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3. ABBREVIATIONS

BTI bedtime insulin 

Ca2+ cytoplasmic free calcium

FA fatty acids

GLUT-2 / GLUT-4 members of the glucose transporter family

GSIS glucose-stimulated insulin secretion

K+ATP channel ATP-sensitive potassium channel

MODY maturity onset of diabetes of the young

n-3 / n-6 FA omega-3 / omega-6 fatty acids

PDH pyruvate dehydrogenase

PPAR-γ  peroxisome proliferator activated receptor gamma

RIA radioimmunoassay

SUR sulphonylurea receptor

TG triglycerides
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4. GENERAL INTRODUCTION

4.1 DEFINITIONS, CLASSIFICATION AND ETIOLOGY OF DIABETES MELLITUS

Diabetes mellitus is a state of chronic hyperglycemia1. It encompasses two major diseases:

Type 1 diabetes (previously termed juvenile onset, insulin dependent diabetes) and type 2

diabetes (previously termed maturity onset, “non-insulin dependent” diabetes).

In type 1 diabetes, autoimmune processes damage the pancreatic beta cells and this leads to a

total failure of insulin secretion2. Type 2 diabetes is, phenotypically and genotypically

heterogeneous. It accounts for 85% of all cases of diabetes with a prevalence of 3-6% in

Scandinavia3-4. In certain populations such as the Pima Indians and the Nauruans this figure

approaches 40%5. The incidence of type 2 diabetes has in recent years increased alarmingly in

the Western hemisphere, also in adolescents and young adults4. 

Insulin resistance and insulin deficiency characterize type 2 diabetes. Insulin resistance

signifies tissue resistance to insulin action, mainly in skeletal muscle and liver. Insulin

resistance is in part determined by multiple genetic factors 6-8. Physical inactivity and obesity,

especially of abdominal distribution, impart insulin resistance and increase the risk of

developing type 2 diabetes9-10. Other acquired factors causing insulin resistance are

intrauterine growth retardation, smoking, persistent hyperglycemia (“glucotoxicity”) and

dyslipidemia (“lipotoxicity”)7.

Insulin deficiency is defined as an inappropriately low insulin response to glucose and other

secretagogues. Aspects of insulin deficiency will be further described and discussed in

relation to the normal physiology of beta cells (p.13).

The relative impact of insulin resistance vs. low insulin secretion in the pathogenesis of type 2

diabetes is still debated. A combination of relative beta cell deficiency and insulin resistance

with a variable impact of each of the two factors in individual patients seems most likely. A
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common clinical situation is that an acquired increase in insulin resistance unmasks a primary

beta cell defect11.

4.2 THE PHYSIOLOGICAL EFFECTS OF INSULIN.

In the liver, insulin increases the build-up of glycogen by stimulating the glycogen synthesis

pathway and inhibits gluconeogenesis. Furthermore, protein and triglyceride (TG) synthesis

are increased, as well as the formation of very low density lipoprotein cholesterol.

The most important peripheral effect of insulin is on muscle, where protein synthesis is

promoted by increased uptake of amino acids and increased ribosomal protein synthesis. In

addition, insulin promotes glycogen synthesis in the muscle.

In adipose tissue, insulin promotes TG storage by inducing the enzymatic intravascular

hydrolysis of lipoproteins. By increasing glucose uptake, more alpha-glycerol-phosphate is

made available for TG synthesis. Insulin also inhibits intracellular lipase, thus preserving TG

stores. (Overview in 12.)

4.3 INSULIN SECRETION AND OTHER BETA CELL FUNCTIONS

Insulin secretion responds to minute changes in blood glucose levels. The level of blood

glucose is the main regulator of insulin secretion. Acute regulation of insulin secretion relies

on interplay between glucose related secretory signals and potentiating or inhibiting

influences of nutrients, hormones or neurotransmitters6;13-14. Time-dependent effects

supplement the acute effects. The time-dependent effects include stimulation of insulin

biosynthesis15 and beta cell replication and neogenesis16.
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4.3.1 Glucose stimulation of insulin secretion 

Glucose

Metabolism

ATP/ADP
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Figure 1. Schematic representation of glucose stimulated insulin secretion,

+ (stimulation); - (inhibition); dashed arrows indicate the amplifying pathways.

Adapted from 14.
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GLUT-2 is the main transporter of glucose into the beta cell. The inward transport of glucose

is not a rate-limiting step. Instead it is the phosphorylating step (glucokinase enzyme activity)

that has this function. An increase in extracellular glucose is coupled to increases in glucose

phosphorylation. Glycolysis and in particular glucose oxidation follow with a dose-response

relationship similar to that of insulin secretion, which leads to production of ATP from

ADP14. The elevated concentration of ATP that results in an increased ATP/ADP ratio14-17,

triggers the closure of ATP sensitive potassium (K+ATP) channels which are located in the

plasma membrane. This results in a decrease of K+ conductance through the plasma

membrane and generates a wave of depolarization. Then, voltage dependent Ca2+ channels

open with subsequent Ca2+ inflow. The resulting rise in cytoplasmic Ca2+ concentration is a

signal for insulin secretion17. This stimulus-secretion pathway is amplified by another

pathway that is K+ATP independent18. The amplifying pathway is only functional when the

intracellular Ca2+ concentration is at a stimulatory level, which occurs when glucose is above

threshold level18. The amplifying pathway is activated by all metabolized nutrients that are

oxidized similar to glucose metabolism. The second messenger(s) generated from the

amplifying pathway are so far unknown. 

Insulin release is phasic with a 1st phase that lasts less than 10 minutes, followed by an

extended 2nd phase. A morphological basis for these phases may, in part, reside in the

different pools of granules in the beta cell13;19.

4.3.1.1 The K+ATP channel 

The K+ATP channel is a complex between to intimately connected proteins: a tetramer high

affinity sulphonylurea-receptor (SUR1) and a tetramer inwardly rectifying K+channel (Kir

6.2)17. SUR1 is required for sulphonylurea- and Diazoxide-sensitivity towards the pore-

forming Kir 6.2, and enabling these agents to close and open the channel, respectively20. 
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Figure 3. Regulation (A) and stochiometry (B) of the K+ATP channels in the pancreatic beta

cell (Nucleotide binding domains: NBD1, NBD2), adapted from 20.

4.3.2 Non-glucose influences on insulin secretion

Other nutrients, non-nutrient amino acids, neurotransmitters and hormones also influence

insulin secretion6. Other nutrient secretagogues than glucose include fatty acids (FA, see

below) and some amino acids, such as leucine, that are oxidized like glucose.

Other amino acids, mainly arginine, lysine and histidine, exert their effects as potentiators of

glucose induced insulin secretion. They stimulate insulin secretion probably by adding

positive intracellular charges21.

Neurotransmitters such as acetylcholine enhance insulin release in response to vagal

stimulation at mealtime. Glucagon-like-peptide-1 and gastrointestinal peptide are so-called

incretin hormones. These hormones are released from the gastrointestinal tract during meals

and enhance insulin responses postprandially. These and other hormones exert their effects

mainly through the adenylate-cyclase pathway22. 
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Inhibitors of insulin secretion are somatostatin, galanin and activation of alpha-

adrenoreceptors. Inhibitors act by several mechanisms including interaction with G-

membrane proteins23.

4.3.3 Regulation of insulin biosynthesis and beta cell mass 

Glucose is the main regulator of insulin biosynthesis. However, cAMP-raising agents such as

the hormones and neurotransmitters mentioned above also participate. Fetal development of

the beta cell population is regulated by transcription factors. Growth hormone and prolactin

stimulate mitogenesis. Ex utero, the demands for insulin secretion are instrumental in

regulating the beta cell mass16. Increased demands in pregnancy or obesity due to insulin

resistance in these states will normally enhance the beta cell mass. The mechanisms behind

such an enhancement are probably related to minute increases in blood glucose levels, which

in turn induces hyperplasia, hypertrophy and neogenesis of beta cells. 
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5. INSULIN DEFICIENCY AND DYSREGULATION IN TYPE 2 DIABETES

5.1 GENERAL

Several aspects of insulin secretion are deficient or dysfunctional in type 2 diabetes24 (Table

1). Insulin secretion in response to glucose is most profoundly affected6;25. First phase glucose

induced insulin secretion is lost already in the prediabetic state26-27. The loss of 1st phase

insulin secretion may be physiologically important, since it attenuates the important inhibiting

effect of insulin on hepatic glucose production postprandially28. Type 2 diabetes of some

duration displays further abnormalities of insulin secretion. Then, the glucose response can be

totally obliterated, although insulin responses are evoked with other secretagogues6.

Accompanying the insensitivity for glucose per se, potentiators fail to enhance secretion at

elevated glucose levels6;29. 

Disordered pulsatility of insulin secretion is also frequently found in type 2 diabetes. This

abnormality probably leads to a less efficient insulin secretion, which also is more energy

demanding for the beta cell30.

Increased proinsulin levels are also seen (absolute as well as relative to insulin levels)31. This

abnormality could render the beta cell less efficient in lowering of blood glucose in target

tissues. This is because proinsulin is less effective than insulin in lowering blood glucose.

Proinsulin per se may also have negative effects, since proinsulin stimulates growth of

endothelium, which possibly promotes atherogenesis29.
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Table 1. Abnormalities of insulin secretion in type 2 diabetes

1 Loss of 1st phase insulin secretion after glucose stimulation

2 Reduced or blunted 2nd phase insulin secretion after correction for glycemia and

insulin resistance.

3 Disturbed secretory oscillations

4 Increased release of partially processed precursors

5 Reduced potentiation by glucose of insulin responses to other secretagogues.

Insulin secretion deteriorates with diabetes duration32. This deterioration is clinically very

important, since it leads to worsening of metabolic control32. The causes for beta cell

deterioration with time are so far not elucidated. Table 2 outlines possible causes of

progressive beta cell dysfunction.
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Table 2. Possible causes of progressive pancreatic beta cell dysfunction in type 2 diabetes.

Causes Ref.

1 Morphological changes in islets

1. Decreased beta cell mass

2. Accumulation of amyloid-like material

33

34

2 Gene-related defects in stimulus secretion coupling

1. Less efficient insulin synthesis and trafficking

2. Mutations in mitochondrial DNA

35

36

3 Environmental alterations

1. Insulin resistance 37

4 Age 38

5 Diabetic state

1. Hyperglycemia: glucose desensitization and/or toxicity

2. Hypertriglyceridemia with elevated FA

3. Overstimulation

11;39

40

41

5.2 GENETIC AND INTRAUTERINE CAUSES OF TYPE 2 DIABETES

Epidemiological and family studies demonstrate the importance of genetic factors for insulin

secretion and beta cell function. Monogenic type 2 diabetes (maturity onset of diabetes of the

young, MODY) may account for less than 5% of phenotypical type 2 diabetes. But the causes

of MODY give insight in the importance of genetic effects on insulin secretion42. The

remaining 95% of type 2 diabetes subjects probably have a polygenic and varied genetic

predisposition for their disease. 

Low birthweight entails a risk of type 2 diabetes as well as of cardiovascular disease 43. This

risk seems independent of genetic causes44-45. Low birth weight relates to insulin resistance in
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man46-47. Also hyperglycemia during pregnancy may have negative effects on glucose

homeostasis in the offspring48-49. 

5.3 EXTRAUTERINE CAUSES

Of relevance to type 2 diabetes are the effects of metabolic abnormalities (hyperglycemia and

elevated FA). 

5.3.1 Glucotoxicity

Chronic hyperglycemia is the principal cause of the late complications of diabetes such as

retinopathy, neuropathy and nephropathy32;50. The mechanisms behind the effects of chronic

hyperglycemia are probably multi-factorial, involving the formation of advanced

glycosylation end products and other toxic compounds51. Effects of advanced glycosylation

end products could be part of a more generalized negative effect of oxidative stress on beta

cell. There is evidence that hyperglycemia could damage the beta cell by similar

mechanisms52-53. However, hyperglycemia could also affect beta cell function through over-

stimulation, i.e. through an indirect effect (see below).

5.3.2 Lipotoxicity

5.3.2.1 General

An acute elevation of FA results in a moderate increase in insulin secretion54-55. Longer-term

effects of elevated FA levels are less well elucidated. Longer-term effects are clinically more

important, since in type 2 diabetes, high levels of FA may persist for years and decades. Such

levels are, in part at least, linked to lumbar obesity, especially in type 2 diabetes subjects56.
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5.3.2.2 In vitro and ex vivo

Time dependency and mechanisms 

In pancreatic islets subjected to hyperglycemia, the long term elevation of FA levels exerts an

additional negative influence on insulin secretion and glucose oxidation57-58. A time

dependency for effects of FA on insulin secretion was demonstrated in rats. Hence, a 3-6h

infusion of Intralipid stimulated glucose stimulated insulin secretion (GSIS), whereas a 48h

infusion inhibited GSIS from perfused pancreas by 50%57. The negative effects of prolonged

elevation of FA seem linked to FA oxidation. Thus, when Etomoxir (an inhibitor of FA

oxidation59) was added in vitro to islets from rats formerly infused with Intralipid, GSIS and

islet glucose oxidation improved. 

In liver and muscle, pyruvate dehydrogenase (PDH) activity is a target for inhibitory FA

effects60. In islets, a 48h FA exposure resulted in a reduction of the active form of PDH, and a

concomitant increase of PDH kinase61. Some controversy exists as to the effects of FA on the

PDH enzyme activity62. In any case effects on PDH do not completely explain negative

effects on FA on insulin secretion62-63 (Table 3). Other causes for negative effects of FA could

include uncoupling of mitochondrial metabolism in the islets64. Such uncoupling would result

in a less efficient glucose metabolism and possibly also an increase in reactive oxygen

species65. Indeed, FA have been shown to induce the formation of uncoupling protein-2 in

beta cells66.
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Table 3. Proposed mechanisms of long term effects of FA on beta cells.

Changes in

islet glucose metabolism

Decreased PDH

Increased PDH kinase activity

Decreased pyruvate carboxylase activity

Decreased glukokinase activity

61

61

67

68

Alternative FA metabolism

activated

FA esterification: TG formation 69

Excess acyl-CoA levels Increased ceramide production resulting in

nitric oxide production and apoptosis

69

Uncoupling Partial uncoupling of oxidative phosphorylation 65

Triglyceride accumulation 

Chronic elevation of FA results in an increased TG accumulation in islets70-71. Because of a

leptin receptor mutation diabetic fa/fa rats accumulate 50-100 fold more TG than in non-

diabetic rats72. In these animals accumulated TG have toxic effects on beta cells and cause

cellular depletion and fibrosis. However, toxicity of TG stores in the beta cells of normal rats

has not been verified73. 

The influence of FA on insulin biosynthesis, beta cell replication and beta cell mass 

FA have negative effects on total protein biosynthesis and on glucose induced insulin

biosynthesis, both in rat islets74 and in human islets58. This could explain the lower insulin

contents found in FA exposed beta cells, in which no crinophagy could be detected75. The

negative effect on insulin biosynthesis seems maladapted and possibly deleterious in type 2

diabetes in light of the increased demands for insulin during hyperglycemia and insulin

resistance.
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FA have recently been shown to inhibit a glucose-dependent beta cell proliferation induced by

insulin like growth factor-176, and can thus have the potential to reduce beta cell mass in vivo. 

5.3.2.3 In vivo 

Non-diabetes studies 

In vivo studies are discrepant as to the documented inhibitory effects of FA on insulin

secretion seen in vitro or ex vivo studies. Some of the divergence could result from a hyper-

responsiveness to glucose in vivo, which may be secondary to FA-related decreases in

sympathetic nerve activity as tested in the rat and in man77-78. 

Table 4. Effects of FA on insulin secretion in healthy individuals.

Conditions BMI

(kg/m2)*

Change in insulin

response

Ref.

Intravenous glucose tolerance tests

during 24h lipid infusion

25 Decrease 79

8,6mM glucose clamp with

concomitant 48h lipid infusion

23 Increase 80

10/20mM glucose clamp

following a 48h lipid infusion

24 Unaltered in spite of

insulin resistance

81

Graded glucose infusion 1-8 mg/kg/min

(~10mM) following a 48h lipid infusion

31 Decrease 82

*Mean of study group.
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Divergent results were obtained also in non-diabetic man (Table 4). Paolisso et al. found

decreased insulin secretion in response to an acute glucose challenge following a 24h

Intralipid infusion79. The test procedure did not allow stabilization of blood glucose levels.

Boden et al. corrected for glucose levels by running 8,6mM glucose clamps during a 48h

Intralipid infusion80 and found that the lipid infusions enhanced insulin levels.

Carpentier et al. performed high-glucose clamp studies after 48h lipid infusions in healthy

individuals81. Insulin secretion was unchanged; this was judged as dysfunctional because of

attendant FA-induced insulin resistance. Later the same group demonstrated that the lipid

infusion a positive rather than negative effect on insulin secretion in type 2 diabetes

patients82. However, the results varied much between the diabetic patients. Altogether, the

discrepant results in man indicate that multiple factors influence the interaction of FA with

beta cells. Genetic factors could be important, since a negative effect of Intralipid on insulin

secretion was associated with a specific haplotype of the peroxisome proliferator activated

receptor-γ (PPAR-γ) transcription factor83. 

The previous studies tested the effects of elevating FA (mostly for 24 to 48h). The effects of

lowering FA have been studied only in one study84. Insulin secretion was improved after one

week of the FA-lowering agent Acipimox. So far the effects of an acute lowering of FA levels

on insulin secretion in subjects with chronically elevated FA levels, such as type II diabetic

subjects, have not been investigated.

Effects of elevated FA during prolonged fasting

Stein and co-workers reported that acute lowering of FA by nicotinic acid inhibits glucose-

induced insulin secretion in the rat in the fasted, but not in the fed state, and that the addition

of FA reversed this inhibition85. The authors concluded that fasting made FA essential for
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insulin secretion. They reproduced these findings to some extent in humans, using a similar

protocol 86. On the other hand, there is evidence in the rat that fasting induces an increase in

fatty acid oxidation in pancreatic islets87 and that increased fatty acid oxidation inhibits

insulin secretion in islets from 48h fasted rats88. These findings, as well as others57-58 are

compatible with the operation of a glucose-fatty acid cycle also in pancreatic beta cells.

Further studies are needed to resolve these discrepancies.

5.3.2.4 Treatment with FA lowering drugs 

Acipimox is a nicotinic acid derivative. In man Acipimox acutely reduces levels of TG and

VLDL by 30-40% and FA levels tenfold89. Acipimox reduces fasting blood glucose and

hepatic glucose output and improves insulin sensitivity90. The drug has been used in clinical

trials in type 2 diabetes90-92. However long term treatment with Acipimox did not ameliorate

glucose control, probably due to rebound effects on FA levels93. Acipimox influences the

levels of glycogen synthase, leptin, gastrointestinal peptide and glucagon-like peptide-194-96.

Apart from the rebound effects, the clinical use of Acipimox is somewhat limited by side

effects such as flushing97. 

As mentioned above, one week of Acipimox reportedly enhanced GSIS84, however, the acute

effects of Acipimox on insulin secretion have not been tested in detail.

5.3.2.5 Effects of dietary fat on insulin secretion and sensitivity 

A high fat diet inhibits beta cell function in diabetic mice98-99. These and other animal data

suggest that dietary fat could be detrimental to beta cell function in a situation of fuel

abundance with a preferential intake of fat (reviewed in 100). Low fat diets increase insulin

sensitivity in most dietary studies (in animals101-102, and some, but not all human

studies:103-104). In several of the diet intervention studies in diabetes, glucose control improved
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markedly105-106. Such amelioration makes it impossible to distinguish effects of the diet per se

on one hand and the well-documented and beneficial effect of glucose control106-107 on the

other. Another confounder is the weight reduction that is often seen and encouraged during

low-fat dieting106. A negative energy balance is known to increase insulin sensitivity in type 2

diabetes subjects105-106;108 and thus precludes the evaluation of any effect of fat reduction per

se. There is thus a need for studies that examine the effects of low-fat dieting with minimal

interference from the confounding factor mentioned. Such studies would also shed light on

the influence of fat intake on the regulation of adipocyte-secreted hormones. 

5.3.3 Effects of adipocyte-secreted hormones on insulin sensitivity

The discovery of leptin established the endocrine function of adipose tissue, with effects on

satiety, but also metabolic pathways and control of starvation response109-110. Leptin regulates

food intake, body weight, energy expenditure and neuroendocrine function111-112. Leptin

levels are high in most models of obesity associated type 2 diabetes113. Leptin seems to exert a

hypoglycemic effect independent of its weightreducing effects114. It also regulates peripheral

glucose uptake in muscle and adipose tissue115. 

Adiponectin is a newly discovered adipocyte-derived hormone with potential importance for

insulin sensitivity. Adiponectin levels are low in obese humans and low levels have been

associated with insulin resistance116-117. So far, the receptor and downstream signalling

pathways of adiponectin are unknown. However, studies in rodents118 suggest that adiponectin

equivalents might function in multiple tissues to ameliorate insulin resistance. 

5.3.4 Overstimulation by hyperglycemia

Leahy119 demonstrated that a period of hyperglycemia (48h) in normal rats, with insulin

release tested in perfused pancreas, resulted in insensitivity that was glucose-specific. The
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desensitization was reversible within 24h. Sako and Grill41 blocked glucose-stimulated insulin

secretion by a simultaneous Diazoxide infusion - in this setting, no desensitization occurred

and insulin responses were even enhanced. Diazoxide reversibly blocks glucose-induced

insulin secretion without any other major effects (see below). Therefore the desensitization by

glucose described by Leahy could be attributed to overstimulation. 

Using Diazoxide as a probe it was later shown that overstimulation also affects other aspects

of beta cell function. Thus, tissue culture of human islets in high glucose media results in

alterations in Ca2+ fluxes120, some of which were protected against by Diazoxide. There is

also evidence in a rat transplantation model that overstimulation can permanently damage

beta cells121.

5.3.4.1 Diazoxide

Diazoxide is non-diuretic thiazide that reversibly inhibits GSIS by opening K+ ATP channels

in the cell membrane of beta cells, thereby preventing beta cell depolarization122. An

interesting peripheral effect is the recruitment and upregulation of insulin receptors123. 

The therapeutic use of Diazoxide is limited by side effects. The most common and noticeable

side effects of Diazoxide are edema and lanugo hair growth. Other less common side effects

are nausea and hypotension. Edema is treatable by diuretics and subsides, as do other side

effects when Diazoxide treatment is discontinued124. Therefore the side effects are less

serious, but still disturbing enough to create a major obstacle to treatment. 

Clinical experience from treatment of insulinoma patients has shown that 100 mg Diazoxide

three times daily is usually required to suppress glucose-induced insulin secretion124. Such or

similar doses were given in the previous studies with diabetic patients125-127. Lower doses

given three times daily could potentially diminish side effects, but would at the same time

diminish the inhibitory effects on insulin secretion while not eliminating, in type 2 diabetes, a
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potential need for 24h insulin treatment. Intermittent treatment with Diazoxide could give less

side effects than a three times daily regimen. 

Diazoxide inhibits endogenous insulin secretion. Therefore, to avoid deterioration in glycemic

control, endogenous insulin should logically be replaced with exogenous insulin. A bedtime

insulin regimen in combination with Diazoxide at bedtime could be added to daytime peroral

anti-diabetic treatment without any need for major adjustments of treatment and less

discomfort/adjustment for the patient. Sleep is a phase with low basal metabolic rate, most

organs utilize this period for repair and regeneration. Intuitively, beta cell rest should take

place at nightime. 

To our knowledge, no studies have been performed to test this concept. 

5.3.4.2 Clinical studies reducing overstimulation 

Insulin treatment of type 2 diabetes patients improves insulin secretion128-130. Treatment of

type 1 diabetes subjects treated with an intensive insulin regimen gave similar results50. These

data do not distinguish between beneficial effects of “glucotoxicity” and over stimulation.

Diazoxide also improved residual insulin secretion in type 1 diabetes125-127. Treatment with

Diazoxide in type 2 diabetes patients for 7 days in an open trial resulted in an improved

insulin secretion125. Diazoxide could possibly be more advantageous than insulin in reducing

overstimulation, since the drug depresses insulin secretion more than insulin alone131-132. Also

somatostatin133 inhibits insulin secretion, but by mechanisms different from those of

Diazoxide, i.e. by interaction with G-proteins in the beta cell membrane23. A somatotropin

analogue exerted beneficial effects on beta cell function in humans125. 
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6. AIMS

Overall objective:

To test for effects of alterations of fatty acid levels as well as beta cell stimulation on insulin

secretion, insulin sensitivity and glycemic control in man.

Specific objectives: 

- fasting protocol:

To test for an altered influence of FA on insulin secretion and insulin sensitivity after long-

term fasting in healthy volunteers.

- Acipimox protocol: 

To test in type 2 diabetes and in non-diabetic subjects for effects of acute lowering of FA and

of re-introducing elevated levels of FA by lipid infusion on glucose-induced insulin secretion

and insulin sensitivity.

- low-fat diet protocol:

 To test whether a shift in nutrient utilization away from fat would affect insulin secretion,

insulin sensitivity and adipocyte hormones in type 2 diabetes.

- Diazoxide protocol: 

To test for improvement in endogenous insulin secretion and glycemic control by achieving

beta cell rest through intermittent Diazoxide treatment in type 2 diabetes. 

To monitor side effects of intermittent Diazoxide treatment.
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7. SUBJECTS AND METHODS

7.1 SUBJECTS

All subjects were Caucasians. The subjects in paper 1 were healthy students recruited at the

Medical Faculty at St. Olavs University Hospital. 

The diabetic subjects in paper 2-3 were recruited from the outpatient clinic of the Department

of Endocrinology, St. Olavs University Hospital. The non-diabetic subjects in paper 2 were

blood donors from the blood donor unit at St. Olavs University Hospital. 

Recruitment of diabetic subjects in paper 4 was from the Departments of Endocrinology at

Levanger Hospital and St. Olavs University Hospital.

Table 6. Characteristics of the study participants and protocols in paper 1-4. 

Paper No. of

subjects

Age

(years)

Body mass

index (kg/m2)

Duration of

diabetes

(years)

Type of

clinical study

1 14 (ND) 22 (18-28) 23,2 ±  0,8 - Crossover, randomized

2 21 (D)

10 (ND)

56 (40-70)

55 (40-68)

31,2 ± 1,0

25,3 ± 0,6

6.9

- Crossover, randomized

3 19 (D) 56 (40-69) 30,5 ± 1,1 6.6 Prospective intervention

4 27 (D) 59 (39-79) 28,6 ± 0,8 6.8 Double blinded,

randomized

D=diabetes, ND=non-diabetes; results are given as mean ± SEM or mean (range).



7.2 HYPERGLYCEMIC CLAMP PROCEDURE 

The (hyperglycemic clamp) procedure (Figure 4) is regarded as a gold standard to assess

glucose stimulated insulin secretion. The procedure can also be used to assess insulin

sensitivity 134-135. 
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7.3 C-PEPTIDE GLUCAGON TEST

Faber et al. introduced this test several decades ago137. It is a standard method of evaluating

insulin secretion. There is extensive documentation of the test (reviewed in 138). Studies of the

test reproducibility are satisfactory139. 

The test was used in duplicate before and during interventions (paper 4). At each occasion we

first collected fasting blood samples. Then, 1mg glucagon (Novo Nordisk) was injected i.v.

Six min after the end of injection blood samples (C-peptide and insulin) were again drawn.

7.4 STANDARD MEAL TEST

In paper 4, patients ingested a standardized breakfast meal containing 47 energy % (E%)

carbohydrates, 17 E% protein and 36 E% fat and a total of 470kcal. Repaglinide 0.5mg,

(Novonorm�) was given together with the meal. We collected blood samples before the test

and then every 15min for 2 hours. 

7.5 NON-REGISTERED TEST SUBSTANCES

7.5.1 Acipimox

Acipimox (Olbetam™, Pharmacia Inc.) was requisitioned in the form of capsules from the

hospital pharmacy. 

7.5.2 Diazoxide

The Hospital Pharmacy, St.Olavs University hospital, Trondheim produced capsules of

Diazoxide (Proglycem�, Schering Plough Inc.) and placebo. The Norwegian Drugs Control

Authority approved the quality control standards of the production. 



31

7.6 REGISTRATION OF DIET AND PHYSICAL ACTIVITY  

In paper 2, we assessed diet and physical activity of diabetic subjects and non-diabetic

subjects at inclusion, by a validated questionnaire140. The data were processed at the Institute

of Nutrition Research, University of Oslo, in collaboration with one of the authors (ILM,

clinical nutritionist). 

The diabetic subjects registered food intake also by weighing records during 3 days of usual

diet (6 days in paper 3) as well as during 3 days of dietary intervention (papers 2 and 3). To be

comfortable with the method of weighing records, subjects individually practiced the method

during the supervision by one of the authors (ILM). The intake of energy and nutrients was

computed by using a food database (AKF96) and software systems (BEREGN) developed at

the Institute of Nutrition Research, University of Oslo. The food database was mainly based

on the official Norwegian Food Table141.

7.7 BLOOD GLUCOSE MONITORING

Instructions in blood glucose monitoring were given individually by diabetes nurses when

necessary. The subject monitored blood glucose at home (paper 3) with their own blood

glucose measuring device. In paper 4 all subjects used the same type of device (Glucometer

Elite XL, Medisense LTD). 

7.8 LABORATORY ANALYSES 

7.8.1 Blood glucose and glycosylated hemoglobin measurements 

During hyperglycemic clamp procedures (paper 1-3), levels of blood and urinary glucose

were determined by a glucose oxidase method (Yellow Springs Instrument, Yellow Springs,

OH). In paper 4, we determined blood glucose levels using a reflectrometric device

(Hemocue). Glycosylated hemoglobin was determined by DCA (Bayer). 
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7.8.2 Hormone analyses 

In paper 1 immunoreactive insulin was measured by radioimmunoassay (RIA), using

antibodies raised against porcine insulin (from the Department of Endocrinology, Karolinska

Hospital, Stockholm, Sweden) and charcoal addition to separate bound and free insulin. This

assay co-measures proinsulin. In papers 2-4 we used a RIA specific to human insulin (Linco

Research Inc., Missouri, USA.). 

We assayed C-peptide levels in paper 1 by RIA: in the case of fasting levels, by a kit from

DPC, Los Angeles, USA and during clamps in 6 subjects by a kit from Linco Research Inc.

C-peptide in papers 2-4 was measured by RIA (Linco Research Inc.). 

Leptin and adiponectin levels (paper 3) were assayed with RIA kits from Linco Research Inc.

Interassay coefficient of variation (CV) for leptin was 4,6% and the intrassay CV was 5,0%.

Interassay coefficient of variation (CV) for adiponectin was 6,9% and the intrassay CV was

6,2%. Proinsulin was determined by ELISA (Dako Inc., Oslo, Norway). In glucagon samples

a proteolytic inhibitor (Trasylol) was added to the tubes. Glucagon was measured by RIA

(Linco Research Inc., paper 4). The other intra- and inter-assay coefficients of variance are

given in the respective papers.

7.8.3 Lipid, fatty acid and ketone analyses

Samples for assay of FA were routinely stored at -20�C. Duplicate samples stored at -80�C

and -20�C, did not differ with regard to the concentrations of FA measured in the assay, hence

making it improbable that on-going lipolysis in the samples should affect the results as has

been proposed142. The tubes for blood sampling for FA measurements contained EDTA. We

did not routinely add other preservatives to samples for FA measurements. In two non-

diabetic subjects we checked for the effect of adding Paraoxon (Sigma Chemical Co.) to the
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samples. There was no effect of adding Paraoxon to samples obtained before the start of the

Intralipid plus heparin infusion. However, in the samples obtained during the Intralipid +

heparin infusion the FA levels were 40 % lower with than without Paroxon. An artefactual

elevation of measured FA was thus restricted to the Intralipid infusion. We determined levels

of FA by an enzymatic colorimetric method (NEFA-C-kit, Wako Pure Chemical Industries

Ltd., Osaka, Japan). TG, cholesterol, and high-density lipoprotein cholesterol (HDL) were

determined by standard laboratory techniques. Plasma phospholipid FA (PL-FA) were

analyzed and quantified by gas chromatography143. Beta-hydroxybutyrate was determined by

a Precision Xtra device (Medisense Products, Bedford, MA, USA144.

7.8.4 Antibody analyses

The presence of antibodies against glutamic acid decarboxylase and islet cell antigen-2 was

determined by RIA (Dianova GmbH, Hamburg, Germany). Insulin antibodies were

determined by enzyme linked immunosorbent assay (Milenia-Biotec GmbH, Bad Nauheim,

Germany).

7.9 RANDOMISATION PROCEDURES

We utilized drawing procedures in paper 1-2, i.e. for every chronological pair of subjects The

first subject scheduled for testing would draw the sequence of tests for himself and the

following subject. 

Randomization in paper 4 was done by a computerized minimization procedure145. The

randomization parameters were glycosylated hemoglobin (2), body mass index (1,5), age (1),

C-peptide (1), sex (0,5) and diabetes duration (0,5) (weights in parentheses, based on 146). 
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7.10 INSULIN SECRETION RATE

In papers 1-3, we computed insulin secretion rates (ISR) from the C-peptide data by a

regression program (ISEC, version 3.4a) that derives parameters of C-peptide kinetics from

the subject’s sex, age, type (normal, obese, type 2 diabetes), weight and height147. Previous

studies have shown that valid results can be obtained without adjusting for individual

differences in C-peptide elimination148.

7.11 ESTIMATES OF INSULIN SENSITIVITY AND INSULIN SECRETION

In paper 3 we calculated indices of beta cell function and insulin sensitivity based on fasting

values before and after the low-fat diet intervention. Albareda et al. reviewed the existing

methods of estimation and concluded that fasting indices give a fair representation of results

obtained from more complex tests such as clamps. For beta cell function, the HOMA index

gave the best estimate, whereas for insulin sensitivity, the fasting glucose to insulin ratio was

the best alternative149.

7.12 STATISTICAL METHODS

Statistical analysis was done using Statistical Package for the Social Sciences, version 10.0,

Chicago, 2000. Significance testing was done by Student’s paired t test, by independent

samples t-test and, for non-normally distributed variables, by the Wilcoxon matched pairs

signed-rank sum test or Mann-Whitney test. We evaluated bivariate correlations by

Spearman’s correlation coefficients. We performed linear regression by using Enter, Stepwise

and Backward models. For repeated analyses ANOVA testing was done.



35

7.13 ETHICAL CONSIDERATIONS 

The local ethical committee (paper 1-4) and the Norwegian Drug Control Authority (paper 2-

4) approved the protocols that were used in the study. We conducted the studies in accordance

with the Declaration of Helsinki. All subjects gave informed written consent.
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8. SUMMARY OF THE RESULTS

Paper 1, fasting protocol: 

We tested non-diabetic subjects after an overnight as well as after a 58h fast. They underwent

hyperglycemic clamps during which either Intralipid + Heparin or saline was administered during the

last 60 min. After the overnight fast insulin levels increased during Intralipid infusion, reaching at min

120 an increment of 33,0 ± 8,5 �U/ml vs. 9,5 ± 4,4 �U/ml during saline, p<0,05 for difference.

Conversely, after the 58 h fast, the Intralipid infusion was not associated with any successive increase

of insulin levels (increment during Intralipid at min 120: 0,5 ± 5,8 �U/ml versus -4,3 ± 2,5 �U/ml

during saline, NS). Insulin sensitivity as assessed by the amount of infused glucose, M and ratios of M

to insulin increased during Intralipid after an overnight fast but decreased after a 58 h fast. We

conclude that long term elevation of FA during fasting associates with diminished beta cell

responsiveness to an acute elevation of FA in conjunction with negative effects on insulin sensitivity.

Paper 2, Acipimox protocol: 

Twenty-one subjects with type 2 diabetes and hypertriglyceridemia and ten non-diabetic subjects

participated. Acipimox lowered FA levels and enhanced insulin sensitivity (i.e. amount of glucose

infused) in diabetic and non-diabetic subjects alike. Acipimox administration failed to affect insulin

secretion rates in non-diabetic subjects. In the diabetic subjects there was a significant effect of

Acipimox in the dichotomized group having the lowest levels of glycosylated hemoglobin (HbA1c) on

integrated insulin secretion rates during min 60-120 min 379 � 34 with vs. 326 � 30 pmol·kg-1·min-1

without Acipimox, P<0.05. In the diabetic subjects, three days of a low-fat diet diminished energy

from fat by from 39 to 23% without improving an insulin response to glucose. 
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Paper 3, low-fat diet protocol:

Nineteen type 2 diabetes subjects with hypertriglyceridemia reduced energy % (E%) from fat from 39

to 23 without weight loss. Total cholesterol decreased to 95% of baseline (P<0.011), HDL to 97%

(P<0.083), triglycerides to 91% (P< 0.055) and the ratio of n-6 to n-3 FA to 76% (P<0.001). Levels of

blood glucose and fasting glucose to insulin ratios were unaltered, but fasting insulin concentrations

tended to increase at moderate and decrease at pronounced fat reduction, as achieved in individual

patients. Fasting levels of leptin decreased to 90% of baseline (p<0.013) and of adiponectin to 92%

(P<0,055). The leptin decrease was unrelated to fat reduction and confined to women. A successful

short-term fat reduction alters lipid variables in type 2 diabetes without affecting glycemic control.

The effects of the intervention vary with gender and degree of fat reduction. 

Paper 4, Diazoxide protocol:

Twenty-seven type 2 diabetic subjects (17M, 10F) using BTI and metformin participated. Half of the

subjects received added treatment with Diazoxide, 100mg at bedtime, and half with placebo for 9

weeks. We registered no side effects of Diazoxide. Treatment with Diazoxide did not incur any

increase in BTI. Plasma C-peptide responses to glucagon increased (0,15 � 0,06nmol/l vs. -0,01 �

0,04nmol/l for placebo, p<0,06 for difference). Plasma insulin levels were 66,2 � 41,7pmol/l for

Diazoxide vs. -84,2 � 51,5, for placebo p<0,03. Bedtime Diazoxide decreased fasting glucagon levels

by 41% vs. placebo, p<0,03. HbA1c levels did not change, whereas levels of blood glucose post

breakfast were higher during Diazoxide (1,34 � 0,43mmol/l, p<0,01 vs. placebo), but not at other time

points. A breakfast test in the presence of repaglinide elicited a robust insulin response in Diazoxide

treated subjects. Diazoxide taken at bedtime with BTI was well tolerated and produced beneficial

effects on insulin and glucagon secretion, but failed to improve metabolic control.
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9. DISCUSSION

9.1 CHARACTERISTICS OF THE STUDY POPULATIONS 

This thesis included two different populations with type 2 diabetes. For the studies on FA we

selected subjects who had abnormal FA metabolism as judged from the elevated levels of TG.

Such selection is not particularly exclusive, since elevated levels of TG are commonly seen in

type 2 diabetes. Therefore the subjects selected are representative for a large segment of type

2 diabetes patients in Norway4. 

In the Diazoxide study the subjects recruited were considered in need of insulin treatment by

the physicians responsible for their treatment. Also this group constitutes an important part of

all type 2 diabetes patients. Regarding representativity, the majority of type 2 diabetes patients

in Norway are referred to the hospital outpatient clinics for commencement of insulin

treatment. Thus, although we mainly recruited patients at two diabetes clinics, the patients

may be less sub-selected than suspected.

For both study populations, we found considerable variability in several diabetes-related

characteristics between individuals. It is becoming increasingly clear that such variability is

typical for type 2 diabetes150.

9.2 COMPLIANCE 

In the fasting protocol, the biochemical parameters (pre-test blood glucose, ketones, C-

peptide, insulin and FA levels) all showed the changes expected after long term fasting in

healthy subjects151. These observations confirm a good compliance.

With regard to dietary interventions in papers 2-3, it should be noted that such dietary

interventions often have problems with compliance. Conditions favorable for compliance in

our dietary intervention, were the short-term nature of the dietary manipulation and the daily

contacts with the subjects before, during and after the intervention. Also indicative of good
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compliance with the prescribed diet were the observations that lipid levels including PL-FA

changed in a manner commensurate with that of the dietary prescriptions152-154.

In the Diazoxide trial, blood glucose measurements in the clinic corresponded well with the

reported home monitoring levels. This observation confirms good compliance also in this

study. 

9.3 INFLUENCES BY FASTING, ACUTE PHARMACOLOGICAL REDUCTION OF FA LEVELS

AND DIET INTERVENTION ON INSULIN SECRETION

9.3.1 The influence of fasting on FA interactions with insulin secretion. 

The results in healthy volunteers indicate that long term fasting blunts a stimulatory effect of

FA on glucose-induced insulin secretion. The effect did not seem transient, since the

attenuation of FA-induced insulin secretion became successively more marked during the

Intralipid infusion. At first glance, this effect of fasting is difficult to reconcile with the

“essentiality” for FA in the fasted state as reported by Stein et al.85. However it cannot be

excluded that a dose-response for FA effects on insulin secretion during long term fasting

would include essentiality for low concentrations and blunted stimulation for high

concentrations of FA.

Long term fasting exerted only minor effects on glucose-induced insulin secretion whereas

other studies have shown somewhat larger effects155. It seems possible that the light

restriction in physical activity that we imposed on the subjects during fasting would, by

decreasing insulin sensitivity, counteract to some extent a decrease in insulin secretion.

Indeed, long term fasting was associated with a marked decrease in insulin sensitivity.
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9.3.2 The influence of Acipimox on FA interactions with insulin secretion. 

In paper 2 we find differences in FA interactions between non-diabetic and diabetic subjects.

Thus, Intralipid infusion on a hyperglycemic background was not accompanied by enhanced

insulin secretion in diabetes whereas in non-diabetic subjects we found a stimulatory effect.

Moreover we found distinct differences within the diabetic subjects that we studied. Thus,

we demonstrate for the first time that an insulin response during hyperglycemia and

Intralipid was detectable after Acipimox in the subset of the diabetic subjects that had the

best metabolic control. Acipimox was on the other hand without effect in non-diabetic

subjects. It seems probable – but not proven - that the Acipimox effect in the subset of

diabetic subjects is related to the chronic hypertriglyceridemia and the chronically elevated

FA in these patients rather than to the fact that the patients had diabetes. Such a conclusion is

in line with the studies of Carpentier et al. Those investigations found no effect by an

increase of FA in non-diabetic lean subjects81, a negative one in obese subjects with

hypertriglyceridemia82, and a positive (enhancing) one in diabetic subjects82 who did not

demonstrate the same degree of hypertriglyceridemia as in the present study.

9.3.3 The influence of low-fat diet on FA interactions with insulin secretion and insulin

sensitivity. 

The Norwegian diabetic subjects in the low-fat diet study had, previous to the intervention, a

diet with low carbohydrate content and a high fat and high normal protein intake compared to

current recommendations156. Diet is reported to have a major influence on glucose metabolism

and can, when combined with physical activity, prevent type 2 diabetes157. These measures

seem to have as great an impact on prevention of type 2 diabetes as anti diabetic
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medications158. However, although excessive caloric intake induces insulin resistance, it is not

clear whether specific dietary constituents are important or not. 

The dietary intervention was sucessful assessed both from weighing and from biochemical

data.

Initially we were surprised to find reduced insulin sensitivity during low-fat diet intervention

as evidenced from the tests of paper 2 and from the data presented in paper 3. However, closer

perusal of the litterature revealed that beneficial effects on insulin sensitivity were usually

coupled to attendant weight reduction (reviewed in 108). There exists no clear discrepancy

with other studies employing isoenergetic diets. In fact, our study could be seen to

complement these earlier long term studies by demonstrating that a short term intervention

produces similar results.

When our study group was dichotomized on basis of degree of fat reduction, a more complex

response was seen. A moderate fat reduction decreased insulin sensitivity, whereas a more

pronounced fat reduction tended to improve insulin sensitivity. Although the strength of these

findings is compromised by their post-hoc nature, there was consistency between the clamp

data and fasting parameters as to the diverse effect of diffents degrees of fat reduction.

The adipocyte-derived hormones leptin and adiponectin both decreased after the low fat diet

intervention. With regard to adiponectin, we found a strong tendency for a decrease as a result

of the dietary intervention. Low levels of adiponectin associate with insulin resistance116.

Therefore, it seems possible that the decrease in adiponectin – for which we have no ready

explanation – could be important for the insulin resistance effect by the low fat diet.
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9.4 INFLUENCES ON OVERSTIMULATION BY GLUCOSE BY BETA CELL REST INDUCED BY

DIAZOXIDE AND BTI TREATMENT

We found an improved insulin secretion during Diazoxide treatment in terms of responses to

glucagon in the C-peptide glucagon tests. This improved insulin secretion was obtained in

spite of other evidence that an inhibitory effect of Diazoxide on insulin secretion was still

present, i.e. somewhat higher glucose levels in the morning. This possible discrepancy can be

explained by the selectivity of Diazoxide´s inhibitory effect on glucose induced insulin

secretion. Thus secretion by insulin secretagogues that operate through other signal-secretion

pathways (e.g. glucagon and glucagon like peptide-1) are not inhibited by Diazoxide 55;159-161. 

The requirement for BTI did not increase during Diazoxide relative to placebo treatment

(using the same algorithm for adjusting doses162). This indicates an increase in insulin

sensitivity. A precedent for such an effect exists in animal models163-5. In our study, the

reduction of glucagon levels that we find could, in part at least, explain an insulin-sensitizing

effect by Diazoxide.

We designed the standardized breakfast test to investigate potential problems in combining

repaglinide and Diazoxide treatment in further clinical studies. Also, we wished to see

whether subjects on Diazoxide could indeed respond with insulin release to a breakfast

together with repaglinide, despite a lingering inhibition of glucose-induced insulin secretion.

The meal test with a low dose of peroral repaglinide demonstrated a robust insulin response in

the Diazoxide-treated group. Altogether these findings suggest that Diazoxide-treated subjects

would enhance insulin secretion during meals more than subjects not treated with this drug,

provided that a) higher doses of repaglinide and similar agents acting on the K+ATP-channels

were used, b) these agents were to be used also at later meals when the counteracting effect of

Diazoxide is gone. This notion is supported by a study in dogs demonstrating that previous

Diazoxide actually enhances the subsequent insulin response to tolbutamide165. 
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Beta cell capacity correlates to the beneficial effect that normalization of blood glucose exerts

on insulin secretion166. Our patients, however, had a rather long duration of known diabetes

and were clinically in the stage of the disease in which some form of insulin treatment was

considered in order to improve a deteriorating metabolic control. Specifically, one should

modify the selection of patients in future studies. 
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9.5 CONSEQUENCES FOR RESEARCH AND TREATMENT STRATEGIES IN TYPE 2 DIABETES

Based on our findings with interventions on FA levels (papers 2) and on beta cell rest (paper

4), one may envisage a “window” for therapeutic intervention on beta cell function (Figure 5).

Such a “window” could be present during the progression of metabolic dysfunction from pre-

diabetic obesity to manifest type 2 diabetes, but could be lost at later stages of the disease. 

Figure 5. Hypothetical window for effect of intervention on beta cell function. The intensity

of the “framed” area indicates the time segment where intervention seems to be most efficient

(adapted from 167).
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10. SUMMARY AND CONCLUSIONS

Main findings:

� Long term elevated FA during fasting associates with diminished beta cell responsiveness

to an acute elevation of FA in conjunction with negative effects on insulin sensitivity. 

� An acute reduction of FA improves stimulated insulin secretion in a subset of type 2

diabetes subjects.

� A successful short-term reduction of fat intake in hypertriglyceridemic type 2 diabetic

subjects fails to affect insulin secretion and metabolic control, whereas insulin sensitivity

is unaltered or diminished.

� A low fat diet decreases levels of leptin and adiponectin without a direct relation to fat

intake.

� A 9-week intervention with 100mg Diazoxide taken at bedtime with BTI is well tolerated,

also when 100mg Diazoxide taken 8-10h previous to 0.5mg repaglinide. Treatment is

associated with improvement in insulin secretion parameters. 
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ABSTRACT   

Objective: To investigate in type II diabetes with hypertriglyceridemia the effects of a short 

term low-fat diet on lipids, metabolic control, insulin sensitivity and adipocyte hormones. 

Design: Baseline dietary intake assessed by weighing during two separate 3 day periods 

followed by a 3 day low-fat dietary intervention.   25 

Setting: Out-patient.   

Subjects: Nineteen subjects, 10 males, 9 females with type II diabetes and triglycerides >2.2 

mmol/l at screening. 

Interventions: Patients were advised to reduce isoenergetically 10 – 15 energy % (E%) from 

fat. They were to reduce visible fat, use low-fat products, and increase intake of fish and fibre-30 

rich foods. 

Results: E% from fat was reduced from 39 to 22 (P<0.0001). Total cholesterol decreased to 

95 % of baseline (P<0.011), HDL cholesterol to 97 % (P<0.083), triglycerides to 91 % 

(P<0.055) and the ratio of n-6 to n-3 fatty acids to 76 % (P<0.001). Blood glucose, fasting 

insulin and fasting glucose to insulin ratios were unaffected in the whole group. However, 35 

glucose/insulin was lower at moderate than at pronounced degree of fat reduction (P<0.009 

for difference between dichotomised groups). Concentrations of leptin decreased to 90 % of 

baseline (P<0.013) and of adiponectin to 92 % (P<0.055). The leptin decrease was unrelated 

to fat reduction and confined to women.   

Conclusions: 1) The effects of a clinically relevant reduction in total and saturated fat in type 40 

II diabetes vary with gender and degree of fat reduction. 2) Effects on blood lipids and 

adipocyte hormones are not accompanied by beneficial effects on insulin sensitivity and 

metabolic control.  

Sponsorship: University. 



 

 

3

 

Descriptors: low-fat diet, type II diabetes, insulin sensitivity, leptin, adiponectin, 45 
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INTRODUCTION 

The influence of low-fat dieting on insulin sensitivity in type II diabetes is controversial 

(Riccardi & Parillo, 1993; Storlien et al, 1991; Berry, 1997). Evidence in animals indicates 

that reduced fat intake increases insulin sensitivity (Kraegen et al, 1986; Storlien et al, 1986). 50 

Documentation for a similar effect in humans is less clear, particularly in type II diabetes 

(Swinburn, 1993). When a beneficial effect on insulin sensitivity was reported it was often 

influenced by concomitant weight reduction (Markovic et al, 1998; de Man, van der et al, 

1999). Differences in patient characteristics in different studies could be important for 

divergent results. A genetic heterogeneity in type II diabetes is by now obvious (McCarthy & 55 

Froguel, 2002). Such heterogeneity likely involves different aspects of intermediary 

metabolism in different subjects, to which gender-related differences in fatty acid metabolism 

(Blaak, 2001) could contribute.  Furthermore, the clinical relevance can be questioned in 

studies using artificial diet regimens (for example liquid diet (Kolterman et al, 1979; 

Markovic et al, 1998) or mixing liquid and usual diet (Chen et al, 1988). Clearly then, the 60 

common recommendation for type II diabetes subjects to reduce total fat intake in order to 

improve insulin sensitivity rests on imperfect evidence.  

The aim of this study was to intervene in type II diabetic patients with a short term but a 

clinically relevant, low-fat diet with an emphasis on restriction of saturated fat. The dietary 

effects to be tested were on lipids, metabolic control, insulin sensitivity and adipocyte 65 

hormones in a setting that minimised confounding. In order to ensure a clinically relevant diet 

it was a) based on normal food products, b) based on dietary principles in concrete terms but 

participant-selected food choices. Furthermore, the intervention c) attempted to reduce 

saturated fat and to promote unsaturated fat, especially n-3 fatty acids, in line with current 

dietary recommendations in Norway (SEF, 1997). In order to reduce heterogeneity in the 70 

study population of type II diabetes we recruited only hypertriglyceridemic subjects. We 
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furthermore reasoned that such individuals were the most likely to profit from a low-fat diet. 

To assess heterogeneity due to gender we tried to include an equal number of men and women 

into the study. We chose a short intervention time (3 days) since compliance decreases with 

length of intervention. A short intervention time also allowed us to collect detailed 75 

information on the diet consumed, by weighing all intake of food, and also on metabolic 

control through home glucose monitoring. Our results indicate that a low-fat diet that is 

intended to be isoenergetic, rapidly affects lipid variables but does not ameliorate metabolic 

control or insulin sensitivity. Furthermore, we find that leptin and adiponectin concentrations 

are reduced despite no weight reduction and without relationship to metabolic control or fat 80 

intake. 
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SUBJECTS AND METHODS 

Subjects. Nineteen subjects  (10 M, 9 F) participated. These subjects were recruited from the 

outpatient clinic of our Department of Endocrinology. Inclusion criteria were: type II diabetes 

as defined by clinical criteria, age 40 to 75 years, and hypertriglyceridemia with fasting 85 

triglyceride concentrations ≥ 2.2 mmol/l. Exclusion criteria were: insulin treatment, 

proliferative retinopathy, pregnancy or lactation, heart failure grade III or IV, allergy to fish or 

other ailment prohibiting diet intervention, and alcoholism or other serious diseases affecting 

the possibility of the subject to participate. The majority of subjects were treated with more 

than one antidiabetic medication. Eighteen subjects were treated with metformin in doses 90 

varying from 500 mg to 3000 mg/d and thirteen of these subjects were on combination 

therapy with glibenclamide or glipizide. Four of the subjects received antihyperlipemic 

treatment in the form of statins. Seven subjects received antihypertensive treatment. Five 

subjects were habitual smokers (3 M, 2 F). 

Physical activity. The physical activity of the subjects at baseline was assessed by a 95 

questionnaire (Nes et al, 1992). The intensity of exercise was limited, since only 32 % of the 

participants exercised more than three times a week with a minimum duration of 20 min.  

Experimental design. A physical examination was performed at screening. Food intake was 

registered by weighing records during 3 day periods. During two periods they consumed their 

usual diet (baseline) and during the third period they consumed a low-fat intervention diet. 100 

The interval between the periods of diet registration varied between 2 and 6 weeks. Most 

subjects underwent a sequential glucose and lipid infusion test at the end of each 3 day period. 

The results of these tests are reported separately (Qvigstad et al, In press). The local ethical 

committee and the Norwegian Drug Control Authority approved the protocols that were used 

in the study. The principles of the Helsinki Declaration were followed. All participants gave 105 

written informed consent. 
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Details on diet registration, home glucose monitoring and intervention. Food and beverages 

were weighed on an electronic kitchen scale (Philips HR 2385). To be comfortable with the 

method of weighing records, subjects individually practised the method during the 

supervision by one of the authors (ILM, clinical nutritionist). Subjects were to measure their 110 

blood glucose levels at home five times during the day: fasting, pre lunch, pre dinner, 2 h post 

dinner and at bedtime. All information about the low-fat diet (see below), weighing method 

and blood glucose monitoring was given both orally and in writing. The subjects were 

supported by telephone calls on the day before and then daily during each registration period. 

The intervention diet was low-fat and fibre-rich. It was intended to be isoenergetic with the 115 

usual diet. At the start of the intervention subjects were told to reduce all visible fats, but to 

increase the intake of cereals (especially whole meal bread), potatoes, rice, pasta, fish, 

vegetables and fruits. Subjects were told to eat approximately the same amount of dairy and 

meat products as usual, but to prefer low-fat variants.  

The weighing records were analysed for energy, carbohydrates without fibre, protein, fat, 120 

alcohol, sugar and total fibre. The intake of energy and nutrients was computed by using a 

food database (AKF96) and software systems (BEREGN) developed at the Institute of 

Nutrition Research, University of Oslo.  The food database was mainly based on the official 

Norwegian Food Table (Rimestad et al, 1995). 

Sampling procedures. All fasting variables were measured in the morning on the day that 125 

followed the 3x24 h dietary intervention. The subjects reported to the clinic between 8 and 9 

a.m.  Body weight and blood pressure were measured. Then a cannula (Venflon, Viggo, 

Helsingborg, Sweden) was inserted retrogradely into an antecubital vein of the contralateral 

arm. Fasting blood samples were collected. Blood samples were collected at standardised 

intervals. After centrifugation (3G, 15min, 20°C), the plasma was frozen and kept at –80ºC 130 

for later analysis. For glucagon measurements, 0,55 ml of aprotinin (Trasylol, Bayer AG, 
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Leverkusen, Germany) was added to chilled, pre-heparinized tubes and samples centrifugated 

(3G, 20min, 4°C) before freezing at –80 °C. 

Assays. Leptin was measured by a human leptin RIA kit (Linco Res. Co., St. Charles, MO, 

USA). According to the manufacturer, there is no detectable cross-reactivity with insulin, 135 

proinsulin, C-peptid or glucagon. The inter-assay coefficient of variation (CV) of the leptin 

RIA is 4.6 % and the intra-assay CV 5.0 %, according to the manufacturer. Adiponectin was 

measured by a human adiponectin RIA kit (Linco Res. Co., St. Charles, MO, USA). The 

inter- and intra-assay CV are 6.9 and 6.2 % respectively, according to the manufacturer. 

Insulin and glucagon were also measured by RIA kit. The insulin assay was specific for 140 

human insulin (Linco Res. Co., St. Charles, MO, USA). According to the manufacturer, the 

inter-assay coefficient of variation (CV) of the insulin RIA is 9.7 % and the intra-assay CV 

5.0 %. Cross-reactivity with proinsulin is approximately 0.2 %. C-peptide was assayed by a 

RIA kit from DPC, Los Angeles, CA, USA. Proinsulin was determined by ELISA (Dako Inc., 

Oslo, Norway). Cortisol was determined by competitive immunoassay using a commercial kit 145 

(DPC, Los Angeles, CA, USA). Concentrations of FA (free fatty acids) were determined by 

an enzymatic colorometric method (NEFA-C-kit, Wako Pure Chemical Industries Ltd, Osaka, 

Japan). Plasma phospholipid fatty acids (PL-FA) were determined by gas chromatography 

and glucose, triglycerides, cholesterol, HDL cholesterol (high density lipoprotein cholesterol) 

and glycosylated haemoglobin (HbA1c) by standard laboratory techniques.  150 

Presentation of results. Results are generally given as median values and range unless 

otherwise stated. Concentrations of glucose and insulin are always given as mmol/l and mU/l 

respectively, with one exception: In the glucose/insulin ratio glucose was entered as mg/dl to 

obtain comparability with previous studies. A measure of insulin sensitivity was obtained 

from a ratio of fasting glucose- to insulin-concentrations (glu/ins, mg/10-4U) (Legro et al, 155 

1998; Albareda et al, 2000). The homeostasis model assessment index (HOMA, 20 x (fasting 
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insulin mU/l/(fasting glucose-3.5mmol/l)) calculated as per cent of normal was used as a 

measure of beta cell function (Matthews et al, 1985; Albareda et al, 2000). Statistical analysis 

was done using Statistical Package for the Social Sciences, version 10.0, Chicago, 2000. The 

results of variables measured after each of the two baseline periods on the patient’s usual diet 160 

were averaged before comparisons were done with variables measured after the low-fat diet 

intervention. The distribution of nutrient intake and the delta values between baseline and 

intervention results was skewed. Therefore, non-parametric statistical methods were chosen. 

The differences between medians were tested with the unpaired Mann-Whitney Test, and the 

analysis after dichotomization was performed by the same test. Significance testing included 165 

the paired Wilcoxon Signed Ranks Test. Spearman’s correlation coefficients were used to 

evaluate bivariate correlation. Most delta values were correlated to baseline values (P<0.05 or 

less). Therefore, all variables were expressed as percentages of the baseline values before 

being subjected to further analysis. 

170 
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RESULTS   170 

Baseline characteristics. 

Clinical data. The subjects were obese, although to a varying extent (Table 1). The metabolic 

control as assessed by HbA1c was non-optimal with large variations between subjects (Table 

1). Concentrations of triglycerides were, by design, markedly elevated (Table 1). 

Concentrations of cholesterol were above normal according to current guidelines (NCEP, 175 

2001), as were cholesterol/HDL cholesterol ratios.  

Insulin secretion and sensitivity. The HOMA estimate of beta cell function indicated reduced 

secretion (median 63 % of non-diabetic subjects (Matthews et al, 1985), range 11-186 %), 

table 1. There was a hyperbolic relation between this variable and the variable of insulin 

sensitivity (glucose/insulin ratio), data not shown.  180 

Hormone concentrations. The fasting concentrations of different hormones are given in table 

1. The leptin concentration tended to correlate with BMI (r = 0,433, P<0,064), as expected 

(Widjaja et al, 1997).  

Baseline diet.  Energy intake at baseline calculated from weighed records of 6 days was 7,9 

MJ/d, with a median of 18 energy % (E%) from protein, 39 E% from fat and 41 E% from 185 

carbohydrates (Table 2).  

There were no significant differences between total energy intake or the E% from the 

macronutrients or from the intake of different food constituents between the two periods of 3-

days registrations when subjects consumed their usual diet at baseline (data not shown). 

Gender differences. As expected (Widjaja et al, 1997) the concentrations of leptin were higher 190 

in women than in men (17,3 ng/ml compared to 8,1 ng/ml), p< 0,003 (Table 1). Other 

significant differences related to gender were age, total energy intake, E% from sugar, intake 

of fat and carbohydrate (g/d), and concentrations of C-peptide, glucagon, cholesterol, HDL 
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cholesterol as well as FA (Tables 1 and 2). The concentrations of adiponectin (Table 1) did 

not differ between men and women. The intake of food items, nutrients and distribution of 195 

macronutrients did not differ at baseline, except for the intake of beta-carotene and the E% 

from sugar (Table 2).  

 

Effects of intervention.  

Consumption of food items (Table 2).  The subjects consumed more bread, potatoes, 200 

vegetables, fruit and fish during the low-fat diet and less of edible fats (margarine, butter and 

oils).  Total consumption (g/d) of meat, milk, cheese and eggs was not altered. However, the 

intake of fat from these items was reduced because the subjects chose low-fat variants thereby 

reducing their intake of saturated fats (data not shown). The reduction of fat was primarily 

due to reduced intake of edible fats and to a lesser extent to reduced intake of fat from meat 205 

and dairy products. Consumption of refined sugar or of alcohol did not change. There was no 

significant difference between gender in fat reduction (g/d), but men increased their intake of 

potatoes more than women (P<0.027).  

Effects on energy distribution (Table 2). The subjects decreased fat intake to 22 E% and 

increased carbohydrate and protein intake to 50 and 23 E%, respectively. The median effect 210 

on total energy intake for all subjects was – 0.8 MJ/d (range from –3.5 to + 0.9 MJ/d). The 

energy intake at low-fat diet was 89 % of the intake at baseline (P<0.027). The reduction did 

not differ between gender (88 % M, 89 % F). The median intake of fibre increased from 20 to 

27 g/d in all subjects, with some difference between genders (men increased their fibre intake 

more than women, p<0.050). Gender did not affect the change in distribution of 215 

macronutrients. 
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Body Mass Index (BMI), blood pressure and blood glucose. The dietary intervention did not 

affect BMI or blood pressure (Table 1). Fasting blood glucose concentrations when monitored 

at home were marginally but significantly lower during the low-fat period, median 8.5, range 

4.6-11.9 compared to 8.6, 4.8-13.0 mmol/l at baseline, P<0.030 (Figure 1). Intervention did 220 

not affect fasting concentrations of blood glucose as measured in the clinic on test days. 

Furthermore, intervention did not affect blood glucose concentrations measured pre lunch, pre 

dinner, 2 h post dinner or at bedtime (Figure 1). Neither were daytime averages affected 

(median 8.6 (range 5.2-13.7) during the low-fat diet, compared to 8.5 (5.3-12.9) mmol/l 

during the baseline diet).  225 

Hormones (Table 1). The diet intervention did not significantly affect fasting concentrations 

of C-peptide, insulin, proinsulin, glucagon or cortisol. There was no difference between 

gender. Leptin decreased after 3 day low-fat diet to 90 % of baseline (P<0.013), and 

adiponectin to 92 % (P< 0.055). Women reduced leptin to 87 % (61-105) whereas the median 

effect was unchanged in men (101 % of baseline, range 64-113), P<0.072 for the difference 230 

between gender. There was no gender difference with regard to adiponectin.  

Lipids (Table 1). Total cholesterol decreased to 95 % of baseline values (P<0.011) and HDL 

cholesterol tended to decrease, to 97 % (P<0.083). Also triglycerides (TG) tended to decrease, 

P<0.055. The results of LDL cholesterol were not available for all subjects1. Total FA and 

total plasma PL-FA were unchanged. However, the fractions SFA and n-6 fatty acids were 235 

significantly reduced, whereas the PL-FA content of MUFA and n-3 fatty acids increased. 

None of the lipid effects differed between gender. 

                                                 
1 Only results from 10 subjects could be used to calculate LDL cholesterol and LDL cholesterol/HDL 
cholesterol ratio (because of TG > 4.1 mmol/l in the other subjects). In these 10 subjects LDL cholesterol 
decreased from 3.9 (2.0-5.2) to 3.3 (1.7-4.8) mmol/l (NS), and LDL cholesterol/HDL cholesterol ratio from 3.4 
(2.2-4.8) to 3.0 (1.9-4.0)mmol/l (NS). 
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Insulin sensitivity and beta cell function (Table 1). In the whole group (n = 19) there were no 

significant changes in fasting glucose/insulin ratios (a measure of insulin sensitivity), nor on 

insulin secretion as assessed by HOMA. There was no significant difference between gender 240 

with regard to glucose/insulin ratio or HOMA. 

Associations with effects on leptin and adiponectin. The reduction of leptin did not correlate 

with the reduction in total energy (P<0.482), changes in energy distribution (E% fat: P<0.705; 

E% carbohydrates: P<0.567; E% protein: P<0.154) or the extent of fat reduction in 

individuals (P<0.955). The same lack of correlation was seen with adiponectin, except that the 245 

change in adiponectin correlated with the change in intake of protein (g/d), r = - 0.483, 

P<0.050.  

Effects of variation in fat reduction. In a post hoc analysis we dichotomised subjects into a 

moderate fat reduction group which reduced E% from fat with 4-15 E%, (n = 9, 4 M, 5 F) and 

a group with more pronounced reduction which reduced E% from fat with 16-30 E% (n = 10, 250 

6 M, 4 F). None of the baseline characteristics of Tables 1 or 2 differed between the 

dichotomised fat reduction groups (data not shown), with the exception of edible fats. Thus, 

the moderate fat reduction group had a lower intake (26 g/d, (15-65)) than the other group (47 

g/d (24-78)), P<0.050 for difference at baseline. During intervention the intake of fruit was 

108 % of baseline in the moderate group, and 247 % in the pronounced group (P<0.028 for 255 

difference), whereas changes in the intake of all other food items was similar. Changes in 

energy intake, fibre intake or results of home glucose monitoring did not differ between 

groups. Further, there were no differences in effects on lipids or measured hormones, except 

for insulin. The moderate fat reduction group increased fasting insulin to 112 % compared to 

baseline, whereas the pronounced group decreased fasting insulin to 76 % of baseline, 260 

p<0.050 for the difference between groups. The group with moderate fat reduction reduced 

glucose/insulin ratio to 91 % compared to baseline whereas the group with pronounced 
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reduction increased the ratio to 114 %, P<0.009 for the difference between groups. Thus a 

moderate fat reduction seemed to worsen insulin sensitivity, whereas a pronounced fat 

reduction seemed to improve it.  265 
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DISCUSSION 

This low-fat dietary intervention fails to improve insulin sensitivity in hypertriglyceridemic 270 

subjects with type II diabetes. Thus, the glucose to insulin ratios in the overnight fasted state 

did not change in a manner commensurate with improvement of sensitivity.  Also the 

sequential glucose and lipid infusion tests performed in 17 of the 19 subjects at the end of 

intervention indicated decreased rather than increased sensitivity (Qvigstad et al, In press).  

Our results on insulin sensitivity differ from some early reports that show improved 275 

sensitivity as a result of a low-fat diet (Swinburn, 1993). The short duration of our 

intervention could be a factor behind divergent results.  However, the 3 days of intervention 

was sufficient to affect important lipid variables. Also, a recent study demonstrated that three 

days of changing the percentage of fat in the diet was sufficient to affect the concentration of 

intramuscular triglycerides (Bachmann et al, 2001).  280 

As previously mentioned, our goal was to uphold energy balance, but this goal was not 

completely achieved. A negative energy balance has been shown to increase, not decrease 

insulin sensitivity in type II diabetic subjects (Markovic et al, 1998; Heilbronn et al, 1999). 

Hence, our study may overestimate insulin sensitivity in relation to effects of low-fat dieting 

per se. 285 

The question arises to which extent the degree of fat reduction could influence insulin 

sensitivity. A post-hoc analysis indicated that a moderate reduction of fat intake was 

associated with decreased insulin sensitivity whereas a more pronounced degree of reduction 

was associated with better sensitivity or at least a reduction in fasting insulin. These findings 

are in line with those of the glucose and lipid infusion tests that were previously reported for 290 

the majority of the whole group (Qvigstad et al, In press). In these tests glucose was first 

infused for 60 min and clamped at 6 mmol/l above the fasting glucose concentrations. 
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Subgroup analysis showed a median reduction to 45 % (25-70) of the glucose infused/insulin 

ratio compared to baseline in the group with moderate fat reduction, but not in the group with 

pronounced fat reduction (106 % (41-631)), P<0.004 for the difference between groups. 295 

Further studies in which subjects are randomised to different degrees of fat reduction will be 

necessary to confirm the presently observed differences. 

The type of fat of the prescribed diet could be important for our results. During the dietary 

intervention subjects consumed much less total fat, however their consumption of fat fish and 

consequent intake of n-3 fatty acids increased and the n-6/n-3 ratio in PL-FA decreased.  The 300 

extra intake of n-3 fatty acids was calculated to be about 1 g/d (data not shown). This 

particular feature of the diet is one recommended in Norway and may be different from other 

studies where effects of fat reduction have been tested. However, in contrast to possible 

negative effects of n-3 fatty acids on insulin secretion (Dunstan et al, 1997), there exists to our 

knowledge no evidence for a negative effect of n-3 fatty acids on insulin sensitivity. Some 305 

studies report positive effects in animals (Luo et al, 1996; Chicco et al, 1996; Behme, 1996), 

as well as in humans (Kasim, 1993).  

“Lipotoxicity” towards beta cells has been proposed to induce and aggravate type II diabetes 

(Grill & Qvigstad, 2000).  In this context, it is interesting that the low-fat diet failed to affect a 

fasting estimate of beta cell function (HOMA). Also the glucose and lipid infusion tests failed 310 

to record any effect on by the low-fat diet on glucose-induced insulin secretion (Qvigstad et 

al, In press). The simultaneous absence of effects on insulin secretion and insulin sensitivity 

would agree with our finding of unaltered metabolic control during the intervention. 

Could alterations in adipocyte hormones be of importance for insulin secretion and/or 

sensitivity during the low-fat diet? Concentrations of adiponectin are positively correlated 315 

with insulin sensitivity (Weyer et al, 2001). There was a strong tendency for a decrease in 

adiponectin levels as a result of the low-fat diet. This effect is the opposite of that seen after 
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weight reduction (Hotta et al, 2000). The tendency for a decrease that we see here would 

therefore indicate a negative effect on insulin sensitivity, an effect that appears compatible 

with our results.  320 

As to regulation of adiponectin we note that the increase in protein that occurred as a 

consequence of the diet intervention was negatively correlated with the effect on adiponectin 

levels. Further studies are however needed to decide which food constituents that exert a 

negative effect on circulating adiponectin.  

Leptin could potentially influence both insulin secretion and insulin sensitivity (Kieffer & 325 

Habener, 2000; Ceddia et al, 2002). We find that leptin concentrations were moderately but 

significantly decreased by the dietary intervention. However, we failed to find associations 

with estimates of insulin secretion and sensitivity.  

There were no associations with changes in leptin concentrations and individual effects on 

energy balance or fat reduction per se. Studies in animals do indicate an effect of fat intake on 330 

leptin concentrations (Surwit et al, 1997). However, our results are in line with other studies 

in man which do not assign a major role to fat intake in the regulation of circulating levels of 

leptin (Jenkins et al, 1997; Coleman & Herrmann, 1999). As to a possible effect of specific 

types of fatty acids it is of interest that supplementation with 5 g daily of n-3 fatty acids 

correlated with a decrease in circulating leptin (Reseland et al, 2001). However, this 335 

supplementation was five times greater than the increased dietary intake of n-3 fatty acids in 

our study.  

With regard to gender, we find, as others (Widjaja et al, 1997), that leptin concentrations are 

considerably higher in women than in, men. It is interesting that the diet-induced reduction in 

leptin concentrations tended to be more marked in women than in men. Another study 340 

examining the effect of short-time energy restriction on leptin concentrations found that a 
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decrease in leptin was more marked in women than in men despite similar weight loss (Dubuc 

et al, 1998). The gender difference in the previous and in the present study is unexplained.  

The alterations in total cholesterol and HDL cholesterol that we observe are qualitatively the 

same as those observed in dietary studies of longer duration in non-diabetic individuals (Yu-345 

Poth et al, 1999). Also the decrease in n-6/n-3 ratio is compatible with that found in studies in 

which n-3 fatty acids were increased in diets (Kasim, 1993). That we did not observe 

increased triglycerides could depend on increased intake of n-3 fatty acids through fat fish, 

since these fatty acids are known to decrease triglycerides (Connor et al, 1993a; Connor et al, 

1993b; Dunstan et al, 1997). Increased fibre intake could also be of importance as indicated in 350 

other studies (Chandalia et al, 2000; Parks & Hellerstein, 2000).  

To our mind, some conditions of our dietary intervention add strength and importance to the 

present findings. First, as detailed below, the compliance of participating subjects seemed 

satisfactory. Second, double recordings of subject’s usual diet at baseline and other variables 

at different time-points documented that the intervention results were not affected by factors 355 

such as repeated measurements or a successive change in lifestyle as a result of inclusion into 

the study. Third, the intervention results were not confounded by weight reduction. Fourth, 

the group of type II diabetic subjects, although being heterogeneous in many respects did, by 

design, have hypertriglyceridemia as a common feature, therefore being the group of diabetic 

subjects in whom intervention by low-fat diet would potentially be the most interesting one to 360 

test. 

Conditions favourable for compliance were the short-term nature of the dietary manipulation 

and the daily contacts with the subjects before, during and after the intervention. Also the 

food weighing data assembled by the subjects were carefully scrutinised by the clinical 

nutritionist. Furthermore, in our study effects on lipids, including PL-FA, changed in a 365 

manner commensurate with that of the dietary prescriptions. The effects on PL-FA seem 
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particularly important, since they have been shown to reflect dietary intake and tissue levels 

of fatty acids, especially long chain fatty acids after short time intervention (Bjerve et al, 

1993; Andersen et al, 1996; Ma et al, 1995). 

The present findings appear clinically significant despite the short duration of the low-fat 370 

intervention. The subject group studied is typical for many type II diabetic subjects. (In this 

context it is note-worthy that the patient’s usual diet was much higher in fat content than 

recommended.  Also the non-optimal glucose control is - unfortunately – found in a large 

segment of the type II diabetic population). Furthermore, the type of dietary intervention 

prescribed here seems clinically more relevant than diets employed in some earlier studies.  375 

In summary, our results fail to find beneficial effects of a 3 day low-fat diet intervention on 

insulin sensitivity and metabolic control in type II diabetes. Some studies of longer duration 

also failed to show a beneficial effect of total fat reduction per se on insulin sensitivity 

(Swinburn, 1993; Riccardi & Parillo, 1993; Garg et al, 1992). Our study complements these 

findings by demonstrating that also a short-term intervention fails to produce beneficial 380 

effects despite similar alterations in cholesterol and HDL as in long-term studies. However, a 

low-fat diet with reduction of saturated fat may still be beneficial with regard to development 

of cardiovascular disease (Hooper et al, 2001; Hu et al, 2001). Also the variability of response 

to the intervention that we observe makes it possible that a low-fat diet could under certain 

conditions and in certain diabetic subjects be beneficial outside the effects on cardiovascular 385 

disease. 
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Table 1. Baseline and intervention characteristics of anthropometric and metabolic variables. 

 Baseline 
all subjects  
n=19 
 
median  
(min-max) 

Baseline 
men  
n=10 
 
median  
(min-max) 

Baseline 
women  
n=9  
 
median  
(min-max) 

P-value1 Intervention 
All subjects 
n=19 
 
median  
(min-max) 

Intervention as 
% change of 
baseline 
n=19 
median 
(min-max) 

P-value2 

Age (y) 61 (40-69) 49 (40-69) 63 (45-69) 0.045    

Duration diabetes (y) 6 (1-15) 5 (1-11) 7 (4-15) 0.065    

BMI (kg/m2) 30.3 (24.7-41.9) 30.4 (25.3-39.0) 30.3 (24.7-41.9) 0.683 30.0 (24.5-41.6) 99 % (97-102) 0.170 

Systolic BP3 (mm Hg) 146 (103-168) 143 (123-165) 160 (103-168) 0.069 140 (115-180) 94 % (84-176) 0.147 

Diastolic BP (mm Hg) 88 (70-103) 90 (70-100) 88 (70-103) 0.533 85 (75-100) 101 % (78-108) 0.863 

HbA1c (%) 7.8 (5.4-10.3) 7.2 (5.4-9.6) 7.8 (7.2-10.3) 0.221 7.9 (5.2-10.4) 100 % (93-108) 0.632 

Glucose (mmol/l) 9.1 (5.3-14.5) 8.2 (5.3-14.5) 9.3 (8.3-13.7) 0.253 9.2 (5.2-15.5) 99 % (74-132) 0.507 

Insulin (mU/l) 16.2 (5.7-28.8) 17.0 (7.6-28.8) 13.9 (5.7-25.1) 0.540 14.9 (3.9-26.6) 100 % (35-164) 0.520 

                                                 
1 Mann-Whitney U-test was used to analyse differences between gender. 
2 Wilcoxon Signed Ranks Test was used to analyse the difference between baseline and intervention variables, n=19. 
3 BP = blood pressure 
 



 

 

29

 

Glu/ins4 ratio (mg/10-4U) 11 (4-43) 11 (4-34) 11 (7-43) 0.514 11 (4-60) 95 % (60-249) 0.601 

HOMA5 (%) 63 (11-186) 64 (14-186) 58 (11-87) 0.327 48 (8-313) 105 % (43-169) 0.334 

C-peptide (nmol/l) 1.1 (0.7-2.2) 1,2 (0.9-2.2) 0,9 (0.7-1.3) 0,033  0.8 (0.6-2.3) 95 % (52-136) 0.197 

Glucagon (pmol/l) 35 (20-70) 42 (31-74) 32 (20-74) 0.041  36 (17-77) 92 % (50-151) 0.420 

Proinsulin (pmol/l) 15 (4-35) 19 (4-34) 11 (4-35) 0,072 17 (5-37) 106 % (70-150) 0.965 

Cortisol (nmol/l) 501 (254-1045) 454 (254-852) 559 (266-1045) 0.424 479 (278-1182) 99 % (53-248) 0.948 

Leptin (ng/ml) 11.4 (5.2-24.0) 8,1 (5.2-17.5) 17.3 (11.3-24.0) 0.003  9.9 (4.9-21.6) 90 % (61-113) 0.013 

Adiponectin (µg/ml ) 1.1 (0.3-1.8) 1.1 (0.3-1.8) 1.1 (0.8-1.4) 0.627 1.0 (0.3-1.8) 92 % (54-158) 0.055 

Cholesterol (mmol/l) 6.3 (4.3-8.5) 5.8 (4.3-8.5) 6.6 (6.1-8.0) 0.045  6.2 (4.1-8.2) 95 % (76-110) 0.011 

HDL6 (mmol/l) 1.11 (0.84-1.52) 1.00 (0.84-1.45) 1.21 (0.97-1.52) 0.025  1.10 (0.86-1.50) 97 % (88-110) 0.083 

Cholesterol/HDL ratio 5.6 (3.7-10.1) 5.8 (3.7-10.1) 5.5 (4.9-7.6) 1.000 5.6 (3.3-9.2) 97 % (75-111) 0.133 

Triglycerides (mmol/l) 2.7 (1.4-11.1) 3.1 (1.4-11.1) 2.7 (2.2-6.4) 0.713 2.7 (1.1-10.3) 91 % (61-123) 0.055 

                                                 
4 glu/ins = fasting glucose (mg/dl)/fasting insulin (mU/l)  
5 HOMA = Homeostasis Model Assessment index 
6 HDL = High Density Lipoprotein cholesterol 
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FA7 (mmol/l) 0.78 (0.31-1.36) 0.61 (0.31-0.84) 0.90 (0.54-1.36) 0.024  0.77 (0.34-1.34) 103 % (71-158) 0.372 

PL-FA8, total (mg/l) 1571 (1198-2345) 1480 (1198-2345) 1572 (1474-1969) 0.253 1552 (1274-2342) 98 % (88-111) 0.334 

SFA9 (g/100 g PL-FA) 41 (39-43) 41 (39-42) 41 (40-43) 0.191 41 (38-42) 97 % (88-111) 0.001 

MUFA10 (g/100 g PL-FA) 12 (11-15) 12 (11-15) 12 (11-15) 0.902 13 (11-15) 105 % (94-127) 0.002 

n-6 FA (g/100 g PL-FA) 34 (28-40) 35 (30-40) 32 (29-38) 0.205 31 (24-37) 93 % (78-107) 0.001 

n-3 FA (g/100 g PL-FA) 14 (7-18) 12 (7-18) 14 (10-18) 0.307 16 (9-21) 113 % (72-192) 0.003 

n-6/n-3 ratio 2.4 (1.6-5.7) 2.9 (1.6-5.7) 2.3 (1.7-3.9) 0.253 1.9 (1.2-4.2) 76 % (45-128) 0.001 

 

                                                 
7 FA = free fatty acids 
8 PL-FA = plasma phospholipid fatty acids 
9 SFA = saturated fatty acids 
10 MUFA = monounsaturated fatty acids 
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Table 2. Baseline and intervention characteristics of dietary intake of energy, nutrients and food items. 

 Baseline 
all subjects  
n=19 
 
median  
(min-max) 

Baseline 
men  
n=10 
 
median  
(min-max) 

Baseline 
women  
n=9  
 
median  
(min-max) 

P-
value11 

Intervention 
all subjects 
n=19 
 
median  
(min-max) 

Intervention as 
% change of 
baseline 
n=19 
median 
(min-max) 

P-
value12 

Energy total MJ/d 7.9 (5.3-13.2) 9.1 (6.5-13.2) 7.0 (5.3-9.9) 0.009  6.6 (5.3-13.3) 89 % (63-113) 0.027 

Protein (E%)13 18 (12-26) 17 (12-20) 19 (14-26) 0.142 23 (18-30) 129 % (96-182) <0.0001 

Fat (E%) 39 (31-45) 39 (33-45) 39 (31-45) 1.000 22 (9-40) 63 % (23-90) <0.0001 

Carbohydrates (E%) 41 (33-55) 43 (33-55) 40 (36-48) 0.935 50 (37-68) 125 % (93-156) <0.0001 

Alcohol (E%) 0 (0-10) 1 (0-10) 0 (0-9) 0.102 0 (0-17) 14 0.859 

Sugar (E%) 4 (0-16) 6 (0-16) 3 (0-4) 0,003 3 (0-10) 96 % (2-2873) 0.277 

Protein (g/d) 85 (54-123) 96 (60-123) 75 (54-118) 0.086 93 (66-206) 113 % (69-192) 0.016 

Fat (g/d) 81 (50-142) 92 (70-142) 67 (50-112) 0,011  43 (26-95) 52 % (20-89) <0.0001 

                                                 
11 Mann-Whitney U-test was used to analyse differences between gender. 
12 Wilcoxon Signed Ranks Test was used to analyse the difference between baseline and intervention variables, n=19. 
13 E% = energy percentage 
14 Impracticable calculation because of zero intake of 10 subjects at baseline diet and zero intake of 15 subjects at intervention diet. 



 

 

32

 

Carbohydrates (g/d) 187 (127-344) 225 (145-344) 166 (127-224) 0.022  210 (125-450) 115 % (81-141) 0.016 

Alcohol (g/d) 0 (0-30) 5 (0-30) 0 (0-21) 0.085 0 (0-77) 14 0.515 

Sugar (g/d) 22 (1-92) 33 (1-92) 13 (1-23) 0.003  13 (1-64) 92 % (2-1847) 0.159 

Fibre (g/d) 20 (12-30) 21 (12-30) 20 (14-24) 0.935 27 (16-48) 142 % (92-223) <0.0001 

Beta-carotene (µg/d) 2748 (413-4890) 1969 (413-4649) 3658 (2506-4890) 0.007 3860 (1345-10895) 140 % (49-2576) 0.005 

Alpha-tocopherol (mg/d) 7.7 (5.3-18.9) 9.5 (6.5-17.7) 7.2 (5.3-18.9) 0.369 6.8 (3.7-16.0) 90 % (28-128) 0.006 

Vitamin C (mg/d) 71 (29-296) 73 (50-296) 63 (29-169) 0.744 111 (35-268) 130 % (39-324) 0.036 

        

Bread (g/d) 163 (87-277) 176 (87-277) 159 (96-193) 0.060 218 (105-320) 123 % (65-244) 0.027 

Potatoes (g/d) 85 (29-290) 76 (29-290) 130 (55-169) 0.142 118 (58-429) 131 % (70-631) 0.005 

Vegetables (g/d) 115 (0-364) 90 (0-266) 126 (79-364) 0.165 252 (69-405) 200 % (62-560) <0.0001 

Fruit (g/d) 128 (28-589) 105 (28-589) 141 (66-369)  0.414 218 (65-1015) 172 % (31-1337) 0.016 

Fish (g/d) 80 (0-162) 54 (0-135) 99 (0-162) 0.307 138 (0-246) 180 % (0-355) <0.0001 

Meat (g/d) 168 (24-277) 175 (82-270) 129 (24-277) 0.288 120 (61-680) 67 % (36-535) 0.494 
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Milk (g/d) 249 (8-830) 326 (24-830) 197 (8-443) 0.221 178 (0-887) 73 % (0-333) 0.469 

Cheese (g/d) 19 (0-82) 19 (0-58) 29 (5-82) 0.462 29 (0-88) 104 % (0-691) 0.896 

Eggs (g/d) 23 (0-60) 23 (0-60) 23 (9-58) 0.513 17 (0-57) 71 % (0-397) 0.055 

Edible fats (g/d) 36 (15-78) 50 (15-78) 35 (22-54) 0.288 3 (0-17) 8 % (0-115) <0.0001 
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LEGEND TO FIGURE 1 

Concentrations of blood glucose obtained by home glucose monitoring. Bars depict mean 

values of measures at each day in the 6-days register period at baseline diet (open bars) and 3 

days register period at intervention diet (filled bars), n = 19. “Post dinner” signifies values 

measured 2 h after the start of dinner. Results are mean ± SEM. 

∗  P<0.05 (Wilcoxon Signed Rank Test).  
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SUMMARY  

Aims. To test whether a single bedtime dose of diazoxide (D) would 

alleviate side effects and still improve beta-cell function in type 2 

diabetes.  

Methods. A double-blind randomised study was performed in 27 type 2 

diabetic subjects (17M, 10F), negative for antibodies against glutamic acid 

decarboxylase and islet cell antigen-2, and treated with bedtime insulin 

(BTI) and metformin. Subjects received either bedtime D, 100mg, or 

placebo for 9 weeks. Duplicate C-peptide glucagon tests were performed 

before and at the end of intervention.  

Results. No side effects of D were detected. Treatment with D did not 

incur any increase in BTI. C-peptide responses to glucagon were increased 

0,15 ± 0,06nmol/l vs. -0,01 ± 0,04nmol/l for placebo, p<0,06 for 

difference. Corresponding effects on insulin were 66,2 ± 41,7pmol/l for D 

vs. –84,2 ± 51,5, for placebo p<0,03. Treatment with D decreased fasting 

glucagon levels by 41% vs. placebo, p<0,03. Glycated haemoglobin 

(HbA1c) levels were not affected, whereas levels of blood glucose post 

breakfast were higher during D (1,34 ± 0,43mmol/l, p<0,01 vs. placebo). 

A breakfast test in the presence of 0.5mg repaglinide elicited a robust 

insulin response in D-treated subjects.  

Conclusions. Bedtime treatment with D in type 2 diabetes on BTI and 

metformin has no measurable side effects, does not increase BTI 

supplementation, ameliorates beta-cell function but fails to improve 

metabolic control. Improvement of metabolic control could be contingent 
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upon combination treatment with daytime pharmacological enhancement 

of insulin secretion.  

 
KEYWORDS:  
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 4

Hyperglycaemia impairs endogenous insulin secretion in type 2 diabetes 

[1-3] and in newly diagnosed type 1 diabetes [1]. In experimental studies 

over-stimulation plays an important role for the negative effects of 

hyperglycaemia. Thus, chronic hyperglycaemia in the rat abolished 

glucose-induced insulin secretion [4]; however secretion was upheld if 

insulin secretion was inhibited by diazoxide during the period of 

hyperglycaemia [5]. Also evidence obtained in vitro with diazoxide 

supports a role for over-stimulation [2,6]. 

 

Diazoxide inhibits glucose-induced insulin secretion by a molecular action 

opposite to that of glucose. By opening ATP-sensitive K+ channels in the 

cell membrane of beta-cells [7], diazoxide antagonises the opposite effect 

by glucose. Diazoxide thereby prevents glucose-induced cell membrane 

depolarisation, opening of voltage-dependent Ca++ channels and ensuing 

insulin secretion. The inhibitory effects of diazoxide on insulin secretion 

are rapidly reversible [2,5]. The beneficial effects on insulin secretion that 

are demonstrable after stopping diazoxide can therefore be ascribed to 

diazoxide´s preventive effect on over-stimulation rather than to any effect 

of the drug per se. 

 

Also clinical studies report beneficial effects of diazoxide on beta-cell 

function. Björk et al treated newly diagnosed type-1 diabetes patients with 

diazoxide for a period of 3 months in addition to their usual insulin 

treatment [8]. Insulin secretion was better preserved in diazoxide-treated 

compared with placebo-treated subjects, as assessed from higher levels of 
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C-peptide levels up to 12 months after the end of the treatment period. As 

to type-2 diabetes, patients treated with diazoxide for 7 days in an open 

trial displayed improved insulin secretion when diazoxide was 

discontinued [9].  

 

Despite these promising findings the therapeutic use of diazoxide is in 

doubt. Side effects are one reason for this. Common side effects of 

diazoxide are oedema and lanugo hair growth [10]. Other side effects are 

nausea and hypotension. Oedema is treatable by diuretics and will subside 

like the other side effects once diazoxide treatment is discontinued. 

Hence, the side effects are not of a serious nature. They are however 

disturbing enough to create major obstacles to treatment. A further reason 

for not using diazoxide in type 2 diabetes is the perceived need to combine 

diazoxide with insulin treatment in patients not otherwise in need of 

insulin according to current therapeutic guidelines.  

 

Clinical experience from treatment of insulinoma patients has shown that 

100 mg diazoxide three times daily is usually required to suppress 

glucose-induced insulin secretion [11]. Such or similar doses were given 

in previous studies in diabetic patients [8,9] . A lower dose given three 

times daily could potentially diminish side effects but would at the same 

time diminish the inhibitory effects on insulin secretion while not 

eliminating, in type 2 diabetes, a potential need for 24h insulin treatment. 
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We reasoned that giving 100mg of diazoxide only once daily and then at 

bedtime to type 2 diabetic patients could have several advantages. First, 

the intermittent nature of diazoxide treatment could possibly produce less 

side effects than a three times daily regimen. Second, diazoxide given at 

bedtime could be added to bedtime insulin in combination with daytime 

peroral anti-diabetic treatment without any need for major adjustments of 

treatment. Third, it was intuitively sensible to let beta-cells “rest” during 

the night in order to perform better during daytime.  

Against this background, a double blind randomised trial was designed in 

patients with type 2 diabetes to investigate the feasibility of treatment with 

diazoxide at bedtime combined with BTI and, furthermore, to test for 

improvement of endogenous insulin secretion.  
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PATIENTS AND METHODS 

 

Subjects 

Twenty-seven subjects with type 2 diabetes (17 males, 10 females) 

participated. The subjects were recruited from the Departments of Internal 

Medicine at Levanger Hospital and St Olav’s University Hospital. 

Inclusion criteria were type 2 diabetes as defined by clinical criteria and 

by absence of islet cell antigen-2 and glutamic acid decarboxylase 

antibodies, and age between 35 and 80 years. For the purpose of the study, 

patients should be non-optimally controlled as defined by HbA1c values 

>7.0% for patients below 70 years and >8.0% for patients between 70 and 

80 years (as measured at 2 different time points more than 5 weeks apart).  

The exclusion criteria were proliferative or pre-proliferative retinopathy, 

pregnancy or lactation, heart failure New York Heart Association grade III 

and IV, serum creatinine >150µmol/l, and alcoholism or other serious 

diseases affecting the possibility of the subject to participate.  

At inclusion all but two patients were treated with metformin in doses 

varying from 500mg to 3000 mg/day (mean dosage 2060mg ± 170). 

Twelve subjects used sulphonylureas. Nine used glipizide, 10-15mg, two 

glimepiride, 3-4mg and one glibenclamide, 10,5mg. Ten of the subjects 

treated with metformin were on combination therapy with sulphonyureas. 

Ten of the subjects were already using BTI at the time of inclusion 

(dosage 24 ± 5IU, range 6-44). Eight of the patients received 

antihyperlipaemic treatment in the form of statins and thirteen patients 

received antihypertensive treatment. Two female participants were 
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receiving hormone replacement therapy. Other concomitant medications 

in one or more patients were salicylates, vitamin supplements, thyroxine, 

analgesics, antiastmatic medication, nitroglycerine, antihistamines, 

glaucoma medication, benzodiazepines and cox-2 inhibitors. No patient 

was on systemic steroid medication. 

 

Experimental design 

At the day of inclusion a physical examination was performed in all 

subjects. Then any sulphonylurea medication was discontinued and 

metformin treatment started if not already taken. The dose of metformin 

was adjusted according to recommendations [12], aiming at 2g daily. In 

those subjects not previously on BTI, such treatment (Insulin Insulatard, 

Novo Nordisk Inc.) was initiated at the date of inclusion and adjusted 

every third day following an algorithm based on fasting glucose 

measurements [13], where levels of fasting blood glucose between 4-7mM 

were aimed for. Other concomitant medications were kept at the same 

dosage throughout the study. 

After a run-in period of 8 weeks, the patients performed 7-point home 

glucose monitoring for 3 days. Then, C-peptide glucagon tests [14] were 

performed in duplicate i.e., on two consecutive days, after which the 

patients were randomised to start with either diazoxide or placebo 

capsules at bedtime. Randomisation was done by a computerised 

minimisation procedure, Minimize [15]. The randomisation parameters 

that were weighted were (in decreasing order) HbA1c (2.0), body mass 
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index BMI (1.5), age and fasting C-peptide (1.0), sex and diabetes 

duration (0.5).  

 

During the intervention period the participants were seen at outpatient 

visits by a study nurse or by one of the authors 1, 2, 4, 6, 8 and 9 weeks 

after the start of diazoxide or placebo treatment. At each visit body weight 

and blood pressure (sitting position) was measured, the presence of 

oedema checked for and the results of home glucose monitoring reviewed. 

The dosage of BTI was adjusted from measurements of fasting blood 

glucose [13]. At the end of the intervention period the patients again 

performed 7-point home glucose monitoring during 3 days. Then two C-

peptide glucagon tests were again performed in duplicate on two 

consecutive days. Finally, thirteen diazoxide-treated patients and twelve 

placebo-treated patients underwent a standardised breakfast test together 

with 0.5mg repaglinide as detailed below. 

The protocol was approved by the local ethics commission and by the 

Norwegian Drugs Control Authority. All subjects gave informed written 

consent. 

 

Study medication 

The production of diazoxide (Proglycem, Schering Plough Inc.) and 

placebo capsules took place at the Hospital Pharmacy, St. Olav’s 

University hospital. The quality control standards of the production were 

approved by the Norwegian Drugs Control Authority. The study 

pharmacist was responsible for allocation concealment. 
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C-peptide and breakfast tests 

The patients fasted overnight and refrained from taking their morning 

medications. Standardised C-peptide glucagon tests were performed [14].  

For the breakfast test, the patients ingested a standardised breakfast with 

0.5mg repaglinide (Novonorm). The breakfast contained 470kcal (47 % 

carbohydrates, 17 % protein and 36 E% fat). Following the start of the 

meal blood samples were collected every 15min for 2h.  

After centrifugation, all samples were frozen and kept at –80°C degrees 

for later analysis. 

 

Assays 

Blood glucose in the hospital was determined by a reflectrometric device 

(HemoCue Ltd, Dronfield, UK). For home glucose monitoring, all patients 

were supplied with identical measuring devices for the trial (Glucometer 

Elite XL, Bayer Co, Tarrytown, NY). HbA1c was determined by DCA 

(Bayer Co, Tarrytown, NY). Human C-peptide and insulin were assayed 

by radioimmunoassay (RIA) (Linco Res. Inc, St. Louis, MO). Glucagon 

and proinsulin were also determined by RIA (Linco Res. Inc,).  

Levels of fatty acids were determined by an enzymatic colorometric 

method (NEFA-C-kit, Wako Pure Chemical Industries Ltd, Osaka, Japan). 

Triacylglycerols, cholesterol and high density lipoprotein (HDL) were 

determined by standard laboratory techniques.  

The presence of antibodies against glutamic acid decarboxylase and islet 

cell antigen-2 was determined by RIA (Dianova GmbH, Hamburg, 
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Germany). Insulin antibodies were determined by enzyme linked 

immunosorbent assay (Milenia-Biotec GmbH, Bad Nauheim, Germany). 

 

Presentation of results 

Values are given as mean ± SEM if not otherwise stated. Statistical 

analysis was done using SPSS/PC + 10.0 and based on comparisons 

between diazoxide and placebo treatment in the two test periods. Results 

obtained at the duplicate occasions of C-peptide-glucagon testing and the 

triplicate 7-point glucose measurements were averaged before being 

entered in tables and figures and before significance testing.  

Two subjects tested positive for insulin antibodies at the end of the study 

(one from the diazoxide and one from the placebo group). These 

individuals were removed from the calculation of fasting and stimulated 

insulin data. Significance testing was done by Student’s t test (paired or 

independent samples), or, for non-normally distributed variables, the 

Wilcoxon matched pairs signed-rank sum test or Mann-Whitney test. 

Pearson’s and Spearman’s correlation coefficients were used to evaluate 

bivariate correlations where appropriate.  
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RESULTS  

 

Clinical characteristics 

The average duration of known diabetes in these subjects was between 6 

and 7 years (Table 1). Most subjects were obese, albeit to a varying 

extent. A majority of the subjects had n unsatisfactory, but not severely 

deranged metabolic control as assessed by HbA1c (Table 1). The levels of 

triacylglycerols were in the high normal range, according to current 

guidelines [16].  

Three of the subjects were habitual smokers. 

 

Randomisation 

There were no significant differences in the clinical characteristics of 

patients randomised to diazoxide or to placebo (Table 1). 

 

Dropouts and compliance 

All randomised subjects completed the study. Two subjects did not 

participate in the breakfast test. Compliance with the treatment regimen 

appeared good. Thus, by blood glucose measurements in the clinic 

corresponded well with home glucose monitoring. Also, the amount of 

unused medication returned agreed with the prescribed doses of the study 

medications. 
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Bedtime insulin during the study 

At the end of the run-in period the patients starting on diazoxide were 

treated with 32 ± 5 IU, whereas patients starting on placebo received 24 ± 

5 IU. During the intervention period, the mean dose of intermediate acting 

insulin was increased to the same extent in both groups, i.e. by 7 ± 2 IU in 

the diazoxide treated subjects and by 7 ± 3IU in the placebo group (Fig 

1A).  

 

Adverse events 

We did not detect oedema in any patient. Body weight increased 

marginally and non-significantly in both groups. The increase in the end 

of intervention amounted to 0,56 ± 0,29 kg in the diazoxide-treated group 

and 0,75 ± 0,42 kg in the placebo-treated group (Fig 1B). Blood pressure 

declined from 143/85 to 137/83 mmHg in diazoxide-treated subjects, 

p<0,1, and from 146/85 to 140/82 in placebo treated subjects, p<0,005), 

with no significant difference between the groups. There were no 

symptoms related to orthostatic hypotension. The youngest female subject 

(40 years) on diazoxide mentioned a possible increase in facial lanugo 

hair, an increase that was however not obvious on inspection.  

Minor hypoglycaemic episodes during the night were experienced by four 

subjects in the diazoxide group. Three of these subjects were in the lower 

BMI range of the study population and had low fasting C-peptide levels at 

inclusion. 
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Effects of diazoxide on beta-cell function  

Fasting levels of C-peptide decreased by 33% (p<0,07) in the diazoxide 

group, and by 13% (p<0,2) in the placebo-treated patients (Table 2). In the 

diazoxide group there was no correlation between individual patients of 

the C-peptide to insulin ratio on one hand and insulin doses on the other 

(r= -0,28, ns.). However, a negative correlation was seen in the placebo 

group (r= -0,65, p<0,02). These observations are compatible with an 

inhibitory effect of diazoxide on endogenous insulin secretion that 

overrides that of circulating insulin.  

 

In contrast to the inhibitory of diazoxide on fasting C-peptide, the 

glucagon-stimulated levels of C-peptide were increased in the diazoxide-

treated group vs. placebo by 95%, p<0,06 as were also insulin levels by 

36% vs. placebo, p<0,02 (Fig 2). The increase in glucose levels during the 

C-peptide glucagon tests that were performed at the end of intervention, 

was similar between groups (+ 0,95 ± 0,20 mmol/l in the diazoxide  and + 

1,00 ± 0,10 mmol/l in the placebo group, NS). 

 

As calculated from the duplicate testing, the coefficient of variation of 

stimulated C-peptide and insulin responses at the end of intervention was 

4,3 in the diazoxide-treated and 7.3% in the placebo group. The 

corresponding coefficient of variation for stimulated insulin was 6,3% in 

the diazoxide-treated subjects and 6,8% in the placebo group.  
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A positive effect on stimulated C-peptide levels by diazoxide tended to 

correlate with fasting C-peptide levels at randomisation (r= 0,37, p<0,17) 

in the diazoxide group. Such tendency was not seen in the placebo group 

(r= 0,19, p<0,55). Diazoxide treatment also decreased levels of fasting 

proinsulin by 62% (Table 2) and the proinsulin /insulin ratio by 44%, both 

NS vs. placebo. 

 

Effects of diazoxide treatment on glucagon secretion 

Glucagon levels in the over-night fasted state were reduced after 

diazoxide treatment (by 41%, p<0,03, vs. placebo, Table 2).  

 

Blood glucose and HbA1c  

The 7-point blood glucose registration performed during 3 days at the end 

of the run-in period was compared with registrations performed in the end 

of the intervention period. Bedtime diazoxide increased blood glucose 

levels somewhat vs. placebo after breakfast (by 1,34 ± 0,43mmol/l, 

p<0,01, Fig 1C). Blood glucose levels recorded later during the day show 

a similar tendency but did not achieve statistical significance. Blood 

glucose levels during the evening were, on the other hand, not affected. 

The levels of fasting blood glucose recorded at the time of the C-peptide 

glucagon tests were not significantly affected in the diazoxide group but 

were decreased in the placebo group (Table 2). Similarly, the diazoxide 

treatment did not significantly decrease HbA1c (from 8.1 vs. 7.9%), 

whereas a decrease was seen after placebo (from 7,9 vs. 7,4, p<0,03, 

Table 2).  
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Other metabolic parameters 

Plasma levels of fatty acids, cholesterol or HDL did not differ as result of 

intervention between the diazoxide and placebo groups during the study 

(results not shown). Triacylglycerol levels were marginally decreased by 

0,09 ± 0,08mmol/l in the diazoxide treated subjects, and increased by 0,05 

± 0,10mmol/l in the placebo treated subjects, NS.  

 

Standardised breakfast test 

The study patients were not treated with sulphonylurea or similarly acting 

drugs. As a pointer for future studies it was of interest to establish whether 

diazoxide treated subjects were responsive to a breakfast in the presence 

of pharmacological enhancement of insulin secretion. A breakfast test was 

therefore performed in the presence of repaglinide at the end of the 

intervention period. This test induced a marked C-peptide and insulin 

response in diazoxide-treated subjects (Fig.3). The response was similar to 

that in placebo-treated subjects (data not shown). 
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DISCUSSION  

Our study demonstrates that 9 weeks of treatment with a single 100mg 

dose of diazoxide combined with BTI in type-2 diabetes patients is 

without measurable side effects and perfectly acceptable to the patients. 

These findings are underscored by the very good compliance of patients 

and by the absence of dropouts in the study. The absence of side effects in 

comparison to other studies can likely be explained by the lower dosage 

and, perhaps, by the intermittent mode of administration. A theoretical 

possibility is that older subjects would be less susceptible to side effects 

than the young adults who participated in a previous study in type 1 

diabetes patients [8]. However, we fail to find any evidence in the 

literature for age in adults being a factor for diazoxide´s side effects.  

 
We found evidence for better insulin secretion during diazoxide treatment 

in terms of responses to glucagon in the C-peptide glucagon tests. The 

validity of these results was strengthened by performing tests always in 

duplicate and averaging results from each pair of tests. The finding of 

improved insulin secretion was obtained in spite of other evidence that 

some inhibitory effect of diazoxide on insulin secretion was still present, 

i.e. somewhat higher glucose levels in the morning. This possible 

discrepancy can be explained by the selectivity of diazoxide´s inhibitory 

effect on insulin secretion. By opening of potassium channels the drug 

counteracts the opposite and insulin-stimulating effects of glucose, but not 

that of insulin secretagogues that operate through other signal-secretion 

pathways [17,18]. These include the presently tested hormone glucagon as 
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well as meal-stimulated GLP-1, which both primarily activate the 

adenylcyclase - cyclic AMP pathway [19].  

 

Also the tendencies for a decrease in proinsulin levels and proinsulin to 

insulin ratios during diazoxide treatment are in line with ameliorated beta-

cell function. Elevated proinsulin and proinsulin to insulin ratios are 

commonly found in type 2 diabetes [20] and, in all likelihood, reflect a 

strain on beta-cells to produce insulin above their capacity [21].  

 

There was some indication that a relatively preserved beta-cell capacity, 

as assessed from fasting C-peptide levels during the run-in phase of the 

study, may predispose for better insulin secretion after diazoxide. This 

finding agrees with other evidence demonstrating that beta cell capacity 

correlates to the beneficial effect that normalisation of blood glucose 

exerts on insulin secretion [22]. Hence, any intervention to improve and 

preserve insulin secretion should probably be instituted early during the 

course of diabetes. 

 

It is interesting that the amount of BTI did not have to be increased during 

diazoxide relative to placebo treatment. This finding could not be 

explained by a lack of effect of the drug on insulin secretion since signs of 

residual inhibition of insulin secretion by diazoxide were present as late as 

in the morning following bedtime diazoxide. That BTI did not have to be 

increased therefore indicates increased insulin sensitivity. This finding is 

contrary to a 7 day previous study with diazoxide in lean type 2 diabetes 
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subjects [23]. However, it is in agreement with the study in type 1 diabetes 

patients by Björk et al. [8] that indicated no need to increase insulin 

dosage in diazoxide and insulin-treated type 1 diabetic patients. Likewise, 

diazoxide increases insulin sensitivity in rat models of diabetes [24]. An 

insulin-sensitising effect could, in part at least, be explained by a lowering 

of glucagon levels that we here document, to our knowledge for the first 

time, in diabetic subjects. An inhibitory effect on glucagon levels is likely 

to be a direct effect of diazoxide, since such an effect has been previously 

demonstrated in vitro [25]. 

 

Home glucose monitoring revealed that diazoxide treatment raised blood 

glucose levels after breakfast. Although these undesirable effects were 

small they may question the rationale for treatment with diazoxide, since 

any therapeutic regimen should in the end improve metabolic control. 

Two conditions could possibly ensure metabolic improvement. First, it is 

probably advantageous to combine bedtime diazoxide with short-acting 

pharmacological enhancers of insulin secretion at meals during daytime. 

A beneficial effect of such inclusion is suggested by the meal test with 

repaglinide in the present study. This test was intended only to reveal 

whether subjects on diazoxide could indeed respond with insulin release 

to a breakfast together with repaglinide, despite the evidence for lingering 

inhibition of glucose-induced insulin secretion at that time point. The 

results demonstrate a robust insulin response in the diazoxide-treated 

group. This finding is encouraging, since an even stronger effect of 

repaglinide and similar agents acting on the K+-ATP-channels could be 



 20

expected at later meals when the counteracting effect of diazoxide is gone. 

This notion is supported by a study in dogs demonstrating that previous 

diazoxide actually enhances the subsequent insulin response to 

tolbutamide [26].  

 

Second, selection of patients should be modified in future studies. Our 

patients had a rather long duration of known diabetes and were clinically 

in the stage of the disease in which some form of insulin treatment was 

considered in order to improve a deteriorating metabolic control. We 

selected such patients because they could be given diazoxide with 

minimal interference with a standard therapeutic regimen and also because 

a need for counteracting a potential increase of hyperglycaemia could to 

some extent be met by giving more BTI. With feasibility in terms of side 

effects now demonstrated and with no apparent need to balance effects of 

diazoxide with insulin, future studies could be performed in subjects with 

shorter duration of diabetes and with a documented good capacity of 

endogenous insulin secretion.  

 

Beneficial effects on beta-cell function in humans have been found with 

somatostatin [27,28], which also inhibits insulin secretion, not by 

interaction with the ATP-sensitive channels, but by interaction with G-

proteins in the beta-cell membrane [29]. However somatostatin must be 

administered by multiple sc. injections which reduces its potential as an 

everyday treatment. Hence, diazoxide treatment is probably advantageous 

to that of somatostatin. Diazoxide could also be advantageous to insulin 
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therapy since it depresses insulin secretion more than insulin alone [30 

and present study]. 

 

In summary, bedtime treatment with diazoxide in type 2 diabetes on BTI 

and metformin has no measurable side effects, does not increase insulin 

supplementation, ameliorates beta-cell function but fails to improve 

metabolic control. Improvement of metabolic control could be contingent 

upon combination treatment with daytime pharmacological enhancement 

of insulin secretion and the selection of subjects with relatively preserved 

capacity for insulin secretion. 
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LEGEND TO FIGURES 

 

Figure 1. Change of A) insulin doses, B) blood glucose (home monitoring) and C) 

body weight after the intervention period.  

 

Figure 2. Effects of intervention on stimulated A) C-peptide and B) insulin levels. # 

diazoxide, n=14 and placebo, n=11 due to insulin antibodies in two subjects. 

 

Figure 3. Effects of a standardised test meal on incremental levels on A) blood 

glucose, B) C-peptide and C) insulin in diazoxide-treated subjects, n=13. 
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TABLE 1 Clinical characteristics at inclusion in randomised groups. Mean ± SEM. 

No significant differences were seen between groups.  

 

 Diazoxide Placebo 

Age (years) 57,5 ± 2,6 60,4 ± 2,8 

M/F 8/7 9/3 

Diabetes duration (years) 7,5 ± 1,1 5,8 ± 0,9 

BMI (kg/m2) 29,6 ± 1,2 27,9 ± 0,9 

Fasting blood glucose (mmol/l) 10,0 ± 0,7 8,9 ± 0,3 

HbA1c (%) 8,6 ± 0,2 8,4 ± 0,3 

C-peptide (nmol/l) 1,0 ± 0,2 0,8 ± 0,1 

Triglycerides (mmol/l) 1,8 ± 0,4 2,5 ± 0,7 

Cholesterol (mmol/l) 4,7 ± 0,5 5,4 ± 0,4 

HDL (mmol/l) 1,29 ± 0,09 1,09 ± 0,06 
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TABLE 2:Fasting levels of blood glucose, HbA1c, and islet hormones. 

Concentrations are given as mean ± SEM. *p<0,03, for change from run-in to 

intervention, diazoxide vs. placebo. # diazoxide, n=14 and placebo, n=11 due to 

insulin antibodies in two subjects. 

 

 Run-in Intervention 

 Diazoxide Placebo Diazoxide Placebo 

Glucose  

(mmol/l) 

6,7 ± 0,4 6,3 ± 0,3 7,1 ± 0,5 5,6 ± 0,3* 

HbA1c 

(%) 

8,1 ± 0,2 7,9 ± 0,4 7,9 ± 0,2 7,4 ± 0,3 

C-peptide 

(nmol/l) 

0,64 ± 0,13 0,46 ± 0,05 0,42 ± 0,06 0,40 ± 0,06 

Insulin 

(pmol/l)# 

188 ± 32 117 ± 23 217 ± 34  211 ± 54 

Proinsulin 

(pmol/l) 

26,0 ± 6,8 16,9 ± 2,8 21,2 ± 5,2 19,9 ± 3,9 

Glucagon 

(ng/l) 

81 ± 6 76 ± 5 74 ± 5* 86 ± 7 
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Figure 1 
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Figure 2 
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Figure 3 
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