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Let T be a 2-Calabi–Yau triangulated category, T a cluster 
tilting object with endomorphism algebra Γ. Consider the 
functor T (T, −) : T → mod Γ. It induces a bijection 
from the isomorphism classes of cluster tilting objects to the 
isomorphism classes of support τ -tilting pairs. This is due to 
Adachi, Iyama, and Reiten.
The notion of (d +2)-angulated categories is a higher analogue 
of triangulated categories. We show a higher analogue of the 
above result, based on the notion of maximal τd-rigid pairs.
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0. Introduction

In triangulated categories, the notions of cluster tilting objects (introduced in [4, 
p. 583]) and maximal rigid objects have recently been extensively investigated. They 
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frequently coincide, by [22, thm. 2.6], and they are closely linked to the notion of support 
τ -tilting pairs in abelian categories (introduced in [1, def. 0.3]). Indeed, there is often a 
bijection between the cluster tilting objects in a triangulated category and the support 
τ -tilting pairs in a suitable (abelian) module category, see [1, thm. 4.1].

This paper investigates the analogous theory in (d + 2)-angulated and d-abelian cat-
egories, which are the main objects of higher homological algebra, see [8, def. 2.1] and 
[15, def. 3.1]. Several key properties from the classic case do not carry over. For example, 
cluster tilting objects are maximal d-rigid, but the converse is rarely true. Moreover, 
the higher analogue of support τ -rigid pairs permit a bijection to the maximal d-rigid 
objects, but not to the cluster tilting objects.

For further reading in higher homological algebra a number of references have been 
included in the bibliography, see [3], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], 
[17], [18], [19], [20], [21].

Let k be an algebraically closed field, d � 1 an integer, T a k-linear Hom-finite 
(d + 2)-angulated category with split idempotents, see [8, def. 2.1]. Assume that T is 
2d-Calabi–Yau, see [21, def. 5.2], and let Σd denote the d-suspension functor of T .

Cluster tilting and maximal d-rigid objects. An object X ∈ T is d-rigid if ExtdT (X, X) =
0. We recall three important definitions.

Definition 0.1 ([21, def. 5.3]). An object X ∈ T is Oppermann–Thomas cluster tilting 
in T if:

(i) X is d-rigid.
(ii) For any Y ∈ T there exists a (d + 2)-angle

Xd → · · · → X0 → Y → ΣdXd

with Xi ∈ addX for all 0 ≤ i ≤ d.

Definition 0.2. An object X ∈ T is d-self-perpendicular in T if

addX = {Y ∈ T | ExtdT (X,Y ) = 0 }.

Definition 0.3. An object X ∈ T is maximal d-rigid in T if

addX = {Y ∈ T | ExtdT (X ⊕ Y,X ⊕ Y ) = 0 }.

Our first main result is:

Theorem A. X is Oppermann–Thomas cluster tilting ⇒ X is d-self-perpendicular ⇒ X

is maximal d-rigid.
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We prove this in Theorem 1.1. Of equal importance is that the implications cannot 
be reversed in general, see Remark 1.2. In particular, when d � 2, the class of maximal 
d-rigid objects is typically strictly larger than the class of Oppermann–Thomas cluster 
tilting objects, in contrast to the classic case d = 1 where the two classes usually coincide, 
see [22, thm. 2.6].

Maximal τd-rigid pairs. Let T ∈ T be an Oppermann–Thomas cluster tilting object and 
let Γ = EndT (T ). Recall the following result.

Theorem 0.4 ([14, thm. 0.6]). Consider the essential image D of the functor T (T, −) :
T → mod Γ. Then D is a d-cluster tilting subcategory of modΓ. There is a commutative 
diagram, as shown below, where the vertical arrow is the quotient functor and the diagonal 
arrow is an equivalence of categories:

T

T / addΣdT .

D

(−)

T (T,−)

∼

The category D is a d-abelian category by [15, thm. 3.16]. It has a d-Auslander–Reiten 
translation τd, which is a higher analogue of the classic Auslander–Reiten translation τ , 
see [12, sec. 1.4.1]. A module M ∈ D is called τd-rigid if HomΓ(M, τdM) = 0.

Remark 0.5. The classic add-proj-correspondence holds, as T (T, −) restricts to an equiv-
alence addT → proj Γ. The functor also restricts to an equivalence addST → inj Γ. [14, 
lem. 2.1]

It is natural to ask if D permits a higher analogue of the τ -tilting theory of [1]. We 
will not answer this question, but will instead introduce the following definitions inspired 
by it.

Definition 0.6. A pair (M, P ) with M ∈ D and P ∈ proj Γ is called a τd-rigid pair in D
if M is τd-rigid and HomΓ(P, M) = 0.

Definition 0.7. A pair (M, P ) with M ∈ D and P ∈ proj Γ is called a maximal τd-rigid 
pair in D if it satisfies:
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(i) If N ∈ D then

N ∈ addM ⇔

⎧⎪⎨
⎪⎩

HomΓ(M, τdN) = 0,
HomΓ(N, τdM) = 0,
HomΓ(P,N) = 0.

(ii) If Q ∈ proj Γ, then

Q ∈ addP ⇔ HomΓ(Q,M) = 0.

A maximal τd-rigid pair is a τd-rigid pair.
Our second main result is:

Theorem B. If each indecomposable object of T is d-rigid, then there is a bijection
{

isomorphism classes of
maximal d-rigid objects in T

}
→

{
isomorphism classes of

maximal τd-rigid pairs in D

}
.

We prove this in Section 3. If d = 1, then (M, P ) is a maximal τ1-rigid pair if and 
only if it is a support τ -tilting pair in the sense of [1, def. 0.3(b)], see [1, def. 0.3, prop. 
2.3, and cor. 2.13]. Hence Theorem B is a higher analogue of the bijection

{
isomorphism classes of

cluster tilting object in T

}
→

{
isomorphism classes of

support τ -tilting pairs in mod Γ

}

which exists by [1, thm. 4.1] when T is triangulated, i.e. in the case d = 1. However, 
when d � 2, we do not think of maximal τd-rigid pairs as support τd-tilting pairs. The 
reason is that by Theorem B, maximal τd-rigid pairs are linked to maximal d-rigid objects 
in higher angulated categories. As remarked above, this class is typically strictly larger 
than the class of Oppermann–Thomas cluster tilting objects when d � 2.

Note that [19] makes an approach to higher support tilting theory.
This paper is organised as follows: Section 1 proves Theorem A, Section 2 investigates 

the precise relation between Hom spaces in T and D , Section 3 proves Theorem B, and 
Section 4 gives an example.

Setup 0.8. Throughout the paper we use the following notation:

k: An algebraically closed field.
D: The duality functor Homk(−, k).
T : A k-linear, Hom-finite, (d + 2)-angulated category with split idempotents. We as-

sume that T is 2d-Calabi–Yau, that is T (X, Y ) ∼= DT (Y, Σ2dX) naturally in 
X, Y ∈ T .
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Σd: The d-suspension functor on T .
T : An Oppermann–Thomas cluster tilting object in T .

(−): The canonical functor T → T / addΣdT , whose target is the naive quotient cate-
gory of T modulo the morphisms which factor through an object in addΣdT .

Γ: The endomorphism ring EndT (T ).
νΓ: The Nakayama functor on modΓ.
τd: The d-Auslander–Reiten translation on modΓ.
D : The essential image of the functor T (T, −) : T → mod Γ.

1. Proof of Theorem A

Theorem 1.1. Let X ∈ T be given.

(i) There are implications

X is Oppermann–Thomas cluster tilting
⇓

X is d-self-perpendicular
⇓

X is maximal d-rigid
⇓

X is d-rigid.

(ii) If each indecomposable object in T is d-rigid, then

X is d-self-perpendicular ⇔ X is maximal d-rigid.

Proof. (i), the first implication: Suppose X is Oppermann–Thomas cluster tilting. We 
must prove the equality in Definition 0.2, and the inclusion ⊆ is clear. For the inclusion 
⊇, suppose ExtdT (X, Y ) = 0. Then each morphism X0 → ΣdY with X0 ∈ addX is 
zero. This applies in particular to the (d + 2)-angle Xd → · · · → X0 → ΣdY → ΣdXd

with Xi ∈ addX, which exists since X is Oppermann–Thomas cluster tilting. But then 
the morphism ΣdY → ΣdXd is a split monomorphism, and applying Σ−d gives a split 
monomorphism Y → Xd proving Y ∈ addX.

(i), the second implication: Suppose that X is d-self-perpendicular. We must prove 
the equality in Definition 0.3, and the inclusion ⊆ is clear. For the inclusion ⊇, suppose 
ExtdT (X ⊕ Y, X ⊕ Y ) = 0. Then in particular, ExtdT (X, Y ) = 0, whence Y ∈ addX.

(i), the third implication: This is clear.
(ii): Suppose that each indecomposable object in T is d-rigid. Because of part (i), it 

is enough to prove the implication ⇐ in (ii), so suppose that X is maximal d-rigid. We 
must prove the equality in Definition 0.2, and ⊆ is clear.

For the inclusion ⊇, observe that { Y ∈ T | ExtdT (X, Y ) = 0 } is closed under direct 
sums and summands by additivity of Ext. Hence it is enough to suppose that Y is an 
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indecomposable object in this set and prove Y ∈ addX. However, ExtdT (X, Y ) = 0 im-
plies ExtdT (Y, X) = 0 because T is 2d-Calabi–Yau, and ExtdT (Y, Y ) = 0 by assumption. 
Finally, X is d-rigid by part (i), so ExtdT (X, X) = 0. Combining these equalities shows 
ExtdT (X ⊕ Y, X ⊕ Y ) = 0, and Y ∈ addX follows. �
Remark 1.2. The implications in Theorem 1.1(i) cannot be reversed in general:

– An example of a d-self-perpendicular object X which is not Oppermann–Thomas 
cluster tilting is given in Section 4. In fact, the objects in the last three rows of 
Fig. 4 are such examples. The example was originally given in [21, p. 1735].

– An example of a maximal d-rigid object which is not d-self-perpendicular can be 
obtained by combining proposition 2.6 and corollary 2.7 in [5]. These results give a 
maximal 1-rigid object which is not cluster tilting, but in the triangulated setting of 
[5], cluster tilting is equivalent to 1-self-perpendicular, see [5, bottom of p. 963].

– Finally, an example of a d-rigid object which is not maximal d-rigid is the zero object, 
as soon as T has a non-zero d-rigid object.

We end the section by observing that Theorem 1.1(ii) can be applied to an important 
class of categories.

Proposition 1.3. Let Λ be a d-representation finite algebra, OΛ the (d + 2)-angulated 
cluster category associated to Λ in [21, thm. 5.2]. Then each X ∈ OΛ satisfies

X is d-self-perpendicular ⇔ X is maximal d-rigid.

Proof. Each indecomposable in OΛ is d-rigid by [21, Lemma 5.41], so the equivalence 
follows from Theorem 1.1(ii). �
2. A dimension formula for ExtdT

Recall from Setup 0.8 that T is a fixed Oppermann–Thomas cluster tilting object 
in T , and that T is 2d-Calabi–Yau, that is, T (X, Y ) ∼= DT (Y, Σ2dX) naturally in 
X, Y ∈ T .

Lemma 2.1. There is a natural isomorphism

νΓT (T, T ′) ∼= T
(
T,Σ2d(T ′)

)
for T ′ ∈ addT .

Proof. By the 2d-Calabi-Yau property we have

T
(
T,Σ2d(T ′)

) ∼= DT (T ′, T ).
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By [14, Lemma 2.2(i)],

DT (T ′, T ) ∼= DHomΓ
(
T (T, T ′),T (T, T )

)
= DHomΓ

(
T (T, T ′),Γ

)
.

Finally, by definition we have

DHomΓ
(
T (T, T ′),Γ

)
= νΓT (T, T ′),

see [2, def. III.2.8]. �
Lemma 2.2. If X ∈ T has no non-zero direct summands in add ΣdT , then there exists a 
(d + 2)-angle

Td → · · · → T0 → X → ΣdTd

in T with the following properties: Each Ti is in addT , and applying the functor T (T, −)
gives a complex

T (T, Td) → · · · → T (T, T0) → T (T,X) → 0

which is the start of the augmented minimal projective resolution of T (T, X).

Proof. Given X, there exists a (d + 2)-angle

Σ−dX → Td → · · · → T0 → X

with each Ti in addT by Definition 0.1. Since X has no non-zero direct summands in 
add ΣdT , the first morphism in the (d + 2)-angle is in the radical of T . By dropping 

trivial summands of the form T ′ ∼=−→ T ′, we can assume that so are the other morphisms 
except the last morphism.

By [8, prop. 2.5(a)], applying the functor T (T, −) gives an exact sequence

T (T,Σ−dX) → T (T, Td) → · · · → T (T, T0) → T (T,X) → T (T,ΣdTd) = 0.

By Theorem 0.4, applying the functor T (T, −) is, up to isomorphism, just to apply a 
quotient functor, and this preserves radical morphisms. So in the exact sequence each 
morphism, except possibly T (T, T0) → T (T, X), is in the radical of modΓ. This proves 
the claim of the lemma. �
Lemma 2.3. If X ∈ T has no non-zero direct summands in add ΣdT , then there is a 
natural isomorphism

τdT (T,X) ∼= T (T,ΣdX).
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Proof. As X has no non-zero direct summands in addΣdT , we can consider the (d +
2)-angle from Lemma 2.2. Apply T (T, −) to get the following part of an augmented 
minimal projective resolution in mod Γ:

T (T, Td) → · · · → T (T, T0) → T (T,X) → 0.

Using the Nakayama functor and Lemma 2.1 we get the following commutative diagram.

0 τdT (T,X) νΓT (T, Td) · · · νΓT (T, T0)

0 T (T,ΣdX) T (T,Σ2dTd) · · · T (T,Σ2dT0)

∼ ∼

The top sequence is exact by the definition of τd, see [12, sec. 1.4.1]. The bottom sequence 
is exact because it is obtained by applying HomT (T, −) to a (d + 2)-angle in T , see [8, 
prop. 2.5(a)]. The first term of the bottom sequence is actually T (T, ΣdT0), but this is 
zero. Since we have d ≥ 1, the diagram implies

τdT (T,X) ∼= T (T,ΣdX). �
We write [addT ](X, Y ) = { f ∈ T (X, Y ) | f factors through an object of addT }.

Lemma 2.4. There is a natural isomorphism

D[addT ](X,Y ) ∼= HomT / add ΣdT (Y ,Σ2dX)

for X, Y ∈ T .

Proof. Pick a (d + 2)-angle in T :

Td → . . . → T0 → Y → ΣdTd,

with Ti ∈ addT . Use T (X, −) to obtain the morphism Ψ : T (X, T0) → T (X, Y ). This 
is a homomorphism of k-vector spaces, hence we can talk about the image of Ψ. We first 
note that any morphism f in the image of Ψ must factor through addT . Now suppose 
f ∈ T (X, Y ) factors through T ′ ∈ addT . We have the following commutative diagram, 
where the lower row is a part of the (d + 2)-angle above:
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· · · T0 Y ΣdTd.

· · · T ′ T ′ 0

X

1T ′

f

The dashed arrow exists by completing the commutative square to a morphism of (d +
2)-angles. We conclude that f ∈ Im Ψ. Hence

Im Ψ = [addT ](X,Y ).

We now return to the long exact sequence

· · · → T (X,T0)
Ψ−→ T (X,Y ) → T (X,ΣdTd) → · · · .

Using the duality functor D and Serre duality we get the following diagram with exact 
rows:

DT (X,ΣdTd) DT (X,Y ) DT (X,T0)

T (ΣdTd,Σ2dX) T (Y,Σ2dX) T (T0,Σ2dX)

DΨ

α′ β′

∼

∼ ∼

[add ΣdT ](Y,Σ2dX) T (Y,Σ2dX)/[add ΣdT ](Y,Σ2dX)

α β

Analogous to the above discussion, the space [addΣdT ](Y, Σ2dX) is the image of the 
map α′. Hence α is the kernel of β′ and DΨ (by isomorphism). The morphism β is by 
definition the cokernel of α, and T (Y, Σ2dX)/[addΣdT ](Y, Σ2dX) is thus the image of 
DΨ. Thus we have

D[addT ](X,Y ) ∼= D Im Ψ ∼= Im DΨ ∼= T (Y,Σ2dX)/[addΣdT ](Y,Σ2dX)
∼= HomT / add ΣdT (Y ,Σ2dX). �

Lemma 2.5. Suppose X, Y ∈ T . Then we have a short exact sequence

0 → DHomT / add ΣdT (Y ,ΣdX) → ExtdT (X,Y ) → HomT / add ΣdT (X,ΣdY ) → 0.
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Proof. By the definition of the quotient functor we have a short exact sequence

0 → [add ΣdT ](X,ΣdY ) → T (X,ΣdY ) → HomT / add ΣdT (X,ΣdY ) → 0.

We have [addΣdT ](X, ΣdY ) ∼= [addT ](Σ−dX, Y ). By Lemma 2.4 we have

[addT ](Σ−dX,Y ) ∼= DHomT / add ΣdT (Y ,Σ2dΣ−dX) ∼= DHomT / add ΣdT (Y ,ΣdX).

We also know that T (X, ΣdY ) ∼= ExtdT (X, Y ), so the conclusion follows. �
Lemma 2.6. Suppose X, Y ∈ T have no non-zero direct summands in addΣdT . Then 
we have a short exact sequence

0 → DHomΓ
(
T (T, Y ), τdT (T,X)

)
→ ExtdT (X,Y )

→ HomΓ
(
T (T,X), τdT (T, Y )

)
→ 0.

Proof. Consider the short exact sequence from Lemma 2.5. By Theorem 0.4 we know 
that

DHomT / add ΣdT (Y ,ΣdX) ∼= DHomΓ
(
T (T, Y ),T (T,ΣdX)

)
.

Applying Lemma 2.3 we have

DHomΓ
(
T (T, Y ),T (T,ΣdX)

) ∼= DHomΓ
(
T (T, Y ), τdT (T,X)

)
.

Similarly we can show HomT / add ΣdT (X, ΣdY ) ∼= HomΓ
(
T (T, X), τdT (T, Y )

)
. �

The map defined next will eventually induce the equivalence of Theorem B.

Definition 2.7. For each X ∈ T , pick an isomorphism X ∼= X ′ ⊕X ′′ such that X ′ has 
no non-zero direct summands in addΣdT and X ′′ ∈ add ΣdT . Let

Δ(X) =
(
T (T,X ′),T (T,Σ−dX ′′)

)
.

This is a pair of Γ-modules where T (T, X ′) is in D and T (T, Σ−dX ′′) is in proj Γ.

Proposition 2.8. Given X, Y ∈ T , set (M, P ) = Δ(X) and (N, Q) = Δ(Y ), where Δ is 
the map in Definition 2.7. Then

dimk ExtdT (X,Y ) =dimk HomΓ(M, τdN) + dimk HomΓ(N, τdM)

+ dimk HomΓ(P,N) + dimk HomΓ(Q,M).
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Proof. By additivity of Ext we have

ExtdT (X,Y ) ∼= ExtdT (X ′ ⊕X ′′, Y ′ ⊕ Y ′′)
∼= ExtdT (X ′, Y ′) ⊕ ExtdT (X ′, Y ′′) ⊕ ExtdT (X ′′, Y ′) ⊕ ExtdT (X ′′, Y ′′).

As T is d-rigid, we see that ExtdT (X ′′, Y ′′) = 0, and hence we have

dim ExtdT (X,Y ) = dim ExtdT (X ′, Y ′) + dim ExtdT (X ′, Y ′′) + dim ExtdT (X ′′, Y ′). (2.1)

From Lemma 2.6 we have the short exact sequence:

0 → DHomΓ
(
T (T, Y ′), τdT (T,X ′)

)
→ ExtdT (X ′, Y ′)

→ HomΓ
(
T (T,X ′), τdT (T, Y ′)

)
→ 0,

which means that

dim ExtdT (X ′, Y ′) = dimk HomΓ
(
T (T,X ′), τdT (T, Y ′)

)
+ dimk HomΓ

(
T (T, Y ′), τdT (T,X ′)

)
= dimk HomΓ(M, τdN) + dimk HomΓ(N, τdM). (2.2)

We see that

ExtdT (X ′′, Y ′) ∼= T (X ′′,ΣdY ′) ∼= T (Σ−dX ′′, Y ′) ∼= HomΓ
(
T (T,Σ−dX ′′),T (T, Y ′)

)
∼= HomΓ(P,N).

The third isomorphism follows from [14, Lemma 2.2(i)] and the fact that Σ−dX ′′ ∈ addT . 
Similarly,

ExtdT (X ′, Y ′′) ∼= DExtdT (Y ′′, X ′) ∼= DHomΓ(Q,M).

Thus we have

dim ExtdT (X ′′, Y ′) = dimk HomΓ(P,N) (2.3)

dim ExtdT (X ′, Y ′′) = dimk HomΓ(Q,M). (2.4)

Substituting (2.2), (2.3), and (2.4) into (2.1) gives the result. �
As a consequence we have:

Corollary 2.9. Given X, Y ∈ T , set (M, P ) = Δ(X) and (N, Q) = Δ(Y ). Then

ExtdT (X,Y ) = 0 ⇔
HomΓ(M, τdN) = HomΓ(N, τdM) = HomΓ(P,N) = HomΓ(Q,M) = 0.
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3. Proof of Theorem B

The following results use the map Δ from Definition 2.7.

Lemma 3.1. Given X, Y ∈ T , set (M, P ) = Δ(X) and (N, Q) = Δ(Y ). Then Y ∈ addX

if and only if N ∈ addM and Q ∈ addP .

Proof. Let X ∼= X ′ ⊕ X ′′ be the decomposition from Definition 2.7, where X ′ has no 
non-zero direct summands from addΣdT while X ′′ is in add ΣdT . We have (M, P ) =(
T (T, X ′), T (T, Σ−dX ′′)

)
. Similarly, (N, Q) =

(
T (T, Y ′), T (T, Σ−dY ′′)

)
.

The condition Q ∈ addP is equivalent to Y ′′ ∈ addX ′′ by the add-proj-correspon-
dence, (see Remark 0.5). The condition N ∈ addM is equivalent to Y ′ ∈ addX ′ by 
Theorem 0.4 because X ′, Y ′ have no non-zero direct summands in addΣdT . The result 
follows. �
Lemma 3.2. The category T is skeletally small. The map Δ induces a bijection

δ : iso T → iso D × iso proj Γ, (3.1)

where iso denotes the set of isomorphism classes of a skeletally small category.

Proof. Let Iso denote the class of isomorphisms of a category. For a skeletally small 
category C we have that IsoC = iso C . Note that since a module category over a ring is 
skeletally small, we have that D , proj Γ ⊆ mod Γ are skeletally small.

It is clear that Δ induces a well-defined map of the form

δ′ : Iso T → iso D × iso proj Γ.

To see that δ′ is injective, argue like the proof of Lemma 3.1, replacing membership 
of add with isomorphism.

It follows that T is skeletally small. We can thus replace δ′ with the map δ from (3.1).
To see that δ is surjective, let (M, P ) be a pair with M ∈ D and P ∈ proj Γ. By 

Theorem 0.4 there is an object X ′ ∈ T with no non-zero direct summands in addΣdT

such that M ∼= T (T, X ′). By the add-proj correspondence, see Remark 0.5, there is 
an object X ′′ ∈ addΣdT such that P ∼= T (T, Σ−dX ′′). Setting X = X ′ ⊕ X ′′ gives 
(M, P ) ∼= Δ(X). �
Lemma 3.3. If X ∈ T is d-self-perpendicular, then (M, P ) = Δ(X) is a maximal τd-rigid 
pair.

Proof. Let N ∈ D and Q ∈ proj Γ be given. By Lemma 3.2, there is an object Y ∈ T

such that (N, Q) ∼= Δ(Y ). Then
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N ∈ addM and Q ∈ addP

⇔ Y ∈ addX

⇔ ExtdT (X,Y ) = 0

⇔ HomΓ(M, τdN) = HomΓ(N, τdM) = HomΓ(P,N) = HomΓ(Q,M) = 0,

where the equivalences, respectively, are by Lemma 3.1, Definition 0.2, and Corollary 2.9.
The conditions of Definition 0.7 are recovered by setting Q = 0 respectively N = 0. �

Lemma 3.4. Let X ∈ T be given. If (M, P ) = Δ(X) is a maximal τd-rigid pair, then X
is d-self-perpendicular.

Proof. Let Y ∈ T be given and set (N, Q) ∼= Δ(Y ). Then

ExtdT (X,Y ) = 0

⇔ HomΓ(M, τdN) = HomΓ(N, τdM) = HomΓ(P,N) = HomΓ(Q,M) = 0

⇔ N ∈ addM and Q ∈ addP

⇔ Y ∈ addX,

where the equivalences, respectively, are by Corollary 2.9, Definition 0.7, and Lemma 3.1.
�

Theorem 3.5. Recall that the map Δ from Definition 2.7 induces the bijection δ : iso T →
iso D × iso proj Γ from Lemma 3.2.

(i) δ restricts to a bijection
{

isomorphism classes of
d-rigid objects in T

}
→

{
isomorphism classes of
τd-rigid pairs in D

}
.

(ii) δ restricts further to a bijection
{

isomorphism classes of
d-self-perpendicular objects in T

}
→

{
isomorphism classes of

maximal τd-rigid pairs in D

}
.

Proof. (i): Consider X ∈ T and set (M, P ) = Δ(X). Then

ExtdT (X,X) = 0 ⇔ HomΓ(M, τdM) = 0 and HomΓ(P,M) = 0

by Corollary 2.9, so the result follows.
(ii): See Lemmas 3.3 and 3.4. �

Proof of Theorem B (from the introduction). Combine Theorems 3.5(ii) and 1.1(ii). �
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1357

1358

1368
1468

2468

2469

2479
2579

3579

Fig. 1. The AR quiver of the 5-angulated category T .

4. An example

In this section we let d = 3 and T = OA3
2
. This is the 5-angulated (higher) cluster 

category of type A2, see [21, def. 5.2, sec. 6, and sec. 8]. The indecomposable objects can 
be identified with the elements of the set

�I39 = { 1357, 1358, 1368, 1468, 2468, 2469, 2479, 2579, 3579 },

see [21, sec. 8]. The AR quiver of T is shown in Fig. 1. By [21, thm. 5.5 and sec. 8], the 
object

T = 1357 ⊕ 1358 ⊕ 1368 ⊕ 1468

is Oppermann–Thomas cluster tilting.
If X, Y ∈ T are indecomposable objects, then

T (X,Y ) =
{

k if Y is X or its immediate successor in the AR quiver,
0 otherwise,

see [21, prop. 6.1 and def. 6.9]. It follows that Γ = EndT (T ) = kQ/I, where

Q = 1 → 2 → 3 → 4

and I is the ideal generated by all compositions of two consecutive arrows. The action of 
the functor T (T, −) : T → mod Γ on indecomposable objects is shown in Fig. 2, where 
P (q) and I(q) denote the indecomposable projective and injective modules associated to 
the vertex q ∈ Q. Note that the essential image of T (T, −) is
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X 1357 1358 1368 1468 2468 2469 2479 2579 3579
T (T,X) P (4) P (3) P (2) P (1) I(1) 0 0 0 0

Fig. 2. The action of the functor T (T,−) : T → mod Γ.

X

◦

◦
◦

Y1

Y2

◦
◦

◦

Fig. 3. The functor Ext3T (X,−) is non-zero on Y1 and Y2. It is zero on every other indecomposable object.

Maximal 3-rigid object X Maximal τ3-rigid pair Δ(X)
1357 ⊕ 1358 ⊕ 1368 ⊕ 1468 (Γ, 0)
1358 ⊕ 1368 ⊕ 1468 ⊕ 2468 (DΓ, 0)
1368 ⊕ 1468 ⊕ 2468 ⊕ 2469

(
P (2) ⊕ P (1) ⊕ I(1), P (4)

)
1468 ⊕ 2468 ⊕ 2469 ⊕ 2479

(
P (1) ⊕ I(1), P (4) ⊕ P (3)

)
2468 ⊕ 2469 ⊕ 2479 ⊕ 2579

(
I(1), P (4) ⊕ P (3) ⊕ P (2)

)
2469 ⊕ 2479 ⊕ 2579 ⊕ 3579 (0,Γ)
2479 ⊕ 2579 ⊕ 3579 ⊕ 1357

(
P (4), P (3) ⊕ P (2) ⊕ P (1)

)
2579 ⊕ 3579 ⊕ 1357 ⊕ 1358

(
P (4) ⊕ P (3), P (2) ⊕ P (1)

)
3579 ⊕ 1357 ⊕ 1358 ⊕ 1368

(
P (4) ⊕ P (3) ⊕ P (2), P (1)

)
1357 ⊕ 1468 ⊕ 2479

(
P (4) ⊕ P (1), P (3)

)
1358 ⊕ 2468 ⊕ 2579

(
P (3) ⊕ I(1), P (2)

)
1368 ⊕ 2469 ⊕ 3579

(
P (2), P (4) ⊕ P (1)

)
Fig. 4. These are all the basic maximal 3-rigid objects of T and their corresponding maximal τ3-rigid pairs 
in D.

D = add{P (4), P (3), P (2), P (1), I(1) }.

This is a 3-cluster tilting subcategory of mod Γ and hence it is 3-abelian.
The 3-suspension functor Σ3 acts on the AR quiver by moving four steps clockwise. 

Combined with our knowledge of Hom, this shows that if X is a fixed indecomposable 
object in T , then the indecomposable objects Y with Ext3T (X, Y ) �= 0 are precisely the 
two objects furthest from X in the AR quiver, see Fig. 3.

Based on this, we can compute all basic 3-self-perpendicular objects in T , and by 
Proposition 1.3 they coincide with the basic maximal 3-rigid objects in T . For each 
such object X, there is a maximal τ3-rigid pair Δ(X) =

(
T (T, X ′), T (T, Σ−3X ′′)

)
by 

Theorem B. See Fig. 4. Note that the first nine objects in Fig. 4 are Oppermann–Thomas 
cluster tilting, but the three last objects are not.
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