Maximal τ_{d}-rigid pairs

Karin M. Jacobsen ${ }^{\mathrm{a}, *, 1}$, Peter Jørgensen ${ }^{\text {b }}$
${ }^{\text {a }}$ Norwegian University of Science and Technology, Department of Mathematical
Sciences, Sentralbygg 2, Gløshaugen, 7491 Trondheim, Norway
${ }^{\text {b }}$ School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne
NE1 7RU, United Kingdom

A R T I C L E I N F O

Article history:

Received 30 April 2019
Available online 14 November 2019
Communicated by David Hernandez

MSC:

16G10
18E10
18E30
Keywords:
d-Abelian category
$(d+2)$-Angulated category
Higher homological algebra
Maximal d-rigid object
Maximal τ_{d}-rigid pair

A B S T R A C T

Let \mathscr{T} be a 2-Calabi-Yau triangulated category, T a cluster tilting object with endomorphism algebra Γ. Consider the functor $\mathscr{T}(T,-): \mathscr{T} \rightarrow \bmod \Gamma$. It induces a bijection from the isomorphism classes of cluster tilting objects to the isomorphism classes of support τ-tilting pairs. This is due to Adachi, Iyama, and Reiten.
The notion of $(d+2)$-angulated categories is a higher analogue of triangulated categories. We show a higher analogue of the above result, based on the notion of maximal τ_{d}-rigid pairs. © 2019 Published by Elsevier Inc.

0. Introduction

In triangulated categories, the notions of cluster tilting objects (introduced in [4, p. 583]) and maximal rigid objects have recently been extensively investigated. They

[^0]frequently coincide, by [22, thm. 2.6], and they are closely linked to the notion of support τ-tilting pairs in abelian categories (introduced in [1, def. 0.3]). Indeed, there is often a bijection between the cluster tilting objects in a triangulated category and the support τ-tilting pairs in a suitable (abelian) module category, see [1, thm. 4.1].

This paper investigates the analogous theory in $(d+2)$-angulated and d-abelian categories, which are the main objects of higher homological algebra, see [8, def. 2.1] and [15, def. 3.1]. Several key properties from the classic case do not carry over. For example, cluster tilting objects are maximal d-rigid, but the converse is rarely true. Moreover, the higher analogue of support τ-rigid pairs permit a bijection to the maximal d-rigid objects, but not to the cluster tilting objects.

For further reading in higher homological algebra a number of references have been included in the bibliography, see [3], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21].

Let k be an algebraically closed field, $d \geqslant 1$ an integer, \mathscr{T} a k-linear Hom-finite $(d+2)$-angulated category with split idempotents, see [8, def. 2.1]. Assume that \mathscr{T} is $2 d$-Calabi-Yau, see [21, def. 5.2], and let Σ^{d} denote the d-suspension functor of \mathscr{T}.

Cluster tilting and maximal d-rigid objects. An object $X \in \mathscr{T}$ is d-rigid if $\operatorname{Ext}_{\mathscr{T}}^{d}(X, X)=$ 0 . We recall three important definitions.

Definition 0.1 ([21, def. 5.3]). An object $X \in \mathscr{T}$ is Oppermann-Thomas cluster tilting in \mathscr{T} if:
(i) X is d-rigid.
(ii) For any $Y \in \mathscr{T}$ there exists a $(d+2)$-angle

$$
X_{d} \rightarrow \cdots \rightarrow X_{0} \rightarrow Y \rightarrow \Sigma^{d} X_{d}
$$

with $X_{i} \in \operatorname{add} X$ for all $0 \leq i \leq d$.

Definition 0.2. An object $X \in \mathscr{T}$ is d-self-perpendicular in \mathscr{T} if

$$
\text { add } X=\left\{Y \in \mathscr{T} \mid \operatorname{Ext}_{\mathscr{T}}^{d}(X, Y)=0\right\} .
$$

Definition 0.3. An object $X \in \mathscr{T}$ is maximal d-rigid in \mathscr{T} if

$$
\operatorname{add} X=\left\{Y \in \mathscr{T} \mid \operatorname{Ext}_{\mathscr{T}}^{d}(X \oplus Y, X \oplus Y)=0\right\} .
$$

Our first main result is:

Theorem A. X is Oppermann-Thomas cluster tilting $\Rightarrow X$ is d-self-perpendicular $\Rightarrow X$ is maximal d-rigid.

We prove this in Theorem 1.1. Of equal importance is that the implications cannot be reversed in general, see Remark 1.2. In particular, when $d \geqslant 2$, the class of maximal d-rigid objects is typically strictly larger than the class of Oppermann-Thomas cluster tilting objects, in contrast to the classic case $d=1$ where the two classes usually coincide, see [22, thm. 2.6].

Maximal τ_{d}-rigid pairs. Let $T \in \mathscr{T}$ be an Oppermann-Thomas cluster tilting object and let $\Gamma=\operatorname{End}_{\mathscr{T}}(T)$. Recall the following result.

Theorem 0.4 ([14, thm. 0.6]). Consider the essential image \mathscr{D} of the functor $\mathscr{T}(T,-)$: $\mathscr{T} \rightarrow \bmod \Gamma$. Then \mathscr{D} is a d-cluster tilting subcategory of $\bmod \Gamma$. There is a commutative diagram, as shown below, where the vertical arrow is the quotient functor and the diagonal arrow is an equivalence of categories:

The category \mathscr{D} is a d-abelian category by [15, thm. 3.16]. It has a d-Auslander-Reiten translation τ_{d}, which is a higher analogue of the classic Auslander-Reiten translation τ, see [12, sec. 1.4.1]. A module $M \in \mathscr{D}$ is called τ_{d}-rigid if $\operatorname{Hom}_{\Gamma}\left(M, \tau_{d} M\right)=0$.

Remark 0.5. The classic add-proj-correspondence holds, as $\mathscr{T}(T,-)$ restricts to an equivalence add $T \rightarrow \operatorname{proj} \Gamma$. The functor also restricts to an equivalence add $S T \rightarrow \operatorname{inj} \Gamma$. [14, lem. 2.1]

It is natural to ask if \mathscr{D} permits a higher analogue of the τ-tilting theory of [1]. We will not answer this question, but will instead introduce the following definitions inspired by it.

Definition 0.6. A pair (M, P) with $M \in \mathscr{D}$ and $P \in \operatorname{proj} \Gamma$ is called a τ_{d}-rigid pair in \mathscr{D} if M is τ_{d}-rigid and $\operatorname{Hom}_{\Gamma}(P, M)=0$.

Definition 0.7. A pair (M, P) with $M \in \mathscr{D}$ and $P \in \operatorname{proj} \Gamma$ is called a maximal τ_{d}-rigid pair in \mathscr{D} if it satisfies:
(i) If $N \in \mathscr{D}$ then

$$
N \in \operatorname{add} M \Leftrightarrow\left\{\begin{array}{l}
\operatorname{Hom}_{\Gamma}\left(M, \tau_{d} N\right)=0 \\
\operatorname{Hom}_{\Gamma}\left(N, \tau_{d} M\right)=0 \\
\operatorname{Hom}_{\Gamma}(P, N)=0
\end{array}\right.
$$

(ii) If $Q \in \operatorname{proj} \Gamma$, then

$$
Q \in \operatorname{add} P \Leftrightarrow \operatorname{Hom}_{\Gamma}(Q, M)=0
$$

A maximal τ_{d}-rigid pair is a τ_{d}-rigid pair.
Our second main result is:

Theorem B. If each indecomposable object of \mathscr{T} is d-rigid, then there is a bijection

$$
\left\{\begin{array}{c}
\text { isomorphism classes of } \\
\text { maximal d-rigid objects in } \mathscr{T}
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { isomorphism classes of } \\
\text { maximal } \tau_{d} \text {-rigid pairs in } \mathscr{D}
\end{array}\right\}
$$

We prove this in Section 3. If $d=1$, then (M, P) is a maximal τ_{1}-rigid pair if and only if it is a support τ-tilting pair in the sense of [1, def. $0.3(\mathrm{~b})]$, see [1 , def. 0.3 , prop. 2.3, and cor. 2.13]. Hence Theorem B is a higher analogue of the bijection

$$
\left\{\begin{array}{c}
\text { isomorphism classes of } \\
\text { cluster tilting object in } \mathscr{T}
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { isomorphism classes of } \\
\text { support } \tau \text {-tilting pairs in } \bmod \Gamma
\end{array}\right\}
$$

which exists by [1, thm. 4.1] when \mathscr{T} is triangulated, i.e. in the case $d=1$. However, when $d \geqslant 2$, we do not think of maximal τ_{d}-rigid pairs as support τ_{d}-tilting pairs. The reason is that by Theorem B , maximal τ_{d}-rigid pairs are linked to maximal d-rigid objects in higher angulated categories. As remarked above, this class is typically strictly larger than the class of Oppermann-Thomas cluster tilting objects when $d \geqslant 2$.

Note that [19] makes an approach to higher support tilting theory.
This paper is organised as follows: Section 1 proves Theorem A, Section 2 investigates the precise relation between Hom spaces in \mathscr{T} and \mathscr{D}, Section 3 proves Theorem B, and Section 4 gives an example.

Setup 0.8. Throughout the paper we use the following notation:
k : An algebraically closed field.
D: The duality functor $\operatorname{Hom}_{k}(-, k)$.
\mathscr{T} : A k-linear, Hom-finite, $(d+2)$-angulated category with split idempotents. We assume that \mathscr{T} is $2 d$-Calabi-Yau, that is $\mathscr{T}(X, Y) \cong \mathrm{D} \mathscr{T}\left(Y, \Sigma^{2 d} X\right)$ naturally in $X, Y \in \mathscr{T}$.
Σ^{d} : The d-suspension functor on \mathscr{T}.
T : An Oppermann-Thomas cluster tilting object in \mathscr{T}.
$\overline{(-)}$: The canonical functor $\mathscr{T} \rightarrow \mathscr{T} /$ add $\Sigma^{d} T$, whose target is the naive quotient category of \mathscr{T} modulo the morphisms which factor through an object in add $\Sigma^{d} T$.
Γ : The endomorphism ring End $\mathscr{T}(T)$.
ν_{Γ} : The Nakayama functor on $\bmod \Gamma$.
τ_{d} : The d-Auslander-Reiten translation on $\bmod \Gamma$.
\mathscr{D} : The essential image of the functor $\mathscr{T}(T,-): \mathscr{T} \rightarrow \bmod \Gamma$.

1. Proof of Theorem A

Theorem 1.1. Let $X \in \mathscr{T}$ be given.
(i) There are implications
X is Oppermann-Thomas cluster tilting
\Downarrow
X
is d-self-perpendicular
\Downarrow
X is maximal d-rigid
\Downarrow
X is d-rigid.
(ii) If each indecomposable object in \mathscr{T} is d-rigid, then

$$
X \text { is d-self-perpendicular } \Leftrightarrow X \text { is maximal d-rigid. }
$$

Proof. (i), the first implication: Suppose X is Oppermann-Thomas cluster tilting. We must prove the equality in Definition 0.2 , and the inclusion \subseteq is clear. For the inclusion \supseteq, suppose $\operatorname{Ext}_{\mathscr{T}}^{d}(X, Y)=0$. Then each morphism $X_{0} \rightarrow \Sigma^{d} Y$ with $X_{0} \in$ add X is zero. This applies in particular to the $(d+2)$-angle $X_{d} \rightarrow \cdots \rightarrow X_{0} \rightarrow \Sigma^{d} Y \rightarrow \Sigma^{d} X_{d}$ with $X_{i} \in$ add X, which exists since X is Oppermann-Thomas cluster tilting. But then the morphism $\Sigma^{d} Y \rightarrow \Sigma^{d} X_{d}$ is a split monomorphism, and applying Σ^{-d} gives a split monomorphism $Y \rightarrow X_{d}$ proving $Y \in \operatorname{add} X$.
(i), the second implication: Suppose that X is d-self-perpendicular. We must prove the equality in Definition 0.3 , and the inclusion \subseteq is clear. For the inclusion \supseteq, suppose $\operatorname{Ext}_{\mathscr{T}}^{d}(X \oplus Y, X \oplus Y)=0$. Then in particular, $\operatorname{Ext}_{\mathscr{T}}^{d}(X, Y)=0$, whence $Y \in \operatorname{add} X$.
(i), the third implication: This is clear.
(ii): Suppose that each indecomposable object in \mathscr{T} is d-rigid. Because of part (i), it is enough to prove the implication \Leftarrow in (ii), so suppose that X is maximal d-rigid. We must prove the equality in Definition 0.2 , and \subseteq is clear.

For the inclusion \supseteq, observe that $\left\{Y \in \mathscr{T} \mid \operatorname{Ext}_{\mathscr{T}}^{d}(X, Y)=0\right\}$ is closed under direct sums and summands by additivity of Ext. Hence it is enough to suppose that Y is an
indecomposable object in this set and prove $Y \in \operatorname{add} X$. However, $\operatorname{Ext}_{\mathscr{T}}^{d}(X, Y)=0$ implies $\operatorname{Ext}^{d}{ }_{\mathscr{T}}(Y, X)=0$ because \mathscr{T} is $2 d$-Calabi-Yau, and $\operatorname{Ext}_{\mathscr{T}}^{d}(Y, Y)=0$ by assumption. Finally, X is d-rigid by part (i), so $\operatorname{Ext}_{\mathscr{T}}^{d}(X, X)=0$. Combining these equalities shows $\operatorname{Ext}_{\mathscr{T}}^{d}(X \oplus Y, X \oplus Y)=0$, and $Y \in \operatorname{add} X$ follows.

Remark 1.2. The implications in Theorem 1.1(i) cannot be reversed in general:

- An example of a d-self-perpendicular object X which is not Oppermann-Thomas cluster tilting is given in Section 4. In fact, the objects in the last three rows of Fig. 4 are such examples. The example was originally given in [21, p. 1735].
- An example of a maximal d-rigid object which is not d-self-perpendicular can be obtained by combining proposition 2.6 and corollary 2.7 in [5]. These results give a maximal 1-rigid object which is not cluster tilting, but in the triangulated setting of [5], cluster tilting is equivalent to 1-self-perpendicular, see [5, bottom of p. 963].
- Finally, an example of a d-rigid object which is not maximal d-rigid is the zero object, as soon as \mathscr{T} has a non-zero d-rigid object.

We end the section by observing that Theorem 1.1(ii) can be applied to an important class of categories.

Proposition 1.3. Let Λ be a d-representation finite algebra, \mathscr{O}_{Λ} the $(d+2)$-angulated cluster category associated to Λ in [21, thm. 5.2]. Then each $X \in \mathscr{O}_{\Lambda}$ satisfies

$$
X \text { is d-self-perpendicular } \Leftrightarrow X \text { is maximal d-rigid. }
$$

Proof. Each indecomposable in \mathscr{O}_{Λ} is d-rigid by [21, Lemma 5.41], so the equivalence follows from Theorem 1.1(ii).

2. A dimension formula for $\operatorname{Ext}_{\mathscr{T}}^{d}$

Recall from Setup 0.8 that T is a fixed Oppermann-Thomas cluster tilting object in \mathscr{T}, and that \mathscr{T} is $2 d$-Calabi-Yau, that is, $\mathscr{T}(X, Y) \cong \mathrm{D} \mathscr{T}\left(Y, \Sigma^{2 d} X\right)$ naturally in $X, Y \in \mathscr{T}$.

Lemma 2.1. There is a natural isomorphism

$$
\nu_{\Gamma} \mathscr{T}\left(T, T^{\prime}\right) \cong \mathscr{T}\left(T, \Sigma^{2 d}\left(T^{\prime}\right)\right)
$$

for $T^{\prime} \in \operatorname{add} T$.

Proof. By the 2d-Calabi-Yau property we have

$$
\mathscr{T}\left(T, \Sigma^{2 d}\left(T^{\prime}\right)\right) \cong \mathrm{D} \mathscr{T}\left(T^{\prime}, T\right) .
$$

By [14, Lemma 2.2(i)],

$$
\mathrm{D} \mathscr{T}\left(T^{\prime}, T\right) \cong \operatorname{DHom}_{\Gamma}\left(\mathscr{T}\left(T, T^{\prime}\right), \mathscr{T}(T, T)\right)=\operatorname{DHom}_{\Gamma}\left(\mathscr{T}\left(T, T^{\prime}\right), \Gamma\right)
$$

Finally, by definition we have

$$
\operatorname{DHom}_{\Gamma}\left(\mathscr{T}\left(T, T^{\prime}\right), \Gamma\right)=\nu_{\Gamma} \mathscr{T}\left(T, T^{\prime}\right)
$$

see [2, def. III.2.8].
Lemma 2.2. If $X \in \mathscr{T}$ has no non-zero direct summands in $\operatorname{add} \Sigma^{d} T$, then there exists a $(d+2)$-angle

$$
T_{d} \rightarrow \cdots \rightarrow T_{0} \rightarrow X \rightarrow \Sigma^{d} T_{d}
$$

in \mathscr{T} with the following properties: Each T_{i} is in add T, and applying the functor $\mathscr{T}(T,-)$ gives a complex

$$
\mathscr{T}\left(T, T_{d}\right) \rightarrow \cdots \rightarrow \mathscr{T}\left(T, T_{0}\right) \rightarrow \mathscr{T}(T, X) \rightarrow 0
$$

which is the start of the augmented minimal projective resolution of $\mathscr{T}(T, X)$.
Proof. Given X, there exists a $(d+2)$-angle

$$
\Sigma^{-d} X \rightarrow T_{d} \rightarrow \cdots \rightarrow T_{0} \rightarrow X
$$

with each T_{i} in add T by Definition 0.1. Since X has no non-zero direct summands in add $\Sigma^{d} T$, the first morphism in the $(d+2)$-angle is in the radical of \mathscr{T}. By dropping trivial summands of the form $T^{\prime} \xrightarrow{\cong} T^{\prime}$, we can assume that so are the other morphisms except the last morphism.

By [8, prop. 2.5(a)], applying the functor $\mathscr{T}(T,-)$ gives an exact sequence

$$
\mathscr{T}\left(T, \Sigma^{-d} X\right) \rightarrow \mathscr{T}\left(T, T_{d}\right) \rightarrow \cdots \rightarrow \mathscr{T}\left(T, T_{0}\right) \rightarrow \mathscr{T}(T, X) \rightarrow \mathscr{T}\left(T, \Sigma^{d} T_{d}\right)=0
$$

By Theorem 0.4, applying the functor $\mathscr{T}(T,-)$ is, up to isomorphism, just to apply a quotient functor, and this preserves radical morphisms. So in the exact sequence each morphism, except possibly $\mathscr{T}\left(T, T_{0}\right) \rightarrow \mathscr{T}(T, X)$, is in the radical of $\bmod \Gamma$. This proves the claim of the lemma.

Lemma 2.3. If $X \in \mathscr{T}$ has no non-zero direct summands in add $\Sigma^{d} T$, then there is a natural isomorphism

$$
\tau_{d} \mathscr{T}(T, X) \cong \mathscr{T}\left(T, \Sigma^{d} X\right)
$$

Proof. As X has no non-zero direct summands in add $\Sigma^{d} T$, we can consider the $(d+$ 2)-angle from Lemma 2.2. Apply $\mathscr{T}(T,-)$ to get the following part of an augmented minimal projective resolution in $\bmod \Gamma$:

$$
\mathscr{T}\left(T, T_{d}\right) \rightarrow \cdots \rightarrow \mathscr{T}\left(T, T_{0}\right) \rightarrow \mathscr{T}(T, X) \rightarrow 0
$$

Using the Nakayama functor and Lemma 2.1 we get the following commutative diagram.

The top sequence is exact by the definition of τ_{d}, see [12, sec. 1.4.1]. The bottom sequence is exact because it is obtained by applying $\operatorname{Hom}_{\mathscr{T}}(T,-)$ to a $(d+2)$-angle in \mathscr{T}, see $[8$, prop. $2.5(\mathrm{a})]$. The first term of the bottom sequence is actually $\mathscr{T}\left(T, \Sigma^{d} T_{0}\right)$, but this is zero. Since we have $d \geq 1$, the diagram implies

$$
\tau_{d} \mathscr{T}(T, X) \cong \mathscr{T}\left(T, \Sigma^{d} X\right)
$$

We write $[\operatorname{add} T](X, Y)=\{f \in \mathscr{T}(X, Y) \mid f$ factors through an object of add $T\}$.

Lemma 2.4. There is a natural isomorphism

$$
\mathrm{D}[\operatorname{add} T](X, Y) \cong \operatorname{Hom}_{\mathscr{T} / \operatorname{add} \Sigma^{d} T}\left(\bar{Y}, \overline{\Sigma^{2 d} X}\right)
$$

for $X, Y \in \mathscr{T}$.

Proof. Pick a $(d+2)$-angle in \mathscr{T} :

$$
T_{d} \rightarrow \ldots \rightarrow T_{0} \rightarrow Y \rightarrow \Sigma^{d} T_{d}
$$

with $T_{i} \in \operatorname{add} T$. Use $\mathscr{T}(X,-)$ to obtain the morphism $\Psi: \mathscr{T}\left(X, T_{0}\right) \rightarrow \mathscr{T}(X, Y)$. This is a homomorphism of k-vector spaces, hence we can talk about the image of Ψ. We first note that any morphism f in the image of Ψ must factor through add T. Now suppose $f \in \mathscr{T}(X, Y)$ factors through $T^{\prime} \in \operatorname{add} T$. We have the following commutative diagram, where the lower row is a part of the $(d+2)$-angle above:

The dashed arrow exists by completing the commutative square to a morphism of ($d+$ $2)$-angles. We conclude that $f \in \operatorname{Im} \Psi$. Hence

$$
\operatorname{Im} \Psi=[\operatorname{add} T](X, Y)
$$

We now return to the long exact sequence

$$
\cdots \rightarrow \mathscr{T}\left(X, T_{0}\right) \xrightarrow{\Psi} \mathscr{T}(X, Y) \rightarrow \mathscr{T}\left(X, \Sigma^{d} T_{d}\right) \rightarrow \cdots
$$

Using the duality functor D and Serre duality we get the following diagram with exact rows:

Analogous to the above discussion, the space $\left[\operatorname{add} \Sigma^{d} T\right]\left(Y, \Sigma^{2 d} X\right)$ is the image of the map α^{\prime}. Hence α is the kernel of β^{\prime} and $\mathrm{D} \Psi$ (by isomorphism). The morphism β is by definition the cokernel of α, and $\mathscr{T}\left(Y, \Sigma^{2 d} X\right) /\left[\operatorname{add} \Sigma^{d} T\right]\left(Y, \Sigma^{2 d} X\right)$ is thus the image of $\mathrm{D} \Psi$. Thus we have

$$
\begin{aligned}
\mathrm{D}[\operatorname{add} T](X, Y) & \cong \mathrm{D} \operatorname{Im} \Psi \cong \operatorname{Im} \mathrm{D} \Psi \cong \mathscr{T}\left(Y, \Sigma^{2 d} X\right) /\left[\operatorname{add} \Sigma^{d} T\right]\left(Y, \Sigma^{2 d} X\right) \\
& \cong \operatorname{Hom}_{\mathscr{T} / \operatorname{add} \Sigma^{d} T}\left(\bar{Y}, \overline{\Sigma^{2 d} X}\right) .
\end{aligned}
$$

Lemma 2.5. Suppose $X, Y \in \mathscr{T}$. Then we have a short exact sequence

$$
0 \rightarrow \operatorname{DHom}_{\mathscr{T} / \operatorname{add} \Sigma^{d} T}\left(\bar{Y}, \overline{\Sigma^{d} X}\right) \rightarrow \operatorname{Ext}_{\mathscr{T}}^{d}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{T} / \operatorname{add} \Sigma^{d} T}\left(\bar{X}, \overline{\Sigma^{d} Y}\right) \rightarrow 0
$$

Proof. By the definition of the quotient functor we have a short exact sequence

$$
0 \rightarrow\left[\operatorname{add} \Sigma^{d} T\right]\left(X, \Sigma^{d} Y\right) \rightarrow \mathscr{T}\left(X, \Sigma^{d} Y\right) \rightarrow \operatorname{Hom}_{\mathscr{T} / \operatorname{add} \Sigma^{d} T}\left(\bar{X}, \overline{\Sigma^{d} Y}\right) \rightarrow 0
$$

We have $\left[\operatorname{add} \Sigma^{d} T\right]\left(X, \Sigma^{d} Y\right) \cong[\operatorname{add} T]\left(\Sigma^{-d} X, Y\right)$. By Lemma 2.4 we have
$[\operatorname{add} T]\left(\Sigma^{-d} X, Y\right) \cong \operatorname{DHom}_{\mathscr{T} / \operatorname{add} \Sigma^{d} T}\left(\bar{Y}, \overline{\Sigma^{2 d} \Sigma^{-d} X}\right) \cong \operatorname{DHom}_{\mathscr{T} / \operatorname{add} \Sigma^{d} T}\left(\bar{Y}, \overline{\Sigma^{d} X}\right)$.
We also know that $\mathscr{T}\left(X, \Sigma^{d} Y\right) \cong \operatorname{Ext}_{\mathscr{T}}^{d}(X, Y)$, so the conclusion follows.
Lemma 2.6. Suppose $X, Y \in \mathscr{T}$ have no non-zero direct summands in add $\Sigma^{d} T$. Then we have a short exact sequence

$$
\begin{aligned}
0 & \rightarrow \operatorname{DHom}_{\Gamma}\left(\mathscr{T}(T, Y), \tau_{d} \mathscr{T}(T, X)\right) \rightarrow \operatorname{Ext}_{\mathscr{T}}^{d}(X, Y) \\
& \rightarrow \operatorname{Hom}_{\Gamma}\left(\mathscr{T}(T, X), \tau_{d} \mathscr{T}(T, Y)\right) \rightarrow 0
\end{aligned}
$$

Proof. Consider the short exact sequence from Lemma 2.5. By Theorem 0.4 we know that

$$
\operatorname{DHom}_{\mathscr{T} / \operatorname{add} \Sigma^{d} T}\left(\bar{Y}, \overline{\Sigma^{d} X}\right) \cong \operatorname{DHom}_{\Gamma}\left(\mathscr{T}(T, Y), \mathscr{T}\left(T, \Sigma^{d} X\right)\right)
$$

Applying Lemma 2.3 we have
$\operatorname{DHom}_{\Gamma}\left(\mathscr{T}(T, Y), \mathscr{T}\left(T, \Sigma^{d} X\right)\right) \cong \operatorname{DHom}_{\Gamma}\left(\mathscr{T}(T, Y), \tau_{d} \mathscr{T}(T, X)\right)$.
Similarly we can show $\operatorname{Hom}_{\mathscr{T} / \text { add } \Sigma^{d} T}\left(\bar{X}, \overline{\Sigma^{d} Y}\right) \cong \operatorname{Hom}_{\Gamma}\left(\mathscr{T}(T, X), \tau_{d} \mathscr{T}(T, Y)\right)$.
The map defined next will eventually induce the equivalence of Theorem B.

Definition 2.7. For each $X \in \mathscr{T}$, pick an isomorphism $X \cong X^{\prime} \oplus X^{\prime \prime}$ such that X^{\prime} has no non-zero direct summands in add $\Sigma^{d} T$ and $X^{\prime \prime} \in \operatorname{add} \Sigma^{d} T$. Let

$$
\Delta(X)=\left(\mathscr{T}\left(T, X^{\prime}\right), \mathscr{T}\left(T, \Sigma^{-d} X^{\prime \prime}\right)\right)
$$

This is a pair of Γ-modules where $\mathscr{T}\left(T, X^{\prime}\right)$ is in \mathscr{D} and $\mathscr{T}\left(T, \Sigma^{-d} X^{\prime \prime}\right)$ is in proj Γ.
Proposition 2.8. Given $X, Y \in \mathscr{T}$, set $(M, P)=\Delta(X)$ and $(N, Q)=\Delta(Y)$, where Δ is the map in Definition 2.7. Then

$$
\begin{aligned}
\operatorname{dim}_{k} \operatorname{Ext}_{\mathscr{T}}^{d}(X, Y)= & \operatorname{dim}_{k} \operatorname{Hom}_{\Gamma}\left(M, \tau_{d} N\right)+\operatorname{dim}_{k} \operatorname{Hom}_{\Gamma}\left(N, \tau_{d} M\right) \\
& +\operatorname{dim}_{k} \operatorname{Hom}_{\Gamma}(P, N)+\operatorname{dim}_{k} \operatorname{Hom}_{\Gamma}(Q, M)
\end{aligned}
$$

Proof. By additivity of Ext we have

$$
\begin{aligned}
\operatorname{Ext}_{\mathscr{T}}^{d}(X, Y) & \cong \operatorname{Ext}_{\mathscr{T}}^{d}\left(X^{\prime} \oplus X^{\prime \prime}, Y^{\prime} \oplus Y^{\prime \prime}\right) \\
& \cong \operatorname{Ext}_{\mathscr{T}}^{d}\left(X^{\prime}, Y^{\prime}\right) \oplus \operatorname{Ext}_{\mathscr{T}}^{d}\left(X^{\prime}, Y^{\prime \prime}\right) \oplus \operatorname{Ext}_{\mathscr{T}}^{d}\left(X^{\prime \prime}, Y^{\prime}\right) \oplus \operatorname{Ext}_{\mathscr{T}}^{d}\left(X^{\prime \prime}, Y^{\prime \prime}\right) .
\end{aligned}
$$

As T is d-rigid, we see that $\operatorname{Ext}_{\mathscr{T}}^{d}\left(X^{\prime \prime}, Y^{\prime \prime}\right)=0$, and hence we have

$$
\begin{equation*}
\operatorname{dim} \operatorname{Ext}_{\mathscr{T}}^{d}(X, Y)=\operatorname{dim} \operatorname{Ext}_{\mathscr{T}}^{d}\left(X^{\prime}, Y^{\prime}\right)+\operatorname{dim} \operatorname{Ext}_{\mathscr{T}}^{d}\left(X^{\prime}, Y^{\prime \prime}\right)+\operatorname{dim} \operatorname{Ext}_{\mathscr{T}}^{d}\left(X^{\prime \prime}, Y^{\prime}\right) \tag{2.1}
\end{equation*}
$$

From Lemma 2.6 we have the short exact sequence:

$$
\begin{aligned}
0 & \rightarrow \operatorname{DHom}_{\Gamma}\left(\mathscr{T}\left(T, Y^{\prime}\right), \tau_{d} \mathscr{T}\left(T, X^{\prime}\right)\right) \rightarrow \operatorname{Ext}_{\mathscr{T}}^{d}\left(X^{\prime}, Y^{\prime}\right) \\
& \rightarrow \operatorname{Hom}_{\Gamma}\left(\mathscr{T}\left(T, X^{\prime}\right), \tau_{d} \mathscr{T}\left(T, Y^{\prime}\right)\right) \rightarrow 0
\end{aligned}
$$

which means that

$$
\begin{align*}
\operatorname{dim} \operatorname{Ext}_{\mathscr{T}}^{d}\left(X^{\prime}, Y^{\prime}\right)= & \operatorname{dim}_{k} \operatorname{Hom}_{\Gamma}\left(\mathscr{T}\left(T, X^{\prime}\right), \tau_{d} \mathscr{T}\left(T, Y^{\prime}\right)\right) \\
& +\operatorname{dim}_{k} \operatorname{Hom}_{\Gamma}\left(\mathscr{T}\left(T, Y^{\prime}\right), \tau_{d} \mathscr{T}\left(T, X^{\prime}\right)\right) \\
= & \operatorname{dim}_{k} \operatorname{Hom}_{\Gamma}\left(M, \tau_{d} N\right)+\operatorname{dim}_{k} \operatorname{Hom}_{\Gamma}\left(N, \tau_{d} M\right) \tag{2.2}
\end{align*}
$$

We see that

$$
\begin{aligned}
\operatorname{Ext}_{\mathscr{T}}^{d}\left(X^{\prime \prime}, Y^{\prime}\right) & \cong \mathscr{T}\left(X^{\prime \prime}, \Sigma^{d} Y^{\prime}\right) \cong \mathscr{T}\left(\Sigma^{-d} X^{\prime \prime}, Y^{\prime}\right) \cong \operatorname{Hom}_{\Gamma}\left(\mathscr{T}\left(T, \Sigma^{-d} X^{\prime \prime}\right), \mathscr{T}\left(T, Y^{\prime}\right)\right) \\
& \cong \operatorname{Hom}_{\Gamma}(P, N)
\end{aligned}
$$

The third isomorphism follows from [14, Lemma 2.2(i)] and the fact that $\Sigma^{-d} X^{\prime \prime} \in \operatorname{add} T$. Similarly,

$$
\operatorname{Ext}_{\mathscr{T}}^{d}\left(X^{\prime}, Y^{\prime \prime}\right) \cong \operatorname{DExt}_{\mathscr{T}}^{d}\left(Y^{\prime \prime}, X^{\prime}\right) \cong \operatorname{Dom}_{\Gamma}(Q, M)
$$

Thus we have

$$
\begin{align*}
\operatorname{dim} \operatorname{Ext}_{\mathscr{T}}^{d}\left(X^{\prime \prime}, Y^{\prime}\right) & =\operatorname{dim}_{k} \operatorname{Hom}_{\Gamma}(P, N) \tag{2.3}\\
\operatorname{dim} \operatorname{Ext}_{\mathscr{T}}^{d}\left(X^{\prime}, Y^{\prime \prime}\right) & =\operatorname{dim}_{k} \operatorname{Hom}_{\Gamma}(Q, M) \tag{2.4}
\end{align*}
$$

Substituting (2.2), (2.3), and (2.4) into (2.1) gives the result.
As a consequence we have:
Corollary 2.9. Given $X, Y \in \mathscr{T}$, set $(M, P)=\Delta(X)$ and $(N, Q)=\Delta(Y)$. Then

$$
\begin{aligned}
& \operatorname{Ext}_{\mathscr{T}}^{d}(X, Y)=0 \Leftrightarrow \\
& \operatorname{Hom}_{\Gamma}\left(M, \tau_{d} N\right)=\operatorname{Hom}_{\Gamma}\left(N, \tau_{d} M\right)=\operatorname{Hom}_{\Gamma}(P, N)=\operatorname{Hom}_{\Gamma}(Q, M)=0
\end{aligned}
$$

3. Proof of Theorem B

The following results use the map Δ from Definition 2.7.

Lemma 3.1. Given $X, Y \in \mathscr{T}$, set $(M, P)=\Delta(X)$ and $(N, Q)=\Delta(Y)$. Then $Y \in \operatorname{add} X$ if and only if $N \in \operatorname{add} M$ and $Q \in \operatorname{add} P$.

Proof. Let $X \cong X^{\prime} \oplus X^{\prime \prime}$ be the decomposition from Definition 2.7, where X^{\prime} has no non-zero direct summands from add $\Sigma^{d} T$ while $X^{\prime \prime}$ is in add $\Sigma^{d} T$. We have $(M, P)=$ $\left(\mathscr{T}\left(T, X^{\prime}\right), \mathscr{T}\left(T, \Sigma^{-d} X^{\prime \prime}\right)\right)$. Similarly, $(N, Q)=\left(\mathscr{T}\left(T, Y^{\prime}\right), \mathscr{T}\left(T, \Sigma^{-d} Y^{\prime \prime}\right)\right)$.

The condition $Q \in \operatorname{add} P$ is equivalent to $Y^{\prime \prime} \in$ add $X^{\prime \prime}$ by the add-proj-correspondence, (see Remark 0.5). The condition $N \in \operatorname{add} M$ is equivalent to $Y^{\prime} \in$ add X^{\prime} by Theorem 0.4 because X^{\prime}, Y^{\prime} have no non-zero direct summands in add $\Sigma^{d} T$. The result follows.

Lemma 3.2. The category \mathscr{T} is skeletally small. The map Δ induces a bijection

$$
\begin{equation*}
\delta: \text { iso } \mathscr{T} \rightarrow \text { iso } \mathscr{D} \times \text { iso proj } \Gamma \tag{3.1}
\end{equation*}
$$

where iso denotes the set of isomorphism classes of a skeletally small category.

Proof. Let Iso denote the class of isomorphisms of a category. For a skeletally small category \mathscr{C} we have that Iso $\mathscr{C}=$ iso \mathscr{C}. Note that since a module category over a ring is skeletally small, we have that $\mathscr{D}, \operatorname{proj} \Gamma \subseteq \bmod \Gamma$ are skeletally small.

It is clear that Δ induces a well-defined map of the form

$$
\delta^{\prime}: \text { Iso } \mathscr{T} \rightarrow \text { iso } \mathscr{D} \times \text { iso } \operatorname{proj} \Gamma \text {. }
$$

To see that δ^{\prime} is injective, argue like the proof of Lemma 3.1, replacing membership of add with isomorphism.

It follows that \mathscr{T} is skeletally small. We can thus replace δ^{\prime} with the map δ from (3.1).
To see that δ is surjective, let (M, P) be a pair with $M \in \mathscr{D}$ and $P \in \operatorname{proj} \Gamma$. By Theorem 0.4 there is an object $X^{\prime} \in \mathscr{T}$ with no non-zero direct summands in add $\Sigma^{d} T$ such that $M \cong \mathscr{T}\left(T, X^{\prime}\right)$. By the add-proj correspondence, see Remark 0.5 , there is an object $X^{\prime \prime} \in \operatorname{add} \Sigma^{d} T$ such that $P \cong \mathscr{T}\left(T, \Sigma^{-d} X^{\prime \prime}\right)$. Setting $X=X^{\prime} \oplus X^{\prime \prime}$ gives $(M, P) \cong \Delta(X)$.

Lemma 3.3. If $X \in \mathscr{T}$ is d-self-perpendicular, then $(M, P)=\Delta(X)$ is a maximal τ_{d}-rigid pair.

Proof. Let $N \in \mathscr{D}$ and $Q \in \operatorname{proj} \Gamma$ be given. By Lemma 3.2, there is an object $Y \in \mathscr{T}$ such that $(N, Q) \cong \Delta(Y)$. Then

$$
\begin{aligned}
& N \in \operatorname{add} M \text { and } Q \in \operatorname{add} P \\
& \\
& \Leftrightarrow Y \in \operatorname{add} X \\
& \\
& \Leftrightarrow \operatorname{Ext}_{\mathscr{T}}^{d}(X, Y)=0 \\
&
\end{aligned} \operatorname{Hom}_{\Gamma}\left(M, \tau_{d} N\right)=\operatorname{Hom}_{\Gamma}\left(N, \tau_{d} M\right)=\operatorname{Hom}_{\Gamma}(P, N)=\operatorname{Hom}_{\Gamma}(Q, M)=0,
$$

where the equivalences, respectively, are by Lemma 3.1, Definition 0.2, and Corollary 2.9.
The conditions of Definition 0.7 are recovered by setting $Q=0$ respectively $N=0$.
Lemma 3.4. Let $X \in \mathscr{T}$ be given. If $(M, P)=\Delta(X)$ is a maximal τ_{d}-rigid pair, then X is d-self-perpendicular.

Proof. Let $Y \in \mathscr{T}$ be given and set $(N, Q) \cong \Delta(Y)$. Then

$$
\begin{aligned}
& \operatorname{Ext}_{\mathscr{T}}^{d}(X, Y)=0 \\
& \Leftrightarrow \operatorname{Hom}_{\Gamma}\left(M, \tau_{d} N\right)=\operatorname{Hom}_{\Gamma}\left(N, \tau_{d} M\right)=\operatorname{Hom}_{\Gamma}(P, N)=\operatorname{Hom}_{\Gamma}(Q, M)=0 \\
& \Leftrightarrow N \in \operatorname{add} M \text { and } Q \in \operatorname{add} P \\
& \Leftrightarrow Y \in \operatorname{add} X,
\end{aligned}
$$

where the equivalences, respectively, are by Corollary 2.9, Definition 0.7, and Lemma 3.1.

Theorem 3.5. Recall that the map Δ from Definition 2.7 induces the bijection $\delta:$ iso $\mathscr{T} \rightarrow$ iso $\mathscr{D} \times$ iso proj Γ from Lemma 3.2.
(i) δ restricts to a bijection

$$
\left\{\begin{array}{c}
\text { isomorphism classes of } \\
d \text {-rigid objects in } \mathscr{T}
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { isomorphism classes of } \\
\tau_{d} \text {-rigid pairs in } \mathscr{D}
\end{array}\right\} .
$$

(ii) δ restricts further to a bijection

$$
\left\{\begin{array}{c}
\text { isomorphism classes of } \\
d \text {-self-perpendicular objects in } \mathscr{T}
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { isomorphism classes of } \\
\text { maximal } \tau_{d} \text {-rigid pairs in } \mathscr{D}
\end{array}\right\}
$$

Proof. (i): Consider $X \in \mathscr{T}$ and set $(M, P)=\Delta(X)$. Then

$$
\operatorname{Ext}_{\mathscr{T}}^{d}(X, X)=0 \Leftrightarrow \operatorname{Hom}_{\Gamma}\left(M, \tau_{d} M\right)=0 \text { and } \operatorname{Hom}_{\Gamma}(P, M)=0
$$

by Corollary 2.9 , so the result follows.
(ii): See Lemmas 3.3 and 3.4.

Proof of Theorem B (from the introduction). Combine Theorems 3.5(ii) and 1.1(ii).

Fig. 1. The AR quiver of the 5 -angulated category \mathscr{T}.

4. An example

In this section we let $d=3$ and $\mathscr{T}=\mathscr{O}_{A_{2}^{3}}$. This is the 5 -angulated (higher) cluster category of type A_{2}, see [21, def. 5.2 , sec. 6 , and sec. 8]. The indecomposable objects can be identified with the elements of the set

$$
{ }^{\circlearrowleft} \mathbf{I}_{9}^{3}=\{1357,1358,1368,1468,2468,2469,2479,2579,3579\}
$$

see [21, sec. 8]. The AR quiver of \mathscr{T} is shown in Fig. 1. By [21, thm. 5.5 and sec. 8], the object

$$
T=1357 \oplus 1358 \oplus 1368 \oplus 1468
$$

is Oppermann-Thomas cluster tilting.
If $X, Y \in \mathscr{T}$ are indecomposable objects, then

$$
\mathscr{T}(X, Y)= \begin{cases}k & \text { if } Y \text { is } X \text { or its immediate successor in the AR quiver, } \\ 0 & \text { otherwise }\end{cases}
$$

see [21, prop. 6.1 and def. 6.9]. It follows that $\Gamma=\operatorname{End}_{\mathscr{T}}(T)=k Q / I$, where

$$
Q=1 \rightarrow 2 \rightarrow 3 \rightarrow 4
$$

and I is the ideal generated by all compositions of two consecutive arrows. The action of the functor $\mathscr{T}(T,-): \mathscr{T} \rightarrow \bmod \Gamma$ on indecomposable objects is shown in Fig. 2, where $P(q)$ and $I(q)$ denote the indecomposable projective and injective modules associated to the vertex $q \in Q$. Note that the essential image of $\mathscr{T}(T,-)$ is

X	1357	1358	1368	1468	2468	2469	2479	2579	3579
$\mathscr{T}(T, X)$	$P(4)$	$P(3)$	$P(2)$	$P(1)$	$I(1)$	0	0	0	0

Fig. 2. The action of the functor $\mathscr{T}(T,-): \mathscr{T} \rightarrow \bmod \Gamma$.

Fig. 3. The functor $\operatorname{Ext}_{\mathscr{T}}^{3}(X,-)$ is non-zero on Y_{1} and Y_{2}. It is zero on every other indecomposable object.

Maximal 3-rigid object X	Maximal τ_{3}-rigid pair $\Delta(X)$
$1357 \oplus 1358 \oplus 1368 \oplus 1468$	$(\Gamma, 0)$
$1358 \oplus 1368 \oplus 1468 \oplus 2468$	$(\mathrm{D}, 0)$
$1368 \oplus 1468 \oplus 2468 \oplus 2469$	$(P(2) \oplus P(1) \oplus I(1), P(4))$
$1468 \oplus 2468 \oplus 2469 \oplus 2479$	$P(1) \oplus I(1), P(4) \oplus P(3)$
$2468 \oplus 2469 \oplus 2479 \oplus 2579$	$(I(1), P(4) \oplus P(3) \oplus P(2))$
$2469 \oplus 2479 \oplus 2579 \oplus 3579$	$(0, \Gamma)$
$2479 \oplus 2579 \oplus 3579 \oplus 1357$	$(P(4), P(3) \oplus P(2) \oplus P(1))$
$2579 \oplus 3579 \oplus 1357 \oplus 1358$	$(P(4) \oplus P(3), P(2) \oplus P(1))$
$3579 \oplus 1357 \oplus 1358 \oplus 1368$	$(P(4) \oplus P(3) \oplus P(2), P(1))$
$1357 \oplus 1468 \oplus 2479$	$(P(4) \oplus P(1), P(3))$
$1358 \oplus 2468 \oplus 2579$	$(P(3) \oplus I(1), P(2))$
$1368 \oplus 2469 \oplus 3579$	$(P(2), P(4) \oplus P(1))$

Fig. 4. These are all the basic maximal 3-rigid objects of \mathscr{T} and their corresponding maximal τ_{3}-rigid pairs in \mathscr{D}.

$$
\mathscr{D}=\operatorname{add}\{P(4), P(3), P(2), P(1), I(1)\} .
$$

This is a 3 -cluster tilting subcategory of $\bmod \Gamma$ and hence it is 3 -abelian.
The 3 -suspension functor Σ^{3} acts on the AR quiver by moving four steps clockwise. Combined with our knowledge of Hom, this shows that if X is a fixed indecomposable object in \mathscr{T}, then the indecomposable objects Y with $\operatorname{Ext}_{\mathscr{T}}^{3}(X, Y) \neq 0$ are precisely the two objects furthest from X in the AR quiver, see Fig. 3.

Based on this, we can compute all basic 3 -self-perpendicular objects in \mathscr{T}, and by Proposition 1.3 they coincide with the basic maximal 3-rigid objects in \mathscr{T}. For each such object X, there is a maximal τ_{3}-rigid pair $\Delta(X)=\left(\mathscr{T}\left(T, X^{\prime}\right), \mathscr{T}\left(T, \Sigma^{-3} X^{\prime \prime}\right)\right)$ by Theorem B. See Fig. 4. Note that the first nine objects in Fig. 4 are Oppermann-Thomas cluster tilting, but the three last objects are not.

Acknowledgment

This work was supported by EPSRC grant EP/P016014/1 "Higher Dimensional Homological Algebra". Karin M. Jacobsen is grateful for the hospitality of Newcastle University during her visit in October 2018.

References

[1] T. Adachi, O. Iyama, I. Reiten, τ-Tilting theory, Compos. Math. 150 (2014) 415-452.
[2] I. Assem, D. Simson, A. Skowroński, Elements of the Representation Theory of Associative Algebras, Vol. 1, Techniques of Representation Theory, London Math. Soc. Stud. Texts, vol. 65, Cambridge University Press, Cambridge, 2006.
[3] P.A. Bergh, M. Thaule, The axioms for n-angulated categories, Algebr. Geom. Topol. 13 (2013) 2405-2428.
[4] A.B. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006) 572-618.
[5] A.B. Buan, R.J. Marsh, D.F. Vatne, Cluster structures from 2-Calabi-Yau categories with loops, Math. Z. 265 (2010) 951-970.
[6] F. Fedele, Auslander-Reiten $(d+2)$-angles in subcategories and a $(d+2)$-angulated generalisation of a theorem by Brüning, J. Pure Appl. Algebra 223 (2019) 3554-3580.
[7] F. Fedele, d-Auslander-Reiten sequences in subcategories, preprint, arXiv:1808.02709, 2018.
[8] C. Geiss, B. Keller, S. Oppermann, n-angulated categories, J. Reine Angew. Math. 675 (2013) 101-120.
[9] M. Herschend, O. Iyama, n-representation-finite algebras and twisted fractionally Calabi-Yau algebras, Bull. Lond. Math. Soc. 43 (2011) 449-466.
[10] M. Herschend, O. Iyama, Selfinjective quivers with potential and 2-representation-finite algebras, Compos. Math. 147 (2011) 1885-1920.
[11] O. Iyama, Cluster tilting for higher Auslander algebras, Adv. Math. 226 (2011) 1-61.
[12] O. Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007) 22-50.
[13] O. Iyama, S. Oppermann, Stable categories of higher preprojective algebras, Adv. Math. 244 (2013) 23-68.
[14] K.M. Jacobsen, P. Jørgensen, d-Abelian quotients of $(d+2)$-angulated categories, J. Algebra 521 (2019) 114-136.
[15] G. Jasso, n-Abelian and n-exact categories, Math. Z. 283 (2016) 203-759.
[16] G. Jasso, J. Külshammer, Higher Nakayama algebras I: construction, preprint, arXiv:1604.03500, 2016.
[17] G. Jasso, J. Külshammer, Nakayama-type phenomena in higher Auslander-Reiten theory, in: Representations of Algebras, in: Contemp. Math., vol. 705, American Mathematical Society, Providence, RI, 2018, pp. 79-98.
[18] G. Jasso, S. Kvamme, An introduction to higher Auslander-Reiten theory, Bull. Lond. Math. Soc. 51 (2019) 1-24.
[19] J. McMahon, Higher support tilting I: higher Auslander algebras of linearly oriented type A, preprint, arXiv:1808.05184, 2018.
[20] Y. Mizuno, A Gabriel-type theorem for cluster tilting, Proc. Lond. Math. Soc. (3) 108 (2014) 836-868.
[21] S. Oppermann, H. Thomas, Higher-dimensional cluster combinatorics and representation theory, J. Eur. Math. Soc. (JEMS) 14 (2012) 1679-1737.
[22] Y. Zhou, B. Zhu, Maximal rigid subcategories in 2-Calabi-Yau triangulated categories, J. Algebra 348 (2011) 49-60.

[^0]: * Corresponding author.

 E-mail addresses: kjacobsen@math.uni-bielefeld.de (K.M. Jacobsen), peter.jorgensen@ncl.ac.uk
 (P. Jørgensen).

 URL: http://www.staff.ncl.ac.uk/peter.jorgensen (P. Jørgensen).
 ${ }^{1}$ Current address: Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany.

