted as it is an average and is

not much in°uenced by scanning noise. The centroid is complemented by another

robust sub-descriptor known as Hybrid,3 which we have adapted for mesh sequences

and re°ects geometry using a hybrid scheme that combines 3D and 2D information.

The main contributions of this paper are the following:

. An accurate spatio-temporal descriptor for clean 3D mesh sequences of human

actions based on the trajectories of six salient points on the human body.

Fig. 2. The ¯ve extremities of the human body that are used as salient points.
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. A robust descriptor for human action retrieval based on the trajectory of the

centroid of 3D human meshes complemented by a Hybrid descriptor. This is

particularly applicable on challenging data.

The remainder of this paper is organized as follows: In Sec. 2, related work in 3D

mesh sequence retrieval is presented. In Sec. 3, the two alternative methods for

human action retrieval are detailed. In Sec. 4, experimental results are presented

coupled with an extensive discussion, while in Sec. 5 conclusions are drawn and

future work is presented.

2. Related Work

In recent years, variations of the traditional human action retrieval problem have

been addressed. Still image based human action recognition, i.e. the identi¯cation of

a person's action or behavior from a single image, constitutes a variation of the same

problem.4–7 Human action prediction8–10 aims to infer the action from an incomplete

video. In Refs. 11–13, the classi¯cation, retrieval or prediction of interactions be-

tween animated humans and physical objects are addressed.

Many works, such as Refs. 14–21, use skeletons to address the human action

retrieval problem. An extensive survey of 3D skeleton-based action classi¯cation is

Ref. 22. Also, the same problem has been previously addressed using image

sequences23–26 and depth image sequences.27–29 A recent survey of image-based ac-

tion recognition is Ref. 30.

Although the research in the case of human action retrieval using 2D sequences

and 3D skeletal sequences is extensive, in recent years there are only few works

addressing the same problem using 3D meshes for the representation of the human

body. In the following, human action retrieval methods, either for motion clips or for

whole sequences, using the mesh representation for the human body, are presented.

Concerning motion clip retrieval approaches, in Ref. 31, vector quantization is

applied on the mesh of each frame of the sequences producing a set of clusters and a

variation of shape distribution of the clusters' centroids32; this is utilized as de-

scriptor for each frame of the mesh sequence. The sequence is segmented into motion

clips and the ¯nal motion clip retrieval process is based on a dynamic programming

algorithm. In Ref. 33, the geodesic shape distribution is introduced as a shape de-

scriptor for each frame of a mesh sequence. This descriptor is based on the geodesic

distances between clusters' centroids and is combined with the modi¯ed shape dis-

tribution descriptor, introduced in Ref. 31. The ¯nal descriptor for each frame is a

weighted mean of these two descriptors. It is worth noting that the experiments in

this work are limited to only three mesh sequences. In Ref. 34, a static shape de-

scriptor, which is based on the 10 shortest geodesic paths which connect the pro-

trusions of the human body, namely the Extremal Human Curve (EHC), is

introduced. The local extrema of the velocity in time are selected as segmentation

points across the actions, in order to segment the sequences into motion clips. These

motion clips are later retrieved by applying the Dynamic Time Warping (DTW)
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distance35 on the trajectories of EHC curves resulting in the motion clip matching

process. In Ref. 36, the 3D mesh sequences are transformed to 2D sequences by

taking 20 projection points and are matched against 2D queries. The descriptors

which are extracted here, are based on 2D contours and are called P-Type Fourier

Descriptors. For the ¯nal matching between the motion clips, a variation of the

normalized DTW, assigning exponential costs between the feature vectors of the

most distant frames, is applied.

Concerning human action retrieval of whole mesh sequences, we have presented an

extensive comparative study of the use of state-of-the-art descriptors at the frame

level in our previous work.37 Each mesh sequence is considered as a curve in the

M-dimensional space, where M denotes the size of each static descriptor (per mesh

frame). The similarity between the actions is evaluated using the DTW algorithm.

Additional experiments using the Sakoe band for the DTW computations are per-

formed. In Ref. 2, the trajectories of 6 salient points of the human body (the centroid,

the top of the head and the extremities of the upper and the lower limbs) are

extracted. A set of kinematic descriptors are used to form the descriptor of the mesh

sequences, while a k-means-based algorithm is used to fuse multiple distance matrices.

Similar in spirit to the action retrieval problem, in Ref. 38, a supervised method

for human action recognition from multi-view camera systems, is presented. The

proposed descriptors,39 are based on the optical °ow of each of the di®erent views of

the 3D human. The optical °ow is extracted on each pixel of the 2D sequences and a

correspondence between the pixels and the vertices of the meshes is made, using the

camera calibration parameters. The ¯nal motion vector is extracted as a weighted

summation of the motion vector of each view, taking into account the signi¯cance

and the reliability of each view. The ¯rst of the two proposed descriptors, called 3D

Motion Context, corresponds to a spherical histogram which is based on the orien-

tation of the velocity vectors. The second proposed descriptor, called Harmonic

Motion Context, is a modi¯ed version of the 3D Motion Context descriptor using

spherical harmonics, so that invariance with respect to the vertical axis is achieved.

The similarity between the actions relies upon the normalized correlation coe±cients.

The classi¯er is trained by generating a representative set of descriptors for each

action class and a reference descriptor is estimated as the average of all descriptors

for each action class.

In Ref. 40, the mesh sequences are transformed into voxel sequences. First, an

algorithm for human body orientation estimation, based on an estimation of feet

direction, is applied. Then, a normalization step to make the method invariant to

translation and scaling follows. The k-means algorithm is applied to cluster the

similar postures of the sequences and the centers of these clusters are called dynemes.

Then, for each posture, a vector which is related to the distance from each of the

dynemes, is extracted. Each action is represented by the average of the corresponding

normalized vectors of the action's postures. Linear Discriminative Analysis (LDA) is

applied to reduce the dimensionality of the action representations and the ¯nal

classi¯cation is based on a Support Vector Machine (SVM) classi¯er.
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Human actions representation with 3D mesh sequences has been used to address

various other problems, too. For example, in Refs. 41 and 42, a performance eval-

uation of shape similarity metrics for 3D video sequences of people with unknown

temporal correspondence is presented, while in Refs. 43 and 44, the problem of

surface matching along mesh sequences is addressed.

3. Methodology

3.1. Method based on a ¯xed length wavelet-based spatio-temporal

descriptor for human actions

3.1.1. Descriptor extraction

In this section, the ¯rst proposed method of this paper, referred as \Proposed M1", is

presented.

Similar to Ref. 2, the trajectories of the six salient points (centroid and extremities

of the human body) are extracted.

The descriptor extracted from the trajectory of salient point i ¼ 1; 2; . . . ; 6 of

mesh sequence S with length L is de¯ned as follows:

DS
i ¼ ð½DS

i ðmÞ�7m¼1Þ; ð1Þ
where m ¼ 1; 2; . . . ; 7 denotes the mth sub-descriptor, de¯ned as follows:

DS
i ð1Þ ¼ ½jjv t

i;hjj; jjv t
i;vjj�L�1

t¼1 ;

DS
i ð2Þ ¼ ½jjd t

i;hjj; jjd t
i;vjj�L�1

t¼1 ;

DS
i ð3Þ ¼ ½v t

i;h�L�1
t¼1

DS
i ð4Þ ¼ ½v t

i;v�L�1
t¼1 ;

DS
i ð5Þ ¼ ½d t

i;h�L�1
t¼1 ;

DS
i ð6Þ ¼ ½d t

i;v�L�1
t¼1 ;

DS
i ð7Þ ¼ ½k t

i�Lt¼1;

where v denotes the velocity vector and d denotes the overall dynamics, de¯ned as

v t
i ¼ p tþ1

i � p t
i ¼ ðv t

i;h v t
i;vÞ

¼ ð½xtþ1
p;i � xt

p;i z tþ1
p;i � zt

p;i� ytþ1
p;i � yt

p;iÞ; ð2Þ

d t
i ¼ p tþ1

i � p t
1 ¼ ðd t

i;h d t
i;vÞ

¼ ð½xtþ1
p;i � x1

p;i z tþ1
p;i � z1p;i� ytþ1

p;i � y1
p;iÞ; ð3Þ

where t ¼ 1; 2; . . . ;L� 1. d t
i;h;d

t
i;v denote the horizontal and vertical components of

overall dynamics and v t
i;h;v

t
i;v denote the horizontal and vertical components of

velocity vector corresponding to the ith salient point, i ¼ 1; 2; . . . ; 6. Furthermore,

p t
i ¼ ½xt

p;i y t
p;i z t

p;i� denotes the tth point of the trajectory corresponding to the ith

salient point.
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In addition, the curvature of each of these trajectories is extracted

k t
i ¼

jjp 0
iðtÞ � p 00

i ðtÞjj
jjp 0

iðtÞjj3
; ð4Þ

where jjxjj is the magnitude of a vector x for each salient point i ¼ 1; 2; . . . ; 6. Also,

t ¼ 1; 2; . . . ;L, where L is the length (i.e. the number of frames) of the mesh se-

quence. It is worth noted that the points piðtÞ ¼ ½xp;iðtÞ yp;iðtÞ zp;iðtÞ�T , for each

i ¼ 1; 2; . . . ; 6 denote points on the normalized trajectories and p 0
iðtÞ;p 00

i ðtÞ are their
¯rst and second derivative, respectively.

In order to eliminate the temporal misalignment between pairs of sequences, the

pre-alignment step, presented in Ref. 2, is performed.

As the ¯nal descriptor given in Eq. (1) consists of seven sub-descriptors for each of

six salient points, the total number of sub-descriptors is 42. The wavelet transfor-

mation of each of these 42 sub-descriptors of the pre-aligned sequences is computed.

The reasoning behind the selection of the wavelet transformation is the fact that it is

better at incorporating frequency and time information than other transformations,

such as Fourier or Cosine (see Refs. 45 and 46). Gaussian wavelets at 64 di®erent

scales are used. At each scale, the statistics shown in Table 1 with the corresponding

formulas are computed from the wavelet coe±cients. The combination of statistics

has been experimentally selected.

The above statistics are used to form a vector at each wavelet scale with respect to

each sub-descriptor and the ¯nal wavelet-based descriptor for a mesh sequence

consists of the concatenation of all these 4D vectors, so the descriptor's size is

64� 4 ¼ 256.

3.1.2. Distance measure

Let qs ¼ ½qs1 qs2 qs3 qs4�T and ts ¼ ½ts1 ts2 ts3 ts4�T be the 4D vectors corre-

sponding to sequences Q and T , at scale s, where s ¼ 1; 2; . . . ; 64. The distance

between Q and T is de¯ned using the chi-square formula:

distðqs; tsÞ ¼
1

2
�
X4

j¼1

ðqsj � tsjÞ2
qsj þ tsj

: ð5Þ

Table 1. The statistics computed from the components

of the wavelet coe±cients with the corresponding for-

mulas for a vector x ¼ ½x1;x2; . . . ; xN �T .

Statistic Formula

(1) Mean (�) 1
N �PN

i¼1 xi
(2) Variance (�2) 1

N�1 �
PN

i¼1 ðxi � �Þ2
(3) Root Mean Square

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N �PN

i¼1 x
2
i

q

(4) Kurtosis 1
� 4 �

PN
i¼1 ðxi � �Þ4
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The distance between the sequences Q and T for each of the 42 sub-descriptors of

Eq. (1) is de¯ned as the mean distance of the 4D vectors across all 64 wavelet scales

distðQ;T Þ ¼ 1

64
�
X64
s¼1

distðqs; tsÞ: ð6Þ

Finally, the k-means-based algorithm for multiple distance matrix fusion, pre-

sented in Ref. 2, is applied in order to compute the distance between the sequences.

3.2. Method based on a robust spatio-temporal descriptor

for human actions

In contrast to the extraction of the ¯ve salient points of the previous descriptor, the

extraction of the centroid is reliable even in real, unprocessed, datasets, where the

representation of the models contains issues such as disconnected parts, glued parts

and distortions. In this section, we present the second proposed method of this paper,

referred as \Proposed M2".

3.2.1. Extraction of the ¯rst component of \Proposed M2" descriptor:

\Proposed M2-C1"

The ¯rst component of this descriptor consists of sub-descriptors DSð1Þ �DSð6Þ of
Eq. (1), extracted for the centroid. As the sub-descriptors jjdS

h jj, jjdS
v jj, jjvS

h jj, jjvS
v jj,

dS
v ,v

S
v in Eq. (1) are 1D trajectories and the sub-descriptors dS

h , v
S
h in Eq. (1) are 2D

trajectories, all with L� 1 points, the total size of the descriptor is 10� ðL� 1Þ.

3.2.2. Extraction of the second component of \Proposed M2" descriptor:

\Proposed M2-C2"

Despite its robustness, there are cases where the ¯rst component of the \Proposed

M2" descriptor is not su±ciently discriminative. For example, if there are two

actions where the motion of the centroid is negligible, the discriminative power of the

trajectory-based descriptor is limited. To increase its discriminative power, a second

part is employed which is the Hybrid descriptor3 applied on each mesh of the action.

Hybrid has previously shown promise in describing 3D mesh sequences and is com-

posed of 2D features based on depth bu®ers and 3D features based on spherical

harmonics. To compensate for rotation, two pose normalization methods, namely

CPCA and NPCA,47 are applied before the extraction of the descriptor. The Hybrid

descriptor of a model in frame t, is de¯ned as the concatenation of the two

pose normalized versions of the 2D and 3D features (4 combined sub-descriptors),

as per Eq. (7).

h t ¼ ð2Df t;CPCA
M ; 2Df t;NPCA

M ; 3Df t;CPCA
M ; 3Df t;NPCA

M Þ; ð7Þ
where �Df t;�PCA

M represents the �D features of the modelM at frame t normalized by

�PCA, where �D 2 f2D; 3Dg and �PCA 2 fCPCA;NPCAg.

C. Veinidis et al.

8



A normalization step is used to set the values in each dimension of each of the four

components of Eq. (7) in the interval ½0; 1�. Furthermore, temporal ¯ltering is applied

to each aligned version of each sub-descriptor vector of each frame resulting in a ¯nal

averaged descriptor taking into account the corresponding versions of sub-descrip-

tors of the frames in a neighborhood N. So, if hd t is one of the 4 components of h t,

then its temporally ¯ltered version hd t
f is given by

hd t
f ¼ 1

2N þ 1
�
XN
k¼�N

hd t: ð8Þ

Thus, the second component of the \Proposed M2" descriptor of a sequence is given

by the equation

HS ¼ ð2DFS;CPCA; 2DFS;NPCA; 3DFS;CPCA; 3DFS;NPCAÞ; ð9Þ
where �DF�PCA denotes the sub-descriptor of the sequence S after temporal ¯ltering

and normalization for which �D 2 f2D; 3Dg and �PCA 2 fCPCA;NPCAg.

3.2.3. Distance measure

Each mesh sequence of a dataset is used in turn as query and the aim is to retrieve all

other mesh sequences that belong to the same class. To this end, the distance be-

tween each mesh sequence with every other is evaluated, forming a distance matrix

for a speci¯c dataset. In our method, seven distance measures are used so there are

seven distances, which must be combined to give the ¯nal distance matrix. Let LQ

and LT be the length of sequencesQ and T , respectively. Each of these corresponds to

a row and column of a symmetric distance matrix.

For the ¯rst part of the \Proposed M2" descriptor, the DTW value between each

sub-descriptor, normalized by the minimum of LQ � 1 and LT � 1, is used as distance

measure. The distance between the centroid part of two descriptors is based on the

following equations:

Dist1 ¼ DTWðDQð1Þ;DT ð1ÞÞ=Lmin; ð10Þ
Dist2 ¼ DTWðDQð2Þ;DT ð2ÞÞ=Lmin; ð11Þ

Dist3 ¼ ððwhÞp �DTWðDQð3Þ;DT ð3ÞÞ=Lmin; ð12Þ
Dist4 ¼ ððwvÞp �DTWðDQð4Þ;DT ð4ÞÞ=Lmin; ð13Þ
Dist5 ¼ ððwdhÞp �DTWðDQð5Þ;DT ð5ÞÞ=Lmin; ð14Þ
Dist6 ¼ ððwdvÞp �DTWðDQð6Þ;DT ð6ÞÞ=Lmin; ð15Þ

where Lmin ¼ minfLQ;LTg � 1 and

wdh ¼ maxfdif1Q; dif1Tg
minfdif1Q; dif1Tg

; wdv ¼
maxfdif2Q; dif2Tg
minfdif2Q; dif2Tg

ð16Þ

E®ective Descriptors for Human Action Retrieval from 3D Mesh Sequences

9



wh ¼ maxfdif3Q; dif3Tg
minfdif3Q; dif3Tg

; wv ¼
maxfdif4Q; dif4Tg
minfdif4Q; dif4Tg

ð17Þ

and

difmS ¼ ðmax
t

jjnrm tðmÞjj �min
t

jjnrm tðmÞjjÞS ð18Þ

for m ¼ 1; 2; 3; 4, where

nrm t ¼ ½jjd t
hjj jjd t

vjj jjv t
hjj jjv t

vjj�T : ð19Þ
The weights given in Eqs. (16)–(17) are used to further discriminate the actions

proportionally to the contribution of their horizontal and vertical components. In our

experiments, parameter p of Eqs. (12)–(15) is set to 3.

The above process aims to incorporate various properties of the motion using the

trajectories of the centroid of each action. Some of these characteristics are the rate,

the direction and the total displacement from the initial position. DTW is a distance

measure which minimizes the e®ects of phase di®erences.

For the second part of the \Proposed M2" descriptor, the distance between the

Hybrid part of the mesh sequences Q and T is evaluated as

Dist7 ¼ ðdist2D þ dist3DÞ=minfLQ;LTg; ð20Þ
where dist2D, dist3D is the distance between the 2D and 3D sub-descriptors:

dist2D ¼ min
k

fDTWð2DFQ;k; 2DFT ;kÞg; ð21Þ

dist3D ¼ min
k

fDTWð3DFQ;k; 3DFT ;kÞg; ð22Þ

where k 2 fCPCA;NPCAg.
Before combination, all distance matrices are normalized to the interval ½0; 1�.

Then, for each element dist in each distance matrix the following transformation is

applied

N dist ¼ 1

log 1
dist

� � : ð23Þ

This transformation is increasing, so the relative ordering between the distances is

maintained. Additionally, the logarithmic function maps from the ½0; 1� interval to
the ½0;þ1Þ interval and possesses a more discriminative resolution between. The

¯nal distance matrix is given by the following equation:

Dist final ¼ w �
X6

i¼1

N Disti þ ð1� wÞ �N Dist7; ð24Þ

where the weight w, between centroid and Hybrid features, is experimentally set to

0.82. N Disti, i ¼ 1; 2; . . . ; 7 is the distance matrix which is produced after the

application of Eq. (23) on the corresponding distance matrices Disti.
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3.3. Method selection criteria

There are some situations where the \Proposed M1" method is not applicable or

relevant. The corresponding limitations result from the fact that the extraction of

geodesic distances and paths is not feasible or reliable. The existence of these lim-

itations in data can be detected as follows, and in such cases the \Proposed M2"

method should be opted for:

. If there are disconnected parts among the input meshes (as shown in Fig. 5), the

computation of geodesic distances and paths is not feasible. So, if there are more

than one connected components in the input meshes, then the \Proposed M1"

method is not applicable.

. If there are protrusions which do not belong to the human body (Fig. 6), the

computation of geodesic distances and paths is feasible but not reliable. The ap-

pearance of such a protrusion, may lead to the extraction of a salient point in

this protrusion. If the protrusion does not exist in all frames of a sequence, then the

salient point will likely be extracted in di®erent regions of the human body, in

consecutive frames. A suitable criterion to observe this situation is to extract the

Euclidean distances of the salient points in consecutive frames. The corresponding

values of these distances must not surpass a threshold.

. In the case of \glued" parts in the human body, as shown in Fig. 4, geodesic

distances are not reliable for identifying the extremities of the human body. To

detect such situations we may employ the heat kernel signature48 which is com-

monly used for detecting extremities that correspond to local maxima in the heat

kernel map. This signature can be examined in the neighborhood of the initially

detected extremities for validating them. In such erroneous cases, fewer than ¯ve

extremities will be ¯nally validated and then one could switch to the second

methodology.

4. Experimental Evaluation

Experimental evaluation is performed using standard retrieval performance

measures: precision-recall graphs, Nearest Neighbor, First Tier, Second Tier and

Discounted Cumulative Gain49; the data used for the experimentation are three

challenging, publicly available, datasets.

4.1. Datasets

The ¯rst dataset contains real data, while the two other datasets, namely USurrey-

arti¯cial and DUTH-arti¯cial, contain arti¯cial data.

4.1.1. i3DPost-Real dataset

The ¯rst dataset consists of real data.50,51 Each of eight models have performed

10 actions. These actions are: (1) \walking", (2) \jogging", (3) \jumping",
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(4) \bending", (5) \hand-waving", (6) \jumping-in-place", (7) \sitting down-and-

standing up", (8) \running-and-falling", (9) \walking and sitting", (10) \running-

jumping and walking". Also, in this dataset there are two interactions between two

models: \handshaking" and \pulling". In our experiments the two interactions have

been left out and only the actions (1)–(10), which have been performed by one person

only, are used. Actions (1)–(6) are basic human motions. Actions (7)–(10) are

combinations of basic actions that are implemented successively. The number of

frames per sequence is not always the same (ranging from 55 to 125). Example frames

of this dataset are shown in Fig. 3. The mesh sequences of the i3DPost-Real dataset

are available in http://kahlan.eps.surrey.ac.uk/i3dpost action/.

The sequences in this dataset have a number of defects, such as:

. There are parts of the human body that are \glued" to each other and thus

di®erent parts of the human body are not distinct. This fact limits the choices of

descriptors that can be applied. For example, the geodesic distances between two

vertices of a mesh cannot be computed consistently across frames of a sequence, as

they depend on whether body parts are glued together. For example, in Fig. 4, the

geodesic paths, which connect the lower limbs of the human body, are shown for

(a)

(b)

(c)

Fig. 3. Example frames from the i3DPost-Real dataset for the actions: (a) \walking", (b) \bending", (c)
\running-falling".
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three di®erent frames of the same sequence (\jogging" action of the model

Woman1).

. There are parts of the human body which are disconnected from the rest of

the body. This gives rise to problems, e.g. geodesic distance computation

between disconnected components is not feasible. In Fig. 5, some examples of the

action \sitting down-standing up" of the model Man6 with disconnected parts are

shown.

Fig. 4. Example frames from the i3DPost-Real dataset for the action \jogging" of Woman1 with the

corresponding geodesic paths between lower limbs and their zoomed versions.

Fig. 5. Example frames from the i3DPost-Real dataset for the action \sitting down-standing up" of Man6

with disconnected parts.
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. The quality of several 3D reconstructed models is poor, so that the shape of the

relevant models does not relate to human ¯gures. In Fig. 6, some examples of such

models are shown.

The study of these problems led to the centroid-based part of the \Proposed M2"

descriptor, as the centroid can be extracted more robustly than the rest of the salient

points.

4.1.2. USurrey-arti¯cial dataset

The second dataset contains arti¯cial data.52,42 The number of models is 14 and

each model has performed 28 di®erent actions, so the total number of actions

(sequences) which the dataset contains is 392. All mesh sequences consist of 100 frames

and each frame consists of the same numbers of faces and vertices. Among the 28

actions, 17 are di®erent types of walking, seven are di®erent types of running and

four are other actions. Speci¯cally, the actions in this dataset are the following:

(1) \faint", (2) \fastrun", (3) \fastwalk", (4) \rocknroll", (5) \runcircleleft", (6)

\runcircleright", (7) \runturnleft", (8) \runturnright", (9) \shotarm", (10) \slorun",

(11) \slowalk", (12) \sneak", (13) \sprint", (14) \vogue", (15) \walkcircleleft",

(16) \walkcircleright", (17) \walkcool", (18) \walkcowboy", (19) \walkdainty",

(20) \walkelderly", (21) \walkmacho", (22) \walkmarch", (23) \walkmickey", (24)

\walksexy", (25) \walktired", (26) \walktoddler", (27) \walkturnleft", (28)

\walkturnright". The above enumeration of the actions is used for all relevant con-

fusion matrices. In Fig. 7, example frames of this dataset are shown.

4.1.3. DUTH-arti¯cial dataset

The third dataset also contains arti¯cial data. The number of models is 6 and each

model has performed 10 di®erent actions, so the total number of actions (sequences)

which the dataset contains is 60. Each of the 6 models has di®erent body type and the

actions in this dataset are: (1) \hop on left foot", (2) \jumping", (3) \jumping for-

ward", (4) \jumping-Turn", (5) \running", (6) \walking-90� turn left", (7) \walking-

90� turn right", (8) \walking", (9) \walking with arms out ��� balancing", (10)

\washingwindow".Themajority of these actions belong to two general classes, namely

jumping and walking. The general class jumping comprises the actions \jumping",

\jumping forward" and\jumping-Turn",while the general classwalking comprises the

actions \hop on left foot", \running", \walking-90� turn left", \walking-90� turn

Fig. 6. Example frames from the i3DPost-Real dataset with high level of distortion.
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right", \walking" and \walking with arms out��� balancing". This dataset is publicly

available and the corresponding data can be found at: https://vc.ee.duth.gr/cmu-

duth-mesh/. Example actions of this dataset are shown in Fig. 8.

The number of frames per sequence in the DUTH-arti¯cial dataset is di®erent (it

ranges from 21 to 250). The actions contained in this dataset include common human

actions and their variations, making the corresponding retrieval problem more

challenging. It is denoted that this dataset was originally introduced in Ref. 2, where

a description of its construction process is given.

4.2. Results

Let us ¯rst de¯ne some key metrics. Precision is the fraction of the retrieved

sequences which belong to the same class as the query over the total number of

retrieved sequences. Recall is the fraction of the retrieved sequences which belong to

the same class as the query over the total number of sequences which belong to the

same class as the query. Precision-recall diagrams are often used in the evaluation of

retrieval methods and show how these values relate; ideally a method should be at

the [1, 1] point. In addition a number of standard scalar measures are used49:

. Nearest Neighbor (NN): The percentage of queries where the closest match belongs

to the query class.

(a)

(b)

(c)

Fig. 7. Example frames from the USurrey-arti¯cial dataset for the actions: (a) \shotarm",

(b) \walkcowboy", (c) \sneak".
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. First Tier (FT): The recall for the ðC � 1Þ closest matches where C is the cardi-

nality of the query's class.

. Second Tier (ST): The recall for the 2 � ðC � 1Þ closest matches where C is the

cardinality of the query's class.

. Discounted Cumulative Gain (DCG): A statistical measure which places more

weight on correct results near the front of the retrieval list, under the assumption

that a user is less likely to consider elements near the end of the list.

The values of the above scalar metrics are in the interval ½0; 1�.
In Table 2, the retrieval results for the \Proposed M2" method are compared to

the state-of-the-art37 using the four scalar metrics on the i3DPost-Real dataset.

In Ref. 37, six static shape descriptors are extracted for each mesh of the human

action sequences and DTW is used as similarity measure between the sequences of

descriptors. These six static shape descriptors are the following:

. The Hybrid descriptor, which is composed of by two sub-descriptors. Each of

these sub-descriptors, namely 2D and 3D, are also used separately. The 2D sub-

descriptor is based on the Fourier coe±cients of the projections of the 3D mesh

(a)

(b)

(c)

Fig. 8. Example frames from the DUTH-arti¯cial dataset for the actions: (a) \hop on left foot", (b)

\jumping", (c) \walking".
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onto each of the six faces of a cube. The 3D sub-descriptor is based on the spherical

harmonic coe±cients of a set of spherical functions. These functions are de¯ned by

determining the intersections of the models surface with a set of concentric spheres

with increasing radii.

. The shape distribution. The Euclidean distance between a set of randomly

selected points on the mesh surface is computed and a histogram of these distances

is created.

. The PANORAMA descriptor. The mesh model is projected on the lateral

surface of a cylinder, which includes the model. A set of depth images is produced,

using two types of projections, one of which is based on the position and on the

orientation of points on the mesh and their normals respectively. The ¯nal

PANORAMA descriptor is based on the 2D Fourier and 2DWavelet coe±cients of

these depth images.

. The Spin Images descriptor. A local coordinate system, based on the position

and the normal of the vertices of the mesh model, is constructed in order to

transform the 3D space of vertices to multiple 2D spaces.

The corresponding precision-recall diagrams are shown in Fig. 9. As can be seen,

this method outperforms the state-of-the-art in terms of retrieval accuracy, dem-

onstrating the robustness of the centroid-based descriptor on challenging datasets.

The \Proposed M1" method as well as the method presented in Ref. 2 [referred as

\Salient Points+DTW"] are not applicable on this dataset due to the geodesic-based

extraction of the protrusions of the human body that they use.

In Ref. 2, the trajectories of six salient points of the human body and a set of

kinematic features are extracted from these trajectories and the DTW algorithm is

used to evaluate the distance between such descriptors. The main limitation of this

method is that the extraction method of the six salient points is geodesic-based and

cannot be applied on low quality mesh sequences.

In Table 3, the retrieval results for both of the proposed methods using the four

basic scalar metrics on the USurrey-arti¯cial dataset are given. The corresponding

Table 2. Experimental retrieval results on the i3DPost-Real dataset.

Method N NN FT ST DCG

2D3,37 1 0.663 0.563 0.759 0.783
3D3,37 14 0.925 0.727 0.861 0.885

Hybrid3,37 6 0.850 0.745 0.889 0.890

PANORAMA37,53 15 0.725 0.550 0.730 0.789

Shape Dist.32,37 1 0.775 0.516 0.655 0.759
Spin Images37,54 6 0.663 0.432 0.595 0.696

Salient Points+DTW2 ��� ��� ��� ��� ���
Proposed M1 ��� ��� ��� ��� ���
Proposed M2 7 0.975 0.829 0.966 0.949

Notes: 2D, 3D indicate the 2D and the 3D part of the Hybrid descriptor
respectively. The column labeled N indicates the optimal value of this

parameter used in the Hybrid descriptor.
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precision-recall diagrams are shown in Fig. 10. The retrieval performance is ideal, as

all scalar metrics are equal to 1.00 and the recall value is 1.00 for all precision values,

for the two proposed methods and for the method presented in Ref. 2.

In order to examine the robustness of the method, an additional experiment using

the USurrey-arti¯cial dataset has been performed. Speci¯cally, the initial part of the

sequences in this dataset has been truncated by a random number of frames, between

0 and 50. By reducing the number of frames in the two sequences being compared, we

reduce any explicit correspondence between their frames. In this experiment the

Fig. 9. Precision-recall diagrams for the i3DPost-Real dataset.

Table 3. Experimental retrieval results on the USurrey-arti¯cial
dataset with full sequences.

Method N NN FT ST DCG

2D3,37 9 0.995 0.979 1.000 0.997

3D3,37 8 1.000 0.983 0.999 0.999

Hybrid3,37 9 0.980 0.968 0.999 0.994

PANORAMA37,53 0 0.985 0.973 1.000 0.992
Shape Dist.32,37 9 0.921 0.889 0.972 0.956

Spin Images37,54 8 1.000 0.871 0.941 0.972

Salient Points+DTW2 ��� 1.000 0.998 1.000 1.000
Proposed M1 ��� 1.000 1.000 1.000 1.000

Proposed M2 9 1.000 1.000 1.000 1.000

Notes: 2D, 3D indicate the 2D and the 3D part of the Hybrid de-

scriptor respectively. The column labeled N indicates the optimal

value of this parameter used in the Hybrid descriptor.

C. Veinidis et al.

18



sequences do not only end up with di®erent lengths but also a part of the corre-

sponding actions is lost through truncation. In Table 4, the retrieval results for both

of the proposed methods on these truncated sequences are given, while the corre-

sponding precision-recall diagrams are shown in Fig. 11. The same experiment has

been repeated eight times, with di®erent random lengths for the sequence trunca-

tions. The retrieval results correspond to the average performance of the eight

experiments. The results indicate that the \Proposed M1" method is more robust

against truncation compared to all other methods. The crucial step behind the

success of this algorithm is that all descriptors have the same length, so the proposed

Fig. 10. Precision-recall diagrams for the USurrey-arti¯cial dataset with full sequences.

Table 4. Experimental retrieval results on the USurrey-arti¯cial

dataset with truncated sequences.

Method N NN FT ST DCG

2D3,37 0 0.997 0.924 0.983 0.986
3D3,37 0 0.946 0.894 0.991 0.973

Hybrid3,37 0 0.982 0.883 0.973 0.973

PANORAMA37,53 3 0.946 0.902 0.994 0.973

Shape Dist.32,37 0 0.890 0.797 0.903 0.926
Spin Images37,54 1 0.993 0.771 0.870 0.937

Salient Points+DTW2 ��� 1.000 0.962 0.987 0.994

Proposed M1 ��� 1.000 0.987 0.998 0.999

Proposed M2 0 1.000 0.957 0.989 0.994

Notes: 2D, 3D indicate the 2D and the 3D part of the Hybrid de-
scriptor respectively. The column labeled N indicates the optimal

value of this parameter used in the Hybrid descriptor.
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pre-processing step combined with the usage of the chi-square distance (which is

feasible because of the same length of the descriptors) results in the maintenance of

the 1–1 frame correspondence between actions which belong to the same class.

In Table 5, the retrieval results for both of the proposed methods using the four

basic scalar metrics on the DUTH-arti¯cial dataset are given. The corresponding

precision-recall diagrams are shown in Fig. 12. In this dataset, the retrieval perfor-

mance, although high in absolute numbers, is the lowest among the three datasets for

all descriptors, due to the intra-class nature of this dataset, as reported in Sec. 4.1.3.

Fig. 11. Precision-recall diagrams for the USurrey-arti¯cial dataset with truncated sequences.

Table 5. Experimental retrieval results on the DUTH-arti¯cial

dataset.

Method N NN FT ST DCG

2D3,37 11 0.617 0.390 0.533 0.643
3D3,37 3 0.750 0.527 0.717 0.763

Hybrid3,37 4 0.733 0.547 0.703 0.761

PANORAMA37,53 10 0.717 0.553 0.650 0.748

Shape Dist.32,37 6 0.633 0.367 0.563 0.638
Spin Images37,54 4 0.517 0.337 0.537 0.602

Salient Points+DTW2 ��� 0.967 0.767 0.863 0.907

Proposed M1 ��� 0.917 0.673 0.790 0.851

Proposed M2 15 0.950 0.720 0.837 0.877

Notes: 2D, 3D indicate the 2D and the 3D part of the Hybrid de-
scriptor respectively. The column labeled N indicates the optimal

value of this parameter used in the Hybrid descriptor.
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The method presented in Ref. 2 tops the performance list in retrieval accuracy terms,

closely followed by the two proposed methods.

4.3. Discussion

In a ¯eld that is driven by datasets, we have presented two methods that achieve

optimal or near optimal performance on real and arti¯cial datasets. In this section,

the corresponding retrieval results are individually discussed for the two proposed

methods.

4.3.1. Retrieval results related to the \Proposed M1" method

In the case of the USurrey-arti¯cial dataset, there exists a 1–1 correspondence be-

tween the sequences of the same class, that facilitated ideal or near-ideal performance

of the \Proposed M1" method (Tables 3 and 4).

In Fig. 13, the confusion matrix related to the DUTH-arti¯cial dataset is shown.

In the case of USurrey-arti¯cial dataset, the corresponding confusion matrices are

not shown, as the retrieval results are ideal using the full sequences and almost ideal

using the truncated sequences.

In the case of the DUTH-arti¯cial dataset, there were more challenges, including

di®erent actions from the ones in USurrey-arti¯cial dataset as well as variability in

the shape of the human bodies re°ecting variations in height, age and weight.

In particular, in the case of the action \running" the retrieval performance is

beyond 90%. This means that the \Proposed M1" method has strong discriminative

Fig. 12. Precision-recall diagrams for the DUTH-arti¯cial dataset.
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power in the case of actions which have signi¯cantly di®erent rate from other actions.

The highest retrieval performance is related to the action \walking with arms out ���
balancing". The main feature of this action is that the arms of the human are

extended and the body swings while it simultaneously moves. The proposed

approximation, which uses the trajectories of the upper limbs and the head, is

suitable to discriminate this action from the others. To this e®ect, the retrieval

performance for the action class \hop on left foot" is beyond 90%. In this case, the

incorporation of the trajectories of the lower limbs of the human body in the pro-

posed descriptor, is signi¯cant for successful retrieval of this action.

The most retrieval misses occur between the pairs of actions \walking-90� turn

left" and \walking-90� turn right" as well as \jumping forward" and \jumping-

Turn". These actions di®er only in the direction while the other kinematic features,

such as the rate and the total displacement of the initial position are identical, so

their discrimination is di±cult.

In Table 6, the retrieval results, using di®erent distance measures for the DUTH-

arti¯cial dataset, are shown. As can be seen, the selection of chi-square distance as

distance measure between the mesh sequences is experimentally justi¯ed and it is

applicable because the descriptors have been extracted so as to have the same length.

Fig. 13. The confusion matrix related to the DUTH-arti¯cial dataset using \Proposed M1" method. The

enumeration of the actions is compatible with the enumeration given in Sec. 4.1.3.

Table 6. Experimental retrieval results on the DUTH-
arti¯cial dataset using di®erent distance types.

Distance type NN FT ST DCG

City Block 0.750 0.477 0.580 0.703

Euclidean 0.767 0.447 0.567 0.694

Square of Euclidean 0.750 0.567 0.737 0.784

Chi Square 0.917 0.673 0.790 0.851
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The di®erences on the USurrey-arti¯cial dataset are negligible and are thus not

presented.

The signi¯cance of the pre-alignment step used in the \Proposed M1" method is

experimentally highlighted in Table 7. In this Table, the di®erences between the

same method with or without the pre-alignment step using the truncated version of

USurrey-arti¯cial dataset, are shown (positive di®erences indicate the improvement

of the retrieval results using the pre-alignment step in the method). In this case, the

improvement of the retrieval results is signi¯cant, as the pre-alignment step restores

the 1–1 correspondence between the frames. In the cases of the full version of mesh

sequences for the USurrey-arti¯cial dataset and the DUTH-arti¯cial dataset, the

di®erences are not signi¯cant and are not presented.

Finally, the run times (in seconds) using the \Proposed M1" descriptor are pre-

sented in Table 8. The row \Extraction of descriptors" is referred to the mean run

time for the extraction of the descriptor of one mesh sequence, while the row

\Computation of distances" is referred to the mean run time for the computation of a

distance between a pair of extracted descriptors. All experiments took place using a

hybrid scheme, with MATLAB (version 2015b) and C code, on a machine with 16

GB memory and a CPU at 3.5GHz.

4.3.2. Retrieval results related to the \Proposed M2" method

i3DPost-Real dataset: In Fig. 14(a), the confusion matrix, using the i3DPost-Real

dataset and the \Proposed M2" method, is shown. Generally, the retrieval perfor-

mance is adequate for the majority of the classes of this dataset as the proposed

method incorporates features that seem to discriminate these actions well. As can be

seen, there are speci¯c actions where the majority of retrieval misses occur:

. In the action \jogging" the FT value is 66.07% and the only action corresponding

to retrieval misses is \walking". Similarly, in the action \walking" the FT value is

Table 7. Relative di®erences of the retrieval results using the pre-

alignment step of the method.

Dataset NN FT ST DCG

USurrey-arti¯cial (truncated) þ0.010 þ0.278 þ0.181 þ0.143

Note: Positive di®erences denote improvement of the retrieval results.

Table 8. Mean run times (in seconds) using the \Proposed M1"

descriptor, for each dataset.

Dataset USurrey-arti¯cial (full) DUTH-arti¯cial

Extraction of descriptors 0.293 0.100
Computation of distancesa 1.080 0.943

Note: aIn one scale of the Wavelet Transform and for the trajectory of a

speci¯c salient point, for all sub-descriptors.
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87.50% and the majority of the retrieval misses correspond to the action \jogging".

These two actions belong to the general class walking, where the action \jogging"

incorporates a faster movement of the model than the action \walking". Addi-

tionally, the magnitude of the vertical component of the trajectory of the action

\jogging" is a bit larger than the vertical component in the action \walking". Note

that \jogging" di®ers from \running" in that \running" incorporates a faster

movement of the model than \jogging". The \Proposed M2" method incorporates

the feature of the rate of an action, so the discrimination across these actions is

adequate.

. In the action \sitting down and standing up" the FT value is 44.64% and the only

action corresponding to retrieval misses is \bending". In these two actions the

vertical component dominates and the horizontal component is not su±cient to

discriminate them adequately. In Fig. 15, some examples of the trajectories of the

centroid for the actions \sitting down and standing up" and \bending" are shown.

. In the action \jumping" the FT value is 78.57% and the majority of the retrieval

misses correspond to the action \jogging". These two actions have the common

feature that the horizontal component of both is linear and their vertical com-

ponent is sinusoidal. Normally, the vertical component of the corresponding tra-

jectories of the centroid is more important in the action \jumping" than in the

action \jogging". However, there are models who perform the action \jumping"

without jumping high and the vertical components of the two actions are com-

parable, while the horizontal components are similar, too. In Fig. 16, some

examples of the trajectories of the centroid of these two actions are shown.

In the other cases, the retrieval misses are low and thus retrieval accuracy is high.

This implies that the set of features which are taken into account in the extraction of

(a) (b)

Fig. 14. The confusion matrix related to (a) the i3DPost-Real dataset and (b) the DUTH-arti¯cial dataset
for the \Proposed M2" method. The enumeration of the actions is compatible with the enumeration in

Secs. 4.1.1 and 4.1.3, respectively.
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the proposed descriptor of M2 method is su±cient to discriminate many common

actions. Another important property of the extracted descriptor is that its two

parts, namely the centroid-based and the Hybrid-based sub-descriptors, are

complementary, as can be attested by the fact that the ¯nal retrieval performance is

signi¯cantly higher than the retrieval performance of each of the two sub-descriptors

individually. In Table 9, the retrieval performance of the two sub-descriptors and the

¯nal descriptor is summarized.

USurrey-arti¯cial dataset: As the results in the USurrey-arti¯cial dataset

using the full sequences are ideal, all the entries in the main diagonal of the corre-

sponding confusion matrix are equal to 100.00%, so this confusion matrix is not

presented. In the case of the truncated sequences, the decrease in retrieval perfor-

mance is not signi¯cant (thus the confusion matrix is also not presented) and occurs

due to the loss of the one-to-one correspondence between the frames of the sequences.

The few misses in this case occur between related actions, where the number of

frames di®ers signi¯cantly.

Generally, the complementarity of the proposed sub-descriptors is maintained

in this dataset. In Tables 10 and 11, the retrieval performance of the two

Fig. 15. Examples of the trajectories of the centroid for the actions \sitting down and standing up" and

\bending" from the i3DPost-Real dataset.
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Fig. 16. Examples of the trajectories of the centroid for the actions \jogging" and \jumping" from the

i3DPost-Real dataset.

Table 9. Experimental retrieval results using the ¯nal
\Proposed M2" descriptor and its two components on

the i3DPost-Real dataset.

Method NN FT ST DCG

Proposed M2-C1 0.887 0.743 0.950 0.904

Proposed M2-C2 0.850 0.739 0.893 0.888

Proposed M2 0.975 0.829 0.966 0.949

Table 10. Experimental retrieval results using the

¯nal \Proposed M2" descriptor and its two components

on the USurrey-arti¯cial dataset, using the full

sequences.

Method NN FT ST DCG

Proposed M2-C1 1.000 1.000 1.000 1.000
Proposed M2-C2 0.995 0.979 1.000 0.997

Proposed M2 1.000 1.000 1.000 1.000
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sub-descriptors and the ¯nal descriptor, using the USurrey-arti¯cial dataset with full

and truncated sequences, respectively, is summarized.

DUTH-arti¯cial dataset: In Fig. 14(b), the confusion matrix for the

DUTH-arti¯cial dataset using the \Proposed M2" method is shown. Some remarks:

. As reported in Sec. 4.1.3, the actions \jumping", \jumping Forward" and

\jumping-Turn" belong to the general class jumping, so there are many retrieval

misses among these classes. Theoretically, in the action \jumping" the models

perform only vertical movement. In the action \jumping Forward" the models

perform both vertical and horizontal movement. In the action \jumping-Turn" the

models perform both vertical and horizontal movement and, simultaneously, turn

the body.

Example trajectories of the centroid of these actions are shown in Fig. 17. As can

be seen, the shape of the trajectories is similar in all these cases. Note that in these

cases, the horizontal component of the action \jumping" (¯rst row in Fig. 17) is

not negligible.

. As mentioned in Sec. 4.1.3, the actions \walking", \running", \walking-90� turn

left", \walking-90� turn right", \hop on left foot" and \walking with arms out-

balancing" belong to the general class walking. As can be seen in Fig. 14(b), the

retrieval performance for the action \hop on left foot" is ideal (as also for the

action \washing window") and almost ideal for the action \walking with arms out-

balancing". In these actions the body poses of the models across the sequences

di®er signi¯cantly from the poses of a model which walks or runs. The FT value for

the action \running" is 76.67% and the retrieval misses correspond to the actions

\walking-90� turn left" and \walking-90� turn right". The majority of these misses

occur for the actions \walking-90� turn left" of Model1 and Model2. In these

instances the models do not turn 90� left, but the corresponding trajectories are

more smooth. The horizontal component of these trajectories approximate more

closely the horizontal component of a linear trajectory, such as the trajectory of

the \running" action.

The complementarity of the two parts which constitute the ¯nal `Proposed M2'

descriptor is also investigated for this dataset. As shown in Table 12 retrieval

performance is increased with the composition (except for the ST value).

Table 11. Experimental retrieval results using the ¯nal

\Proposed M2" descriptor and its two components on the

USurrey-arti¯cial dataset, using the truncated sequences.

Method NN FT ST DCG

Proposed M2-C1 0.999 0.825 0.891 0.959
Proposed M2-C2 0.967 0.910 0.993 0.979

Proposed M2 1.000 0.957 0.989 0.994
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Fig. 17. Example trajectories of the centroid of the actions \jumping", \jumping Forward" and \jumping-

Turn" from the DUTH-arti¯cial dataset.

Table 12. Experimental retrieval results using the
¯nal \Proposed M2" descriptor and its two components

on the DUTH-arti¯cial dataset.

Method NN FT ST DCG

Proposed M2-C1 0.917 0.707 0.843 0.868

Proposed M2-C2 0.767 0.520 0.660 0.743

Proposed M2 0.950 0.720 0.837 0.877

C. Veinidis et al.

28



Finally, the run times (in seconds) using the \Proposed M2" descriptor, for each

of its component separately, are presented in Table 13. The rows \Extraction of C1"

and \Extraction of C2" are referred to the mean run time for the extraction of the

components C1 and C2 of the \Proposed M2" descriptor of one mesh sequence,

respectively. The rows \Distances between C1" and \Distances between C2" are

referred to the mean run time for the computation of the distance between a pair of

extracted descriptors, using the components C1 and C2 of the \Proposed M2" de-

scriptor, respectively. All experiments took place using a hybrid scheme, with

MATLAB (version 2015b) and C code, on a machine with 16 GB memory and a CPU

at 3.5GHz.

5. Conclusions and Future Work

Two distinct methods for human action retrieval using 3D mesh sequences were

presented. In the ¯rst method, an accurate spatio-temporal descriptor, which, is of

constant length, for clean 3D mesh sequences of human actions is presented. In the

second method, a robust descriptor for the retrieval of human actions represented as

3D mesh sequences, which is suitable for noisy meshes, such as those that often result

from unprocessed scanning or 3D surface reconstruction errors, is proposed. This

descriptor consists of two sub-descriptors, which are experimentally proven to be

complementary.

The main advantages of the proposed methods are that they are fully unsuper-

vised, so there is not dependence on training data, and have high retrieval perfor-

mance on all publicly available datasets.

As machine learning has shown advantages in many recognition-related tasks

over the past decade, the exploitation of the corresponding technologies is a potential

extension of this work. Deep learning-based methods for human action recogni-

tion55–57 have led to improved recognition and classi¯cation performance. A survey

for human action recognition based on deep-learning is presented in Ref. 58. How-

ever, the application of such techniques requires the existence of huge training

datasets labeled with the ground truth. This pre-assumes the construction of these

huge datasets, which are not currently available in the case of 4D human actions

(capture time and space usage being some of the reasons).

Table 13. Mean run times (in seconds) using the \Proposed M2" descriptor, for each

of its components and for each dataset.

Dataset i3DPost-Real USurrey-arti¯cial (full) DUTH-arti¯cial

Extraction of C1 0.094 0.093 0.080

Distances between C1 0.061 0.090 0.105
Extraction of C2 0.203 0.053 0.097

Distances between C2 0.184 0.202 0.242
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