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-/- knockout

Ab antibody

β2-integrins CD11a-c/CD18

C6OXY cellulose oxidized in C6-position

CHO Chinese hamster ovary

CR3 complement receptor 3 (CD11b/CD18)

CR4 complement receptor 4 (CD11c/CD18)

DC dendritic cell

DLPS detoxified/deacylated LPS

G guluronic acid

G- gram-negative

G+ gram-positive

GBS group B streptococci

GPI glycosylphosphatidyl-inositol

Hsp heat-shock protein

IL interleukin

IL-1Ra IL-1 receptor antagonist

kDa kiloDalton

LAM lipoarabinomannan

LBP LPS binding protein

LPS lipopolysaccharide

LRR leucine-rich repeat

LTA lipoteichoic acid

M mannuronic acid

mAb monoclonal antibody

MODS multi organ dysfunction syndrome

Mw molecular weight

NF-κB nuclear factor-κB

NK natural killer

PAMP pathogen-associated molecular pattern

PGN peptidoglycan

PRR pattern recognition receptor

R receptor

sCD14 soluble CD14

SIRS systemic inflammatory response syndrome

TGF transforming growth factor

TIR toll/IL-1R

TLR toll-like receptor

TNF tumor necrosis factor

URN:NBN:no-6359



6

�� ������	�  !���"	��#	�$�	���%�  ����"	��������

Innate immunity refers to the first-line host defense against invading pathogens and is

evolutionary conserved between vertebrate and invertebrate species1. The term “pattern

recognition receptors” (PRRs) was suggested by Janeway to describe the non-clonal, germ-line

encoded molecules recognizing structural features (pathogen-associated molecular patterns,

PAMPs) common to a variety of pathogens, but different from host components2-4. PRRs can be

secreted, endocytic, or signaling. Among the secreted PRRs used by the host to limit infection

are the complement system5, collectins6 and lipopolysaccharide (LPS)-binding proteins7. The

endocytic and activating PRRs are expressed on innate immune cells like

monocytes/macrophages, neutrophils, B-cells and dendritic cells (DCs). Endocytosis through

PRRs enables phagocytes to process and present antigens to T-cells, whereas activation through

PRRs can induce expression of costimulatory surface molecules needed for efficient activation

of the T-cells (reviewed in refs.1,4). Thus, the innate immune cells provide a link to the

subsequent response of acquired immunity, which is adaptive, restricted to vertebrates, and rely

on clonal expansion of T- and B-lymphocytes with induction of immunological memory.

In response to an infection, trauma or tissue injury, the immune system mounts an

inflammatory response in order to combat, limit and repair the damage. Proinflammatory

mediators like tumor necrosis factor (TNF), interleukin (IL)-1, IL-6, IL-8, IL-12, interferon-γ,

platelet-activating factor, various chemokines and subsequently arachidonic acid metabolites

(leukotrienes, prostaglandins, thromboxanes) are released into the microenvironment by

mononuclear phagocytes and endothelial cells8-12. The complement and coagulation cascades

become activated. The combined effect of all these agents increases capillary permeability and

expression of adhesion molecules on vascular endothelium, with concomitant influx of

leukocytes to the infected tissue. Antimicrobial mediators are released from recruited

neutrophils, phagocytic activity and further cytokine production is activated in surrounding

cells, and tissue is regenerated. The intensity and duration of the inflammatory response is

closely regulated through production of compensatory anti-inflammatory cytokines (IL-4, IL-

10, transforming growth factor (TGF)-β) and mediators like soluble TNF receptors (TNFR) and

IL-1 receptor antagonist (IL-1Ra)8-12.

URN:NBN:no-6359
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In cases of severe infection, microbes, microbial products or other inflammatory mediators may

enter the circulation and the patient exhibits a systemic inflammatory response syndrome

(SIRS)10,13. SIRS is eventually counteracted by a compensatory anti-inflammatory response

syndrome, but if the balance is out of control, the patient may die from immediate shock or

subsequent multi organ dysfunction syndrome (MODS)10,13. Sepsis is defined as SIRS caused

by infection, and is further subdivided into severe sepsis or septic shock according to the

severity of clinical manifestations like hypoperfusion, hypotension and organ dysfunction13.

Advances in medical practice and technology, together with a growing number of resistant

microorganisms due to unrestricted use of antibiotics, have increased the risk of sepsis14. In

USA, 400-500 000 septic episodes is estimated to occur annually, and the numbers are rising15.

Much of this change is caused by hospital-acquired infections14,16. A current estimate is that

about 25% of intensive care unit (ICU)-patients have sepsis, whereas severe sepsis occurs in 2-

3% of ward patients and 10-15% of ICU-patients16. The 28-day mortality is approximately 10%

(SIRS), 20% (sepsis), 20-40% (severe sepsis) and 40-60% (septic shock). The outcome of

sepsis is determined by the severity of underlying diseases and the presence of shock and

MODS16.

Most of the approaches used in developing sepsis therapies have been towards the pro-

inflammatory response17. TNF was among the first cytokines implicated in the pathogenesis of

sepsis, and is rapidly induced together with IL-1 in response to infection or injury18-21. Still,

clinical trials with antibodies to TNF, soluble TNFR chimeras or IL-1Ra have failed to show

significant improvement17. Lipopolysaccharide (LPS) is a main mediator of gram-negative (G-)

sepsis, but clinical studies with antibodies to LPS have yielded inconsistent results22. Other anti-

LPS strategies with LPS-mimetic antagonists, LPS inhibitors like bactericidal/permeability

protein (BPI), and hemoperfusion with polymyxin B, are currently in trials17,23,24. Among

several ongoing studies17, coagulation inhibitors like activated protein C (APC), tissue-factor

pathway inhibitor and antithrombin III show promising results25,26. Recently, phase III clinical

trials with recombinant human APC were stopped as significant improvement was achieved27.

Despite the failure of most clinical trials on sepsis, retrospective studies have shown significant

benefit in better-characterized subgroups of the patients included. A better understanding of the

mechanisms underlying the systemic inflammatory response leading to sepsis will help in

development of new therapies, as well as in early identification of patients who are more likely

to respond to new modalities (better diagnostic tools).

URN:NBN:no-6359
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In the pre-antibiotic era, gram-positive (G+) organisms were the most common agents of

infections, whereas in the period 1950-1980, sepsis caused by gram-negative (G-) bacteria

dominated15,16. Lately there has been a growing incidence of G+ microbes, especially in

hospital-acquired infections, and at the moment about equal proportions of G+ and G- bacteria

are causing sepsis16.

During infection, bacterial components

are spontaneously released into the

microenvironment and may reach the

circulation. This also occurs as a result of

antibiotic treatment and/or lysis of the

bacteria. Several of the bacterial mediators

are known to be pro-inflammatory, and thus

could be involved in triggering the sepsis

cascade (Table 1 and reviewed in refs.9,28,29).

Enterotoxins and exotoxins are proteins

released by various bacterial species that in

addition to their native functions (e.g.

enzymes, superantigens, porins), can be

highly potent cytokine inducers9,30. Also,

bacterial DNA has immunostimulatory

properties and is recognized by host cells

through unmethylated CpG dinucleotide

motifs31,32. Still, the major bacterial cytokine

inducers are the diverse cell wall components

composed of sugars, lipids and proteins.

'2�� ��%%	.�%%	�� �������

'2�2�� )���4���
�
��	������
�

G+ bacteria most often implicated in sepsis are ��������������� �������� �������������

����
������ coagulase-negative staphylococci, β-hemolytic streptococci and enterococci9,16.

However, Group B Streptococci (GBS) are the most common cause of life-threatening neonatal

infections, causing sepsis, meningitis and pneumonia with an incidence of 0.5-3 cases per 1000

live births33-35. The case-fatality rate is 5-15%, and although the incidence is low among adults,

the case-fatality rates are higher than in the newborn34,35. 
��������
�������	���� is a food-

borne G+ bacteria causing listeriosis with clinical manifestations including sepsis and

TABLE 1  BACTERIAL MEDIATORS

�����������	
 ���
�

��������
������

General DNA (CpG)

lipoproteins, lipopeptides

peptidoglycan (PGN)

cell wall associated proteins

heat shock proteins (Hsp)

G+ and G- bacteria exotoxins

capsular polysaccharides

G+ bacteria teichoic acids

lipoteichoic acid (LTA)

superantigens*

G- bacteria lipopolysaccharide (LPS)

outer membrane proteins

fimbriae/pili*

Mycobacteria lipoarabinomannan (LAM)

lipomannans

* Not restricted to, but mainly expressed by either

  G+ or G- bacteria
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meningitis36,37. As with GBS, persons at greatest risk are pregnants, neonates,

immunocompromised people and the elderly, and even if the incidence is low (ca. 0.5 per 100

000), the mortality is high (15-20%)36,37.

The mechanisms underlying G+ sepsis are not clear, but probably involve released toxins

and cell wall components with pro-inflammatory activity9. The G+ cell wall is composed of

several layers of peptidoglycan (PGN, N-acetyl glucosamine and N-acetyl muramic acid

crosslinked by peptide bridges) where proteins and carbohydrates like teichoic acids (poly

glycero- or ribitol-phosphate substituted by sugars and D-Ala), teichuronic acids (polymers of

alternating uronic acid and a hexose/hexosamine) and capsular polysaccharides are covalently

attached38 (Figure 1). Lipoteichoic acids (LTA) are teichoic acids with a glycolipid anchor, and

are found inserted into the bacterial cell membrane together with other glycolipids and

lipoproteins. Several G+ cell wall structures are pro-inflammatory9,28,29. PGNs and cell wall

fragments are released from dying bacteria or bacteria treated with antibiotics, and these

components were early known to be immunostimulatory39-42. LTA from different strains has

varying capacity to stimulate monocyte cytokine release, and deacylation abolishes the activity,

pointing to the importance of the lipid

part41,43-45. The amount of capsular and

other cell wall associated

polysaccharides differs between G+

strains, and in addition to their role as

virulence factors, they often induce

cytokine synthesis45-47. Substantial

amounts of lipoproteins are present in

G+ bacteria48, and although no reports

exist on their cytokine-inducing

properties, some of the

immunostimulating membrane proteins

reported could be lipoproteins28,49,50.

'2�2'� )���4��5��
��	������
�

The most prevalent bacteria involved in G- sepsis are ������������ ������ ���� �
����

����	������ Klebsiella species and enterobacteria16. The membrane glycolipid

lipopolysaccharide (LPS) was early considered the main agent responsible for G- sepsis,

although exotoxins and other cell wall components also contribute in triggering the septic

cascade. Different from G+ bacteria, only a thin (mono) layer of PGN is surrounding the plasma

membrane of G- bacteria, and a second, outer membrane is covering the PGN layer38. Like G+

FIGURE 1  Schematic diagram of a gram-positive

bacterial cell wall (Group B streptococci), from ref. 9.

URN:NBN:no-6359
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bacteria, several G- bacteria are encapsulated, and various proteins, lipoproteins and

carbohydrates are attached to the plasma membrane or to PGN (Figure 2A). Fimbriae, or pili,

are originating in the cytoplasmic membrane and mediate bacterial adherence. LPS is anchored

in the outer membrane together with various proteins, some of them lipoproteins linking the

outer membrane to the PGN layer. Fimbriae/pili51, membrane proteins52, lipoproteins53,54 and

capsular polysaccharides55,56 all stimulate cytokine synthesis in mononuclear phagocytes.

However, due to the potency in stimulating release of proinflammatory mediators and the

ability to reconstruct the clinical events of sepsis, most of the research done on G- bacterial

components has been on LPS18,19,57.

LPS is an amphiphilic molecule composed of a lipid A part, a core oligosaccharide and an

O-antigenic polysaccharide part58-61 (Figure 2), and exists as aggregates in aqueous solutions

above the critical micelle concentration62. The O-specific chain is a highly variable

heteropolymer made up from 0-50 repeating oligosaccharide units. The core region is divided

into an outer and an inner core, where 3-deoxy-D-
����-octulosonic acid (KDO) links the

sugar part of LPS to lipid A in an acid labile linkage. Lipid A is a phosphorylated β-(1-6) di-

glucosamine, N- and O-substituted with acyl chains of different nature, numbers and length, and

is the most conserved part of LPS. Although some studies suggest the importance also for the

core- and O-antigenic chains63-66, the endotoxic activity of LPS is considered to be in the lipid A

part (Figure 2B), and is dependent on the structure and conformation of lipid A67-69. Full

endotoxic activity requires a bisphosphorylated di-glucosamine with six saturated fatty acids in

a defined location, as in ��� ���� lipid A. Partial structures have reduced or no stimulatory

activity and can act as LPS antagonists70-73, as does lipid A from the non-pathogenic bacteria

!�� ���������������� ��74 and !������������75.

FIGURE 2  Schematic representation of the ������� envelope (A) and lipid A (B), from ref. 58.

� �

URN:NBN:no-6359
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Mycobacteria are the causative agents of diseases like tuberculosis and leprae. Several lipids,

glycolipids and lipoproteins covering the mycobacterial cell wall can stimulate immune cells,

but the main focus of research has been on lipoarabinomannan (LAM)76,77. The spirochetes

��������� ���	 ������ and "������
�� ����� �
 are implicated in Lyme disease and syphilis,

respectively, and lipoproteins are considered the principle spirochete components activating an

immune response78-81.

URN:NBN:no-6359
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�������	����� is an opportunistic pathogen to patients with cystic fibrosis, where the bacteria

undergo mucoid conversion and colonize the patient’s lungs82. The capsule is made of a family

of polysaccharides called alginate, and promotes adhesion of the bacteria to the tracheal

epithelium. The alginate capsule forms a protective barrier against opsonization and

phagocytosis, and it is also closely associated with virulence83. Thus, the inflammatory

properties of alginate are of importance, also because of an increasing interest in the use of

alginate in biomedical and pharmaceutical applications84-86.

Alginates are linear co-polymers of 1-4 linked β-D-mannuronic acid (M) and α-L-

guluronic acid (G) (Figure 3) with highly variable composition and sequential structure

depending on the source from where they are isolated87,88. In nature, alginate is found mainly as

the structure substance of marine brown seaweed, but also as an exopolysaccharide produced by

soil bacteria of the #$���������� spp.89, and several ���� �
���� spp.90. Because of its

viscosity, its ability to retain water, and its gelling and stabilizing properties, alginate has found

a variety of industrial applications, with an annual production of about 35 000 metric tons. The

main applications are in textile print pastes, in the pharmaceutical and food industry, and for

immobilization of living cells84-86,88,91. Different designations are used to discriminate between

alginates isolated from various sources and with different composition, and the names

employed are listed in Table 2 together with some average characteristics.

TABLE 2  DESIGNATION AND TYPICAL CHARACTERISTICS OF SELECTED ALGINATES

������� ��	�
����
������ �������� �����������

High-M alginate Algae ���������	
� 6-500 80-90% D-ManA

Mannuronan Bacteria ����
��	�����
� 50-500 100% D-ManA

Poly-M Bacteria ����
��	�����
� 50-500 90-99% D-ManA, 1-9% L-GulA

M-blocks Algae, bacteria ����
��	�����
� < 6 94-99% D-ManA, 6-9% L-GulA

G-blocks Algae, bacteria ���������
����� < 6 90-99% L-GulA, 1-9% D-ManA

FIGURE 3  Schematic representation

of the alginate structures

G-blocks (A) and M-blocks (B).

URN:NBN:no-6359
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Alginates do not have any regular repeating unit; thus the knowledge of the monomeric M/G

composition is not sufficient to determine the sequential structure of the polymers (reviewed in

ref.88). Some sequential parameters (monad, diad and triad frequencies) can be obtained from
1H-NMR spectroscopy, making it possible to estimate average block lengths of homopolymeric

regions92,93. This is important, as the functional properties of alginates are strongly correlated

with the structure. Di-axially linked G-blocks form cavities favoring binding of multivalent

cations like calcium, strontium and barium, accounting for the capacity of oligomeric G-regions

to form ionotropic gels88,94. The alginate composition varies between algal species and between

various tissues in the same plant87, with high-M alginate found in #���������
� �� ���


fruiting bodies88. Bacterial alginate differ from the algal polymers in that it is O-acetylated95,

and ���� �
���� spp. make alginate with more than 90% M and lacking G-block sequences

(poly-M). As first demonstrated by Larsen and Haug for #��%������ ��, alginate is synthesized in

both algae and bacteria as homopolymeric mannuronan96,97. Varying amounts of the M-residues

in the polymer are then epimerized to G-residues by mannuronan C5-epimerases, and several

C5-epimerases yielding different epimerization patterns have been isolated from bacteria98-100.

The epimerases can use both algal and bacterial alginate substrates, and recombinant production

of these enzymes may be used to design alginate polymers with desired composition and

structure best fit for various applications100,101.

+2'� �  !�� �#!%����)	����������

Several years ago, a Japanese group fractionated polysaccharides with anti-tumor activity

against murine sarcomas and carcinomas from the seaweed species 
�
������ and ���	����
,

and found the active extract to be alginate102-104. Best anti-tumor activity was obtained with

high-M alginate103, and the researchers suggested that structural differences of the alginates

resulting in different conformations could be a possible explanation104. Alginate from ��

����	����� (poly-M) is shown to stimulate murine macrophages to IL-1 production, and to be a

potent polyclonal B-cell mitogen56. Several reports from Otterlei ��� ��. demonstrate that

alginates isolated from algae share the immunostimulating properties of bacterial

alginates55,105,106. The cytokine-inducing effect increases with molecular size and the content of

mannuronic acid in the polymers, with poly-M being the most active55. Moreover, oxidation of

cellulose in C6-position (C6OXY) introduces D-glucuronic acid in the β-(1-4) linked D-glucose-

polymer, resulting in a 3D-structure resembling that of poly-M. And like poly-M, C6OXY-

cellulose induces monocyte TNF-production, although with lower efficiency55.

Homooligomeric G-blocks do not induce cell activation, but rather inhibit the cytokine

production induced by poly-M and LPS, as well as binding of poly-M and LPS to monocytes55.

URN:NBN:no-6359
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Poly-M is the first non-LPS molecule shown to bind to the myeloid surface molecule CD14 and

to activate cells in a CD14-dependent manner106. Moreover, poly-M given prophylactically

protects mice from lethal bacterial infections (T. Espevik and G. Skjåk-Bræk, unpublished

results) and radiation107, and stimulates murine haematopoiesis107. These results support the

potential use of poly-M as a general immunostimulator for therapeutic purposes.

+2+� (�� �#���%	���%��������

The immunomodulating properties of alginates are particularly important as these polymers are

used in several biomedical applications (reviewed in refs.84-86). Dressings of calcium alginate

are used in wound healing and as surgical hemostats86, and alginate-based raft-formulations are

used for symptomatic treatment of heartburn and oesophagitis108. Another application of

alginate is in sustained drug-release86. Living cells immobilized in calcium alginate beads are

used as biocatalysts in several industrial processes, ranging from ethanol production by yeast

cells, production of monoclonal antibodies from hybridoma cells, and production of

recombinant cytokines, factor IX or human growth hormone from transfected fibroblasts84,91.

Alginate has also potential as implantation material for hormone producing cells, and

encapsulated Langerhans islets are currently being evaluated as a bio-artificial endocrine

pancreas85,109,110. In all the abovementioned applications, the biological activities of different

alginates are of outmost importance. When alginate is used for encapsulation of living cells, the

immunostimulating property is unwanted. However, immunostimulatory poly-M is of relevance

for treatment of patients at high risk of infections.

URN:NBN:no-6359
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LPS has become a reference bacterial component, and most of what is known about the

mechanisms involved in cellular activation by other bacterial components, come from

comparison with LPS. A selection of cellular receptors and some of their bacterial ligands is

given in Table 3. Whereas some receptors are proposed to be involved in phagocytosis and/or as

binding molecules in signaling complexes (mannose receptor, scavenger receptors, β2-integrins,

CD14), others probably function as signal transducers (TLRs) that not necessarily bind to the

ligand. Some of the receptors involved in cell activation are presented in the following sections.

TABLE 3  RECEPTORS INVOLVED IN RECOGNITION OF BACTERIAL COMPONENTS

���������	�
��

�
� ����
��
 ������
� ��	�� ��������	�����

LPS, lipid A and most intact bacteria G- bacteria CD14 A, B 111-114

TLR2 A, B? 115-118

TLR4 A, B? 118-123

β2-integrins A, B 124-128

Scavenger R B 129-131

Mannose R B 132,133

Moesin A 134,135

DAF (CD55) A, B 136,137

K+ channel A 138

Nod1, Nod2 A, B 139

216 kD protein A?, B 140

P2X7 A 141

Intact bacteria G+ bacteria CD14 A 142

TLR2 A 143-148

TLR6 A 148

β2-integrins A, B 149

Scavenger R B 131,150-152

Mannose R B 133

mycobacteria CD14 A, B 153,154

TLR2 A 145,155,156

TLR4 A 155

β2-integrins B 154,157-161

Scavenger R B 154,162

Mannose R B 154,157,163

spirochetes CD14 A, B 78

TLR2 A 145

β2-integrins B 164

proteoglycans B 165
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���������	�
��

�
� ����
��
 ������
� ��	�� ��������	�����

Cell walls G+ bacteria CD14 A, B 166-169

TLR2 A 170,171

mycobacteria TLR2, TLR4 A 172

Peptidoglycan (PGN) most bacteria CD14 A, B 42,173-175

TLR2 A 143,144,148,170,171

TLR6 A 148

PGRP B 176

Nod2 A 139

Lipoproteins, lipopeptides most bacteria CD14 A, B 80,81,177

TLR2 A 117,145,178-180

DNA (CpG) most bacteria TLR9 A 181

Heat shock proteins (Hsp) most bacteria CD14 A, B 182

Lipoteichoic acid (LTA) G+ bacteria CD14 A, B 168,183

TLR2 A 143,144

TLR4 A 170

Scavenger R B 150,151,184

Rhamnose-glucose polymers G+ bacteria CD14 A, B 46

β2-integrins B 46

Glycolipids G+, spirochete CD14 A 185,186

TLR2, TLR4 A 185,186

Alginate/uronic acid polymers G- bacteria CD14 A, B 106,187

Lipoarabinomannan (LAM) mycobacteria CD14 A, B 77,167,188

TLR2 A 156,189

Mannose R B 190-192

* A = activation, B = binding.
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CD14 is a 53-57 kDa glycoprotein highly expressed on monocytes/macrophages193, with lower

amounts present on the surface of neutrophils193-195, B-cells196,197 and some epithelial cells198,199.

It contains extracellular leucine-rich repeats (LRRs) and is linked to the outer cell membrane

via a glycosylphosphatidyl-inositol (GPI) anchor200,201. CD14 was the first receptor shown to

mediate LPS-activation of myeloid cells, facilitated by the 58 kDa plasma acute phase protein,

LPS binding protein (LBP)7,111,202. LBP shuttles LPS from the bacterial outer membrane to

serum high- or low-density lipoproteins (neutralization)203,204, to CD14 (uptake, activation)205,

and possibly into cell membranes (uptake, activation?)206,207. This process is facilitated by

soluble CD14 (sCD14) which exists in µg/ml quantities in normal serum208,209, generated by

cleavage of the surface receptor by endogenous or exogenous enzymes, and by secretion from

intracellular pools210-216. sCD14 mediates LPS-activation of cells lacking membrane CD14214,217-

219, and low concentrations of sCD14 enhance responses even in CD14-expressing

cells63,205,220,221 whereas high concentrations can be inhibitory222. Elevated levels of sCD14 are

found in serum from patients with various diseases, and in some cases the level of sCD14

correlates with the severity of the disease223-225.

,2�2�� ����
�
�
��	��	�#�,

CD14 mediates binding and cell activation by structurally diverse compounds (bacterial

structures listed in Table 3, reviewed in refs.214,215,226), and the importance of CD14 in cellular

activation by LPS or G- bacteria is obvious. Cells from patients with paroxysmal nocturnal

haemoglobinuria lack GPI-anchored proteins and are hyporesponsive to LPS227, and the same is

observed in CD14 knockout (CD14-/-) mice228. Moreover, CD14-negative cells gain LPS

responsiveness when they are transfected with CD14229,230. Anti-CD14 mAbs block cellular

cytokine-production by LPS ��� %����111 and ��� %�%�231, but high concentrations of LPS induce

cellular activation by CD14-independent pathways228,232. CD14 is also involved in clearance of

LPS and bacteria by internalization/phagocytosis70,112,233, a process that may also be involved  in

LPS signaling234-236.

In addition to LPS, CD14 is involved in responses to G- bacterial heat-shock proteins182,

lipoproteins177 and capsular polysaccharides, like poly-M106. CD14 mediates binding and

cellular activation by several G+ bacterial structures (reviewed in ref.226): Some intact

bacteria142, cell walls167-169, PGN42,173-175, LTA183, and rhamnose-glucose polymers46. However,

in contrast to G- bacteria, no difference in survival is observed among CD14+/+ and CD14-/-

mice in response to G+ ��� ������237. Mycobacteria153,154 and the mycobacterial cell wall

structure LAM77,167,188, spirochetes78, spirochetal lipoproteins and lipopeptides80,81, and the yeast

WI-1 antigen238, all signal cell activation through CD14, although CD14-independent
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mechanisms are also employed. Both the binding and cell-activation domains for LPS, PGN

and LAM are located within the N-terminal 152 amino acids of CD14, with amino acids 51-64

as a shared region for binding168,174,239-242. However, some of the sequences involved in binding

and activation of CD14 are distinct, as antibodies or LPS/lipid A partial structures that inhibit

activation do not necessarily block binding70,233,243.

Non-microbial CD14 ligands are also found, and β-(1-4)-linked glucuronic acids and

seaweed high-M alginates106, chitosans244, respiratory syncytial virus protein F245, and the plant

derived diterpene Taxol232 all use CD14 in cell activation. The finding that endogenous

phospholipids bind to mCD14, and that transfer is facilitated by LBP, suggest a role for

LBP/CD14 also in regulation of plasma membrane phospholipid turnover206,246,247. Moreover,

CD14 mediates clearance of apoptotic cells248,249, and is engaged by the endogenous ‘danger

signals’ heat-shock proteins 60 (Hsp60) and Hsp70182,250, and by IL-2251.

,2'� β'4����)����

Integrins belong to a widely expressed family of transmembrane adhesion-molecules, mediating

cell-cell and cell-matrix interactions252. The β2-integrins are expressed exclusively on the

surface of leukocytes as heterodimers of an α subunit, CD11a-d, non-covalently associated with

a common β subunit, CD18253,254. CD11a/CD18 (αLβ2, LFA-1) is expressed by virtually all

leukocytes, CD11b/CD18 (αMβ2, complement receptor 3 (CR3)) and CD11c/CD18 (αXβ2,

CR4, gp150/95) are normally present on monocytes/macrophages, neutrophils, DCs, and natural

killer (NK)-cells, whereas CD11d/CD18 (αdβ2) is found expressed on CD8+ lymphocytes and

strongly on specialized tissue macrophages253,255,256. Expression varies dependent on the state of

cell activation and differentiation. In addition to mediate “outside-in” signaling following

binding of extracellular ligands, β2-integrins are subject to “inside-out” signaling that changes

the avidity and conformation of the receptors (reviewed in refs.254,257).

,2'2�� ����
�
�
��	��	β'4
���5�
��

CD11a-c/CD18 are involved in transmigration of leukocytes into inflamed tissues through firm

adhesion to endothelial ligands like ICAMs252,254. ICAM-1, fibrinogen, factor X, iC3b

(generated by cleavage of complement C3) and heparin binds to the I-domain of CD11b258,

whereas β-glucans and various polysaccharides containing mannose, glucose or N-acetyl-D-

glucosamine bind to a lectin domain C-terminal to the CD11b I-domain259. CR4 appears to

share some of the CR3-ligands254. CR3 and CR4 also mediate phagocytosis of iC3b-opsonized

and non-opsonized particles/pathogens, and CR3 is involved in apoptosis of neutrophils260.

Leukocyte adhesion deficiency (LAD) I is characterized by no expression or expression of

dysfunctional β2-integrins, and patients are predisposed to recurrent infections due to impaired
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transendothelial emigration, phagocytosis and antibody-dependent cytotoxicity253,261,

demonstrating the importance of β2-integrins in host defense. In addition to signal

phagocytosis, a series of studies by Wright and colleagues suggested that β2-integrins could

also function as signal transducing receptors triggering activation of phagocytes after non-

opsonic binding to LPS and G- bacteria124,125. But despite demonstrable binding, subsequent

experiments showed that phagocytes from LAD patients responded normally to LPS,

implicating that the β2-integrins were not involved in signaling LPS-activation262. In retrospect,

the results can be explained from the normal expression of CD14 and Toll-like receptors

(TLRs) on these cells, and later studies by Ingalls ��� ��. have showed that LPS can induce

nuclear factor (NF)-κB translocation in Chinese hamster ovary (CHO) cells transfected with

CR3 or CR4 in the absence of CD14127,128.

β2-integrins are also differently involved in non-opsonic binding to and/or activation by

G+ bacterial components. CR3 contributes to NO-production induced by ��� ��� ��
� �� and

heat killed Group B streptococci (GBS)149. Binding to CR3/β2-integrins has also been

demonstrated for mycobacteria158-161 and mycobacterial capsular polysaccharides160, yeast263,264,

the yeast WI-1 antigen238 and polysaccharides265, spirochetes164, ��� ������� ���������

hemagglutinin266, Leishmania lipophosphoglycans267, and oligodeoxynucleotides268, although

the involvement of β2-integrins in cell activation by these ligands has not been reported.

,2+� ��%%4%�0�	���������	7�%��8

The Toll/IL-1R (TIR) superfamily comprises mammalian, insect, plant and viral proteins which

are all engaged in host defense and express a conserved cytosolic TIR-domain (Figure 4,

reviewed in refs.269-272). The ���������� Toll protein (dToll) mediates dorsoventral polarity of

fly embryos273 and the expression of anti-fungal responses in larvae and adult flies274 by

activating the Rel proteins Dif, Dorsal, and probably Relish275-279. Impaired expression of anti-

bacterial peptides is observed in larvae mutant in 18-Wheeler280, another member of the dToll

family, but recent reports suggest that none of the 9 Toll-related receptors currently cloned are

involved in ���������� anti-bacterial responses281.

Medzhitov and colleagues discovered the first human homologue of dToll, and

demonstrated that constitutive expression of hToll (now TLR4) induced activation of the Rel-

protein NF-κB-controlled immune response genes and expression of co-stimulatory molecules

(B7.1), suggesting a role for hToll in innate immunity282. By now, 9 human Toll-like receptors

(TLRs) are cloned283-287. Like dToll, they are type I transmembrane proteins with extracellular

LRRs and TIR signaling domains (Figure 4). TLRs are differentially expressed in most

lymphoid tissues, including peripheral blood leukocytes, but expression is also observed in non-

lymphoid tissues like lung, brain, heart, muscle and reproductive organs115,282-287. Based on
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mRNA expression patterns in human blood

leukocytes, TLR1 is proposed to be

ubiquitous, TLR2, TLR4 and TLR5 restricted

to monocytes, neutrophils and DCs, and

TLR3 as more specific to DCs288. However,

characterization of the expression patterns of

the different TLRs is still in its infancy, and

also the roles they play in microbe-induced

activation of different cell types.

,2+2�� ����
�
�
��	��	�%��

Mammalian TLRs respond to a variety of

pathogens with different specificity (bacterial

ligands are listed in Table 3), and

polymorphism has been demonstrated in

human "��& and "��' that may influence the

susceptibility to infectious diseases289-292.

Both TLR2 and TLR4 are proposed LPS

receptors. Genetic evidences are in support of

TLR4, as the defect in LPS hyporesponsive

C3H/HeJ and C57BL/10ScCr mice was found to be a dominant negative point mutation and

recessive null mutation, respectively, in "��'119-121. The "��' missense mutation in C3H/HeJ-

mice results in failure of TLR4 to associate with an adapter protein, MyD88, necessary for

signaling (see below)293,294. TLR4 knockout (TLR4-/-) mice are also found to be non-responsive

to LPS, whereas TLR2-/- mice respond normally170. Moreover, LPS-responses can be blocked

by antagonistic TLR4 mAbs295 or mimicked by agonistic TLR4 polyclonal Abs296. Efficient

LPS signaling requires the association of TLR4 with a secreted protein, MD-2, but the precise

function of MD-2 is unknown at present295,297,298. Still, several findings support a role for TLR2

in responses to LPS. Overexpression of TLR2 in cell lines yields LPS-responsiveness115,116, and

a TLR2 mAb has been shown to block LPS-induced activation of monocytes117. Furthermore,

LPS/lipid A from ��������
�����	��	�%���� activates the TLR4-deficient C3H/HeJ mice299,300.

Some of these observations, but not all, can be explained from LPS being contaminated with

TLR2 protein/lipoprotein ligands301,302.

TLR2 seems to have a broader specificity than TLR4, and recognizes a variety of G+

bacteria143-147, bacterial PGN143,144,170,171, lipoproteins and lipopeptides117,145,178-180, as well as

spirochetes145 and yeast zymosan146. Similar to LPS, LTA from G+ bacteria is recognized by

FIGURE 4  The TIR-domain superfamily, ref.269.
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TLR2-transfected cell lines144, whereas TLR2-/- mice respond normally to LTA and TLR4-/-

mice are LTA non-responsive170. Moreover, glycolipids isolated from ������������������ LTA-

fractions signal cell activation through TLR2 and TLR4185, whereas Treponeme glycolipids

engage TLR2 or TLR4 depending on the structure186. Both TLR2 and TLR4 mediate activation

by live (�����������
� ������������� while live (�� �%��
 activates cells via TLR2145,155,156.

When individual mycobacterial components was examined, it was found that

lipoarabinomannan (AraLAM), PGN-complexes and lipoproteins induce TLR2-dependent

activation117,156,189, and (�� ������������ heat-labile cell-associated factors induce activation

through TLR4155. Recently, bacterial DNA containing unmethylated CpG motifs was found to

use TLR9 in mediating cell activation181.

Non-bacterial components have been found that induce TLR4-dependent signaling, like

Taxol303, respiratory syncytial virus (RSV) protein F245, and the recombinant human heat-shock

proteins Hsp60 and Hsp70304,305.

,2+2'� �%�	�
5��

�5

The intracellular signaling pathways from mammalian TLRs, IL-1R and dToll are mediated by

the TIR-domain, and share similar or homologue components (Figure 5, reviewed in refs.269-

272,278,279,306). The adapter myeloid differentiation protein (MyD88) associates with TLRs

through TIR-domain interactions, and is required to mount an inflammatory response by most

TLR ligands156,171,179,181,307,308. However, LPS-induced mitogen activated protein kinase

(MAPK) and NF-κB activation is delayed, but not abolished in MyD88-/- mice309, and MyD88

independent signaling may have a functional role in maturation of DCs310. MyD88 also contains

a death domain that undergoes homophilic interactions with IL-1R associated kinase (IRAK),

which forms a complex with TNFR associated factor 6 (TRAF6)307,308,311-316. The subsequent

sequence of events is not totally delineated, but the adapter TAB2 bridges TRAF6 to a MAP 3-

kinase, TAK-1 (TGFβ activated kinase 1), which then activates inhibitory-κB (I-κB) kinases

(IKK)317,318. These, in turn, phosphorylate I-κB, leading to degradation of I-κB and

translocation of NF-κB to the nucleus115,116,307,308,311. A second route that leads to NF-κB

activation is from TRAF6 activating another MAP 3-kinase, MEKK-1, through the adapter

ECSIT (evolutionary conserved signaling intermediate in Toll pathways). Concomitantly,

activator protein (AP)-1 transcription factors like Jun/Fos are also activated306,307,311,317, but

details of the upstream regulation of the MAPKs p38, p42/p44 and JNK by TLRs or IL-1R are

not completely worked out269,298,311,319. Not only cell activation, but also apoptosis is induced by

lipoproteins signaling through TLR2 and MyD88178,320. In ����������, Tube, Pelle, dTRAF,

dECSIT, cactus and Dorsal/Dif/Relish are the functional homologues of mammalian MyD88,

IRAK, TRAF, ECSIT, I-κB and NF-κB, respectively269.
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FIGURE 5  Signaling pathways activated by TLRs in vertebrates and in ���������	, from ref. 270.
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The overall aim of the present study was to obtain a better understanding of the receptors

involved in cellular activation by bacterial components and defined uronic acid polymers, in

soluble forms or covalently attached to particles. Specifically, we intended to:

• study how the presentation form (soluble or particulate) of poly-M and

deacylated/detoxified LPS (DLPS) influences the potency and receptor involvement in cell

activation. The results from these examinations are presented in papers 1-2.

• examine if TLR2 or TLR4, in addition to CD14, are involved in signaling cell activation by

poly-M. The results are found in paper 3.

• compare the receptor usage in activation of cells by different gram-positive bacteria, like

group B streptococci type III and 
��������
�������	����. The results are given in papers 4

and 5.

• generate monoclonal Abs to human TLR2 for examination of protein expression and

function in response to bacterial stimuli. The results are found in papers 3, 5 and 6.
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In the first paper we show that reducing the average molecular weight from ~350 kDa to <6

kDa by acid hydrolysis diminished the cell-stimulating activity of poly-M, measured as TNF-

production from human monocytes. However, the activity of the resulting oligomers (M-blocks)

was greatly enhanced when covalently attached to particles (plastic beads or biodegradable

albumin particles). Similar results were obtained with detoxified/deacylated LPS (DLPS) and

glucuronic acid polymers (C6OXY), but not with G-blocks that by themselves are not active.

These results suggest that the supramolecular structure affects the potency of polysaccharide

stimuli, and that M-blocks attached to biodegradable albumin particles could possibly be

exploited as an immunostimulant for protection against various diseases.

�����	'

In paper 2, according to the reviewers suggestion, the designation M-polymers of different

molecular size was used in place of poly-M (~350 kDa) and M-blocks (~3 kDa).

In this study we demonstrated that M-blocks and DLPS attached to particles engaged

different receptors than soluble poly-M and DLPS in activation of monocytes. By using

blocking mAbs to CD14, CD11b and CD18, we found that particulate stimuli employed the β2-

integrin CD11b/CD18 in addition to the shared CD14 for signaling TNF-production. Moreover,

whereas poly-M only bound to CD14-expressing CHO-cells, M-particles preferentially bound

to CHO-cells expressing β2-integrins. However, the DLPS- and M-particles failed to activate

NF-κB-translocation in CHO-cells co-transfected with CD14 and β2-integrins, suggesting that

additional molecules are required for activation of CHO-cells. The major conclusion drawn

from this work is that the supramolecular structure, in addition to influence the potency, affects

the cellular receptor engagement by carbohydrates like poly-M and DLPS. This points to the

importance of comparing the mechanisms involved in activation of immune cells by soluble

bacterial components and whole bacteria to achieve a better understanding of inflammatory

diseases like sepsis.
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Poly-M activates cells in a CD14-dependent manner, but CD14 is linked to the membrane with

a GPI-anchor and mediates activation by interaction with other, signal-transducing molecules,

like the TLRs. By using blocking mAbs to TLR2 (generated in our lab, paper 5) and TLR4, we

found that both receptors were involved in mediating TNF-production from human monocytes

in response to poly-M. Furthermore, TLR4 mutant (C3H/HeJ) and knockout (TLR4-/-) murine

macrophages were completely non-responsive to poly-M, whereas TLR2-deficient

macrophages showed reduced TNF-responses. These findings indicate that CD14, TLR2 and

TLR4 on primary cells all participate in cytokine-induction by poly-M, and that TLR4 may be

necessary for activation.

�����	,

In addition to CD14, β2-integrins have been implicated in LPS-induced cellular activation, and

in this study we compared the involvement of CD14 and β2-integrins in TNF-production and

NF-κB-activation induced by LPS and GBS cell wall fragments. With blocking mAbs to CD14

and CD18 we found that LPS and GBS cell walls shared CD14, but in addition the cell walls

employed CD11/CD18 in mediating TNF-production from human monocytes. Both stimuli

specifically induced NF-κB-translocation in CD14-transfected CHO-cells, but only LPS could

activate cells transfected with CD11/CD18. The lack of response to GBS cell walls in

CD11/CD18-transfected CHO-cells indicated that the cell walls need CD14 for cell activation.

Further in paper 4 we demonstrate the ability of GBS cell walls to activate LPS-hyporesponsive

C3H/HeJ mouse macrophages, suggesting that LPS and GBS cell walls employ different

receptors/signaling mechanisms in murine macrophages.

�����	/

When it was discovered that human TLR2 and TLR4 are involved in microbial recognition, we

started to generate a mouse mAb to human TLR2, and in paper 5 we report the production and

characterization of the mAb TL2.1. We subsequently used this mAb to evaluate the role of

TLR2 in mediating activation by heat-killed GBS and 
��
�������	����. 
��
�������	����, but

not GBS, activated TLR2-transfected CHO-cells to IL-6-production, and the response was

inhibited by TL2.1. A CD14 mAb and TL2.1 both inhibited TNF-production from monocytes

induced by 
��
�������	����, but neither mAb affected the TNF-response triggered by GBS.

Our results suggest that CD14 and TLR2 are engaged in cell activation by 
��
�������	����,

but that neither receptor seem to be involved in activation by GBS. This study was the first to

show that human TLR2 can discriminate between two G+ bacteria.
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In paper 6 we report the generation of a new TLR2 mAb, TL2.3, that stained with the same

specificity as TL2.1 (anti-TLR2, paper 5). We used these mAbs to investigate the expression of

TLR2 protein in human cells. We found that TLR2 was highly expressed in blood monocytes,

less in granulocytes, and not present in lymphocytes. The protein level was measured on

quiescent and activated cells by extra- and intracellular flow cytometry, and by

immunoprecipitation of TLR2 from metabolic S35-labeled cells. Surprisingly, TLR2 protein was

detected in activated B-cells located in lymphoid germinal centers, indicating that subsets of

lymphocytes may express TLR2. We further show that TLR2 protein was differentially

regulated on monocytes and granulocytes after exposure to LPS, pro- or anti-inflammatory

cytokines. However, we could not correlate the regulation of TLR2 to cellular responses, as for

instance the three anti-inflammatory cytokines TGFβ, IL-4 and IL-10 all inhibited lipopeptide-

induced TNF-production, but either did not affect, reduced, or increased the level of surface

TLR2, respectively. Thus, the biological significance of TLR2-regulation remains to be found.
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���%���� studies on isolated cells are often necessary to dissect the individual roles of different

receptors or signaling mechanisms in humans. It is difficult to extrapolate results from isolated

cells to ��� %�%� situations as 1) the complex interplay with neighboring cells and the local

environment (paracrine mediators) will influence the ultimate response, and 2) the procedure of

isolation and cultivation of so-called primary cells often leave them in a pre-activated state, as

reported for adherent monocytes321,322. Primary cells have a limited life-span in culture, making

them less convenient for genetic manipulations. Specific blocking inhibitors and mAbs are thus

invaluable tools for use on primary cells, and in all ������	'4& we have used mAbs to study

receptor expression or engagement in activation. Still, depending on the degree of overlapping

epitopes recognized by the mAb and the ligand, together with mAb affinity, it may be difficult

to tell if the particular receptor is crucial for activation unless complete inhibition is obtained.

This is clearly seen for poly-M in �����	+: The use of blocking mAbs to TLR2 and TLR4 on

monocytes demonstrated the participation of both receptors in activation by poly-M, but neither

mAb could completely block the response. Experiments with macrophages from TLR2-/- and

TLR4-/- mice confirmed these results, but also suggested that TLR4, and not TLR2, was

absolutely necessary for activation.

Cell lines are also used to delineate essential components of cell activation and signaling.

The obvious advantages with cell lines are reproducibility and ease of cultivation, transfection

and genetic manipulation, providing data that would otherwise be difficult to obtain. Most of

what is known about the intracellular signaling pathways from TLRs was found by generating

deletion-mutants of various signaling components in cell lines282,307,308,311,320, and the initial

finding that human TLR2 could signal LPS-activation was from 293-cells transfected with

TLR2115,116. However, overexpression studies may overestimate the significance of the

transfected component, as later findings in human primary cells (�����	/) and mice122,170 have

questioned the biological relevance of TLR2 in LPS activation. An other advantage with cell

lines is that some are “natural” mutant in the gene of interest, making it easy to evaluate the

importance of one single molecule. But the cell line may lack additional known or unknown

molecules that are important to the response measured, leading to wrong conclusions or

unexplainable results that doesn’t support results from primary cells (actually putting the other

findings into doubt). Poly-M, PGN and LAM do not activate the CD14-negative U373

astrocytoma cell-line, even in the presence of sCD14106,188,323. The later discovery that U373-

cells in addition lack TLR2, together with the findings that LAM, poly-M and PGN are all

TLR2-ligands143,144,146,155,156,189(�����	 +), provided a possible explanation. But, as TLR2-
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deficient macrophages still responded to poly-M, albeit with reduced potency (�����	+), we do

not know if additional molecules are absent in U373-cells that are needed for activation by

poly-M, or if U373-cells signal poly-M activation by different mechanisms than macrophages.

Thus the major conclusion drawn from the experiments with U373-cells in this paper, was that

LPS and poly-M are different with respect to cell activation. Further examples can be found

from studies with CHO-cells, which are naturally mutant in TLR2324 and not responsive to LPS,

GBS, poly-M or M-particles. In �����	 ' we found that although mAbs to CD14, CD11b or

CD18 inhibited cytokine-production from monocytes in response to M-particles, CHO-cells co-

transfected with CD14 and β2-integrins were unresponsive. Although similar results were

obtained for GBS cell wall fragments in �����	,, activation was observed in CHO/CD14 cells,

and not in CHO/CR3 or CHO/CR4 cells, indicating that membrane CD14 could be necessary

for activation by GBS cell walls. Common to ������	'3	,	���	/, and also shown by others126-

128, is the LPS-activation of CHO-cells transfected with β2-integrins (�����	'	���	,) or TLR2

(�����	/), despite the fact that these receptors are believed to be of minor importance for cell

activation by low concentrations of LPS in primary cells (�����	'3	,	���	/)170,262. Thus, cell

lines overexpressing receptors may yield results where the biological significance needs to be

interpreted with caution, but are useful when they support findings in primary cells. This was

the case for heat-killed 
��
�������	���� and GBS: CHO-cells transfected with TLR2 became

responsive to 
��
�������	����, but not to GBS, supporting the results from monocytes that our

TLR2 mAb blocked activation by 
��
�������	����, but not by GBS (�����	/).

12'� $�.	���	(�������%	��%%	.�%%	�� �������	����)��9�#:

During inflammation, innate immune cells meet several active components (PAMPs) from/on

the invading microbe, with chemical and physical differences that will influence which

receptors (PRRs) become engaged in cell activation. Properties like hydrophobicity, polarity,

charge and steric hindrance determine the intrinsic conformation of a ligand, and also if it is

recognized by a putative receptor. A positive interaction may promote conformational changes

in one or both of the molecules that 1) block the receptor, 2) result in activation of the receptor,

or 3) induce interactions between the receptor or receptor-ligand complex with another

molecule. Obviously, either case 2) or 3) can yield signaling of inflammatory responses. We

found that the presentation form of some carbohydrate stimuli (poly-M, C6OXY, DLPS)

affected both the cell activating potency (�����	�), and the receptors engaged by these ligands

when inducing cytokine production (�����	 '). Both aspects are important with regard to

vaccine design and development of therapeutic strategies against inflammation/sepsis.

URN:NBN:no-6359



29

12'2�� #
�������
�
	���
�
��	���	��	�6��
���6��
��
	�
���������	��	

5����

Several studies have pointed to the importance of PAMP conformation in cellular recognition

and activation. The group of Seydel �����. has found that lipid A structures with less than six

acyl chains adopt inactive cylindrical structures, whereas fully acylated lipid A has a conical

shape and is stimulatory67,68,325,326. Moreover, the immunogenic epitope of GBS Type III

polysaccharide is conformational, generated by sporadic formation of extended helices in the

polymer327. High-M alginate and poly-M represent PAMPs that readily stimulate monocytes to

TNF-production, whereas G-blocks are without activity55. Guluronic acid is the C5-epimer of

mannuronic acid, and this has a structural impact on the polymer where M adapts the 4C1

conformation, and G is found in the 1C4 conformation. This results in four possible glycosidic

linkages in alginate, with decreasing stiffness in the order α-(1-4) diaxial (GG) > β-(1-4)

diequatorial (MM) > β-(1-4) equatorial-axial (MG), α-(1-4) axial-equatorial (GM)88,94,328

(Figure 2). Our previous55 and present (�����	�) results suggest that cells discriminate between

these structures, and that uronic acid polymers with mainly β-(1-4) linkages are the most active.

However, when a group at UNIGEN (Trondheim, Norway) managed to knock out the C5-

epimerase-gene (��	)) in ��� ����	����� (S. Valla, unpublished data), we found that the

resulting mannuronan (100% M) was completely inactive in stimulation of monocytes (L. Ryan,

unpublished data). In subsequent experiments, G-residues were reintroduced in mannuronan by

use of recombinant C5-epimerases, and the epimerized polymer became immunostimulating (B.

L. Strand and T. H. Flo, unpublished observations). Probably, the local sequence is more

important than the overall ratio of M to G, and current data suggest that introduction of G-

residues in alternating positions, but not G-blocks, increases the activity of mannuronan or

poly-M.

We do not know yet what is the optimal immunostimulating conformation of poly-M, but

reducing the molecular size of the polymer to <6 kDa yields rather inactive M-blocks55(�����	�

���	'). Similarly, digestion of PGN with lytic enzymes reduces PGN-induced cell activation174.

When we attached M-blocks to particles, their TNF-inducing potency increased (�����	� ���

'), suggesting that optimal activity resides in a certain supramolecular structure. However, as

G-blocks attached to particles remained inactive, this further supported the idea that the active

epitope is determined by a sequence present in M-blocks, but not in G-blocks. Thus, as

discussed in �����	�, the stimulating sequence is intrinsic to the molecule, but optimal activity

is obtained when it is presented and stabilized in a certain supramolecular structure, as in long

chain polymers or attached to particles. Seljelid �����. have also demonstrated increased effect of

particulate β-glucans in protection against lethal bacterial infections and stimulation of

proinflammatory mediators329,330. Especially for G+ bacteria, the polysaccharides covalently

attached to the cell wall are central in stimulating immune responses, and our results suggest
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that this particulate presentation form would increase their immunostimulating potency. In

contrast, it is generally believed that particulate LPS has decreased activity as the lipid A part

that remains inserted in the bacterial membrane is less available to the cells, although the

contrary is also reported331-335. A possible explanation of the fact that the potency varies

between different supramolecular structures of carbohydrate components, is that the

presentation form affects which receptors and signaling mechanisms are triggered in the cells,

and the ability to cross-link these receptors. In addition, phagocytosis of particulate stimuli may

influence the activity.
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Binding to CD14 has been demonstrated for LPS, lipid A and various lipid A partial

structures/mimetics70,71,113,114, poly-M and G-blocks55,106,187. But whereas interactions with LPS

and poly-M lead to signaling, inactive lipid A mimetics and G-blocks actually inhibit signaling

induced by LPS and poly-M55,71-73,336(�����	 +). Thus, ligand conformation is apparently

important for activity, but CD14 does not seem to be the discriminating receptor in this regard.

CD14 does not have an intracellular part and probably mediates signaling through other

membrane proteins70,126,336-338. For G-blocks and high concentrations of lipid A analogues,

inhibition can be explained by competitive binding to CD1455,70,71, but low concentrations of

LPS antagonists are thought to block interactions with a signal transducer70,71,336. Still, some

conformational dependency is observed for different ligands interacting with CD14. Although

CD14 mAbs inhibited the activity of soluble and particulate poly-M, LPS and DLPS (�����	�

���	 ')106,111, we observed binding to CD14 by soluble poly-M whereas M-particles

preferentially bound to β2-integrins (�����	'). In contrast, enzymatic digestion of PGN reduces

both binding to CD14 and cell activation, and soluble muramyl dipeptide (MDP) and GlcNAc-

MDP do not bind to CD14 unless immobilized on agarose beads174,226.

CR3 (CD11b/CD18) has been identified as a receptor for β-glucans, where binding of

soluble, low-Mw compounds to the lectin site of CR3 primes NK-cells, neutrophils and

macrophages for respiratory burst, phagocytosis and cytokine responses that are triggered by

subsequent interaction with iC3b-opsonized target cells and microbes259,339-342. However,

particulate or high-Mw glucans directly trigger responses after engagement of CR3, and this has

been explained by these ligands’ ability to cross link receptors341. We found that particulate, but

not soluble poly-M, bound to CR3 and CR4, and mAbs to CD11b and CD18 inhibited

monocyte activation only by particulate poly-M and DLPS (�����	 '). Moreover, whereas

soluble GBS components seem to prefer CD14343, the more particulate GBS cell wall fragments

used both CD14 and CR3 (�����	,), and whole GBS use CR3 in activation of monocytes344.

And while binding to CR3 is demonstrated for GBS Type III polysaccharide345 and
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streptococcal rhamnose-glucose polymers46, blocking mAbs to CR3 and/or CR4 are without

inhibiting effect on monocyte TNF-production46,343. β2-integrins also bind to LPS124-128,262, but

even better to whole G- bacteria or LPS particles346-348. A recent study demonstrated that heat-

killed ��� ����, but not LPS, induced cytokine production in macrophages from CD14-/- mice

through CR3, although higher concentrations of bacteria were needed compared to CD14-

mediated signaling348. Thus, CD14 and β2-integrins share many PAMPs, but activation of β2-

integrins seem to preferentially occur by their particulate presentation forms. Although β2-

integrins are involved in cell activation induced by both G+ and G- bacterial components,

proinflammatory signaling is probably not mediated by these receptors as deletion of the

cytoplasmic domain of CR3 renders it incapable of bacterial internalization without affecting

the LPS-induced translocation of NF-κB127. Accordingly, β2-integrins may function in the same

way as CD14 to concentrate microbial components on the cellular surface to interact with other,

signal transducing mechanisms.

The first study to indicate conformational discrimination by TLRs was by Takeuchi �����.

who showed that the R-isomer of a mycoplasmal lipopeptide, MALP-2, was > 100 times more

activate than the S-isomer in activation of macrophages through TLR2179. Moreover, TLR4

seems to be the long sought molecule that discriminates between the subtle structural

differences of lipid A analogues122,123,349. Whether microbes are true TLR ligands is currently

not known with certainty272. The ligand of dToll is thought to be an endogenous protein,

Spätzle350, generated both during embryogenesis and in response to fungi, although through

different proteolytic cascades279,351,352. However, as human TLR4 is responsible for species-

specific discrimination of lipid A structures, this would suggest that lipid A interacts directly

with TLR4122,123, and recently LPS has been shown to bind TLR4 and MD-2118. Low-affinity

binding of LPS to TLR2 is also demonstrated115,118, but several groups have failed to

demonstrate binding of LPS to TLRs. Still, each microbial PAMP seems to engage several

PRRs, and each PRR recognizes several structurally different PAMPs. This is true for CD14

(section 4.1.1), β2-integrins (section 4.2.1, �����	 '	 ���	 ,), TLR2 and TLR4 (section 4.3.1,

�����	+	���	/), the receptors of focus in the present work (Table 3). This indicates that specific

signaling is probably not confined to a single receptor, but rather to molecular complexes.

12'2+� ������
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The compositional requirements of putative receptor complexes signaling through TLRs are not

known. CD14 and CR3 are both involved in internalization of bacteria (sections 4.1.1 and

4.2.1). In a recent review, Ross ��� ��. suggest that CD14-mediated internalization of ��� ����

occurs by CD14 interacting with CR3341, supported by the findings that LPS transiently induces

CD14 association with CR3353 and that E-LPS binds to CR3 subsequent to interaction with
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CD14346. Following this idea that CD14 engages CR3 to signal phagocytosis, CD14 could

similarly engage TLRs to signal cytokine production. CD14 is needed for efficient activation by

LPS and other microbial components, and is shown to enhance signaling by several PAMPs

through TLRs117,143,144,180,297(�����	/). Besides, LPS has been shown to bind TLR4 and MD-2

in the presence of CD14118, and to promote physical proximity between CD14 and TLR4354. A

direct correlation between engagement of CD11/CD18 and signaling through TLRs has not

been studied. The anti-tumor agent Taxol is an LPS-mimetic in mice that doesn’t interact with

CD14, but CR3 was recently shown to be involved in Taxol-induced IL-12 from murine

macrophages355. Moreover, Taxol signals activation through TLR4-MD-2, indicating that β2-

integrins may serve a function similar to CD14 as TLR co-receptors126,127,303.

A range of studies implicate a link between phagocytosis of particles and cytokine

production, and recent reports from Aderems group suggest that the presence of TLRs in

phagosomes may mediate pro-inflammatory signals during phagocytosis146. TLR1, 2, 6 and

probably additional TLRs are recruited to phagosomes where they can sample the content and

cooperatively induce cytokine responses to specific PAMPs146,148. We have found that CD14,

TLR2 and TLR4 colocalized in the membrane and intracellular vesicles of monocytes and

macrophages ((�����	 &) and T. Espevik, unpublished results). TLR signaling is believed to

occur through receptor dimerization induced by ligand engagement, and several reports support

the existence of TLR2 and TLR4 homodimers146,148,189,308. However, Aderem ��� ��. further

suggest that whereas TLR4 dimers are functional signal transducers, TLR2 signals in complex

with other TLRs, like TLR1 or TLR6148. Yeast zymosan, PGN and several G+ bacteria were

shown to employ TLR2-TLR6 heterodimers for signaling148. Interestingly, 
��
�������	���� is

one of the G+ bacteria recognized by TLR2-TLR6148, extending our finding that TLR2

mediated signaling by 
��
�������	���� (�����	/). A functional interaction between TLR1 and

TLR2 is supported by recent findings that coexpression of TLR1 and TLR2 enhances responses

to soluble *���������
���	��� �� LPS complexes356. Moreover, our results that poly-M engaged

both TLR2 and TLR4 (�����	 +) suggest the existence of TLR2-TLR4 heterodimers.

Apparently, TLR2 homodimers are not involved in poly-M-induced TNF-production as TLR4-

deficient macrophages were completely non-responsive to poly-M. However, as TLR2-deficient

macrophages were partly responsive to poly-M, it is possible that some signaling is mediated by

TLR4 homodimers. Other bacterial components are also shown to interact with both TLR2 and

TLR4155,172,185. But while live (�� ������������155 and (�� ��%�� cell wall skeletons172 expose

several PAMPs that may interact with either TLR2 or TLR4, the glycolipids isolated from ��

����� are reported to be homogeneous, and like poly-M, still engage both CD14, TLR2 and

TLR4185. We also found that GBS did not employ TLR2 for cell activation (�����	/), and as

GBS cell wall fragments readily activated TLR4-deficient C3H/HeJ macrophages (�����	 ,),

neither of these TLRs seem to be involved in activation by GBS bacteria. However, the ability
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of TLRs to form functional heterodimers leaves the cell with a combinatorial repertoire for

specific recognition of different PAMPs. Recently, Goetz ��� ��. used fluorescence resonance

energy transfer (FRET) technology to show that CD14, CR3, Fcγ-RIII, CD36, TAPA, CD55

and TLR4 are all recruited into a putative LPS receptor complex localized in lipid “raft”

microdomains of the cell membrane357. Ceramide induced a receptor cluster with different

composition, but it remains to be proved that such multimeric complexes represent true cell

signaling units specific for different stimuli.

Other molecules, like secreted PRRs, are involved in regulating the specificity and

responsiveness of signaling receptors. As discussed in section 4.1, the responses to LPS and

several other bacterial components are increased in the presence LBP and/or sCD14, probably

by enhanced transfer of the ligands to membrane receptors111,126,205. We found that LBP and

sCD14 enhanced activation by soluble poly-M and DLPS187(�����	'), GBS polysaccharides343

and cell walls (�����	 ,), but not by particulate poly-M and DLPS (�����	 ') or whole GBS

bacteria (unpublished observations), indicating that such transport is not needed for particulate

stimuli. Possibly, the increased membrane contact area when particulate ligands are

phagocytosed yields more efficient receptor engagement and/or aggregation. A soluble form of

TLR4 was recently found to be expressed by mouse macrophages, and the secreted protein

inhibited LPS-induced cell activation358. As mentioned in �����	 &, we have detected soluble

TLR2 in human serum by a TLR2-specific ELISA that are under development, but we cannot

yet say what is the function of sTLR2. MD-2 is a secreted protein that localizes to the

extracellular domain of TLR4 and increases LPS-mediated signaling295, presumably by

stabilization of TLR4 dimers. Recently, Kawasaki �����. showed that although Taxol and LPS

both activate cells through murine TLR4-MD-2, the response is species-specific as only LPS,

and not Taxol, can activate murine cells transfected with human TLR4-MD-2303. In B-cells, an

additional TLR protein, RP105, associates with secreted MD-1, and RP105-MD-1 replaces

MD-2 in regulating TLR4-mediated LPS signaling359,360. It is not known if similar MD-like

molecules exist for the other TLRs, although the possibility that MD-2 can function together

with TLR2 was suggested at a recent meeting361. Moreover, if MD-like molecules show some

kind of ligand- and/or cell specificity, this could possibly explain the lack of poly-M-responses

in U373/CD14-cells (�����	+).
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Differential receptor distribution and regulation may further influence the composition of

putative receptor complexes in different cell types and tissues. The expression of CD14 and β2-

integrins is well characterized, and both receptors are regulated in response to microbial stimuli

or other inflammatory mediators. Similar information about the expression and regulation of
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TLRs in various cells and tissues is emerging283-288,362. TLR2 mRNA288 and protein (�����	&) is

expressed in human blood monocytes and neutrophils, but not in blood lymphocytes, whereas

activated germinal center B-cells showed cytoplasmic TLR2 staining (�����	&). Detection of

TLR2 and TLR4 is also reported in certain murine tissue B-cells121,297 and T-cells363,364,

suggesting that expression varies in lymphocyte subpopulations. Mokuno ��� ��. showed that

after i.p. injection of lipid A, peritoneal αβ T-cells expressing marginal levels of TLR2 and

TLR4, and liver γδ T-cells only expressing low levels of TLR2, were non-responsive to LPS,

whereas γδ-T-cells recruited to the peritoneum expressed high levels of TLR2 and signaled

TLR2-mediated lipid A activation364. In contrast, TLR2 presumably cannot replace TLR4 in

LPS-activation of murine macrophages or B-cells, as TLR2 expression is higher in

macrophages made tolerant to LPS than in responsive cells365, and both macrophages and B-

cells from TLR4-deficient mice are hyporesponsive to LPS121,297. Thus, these results indicate

that PAMPs do not necessarily engage the same receptors in all cells, but that alternative

pathways may exist for signaling activation in specific cell types or subpopulations.

Little is known about TLR-expression during disease. TLR4 is reported to be increased in

injured human and murine myocardium, possibly linking innate immunity to the

pathophysiology of heart failure366. Moreover, TLR3 was downregulated and TLR4 upregulated

in intestinal epithelial cells isolated from patients with inflammatory bowels disease, whereas

the levels of TLR2 and TLR5 remained unchanged367. However, the physiological

consequences of TLR regulation are not clear. LPS364,365,368,370-373(�����	&), mycobacteria368, 
�


�������	����369 and zymosan370 generally upregulate the expression of TLR2, whereas TLR4

is reported to be downregulated365,368 or not regulated374 in murine macrophages, and

upregulated in human monocytes288,354 in response to LPS. Some studies suggest that LPS-

induced downregulation of TLR4-MD-2 underlies the induction of LPS tolerance, whereas

others argue that tolerance is mainly a result of impaired expression or function of downstream

signaling intermediates365,375,376. The PAMP-mediated upregulation of TLR2 would presumably

regulate the cells sensitivity to TLR2 ligands, and the outcome could be inflammatory or anti-

inflammatory as apoptosis is also triggered through TLR2 by lipoproteins178,320. One would also

have to consider that several PRRs are regulated concomitantly, and not only by PAMPs, but

also by inflammatory cytokines288,368,369,374(�����	 &). We tried to interpret the biological

consequences of changes in TLR2-expression by stimulating monocytes with a TLR2-ligand,

lipohexapeptide 47L from "������� �
, subsequent to incubation with cytokines. No apparent

correlation was found between the expression of TLR2 and the TNF-response from monocytes

(�����	&). More studies on the regulation and function of the TLRs during disease are needed

to obtain a better understanding
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In intact pathogens, several PAMPs are present that use different PRRs for cell activation, and

most of these PAMPs may come into contact with immune cells during infection as the microbe

releases endotoxins and exotoxins, or lyses in the presence of antibiotics. In the case of G-

bacteria, LPS would engage CD14 and TLR4, lipoproteins TLR2, peptidoglycan CD14, TLR2

and TLR6, DNA TLR9 and so on. The PRRs could thus provide useful targets for anti-

inflammatory therapies, or vaccine strategies. However, before interfering with their function,

one has to fully understand the biological role of PRRs, which in most cases are to resolve

inflammation. CD14-/- mice are resistant to lethal injections of LPS or live �������228, whereas

CD14 does not seem to affect shock induced by ��� ������237. In two rabbit animal models,

blockade of CD14 with specific mAbs resulted in improved systemic responses, but increased

bacterial load of ��� ���� at the site of infection (the lungs377), or increased invasion of the

intestinal mucosa by ���	����378. Thus, although CD14 mAbs are shown to protect primates

against LPS-mediated shock231, anti-CD14 treatment may interfere with host defense

mechanisms involved in eradication of live bacteria. This would also be expected from anti-β2-

integrin strategies, as these receptors play an important role both in clearance of pathogens and

transendothelial migration of phagocytes into the infected tissue (see section 4.2.1). TLRs are

involved in signaling the presence of PAMPs, and possibly also in recognition of endogenous

heat-shock proteins released from damaged or stressed cells304,305. The ongoing trials with LPS

antagonists for treatment of sepsis (reviewed in ref.24) would interfere with TLR4 signaling, as

lipid A mimetics are shown to signal through TLR4122,123. However, even if TLR4-/- mice are

resistant to LPS-induced shock170, TLR4-deficient mice are hypersensitive to G- bacterial

infections379, and TLR2-/- mice are highly susceptible to infections with G+ ��� ������147,

indicating that signaling through TLRs is necessary for triggering an efficient host response.

Anti-receptor therapies could therefore be detrimental if not used together with antibiotics. Still,

as antibiotics promote the release of endotoxin and other PAMPs from live bacteria,

concomitant administration of anti-receptor agents (inactive PAMPs, PRR mAbs and

antagonists) could inhibit a subsequent overwhelming immune response. Timing could turn out

to be a problem, as for instance LPS has short half-life with serum levels peaking 2-4 h after

initiation, often long before intervention is started21,380. Moreover, all patients need not be in a

hyper pro-inflammatory state, some may be in an immunosuppressed state where anti-

inflammatory agents could be detrimental10,17. It should be possible, however, to develop

strategies to stimulate TLRs in order to enhance host responses to a wide variety of antigens in

vaccines.
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The terms immunomodulators, or biological response modifiers (BRMs), are used to describe

compounds that are capable of interacting with the immune system to upregulate or

downregulate specific aspects of the host response381. BRMs would thereby allow the host to

better defend itself against invading microbes, and can replace or complement specific

treatment like antibiotics. Microbial products, natural and synthetic carbohydrates and

endogenous cytokines, represent immunomodulators currently in use342,381-383.

Polysaccharide immunomodulators are isolated from bacteria, yeast, fungi, mushrooms,

lichens and algae, and their mode of action is believed to be priming of immune cells for

cytotoxicity and/or cytokine production, and stimulation of bone-marrow

haematopoiesis107,342,382,383. Most of these polysaccharides are heteroglycans with complex

secondary and tertiary structures, but relatively few have been examined in detail with respect

to structure-function and mechanism of action. Zwitterionic polysaccharides, like the capsular

heteropolysaccharide A of �������� ��� ���	����, modulate abscess formation associated with

experimental intra-abdominal sepsis342. β-(1-3)-glucans, often with (1-6)-β-glycopyranoside

branches, can be isolated from yeast, fungi and oriental herbs, and are among the best studied

polysaccharide immunomodulators342,382-384. Clinical trials with the yeast soluble β-(1,3) PGG-

glucan (Betafectin) have proved reduced incidence of infections or death after high-risk

gastrointestinal surgery385-387.

Alginates are negatively charged immunomodulators, and whereas alginates with a high

content of M-residues should be avoided for use in encapsulation and transplantation, these

polymers could possibly be used in a manner similar to β-glucans for general

immunostimulating purposes and protection against disease (������	 �4+). Poly-M given

prophylactically (-48 and/or –24 h) protects mice from LPS-induced septicemia (T. Espevik and

G. Skjåk-Bræk, unpublished results), and no apparent toxicity is observed with injection of

clinically relevant doses of poly-M (2-20 mg/kg)107. The absorption of poly-M reaches a

maximum after 5-6 h with a half-life of about 12.5 h following intraperitoneal injections in

mice, whereas no uptake is seen after peroral administration84. Glomerular filtration is

dependent on both molecular size and charge, with lowest excretion seen for large anionic

polymers. As we have shown that covalently linking low-molecular M-blocks to biodegradable

albumin particles enhances the cytokine inducing potency compared to soluble, high-molecular

poly-M (�����	 �), lower concentrations of the more easily excreted M-blocks could be

exploited. As already discussed in section 7.2.1, the MG-sequence is crucial for the activity of

poly-M, and as alginates are naturally heterogeneous, recombinant mannuronan C5-epimerases

could possibly be used to design alginates with optimal and reproducible immunostimulatory

potency.
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