

Contents lists available at ScienceDirect

Journal of Algebra

Maximal τ_d -rigid pairs

ARTICLE INFO

Article history:
Received 30 April 2019
Available online 14 November 2019
Communicated by David Hernandez

MSC:

16G10

18E10

18E30

Keywords: d-Abelian category (d+2)-Angulated category Higher homological algebra Maximal d-rigid object Maximal τ_d -rigid pair

ABSTRACT

Let \mathscr{T} be a 2-Calabi–Yau triangulated category, T a cluster tilting object with endomorphism algebra Γ . Consider the functor $\mathscr{T}(T,-):\mathscr{T}\to\operatorname{mod}\Gamma$. It induces a bijection from the isomorphism classes of cluster tilting objects to the isomorphism classes of support τ -tilting pairs. This is due to Adachi, Ivama, and Reiten.

The notion of (d+2)-angulated categories is a higher analogue of triangulated categories. We show a higher analogue of the above result, based on the notion of maximal τ_d -rigid pairs.

© 2019 Published by Elsevier Inc.

0. Introduction

In triangulated categories, the notions of *cluster tilting objects* (introduced in [4, p. 583]) and *maximal rigid objects* have recently been extensively investigated. They

^{*} Corresponding author.

E-mail addresses: kjacobsen@math.uni-bielefeld.de (K.M. Jacobsen), peter.jorgensen@ncl.ac.uk (P. Jørgensen)

URL: http://www.staff.ncl.ac.uk/peter.jorgensen (P. Jørgensen).

¹ Current address: Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany.

frequently coincide, by [22, thm. 2.6], and they are closely linked to the notion of *support* τ -tilting pairs in abelian categories (introduced in [1, def. 0.3]). Indeed, there is often a bijection between the cluster tilting objects in a triangulated category and the support τ -tilting pairs in a suitable (abelian) module category, see [1, thm. 4.1].

This paper investigates the analogous theory in (d+2)-angulated and d-abelian categories, which are the main objects of higher homological algebra, see [8, def. 2.1] and [15, def. 3.1]. Several key properties from the classic case do not carry over. For example, cluster tilting objects are maximal d-rigid, but the converse is rarely true. Moreover, the higher analogue of support τ -rigid pairs permit a bijection to the maximal d-rigid objects, but not to the cluster tilting objects.

For further reading in higher homological algebra a number of references have been included in the bibliography, see [3], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21].

Let k be an algebraically closed field, $d \ge 1$ an integer, \mathscr{T} a k-linear Hom-finite (d+2)-angulated category with split idempotents, see [8, def. 2.1]. Assume that \mathscr{T} is 2d-Calabi–Yau, see [21, def. 5.2], and let Σ^d denote the d-suspension functor of \mathscr{T} .

Cluster tilting and maximal d-rigid objects. An object $X \in \mathcal{T}$ is d-rigid if $\operatorname{Ext}_{\mathcal{T}}^d(X,X) = 0$. We recall three important definitions.

Definition 0.1 ([21, def. 5.3]). An object $X \in \mathcal{T}$ is Oppermann–Thomas cluster tilting in \mathcal{T} if:

- (i) X is d-rigid.
- (ii) For any $Y \in \mathcal{T}$ there exists a (d+2)-angle

$$X_d \to \cdots \to X_0 \to Y \to \Sigma^d X_d$$

with $X_i \in \operatorname{add} X$ for all $0 \le i \le d$.

Definition 0.2. An object $X \in \mathcal{T}$ is d-self-perpendicular in \mathcal{T} if

$$\operatorname{add} X = \{ \, Y \in \mathscr{T} \mid \operatorname{Ext}_{\mathscr{T}}^d(X, Y) = 0 \, \}.$$

Definition 0.3. An object $X \in \mathcal{T}$ is maximal d-rigid in \mathcal{T} if

$$\operatorname{add} X = \{ Y \in \mathcal{T} \mid \operatorname{Ext}_{\mathcal{T}}^{d}(X \oplus Y, X \oplus Y) = 0 \}.$$

Our first main result is:

Theorem A. X is Oppermann–Thomas cluster tilting \Rightarrow X is d-self-perpendicular \Rightarrow X is maximal d-rigid.

We prove this in Theorem 1.1. Of equal importance is that the implications cannot be reversed in general, see Remark 1.2. In particular, when $d \ge 2$, the class of maximal d-rigid objects is typically strictly larger than the class of Oppermann–Thomas cluster tilting objects, in contrast to the classic case d = 1 where the two classes usually coincide, see [22, thm. 2.6].

Maximal τ_d -rigid pairs. Let $T \in \mathscr{T}$ be an Oppermann–Thomas cluster tilting object and let $\Gamma = \operatorname{End}_{\mathscr{T}}(T)$. Recall the following result.

Theorem 0.4 ([14, thm. 0.6]). Consider the essential image \mathscr{D} of the functor $\mathscr{T}(T, -)$: $\mathscr{T} \to \operatorname{mod} \Gamma$. Then \mathscr{D} is a d-cluster tilting subcategory of $\operatorname{mod} \Gamma$. There is a commutative diagram, as shown below, where the vertical arrow is the quotient functor and the diagonal arrow is an equivalence of categories:

The category \mathscr{D} is a d-abelian category by [15, thm. 3.16]. It has a d-Auslander–Reiten translation τ_d , which is a higher analogue of the classic Auslander–Reiten translation τ , see [12, sec. 1.4.1]. A module $M \in \mathscr{D}$ is called τ_d -rigid if $\operatorname{Hom}_{\Gamma}(M, \tau_d M) = 0$.

Remark 0.5. The classic add-proj-correspondence holds, as $\mathcal{T}(T, -)$ restricts to an equivalence add $T \to \operatorname{proj} \Gamma$. The functor also restricts to an equivalence add $ST \to \operatorname{inj} \Gamma$. [14, lem. 2.1]

It is natural to ask if \mathscr{D} permits a higher analogue of the τ -tilting theory of [1]. We will not answer this question, but will instead introduce the following definitions inspired by it.

Definition 0.6. A pair (M, P) with $M \in \mathcal{D}$ and $P \in \operatorname{proj} \Gamma$ is called a τ_d -rigid pair in \mathcal{D} if M is τ_d -rigid and $\operatorname{Hom}_{\Gamma}(P, M) = 0$.

Definition 0.7. A pair (M, P) with $M \in \mathcal{D}$ and $P \in \operatorname{proj} \Gamma$ is called a maximal τ_d -rigid pair in \mathcal{D} if it satisfies:

(i) If $N \in \mathcal{D}$ then

$$N \in \operatorname{add} M \Leftrightarrow \begin{cases} \operatorname{Hom}_{\Gamma}(M, \tau_{d}N) = 0, \\ \operatorname{Hom}_{\Gamma}(N, \tau_{d}M) = 0, \\ \operatorname{Hom}_{\Gamma}(P, N) = 0. \end{cases}$$

(ii) If $Q \in \operatorname{proj} \Gamma$, then

$$Q \in \operatorname{add} P \Leftrightarrow \operatorname{Hom}_{\Gamma}(Q, M) = 0.$$

A maximal τ_d -rigid pair is a τ_d -rigid pair.

Our second main result is:

Theorem B. If each indecomposable object of \mathcal{T} is d-rigid, then there is a bijection

$$\left\{\begin{array}{c} isomorphism\ classes\ of\\ maximal\ d\mbox{-}rigid\ objects\ in\ \mathscr{T} \end{array}\right\} \rightarrow \left\{\begin{array}{c} isomorphism\ classes\ of\\ maximal\ \tau_d\mbox{-}rigid\ pairs\ in\ \mathscr{D} \end{array}\right\}.$$

We prove this in Section 3. If d = 1, then (M, P) is a maximal τ_1 -rigid pair if and only if it is a support τ -tilting pair in the sense of [1, def. 0.3(b)], see [1, def. 0.3, prop. 2.3, and cor. 2.13]. Hence Theorem B is a higher analogue of the bijection

$$\left\{\begin{array}{l} \text{isomorphism classes of} \\ \text{cluster tilting object in } \mathscr{T} \right\} \rightarrow \left\{\begin{array}{l} \text{isomorphism classes of} \\ \text{support } \tau\text{-tilting pairs in mod } \Gamma \end{array}\right\}$$

which exists by [1, thm. 4.1] when \mathscr{T} is triangulated, i.e. in the case d=1. However, when $d \geq 2$, we do not think of maximal τ_d -rigid pairs as support τ_d -tilting pairs. The reason is that by Theorem B, maximal τ_d -rigid pairs are linked to maximal d-rigid objects in higher angulated categories. As remarked above, this class is typically strictly larger than the class of Oppermann–Thomas cluster tilting objects when $d \geq 2$.

Note that [19] makes an approach to higher support tilting theory.

This paper is organised as follows: Section 1 proves Theorem A, Section 2 investigates the precise relation between Hom spaces in \mathcal{T} and \mathcal{D} , Section 3 proves Theorem B, and Section 4 gives an example.

Setup 0.8. Throughout the paper we use the following notation:

- k: An algebraically closed field.
- D: The duality functor $\operatorname{Hom}_k(-,k)$.
- \mathscr{T} : A k-linear, Hom-finite, (d+2)-angulated category with split idempotents. We assume that \mathscr{T} is 2d-Calabi–Yau, that is $\mathscr{T}(X,Y)\cong D\mathscr{T}(Y,\Sigma^{2d}X)$ naturally in $X,Y\in\mathscr{T}$.

- Σ^d : The d-suspension functor on \mathscr{T} .
- T: An Oppermann-Thomas cluster tilting object in \mathscr{T} .
- $\overline{(-)}$: The canonical functor $\mathscr{T} \to \mathscr{T}/\operatorname{add} \Sigma^d T$, whose target is the naive quotient category of \mathscr{T} modulo the morphisms which factor through an object in $\operatorname{add} \Sigma^d T$.
 - Γ : The endomorphism ring $\operatorname{End}_{\mathscr{T}}(T)$.
 - ν_{Γ} : The Nakayama functor on mod Γ .
 - τ_d : The d-Auslander–Reiten translation on mod Γ .
 - \mathscr{D} : The essential image of the functor $\mathscr{T}(T,-):\mathscr{T}\to\operatorname{mod}\Gamma$.

1. Proof of Theorem A

Theorem 1.1. Let $X \in \mathcal{T}$ be given.

(i) There are implications

$$X$$
 is Oppermann-Thomas cluster tilting $\begin{tabular}{c} & & & \downarrow \\ & & X \ is \ d\text{-self-perpendicular} \\ & & & \downarrow \\ & & X \ is \ maximal \ d\text{-rigid} \\ & & & \downarrow \\ & & X \ is \ d\text{-rigid}. \end{tabular}$

(ii) If each indecomposable object in \mathcal{T} is d-rigid, then

X is d-self-perpendicular $\Leftrightarrow X$ is maximal d-rigid.

- **Proof.** (i), the first implication: Suppose X is Oppermann–Thomas cluster tilting. We must prove the equality in Definition 0.2, and the inclusion \subseteq is clear. For the inclusion \supseteq , suppose $\operatorname{Ext}_{\mathscr{T}}^d(X,Y)=0$. Then each morphism $X_0\to \Sigma^d Y$ with $X_0\in\operatorname{add} X$ is zero. This applies in particular to the (d+2)-angle $X_d\to\cdots\to X_0\to \Sigma^d Y\to \Sigma^d X_d$ with $X_i\in\operatorname{add} X$, which exists since X is Oppermann–Thomas cluster tilting. But then the morphism $\Sigma^d Y\to \Sigma^d X_d$ is a split monomorphism, and applying Σ^{-d} gives a split monomorphism $Y\to X_d$ proving $Y\in\operatorname{add} X$.
- (i), the second implication: Suppose that X is d-self-perpendicular. We must prove the equality in Definition 0.3, and the inclusion \subseteq is clear. For the inclusion \supseteq , suppose $\operatorname{Ext}_{\mathscr{T}}^d(X \oplus Y, X \oplus Y) = 0$. Then in particular, $\operatorname{Ext}_{\mathscr{T}}^d(X, Y) = 0$, whence $Y \in \operatorname{add} X$.
 - (i), the third implication: This is clear.
- (ii): Suppose that each indecomposable object in \mathscr{T} is d-rigid. Because of part (i), it is enough to prove the implication \Leftarrow in (ii), so suppose that X is maximal d-rigid. We must prove the equality in Definition 0.2, and \subseteq is clear.

For the inclusion \supseteq , observe that $\{Y \in \mathcal{T} \mid \operatorname{Ext}^d_{\mathcal{T}}(X,Y) = 0\}$ is closed under direct sums and summands by additivity of Ext. Hence it is enough to suppose that Y is an

indecomposable object in this set and prove $Y \in \operatorname{add} X$. However, $\operatorname{Ext}_{\mathscr{T}}^d(X,Y) = 0$ implies $\operatorname{Ext}_{\mathscr{T}}^d(Y,X) = 0$ because \mathscr{T} is 2d-Calabi–Yau, and $\operatorname{Ext}_{\mathscr{T}}^d(Y,Y) = 0$ by assumption. Finally, X is d-rigid by part (i), so $\operatorname{Ext}_{\mathscr{T}}^d(X,X) = 0$. Combining these equalities shows $\operatorname{Ext}_{\mathscr{T}}^d(X \oplus Y, X \oplus Y) = 0$, and $Y \in \operatorname{add} X$ follows. \square

Remark 1.2. The implications in Theorem 1.1(i) cannot be reversed in general:

- An example of a d-self-perpendicular object X which is not Oppermann-Thomas cluster tilting is given in Section 4. In fact, the objects in the last three rows of Fig. 4 are such examples. The example was originally given in [21, p. 1735].
- An example of a maximal d-rigid object which is not d-self-perpendicular can be obtained by combining proposition 2.6 and corollary 2.7 in [5]. These results give a maximal 1-rigid object which is not cluster tilting, but in the triangulated setting of [5], cluster tilting is equivalent to 1-self-perpendicular, see [5, bottom of p. 963].
- Finally, an example of a d-rigid object which is not maximal d-rigid is the zero object, as soon as \mathcal{T} has a non-zero d-rigid object.

We end the section by observing that Theorem 1.1(ii) can be applied to an important class of categories.

Proposition 1.3. Let Λ be a d-representation finite algebra, \mathscr{O}_{Λ} the (d+2)-angulated cluster category associated to Λ in [21, thm. 5.2]. Then each $X \in \mathscr{O}_{\Lambda}$ satisfies

X is d-self-perpendicular $\Leftrightarrow X$ is maximal d-rigid.

Proof. Each indecomposable in \mathcal{O}_{Λ} is d-rigid by [21, Lemma 5.41], so the equivalence follows from Theorem 1.1(ii). \square

2. A dimension formula for $\operatorname{Ext}_{\mathscr{T}}^d$

Recall from Setup 0.8 that T is a fixed Oppermann–Thomas cluster tilting object in \mathscr{T} , and that \mathscr{T} is 2d-Calabi–Yau, that is, $\mathscr{T}(X,Y)\cong D\mathscr{T}(Y,\Sigma^{2d}X)$ naturally in $X,Y\in\mathscr{T}$.

Lemma 2.1. There is a natural isomorphism

$$\nu_{\Gamma} \mathscr{T}(T, T') \cong \mathscr{T}(T, \Sigma^{2d}(T'))$$

for $T' \in \operatorname{add} T$.

Proof. By the 2d-Calabi-Yau property we have

$$\mathscr{T}(T, \Sigma^{2d}(T')) \cong D\mathscr{T}(T', T).$$

By [14, Lemma 2.2(i)],

$$D\mathscr{T}(T',T) \cong DHom_{\Gamma}(\mathscr{T}(T,T'),\mathscr{T}(T,T)) = DHom_{\Gamma}(\mathscr{T}(T,T'),\Gamma).$$

Finally, by definition we have

$$DHom_{\Gamma}(\mathscr{T}(T,T'),\Gamma) = \nu_{\Gamma}\mathscr{T}(T,T'),$$

see [2, def. III.2.8].

Lemma 2.2. If $X \in \mathcal{T}$ has no non-zero direct summands in add $\Sigma^d T$, then there exists a (d+2)-angle

$$T_d \to \cdots \to T_0 \to X \to \Sigma^d T_d$$

in \mathscr{T} with the following properties: Each T_i is in add T, and applying the functor $\mathscr{T}(T,-)$ gives a complex

$$\mathcal{T}(T,T_d) \to \cdots \to \mathcal{T}(T,T_0) \to \mathcal{T}(T,X) \to 0$$

which is the start of the augmented minimal projective resolution of $\mathcal{T}(T,X)$.

Proof. Given X, there exists a (d+2)-angle

$$\Sigma^{-d}X \to T_d \to \cdots \to T_0 \to X$$

with each T_i in add T by Definition 0.1. Since X has no non-zero direct summands in add $\Sigma^d T$, the first morphism in the (d+2)-angle is in the radical of \mathscr{T} . By dropping trivial summands of the form $T' \xrightarrow{\cong} T'$, we can assume that so are the other morphisms except the last morphism.

By [8, prop. 2.5(a)], applying the functor $\mathcal{T}(T,-)$ gives an exact sequence

$$\mathscr{T}(T,\Sigma^{-d}X)\to\mathscr{T}(T,T_d)\to\cdots\to\mathscr{T}(T,T_0)\to\mathscr{T}(T,X)\to\mathscr{T}(T,\Sigma^dT_d)=0.$$

By Theorem 0.4, applying the functor $\mathscr{T}(T,-)$ is, up to isomorphism, just to apply a quotient functor, and this preserves radical morphisms. So in the exact sequence each morphism, except possibly $\mathscr{T}(T,T_0) \to \mathscr{T}(T,X)$, is in the radical of mod Γ . This proves the claim of the lemma. \square

Lemma 2.3. If $X \in \mathcal{T}$ has no non-zero direct summands in add $\Sigma^d T$, then there is a natural isomorphism

$$\tau_d \mathscr{T}(T, X) \cong \mathscr{T}(T, \Sigma^d X).$$

Proof. As X has no non-zero direct summands in add $\Sigma^d T$, we can consider the (d+2)-angle from Lemma 2.2. Apply $\mathcal{T}(T,-)$ to get the following part of an augmented minimal projective resolution in mod Γ :

$$\mathcal{T}(T, T_d) \to \cdots \to \mathcal{T}(T, T_0) \to \mathcal{T}(T, X) \to 0.$$

Using the Nakayama functor and Lemma 2.1 we get the following commutative diagram.

The top sequence is exact by the definition of τ_d , see [12, sec. 1.4.1]. The bottom sequence is exact because it is obtained by applying $\operatorname{Hom}_{\mathscr{T}}(T,-)$ to a (d+2)-angle in \mathscr{T} , see [8, prop. 2.5(a)]. The first term of the bottom sequence is actually $\mathscr{T}(T, \Sigma^d T_0)$, but this is zero. Since we have $d \geq 1$, the diagram implies

$$\tau_d \mathscr{T}(T, X) \cong \mathscr{T}(T, \Sigma^d X). \quad \Box$$

We write $[\operatorname{add} T](X,Y) = \{ f \in \mathscr{T}(X,Y) \mid f \text{ factors through an object of } \operatorname{add} T \}.$

Lemma 2.4. There is a natural isomorphism

$$D[\operatorname{add} T](X,Y) \cong \operatorname{Hom}_{\mathscr{T}/\operatorname{add} \Sigma^d T}(\overline{Y}, \overline{\Sigma^{2d} X})$$

for $X, Y \in \mathcal{T}$.

Proof. Pick a (d+2)-angle in \mathscr{T} :

$$T_d \to \ldots \to T_0 \to Y \to \Sigma^d T_d$$

with $T_i \in \operatorname{add} T$. Use $\mathscr{T}(X, -)$ to obtain the morphism $\Psi : \mathscr{T}(X, T_0) \to \mathscr{T}(X, Y)$. This is a homomorphism of k-vector spaces, hence we can talk about the image of Ψ . We first note that any morphism f in the image of Ψ must factor through $\operatorname{add} T$. Now suppose $f \in \mathscr{T}(X, Y)$ factors through $T' \in \operatorname{add} T$. We have the following commutative diagram, where the lower row is a part of the (d+2)-angle above:

The dashed arrow exists by completing the commutative square to a morphism of (d + 2)-angles. We conclude that $f \in \text{Im }\Psi$. Hence

$$\operatorname{Im} \Psi = [\operatorname{add} T](X, Y).$$

We now return to the long exact sequence

$$\cdots \to \mathscr{T}(X, T_0) \xrightarrow{\Psi} \mathscr{T}(X, Y) \to \mathscr{T}(X, \Sigma^d T_d) \to \cdots$$

Using the duality functor D and Serre duality we get the following diagram with exact rows:

$$D\mathscr{T}(X,\Sigma^{d}T_{d}) \xrightarrow{D\Psi} D\mathscr{T}(X,T_{0})$$

$$\downarrow \downarrow \qquad \qquad \downarrow \downarrow \qquad \downarrow \qquad \qquad \downarrow \downarrow \qquad$$

Analogous to the above discussion, the space $[\operatorname{add} \Sigma^d T](Y, \Sigma^{2d} X)$ is the image of the map α' . Hence α is the kernel of β' and $\operatorname{D}\Psi$ (by isomorphism). The morphism β is by definition the cokernel of α , and $\mathscr{T}(Y, \Sigma^{2d} X)/[\operatorname{add} \Sigma^d T](Y, \Sigma^{2d} X)$ is thus the image of $\operatorname{D}\Psi$. Thus we have

$$\begin{split} \operatorname{D}[\operatorname{add} T](X,Y) &\cong \operatorname{D} \operatorname{Im} \Psi \cong \operatorname{Im} \operatorname{D} \Psi \cong \mathscr{T}(Y,\Sigma^{2d}X)/[\operatorname{add} \Sigma^d T](Y,\Sigma^{2d}X) \\ &\cong \operatorname{Hom}_{\mathscr{T}/\operatorname{add} \Sigma^d T}(\overline{Y},\overline{\Sigma^{2d}X}). \quad \Box \end{split}$$

Lemma 2.5. Suppose $X, Y \in \mathcal{T}$. Then we have a short exact sequence

$$0 \to \mathrm{DHom}_{\mathscr{T}/\operatorname{add}\Sigma^dT}(\overline{Y}, \overline{\Sigma^dX}) \to \mathrm{Ext}_{\mathscr{T}}^d(X,Y) \to \mathrm{Hom}_{\mathscr{T}/\operatorname{add}\Sigma^dT}(\overline{X}, \overline{\Sigma^dY}) \to 0.$$

Proof. By the definition of the quotient functor we have a short exact sequence

$$0 \to [\operatorname{add} \Sigma^d T](X, \Sigma^d Y) \to \mathscr{T}(X, \Sigma^d Y) \to \operatorname{Hom}_{\mathscr{T}/\operatorname{add} \Sigma^d T}(\overline{X}, \overline{\Sigma^d Y}) \to 0.$$

We have $[\operatorname{add} \Sigma^d T](X, \Sigma^d Y) \cong [\operatorname{add} T](\Sigma^{-d} X, Y)$. By Lemma 2.4 we have

$$[\operatorname{add} T](\Sigma^{-d}X,Y) \cong \operatorname{DHom}_{\mathscr{T}/\operatorname{add} \Sigma^{d}T}(\overline{Y},\overline{\Sigma^{2d}\Sigma^{-d}X}) \cong \operatorname{DHom}_{\mathscr{T}/\operatorname{add} \Sigma^{d}T}(\overline{Y},\overline{\Sigma^{d}X}).$$

We also know that $\mathscr{T}(X,\Sigma^dY)\cong \operatorname{Ext}^d_{\mathscr{T}}(X,Y)$, so the conclusion follows. \square

Lemma 2.6. Suppose $X,Y \in \mathcal{T}$ have no non-zero direct summands in add $\Sigma^d T$. Then we have a short exact sequence

$$0 \to \mathrm{DHom}_{\Gamma}\left(\mathscr{T}(T,Y), \tau_{d}\mathscr{T}(T,X)\right) \to \mathrm{Ext}_{\mathscr{T}}^{d}(X,Y)$$
$$\to \mathrm{Hom}_{\Gamma}\left(\mathscr{T}(T,X), \tau_{d}\mathscr{T}(T,Y)\right) \to 0.$$

Proof. Consider the short exact sequence from Lemma 2.5. By Theorem 0.4 we know that

$$\mathrm{DHom}_{\mathscr{T}/\operatorname{add}\Sigma^dT}(\overline{Y},\overline{\Sigma^dX})\cong\mathrm{DHom}_{\Gamma}\left(\mathscr{T}(T,Y),\mathscr{T}(T,\Sigma^dX)\right).$$

Applying Lemma 2.3 we have

$$\mathrm{DHom}_{\Gamma}\left(\mathscr{T}(T,Y),\mathscr{T}(T,\Sigma^{d}X)\right)\cong\mathrm{DHom}_{\Gamma}\left(\mathscr{T}(T,Y),\tau_{d}\mathscr{T}(T,X)\right).$$

Similarly we can show $\operatorname{Hom}_{\mathscr{T}/\operatorname{add}\Sigma^d T}(\overline{X}, \overline{\Sigma^d Y}) \cong \operatorname{Hom}_{\Gamma}(\mathscr{T}(T, X), \tau_d \mathscr{T}(T, Y))$. \square

The map defined next will eventually induce the equivalence of Theorem B.

Definition 2.7. For each $X \in \mathcal{T}$, pick an isomorphism $X \cong X' \oplus X''$ such that X' has no non-zero direct summands in add $\Sigma^d T$ and $X'' \in \operatorname{add} \Sigma^d T$. Let

$$\Delta(X) = (\mathscr{T}(T, X'), \mathscr{T}(T, \Sigma^{-d}X'')).$$

This is a pair of Γ -modules where $\mathscr{T}(T,X')$ is in \mathscr{D} and $\mathscr{T}(T,\Sigma^{-d}X'')$ is in proj Γ .

Proposition 2.8. Given $X, Y \in \mathcal{T}$, set $(M, P) = \Delta(X)$ and $(N, Q) = \Delta(Y)$, where Δ is the map in Definition 2.7. Then

$$\dim_k \operatorname{Ext}_{\mathscr{T}}^d(X,Y) = \dim_k \operatorname{Hom}_{\Gamma}(M,\tau_d N) + \dim_k \operatorname{Hom}_{\Gamma}(N,\tau_d M) + \dim_k \operatorname{Hom}_{\Gamma}(P,N) + \dim_k \operatorname{Hom}_{\Gamma}(Q,M).$$

Proof. By additivity of Ext we have

$$\begin{split} \operatorname{Ext}^d_{\mathscr{T}}(X,Y) & \cong \operatorname{Ext}^d_{\mathscr{T}}(X' \oplus X'', Y' \oplus Y'') \\ & \cong \operatorname{Ext}^d_{\mathscr{T}}(X',Y') \oplus \operatorname{Ext}^d_{\mathscr{T}}(X',Y'') \oplus \operatorname{Ext}^d_{\mathscr{T}}(X'',Y'') \oplus \operatorname{Ext}^d_{\mathscr{T}}(X'',Y''). \end{split}$$

As T is d-rigid, we see that $\operatorname{Ext}_{\mathscr{T}}^d(X'',Y'')=0$, and hence we have

$$\dim \operatorname{Ext}_{\mathscr{T}}^d(X,Y) = \dim \operatorname{Ext}_{\mathscr{T}}^d(X',Y') + \dim \operatorname{Ext}_{\mathscr{T}}^d(X',Y'') + \dim \operatorname{Ext}_{\mathscr{T}}^d(X'',Y'). \tag{2.1}$$

From Lemma 2.6 we have the short exact sequence:

$$0 \to \mathrm{DHom}_{\Gamma} \left(\mathscr{T}(T, Y'), \tau_d \mathscr{T}(T, X') \right) \to \mathrm{Ext}_{\mathscr{T}}^d(X', Y')$$
$$\to \mathrm{Hom}_{\Gamma} \left(\mathscr{T}(T, X'), \tau_d \mathscr{T}(T, Y') \right) \to 0,$$

which means that

$$\dim \operatorname{Ext}_{\mathscr{T}}^{d}(X', Y') = \dim_{k} \operatorname{Hom}_{\Gamma} \left(\mathscr{T}(T, X'), \tau_{d} \mathscr{T}(T, Y') \right)$$

$$+ \dim_{k} \operatorname{Hom}_{\Gamma} \left(\mathscr{T}(T, Y'), \tau_{d} \mathscr{T}(T, X') \right)$$

$$= \dim_{k} \operatorname{Hom}_{\Gamma}(M, \tau_{d} N) + \dim_{k} \operatorname{Hom}_{\Gamma}(N, \tau_{d} M).$$

$$(2.2)$$

We see that

$$\operatorname{Ext}_{\mathscr{T}}^{d}(X'',Y') \cong \mathscr{T}(X'',\Sigma^{d}Y') \cong \mathscr{T}(\Sigma^{-d}X'',Y') \cong \operatorname{Hom}_{\Gamma}\left(\mathscr{T}(T,\Sigma^{-d}X''),\mathscr{T}(T,Y')\right)$$
$$\cong \operatorname{Hom}_{\Gamma}(P,N).$$

The third isomorphism follows from [14, Lemma 2.2(i)] and the fact that $\Sigma^{-d}X'' \in \operatorname{add} T$. Similarly,

$$\operatorname{Ext}_{\mathscr{T}}^d(X',Y'') \cong \operatorname{DExt}_{\mathscr{T}}^d(Y'',X') \cong \operatorname{DHom}_{\Gamma}(Q,M).$$

Thus we have

$$\dim \operatorname{Ext}_{\mathscr{T}}^{d}(X'', Y') = \dim_{k} \operatorname{Hom}_{\Gamma}(P, N)$$
(2.3)

$$\dim \operatorname{Ext}_{\mathscr{T}}^{d}(X', Y'') = \dim_{k} \operatorname{Hom}_{\Gamma}(Q, M). \tag{2.4}$$

Substituting (2.2), (2.3), and (2.4) into (2.1) gives the result. \Box

As a consequence we have:

Corollary 2.9. Given $X, Y \in \mathcal{T}$, set $(M, P) = \Delta(X)$ and $(N, Q) = \Delta(Y)$. Then

$$\operatorname{Ext}_{\mathscr{T}}^d(X,Y) = 0 \Leftrightarrow$$

$$\operatorname{Hom}_{\Gamma}(M,\tau_dN)=\operatorname{Hom}_{\Gamma}(N,\tau_dM)=\operatorname{Hom}_{\Gamma}(P,N)=\operatorname{Hom}_{\Gamma}(Q,M)=0.$$

3. Proof of Theorem B

The following results use the map Δ from Definition 2.7.

Lemma 3.1. Given $X, Y \in \mathcal{T}$, set $(M, P) = \Delta(X)$ and $(N, Q) = \Delta(Y)$. Then $Y \in \operatorname{add} X$ if and only if $N \in \operatorname{add} M$ and $Q \in \operatorname{add} P$.

Proof. Let $X \cong X' \oplus X''$ be the decomposition from Definition 2.7, where X' has no non-zero direct summands from add $\Sigma^d T$ while X'' is in add $\Sigma^d T$. We have $(M, P) = (\mathcal{T}(T, X'), \mathcal{T}(T, \Sigma^{-d} X''))$. Similarly, $(N, Q) = (\mathcal{T}(T, Y'), \mathcal{T}(T, \Sigma^{-d} Y''))$.

The condition $Q \in \operatorname{add} P$ is equivalent to $Y'' \in \operatorname{add} X''$ by the add-proj-correspondence, (see Remark 0.5). The condition $N \in \operatorname{add} M$ is equivalent to $Y' \in \operatorname{add} X'$ by Theorem 0.4 because X', Y' have no non-zero direct summands in $\operatorname{add} \Sigma^d T$. The result follows. \square

Lemma 3.2. The category \mathcal{T} is skeletally small. The map Δ induces a bijection

$$\delta : \text{iso } \mathscr{T} \to \text{iso } \mathscr{D} \times \text{iso proj } \Gamma,$$
 (3.1)

where iso denotes the set of isomorphism classes of a skeletally small category.

Proof. Let Iso denote the class of isomorphisms of a category. For a skeletally small category \mathscr{C} we have that Iso $\mathscr{C} = \text{iso } \mathscr{C}$. Note that since a module category over a ring is skeletally small, we have that \mathscr{D} , proj $\Gamma \subseteq \text{mod } \Gamma$ are skeletally small.

It is clear that Δ induces a well-defined map of the form

$$\delta' : \operatorname{Iso} \mathscr{T} \to \operatorname{iso} \mathscr{D} \times \operatorname{iso} \operatorname{proj} \Gamma.$$

To see that δ' is injective, argue like the proof of Lemma 3.1, replacing membership of add with isomorphism.

It follows that \mathscr{T} is skeletally small. We can thus replace δ' with the map δ from (3.1). To see that δ is surjective, let (M,P) be a pair with $M\in\mathscr{D}$ and $P\in\operatorname{proj}\Gamma$. By Theorem 0.4 there is an object $X'\in\mathscr{T}$ with no non-zero direct summands in $\operatorname{add}\Sigma^dT$ such that $M\cong\mathscr{T}(T,X')$. By the add-proj correspondence, see Remark 0.5, there is an object $X''\in\operatorname{add}\Sigma^dT$ such that $P\cong\mathscr{T}(T,\Sigma^{-d}X'')$. Setting $X=X'\oplus X''$ gives $(M,P)\cong\Delta(X)$. \square

Lemma 3.3. If $X \in \mathcal{T}$ is d-self-perpendicular, then $(M, P) = \Delta(X)$ is a maximal τ_d -rigid pair.

Proof. Let $N \in \mathcal{D}$ and $Q \in \operatorname{proj} \Gamma$ be given. By Lemma 3.2, there is an object $Y \in \mathcal{T}$ such that $(N,Q) \cong \Delta(Y)$. Then

 $N \in \operatorname{add} M$ and $Q \in \operatorname{add} P$

$$\Leftrightarrow Y \in \operatorname{add} X$$

$$\Leftrightarrow \operatorname{Ext}^d_{\mathscr{T}}(X,Y) = 0$$

$$\Leftrightarrow \operatorname{Hom}_{\Gamma}(M, \tau_d N) = \operatorname{Hom}_{\Gamma}(N, \tau_d M) = \operatorname{Hom}_{\Gamma}(P, N) = \operatorname{Hom}_{\Gamma}(Q, M) = 0,$$

where the equivalences, respectively, are by Lemma 3.1, Definition 0.2, and Corollary 2.9. The conditions of Definition 0.7 are recovered by setting Q=0 respectively N=0.

Lemma 3.4. Let $X \in \mathcal{T}$ be given. If $(M, P) = \Delta(X)$ is a maximal τ_d -rigid pair, then X is d-self-perpendicular.

Proof. Let $Y \in \mathcal{T}$ be given and set $(N,Q) \cong \Delta(Y)$. Then

$$\operatorname{Ext}_{\mathscr{T}}^d(X,Y) = 0$$

$$\Leftrightarrow \operatorname{Hom}_{\Gamma}(M, \tau_d N) = \operatorname{Hom}_{\Gamma}(N, \tau_d M) = \operatorname{Hom}_{\Gamma}(P, N) = \operatorname{Hom}_{\Gamma}(Q, M) = 0$$

$$\Leftrightarrow N \in \operatorname{add} M \text{ and } Q \in \operatorname{add} P$$

$$\Leftrightarrow Y \in \operatorname{add} X$$
.

where the equivalences, respectively, are by Corollary 2.9, Definition 0.7, and Lemma 3.1.

Theorem 3.5. Recall that the map Δ from Definition 2.7 induces the bijection δ : iso $\mathscr{T} \to$ iso $\mathscr{D} \times$ iso proj Γ from Lemma 3.2.

(i) δ restricts to a bijection

$$\left\{ \begin{array}{c} isomorphism \ classes \ of \\ d\text{-}rigid \ objects \ in \ \mathscr{T} \end{array} \right\} \rightarrow \left\{ \begin{array}{c} isomorphism \ classes \ of \\ \tau_d\text{-}rigid \ pairs \ in \ \mathscr{D} \end{array} \right\}.$$

(ii) δ restricts further to a bijection

$$\left\{\begin{array}{c} isomorphism\ classes\ of\\ d\text{-self-perpendicular}\ objects\ in\ \mathscr{T} \end{array}\right\} \rightarrow \left\{\begin{array}{c} isomorphism\ classes\ of\\ maximal\ \tau_d\text{-rigid}\ pairs\ in\ \mathscr{D} \end{array}\right\}.$$

Proof. (i): Consider $X \in \mathcal{T}$ and set $(M, P) = \Delta(X)$. Then

$$\operatorname{Ext}_{\mathscr{T}}^d(X,X)=0 \Leftrightarrow \operatorname{Hom}_{\Gamma}(M,\tau_dM)=0$$
 and $\operatorname{Hom}_{\Gamma}(P,M)=0$

by Corollary 2.9, so the result follows.

(ii): See Lemmas 3.3 and 3.4. \square

Proof of Theorem B (from the introduction). Combine Theorems 3.5(ii) and 1.1(ii).

Fig. 1. The AR quiver of the 5-angulated category \mathcal{T} .

4. An example

In this section we let d=3 and $\mathscr{T}=\mathscr{O}_{A_2^3}$. This is the 5-angulated (higher) cluster category of type A_2 , see [21, def. 5.2, sec. 6, and sec. 8]. The indecomposable objects can be identified with the elements of the set

$${}^{\circlearrowleft}\mathbf{I}_{9}^{3} = \{1357, 1358, 1368, 1468, 2468, 2469, 2479, 2579, 3579\},\$$

see [21, sec. 8]. The AR quiver of \mathcal{T} is shown in Fig. 1. By [21, thm. 5.5 and sec. 8], the object

$$T = 1357 \oplus 1358 \oplus 1368 \oplus 1468$$

is Oppermann-Thomas cluster tilting.

If $X, Y \in \mathcal{T}$ are indecomposable objects, then

$$\mathcal{T}(X,Y) = \begin{cases} k & \text{if } Y \text{ is } X \text{ or its immediate successor in the AR quiver,} \\ 0 & \text{otherwise,} \end{cases}$$

see [21, prop. 6.1 and def. 6.9]. It follows that $\Gamma = \operatorname{End}_{\mathscr{T}}(T) = kQ/I$, where

$$Q = 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$$

and I is the ideal generated by all compositions of two consecutive arrows. The action of the functor $\mathcal{T}(T,-): \mathcal{T} \to \operatorname{mod} \Gamma$ on indecomposable objects is shown in Fig. 2, where P(q) and I(q) denote the indecomposable projective and injective modules associated to the vertex $q \in Q$. Note that the essential image of $\mathcal{T}(T,-)$ is

X	1357	1358	1368	1468	2468	2469	2479	2579	3579
$\mathcal{T}(T,X)$	P(4)	P(3)	P(2)	P(1)	I(1)	0	0	0	0

Fig. 2. The action of the functor $\mathcal{T}(T,-): \mathcal{T} \to \operatorname{mod} \Gamma$.

Fig. 3. The functor $\operatorname{Ext}_{\mathcal{J}}^3(X,-)$ is non-zero on Y_1 and Y_2 . It is zero on every other indecomposable object.

Maximal 3-rigid object X	Maximal τ_3 -rigid pair $\Delta(X)$
$1357 \oplus 1358 \oplus 1368 \oplus 1468$	$(\Gamma, 0)$
$1358 \oplus 1368 \oplus 1468 \oplus 2468$	$(D\Gamma, 0)$
$1368 \oplus 1468 \oplus 2468 \oplus 2469$	$(P(2) \oplus P(1) \oplus I(1), P(4))$
$1468 \oplus 2468 \oplus 2469 \oplus 2479$	$(P(1) \oplus I(1), P(4) \oplus P(3))$
$2468 \oplus 2469 \oplus 2479 \oplus 2579$	$(I(1), P(4) \oplus P(3) \oplus P(2))$
$2469 \oplus 2479 \oplus 2579 \oplus 3579$	$(0,\Gamma)$
$2479 \oplus 2579 \oplus 3579 \oplus 1357$	$(P(4), P(3) \oplus P(2) \oplus P(1))$
$2579 \oplus 3579 \oplus 1357 \oplus 1358$	$(P(4) \oplus P(3), P(2) \oplus P(1))$
$3579 \oplus 1357 \oplus 1358 \oplus 1368$	$(P(4) \oplus P(3) \oplus P(2), P(1))$
$1357 \oplus 1468 \oplus 2479$	$(P(4) \oplus P(1), P(3))$
$1358 \oplus 2468 \oplus 2579$	$(P(3) \oplus I(1), P(2))$
$1368 \oplus 2469 \oplus 3579$	$(P(2), P(4) \oplus P(1))$

Fig. 4. These are all the basic maximal 3-rigid objects of $\mathcal T$ and their corresponding maximal τ_3 -rigid pairs in $\mathcal D$.

$$\mathcal{D} = \text{add}\{P(4), P(3), P(2), P(1), I(1)\}.$$

This is a 3-cluster tilting subcategory of mod Γ and hence it is 3-abelian.

The 3-suspension functor Σ^3 acts on the AR quiver by moving four steps clockwise. Combined with our knowledge of Hom, this shows that if X is a fixed indecomposable object in \mathscr{T} , then the indecomposable objects Y with $\operatorname{Ext}^3_{\mathscr{T}}(X,Y) \neq 0$ are precisely the two objects furthest from X in the AR quiver, see Fig. 3.

Based on this, we can compute all basic 3-self-perpendicular objects in \mathscr{T} , and by Proposition 1.3 they coincide with the basic maximal 3-rigid objects in \mathscr{T} . For each such object X, there is a maximal τ_3 -rigid pair $\Delta(X) = (\mathscr{T}(T,X'),\mathscr{T}(T,\Sigma^{-3}X''))$ by Theorem B. See Fig. 4. Note that the first nine objects in Fig. 4 are Oppermann–Thomas cluster tilting, but the three last objects are not.

Acknowledgment

This work was supported by EPSRC grant EP/P016014/1 "Higher Dimensional Homological Algebra". Karin M. Jacobsen is grateful for the hospitality of Newcastle University during her visit in October 2018.

References

- [1] T. Adachi, O. Iyama, I. Reiten, τ-Tilting theory, Compos. Math. 150 (2014) 415–452.
- [2] I. Assem, D. Simson, A. Skowroński, Elements of the Representation Theory of Associative Algebras, Vol. 1, Techniques of Representation Theory, London Math. Soc. Stud. Texts, vol. 65, Cambridge University Press, Cambridge, 2006.
- [3] P.A. Bergh, M. Thaule, The axioms for *n*-angulated categories, Algebr. Geom. Topol. 13 (2013) 2405–2428.
- [4] A.B. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006) 572–618.
- [5] A.B. Buan, R.J. Marsh, D.F. Vatne, Cluster structures from 2-Calabi-Yau categories with loops, Math. Z. 265 (2010) 951–970.
- [6] F. Fedele, Auslander-Reiten (d+2)-angles in subcategories and a (d+2)-angulated generalisation of a theorem by Brüning, J. Pure Appl. Algebra 223 (2019) 3554–3580.
- [7] F. Fedele, d-Auslander–Reiten sequences in subcategories, preprint, arXiv:1808.02709, 2018.
- [8] C. Geiss, B. Keller, S. Oppermann, n-angulated categories, J. Reine Angew. Math. 675 (2013) 101–120.
- [9] M. Herschend, O. Iyama, n-representation-finite algebras and twisted fractionally Calabi-Yau algebras, Bull. Lond. Math. Soc. 43 (2011) 449-466.
- [10] M. Herschend, O. Iyama, Selfinjective quivers with potential and 2-representation-finite algebras, Compos. Math. 147 (2011) 1885–1920.
- [11] O. Iyama, Cluster tilting for higher Auslander algebras, Adv. Math. 226 (2011) 1-61.
- [12] O. Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007) 22–50.
- [13] O. Iyama, S. Oppermann, Stable categories of higher preprojective algebras, Adv. Math. 244 (2013) 23–68.
- [14] K.M. Jacobsen, P. Jørgensen, d-Abelian quotients of (d + 2)-angulated categories, J. Algebra 521 (2019) 114–136.
- [15] G. Jasso, n-Abelian and n-exact categories, Math. Z. 283 (2016) 203–759.
- [16] G. Jasso, J. Külshammer, Higher Nakayama algebras I: construction, preprint, arXiv:1604.03500, 2016.
- [17] G. Jasso, J. Külshammer, Nakayama-type phenomena in higher Auslander-Reiten theory, in: Representations of Algebras, in: Contemp. Math., vol. 705, American Mathematical Society, Providence, RI, 2018, pp. 79–98.
- [18] G. Jasso, S. Kvamme, An introduction to higher Auslander–Reiten theory, Bull. Lond. Math. Soc. 51 (2019) 1–24.
- [19] J. McMahon, Higher support tilting I: higher Auslander algebras of linearly oriented type A, preprint, arXiv:1808.05184, 2018.
- [20] Y. Mizuno, A Gabriel-type theorem for cluster tilting, Proc. Lond. Math. Soc. (3) 108 (2014) 836–868.
- [21] S. Oppermann, H. Thomas, Higher-dimensional cluster combinatorics and representation theory, J. Eur. Math. Soc. (JEMS) 14 (2012) 1679–1737.
- [22] Y. Zhou, B. Zhu, Maximal rigid subcategories in 2-Calabi-Yau triangulated categories, J. Algebra 348 (2011) 49–60.