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0. Introduction

In triangulated categories, the notions of cluster tilting objects (introduced in [4,
p. 583]) and mazimal rigid objects have recently been extensively investigated. They
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frequently coincide, by [22, thm. 2.6], and they are closely linked to the notion of support
7-tilting pairs in abelian categories (introduced in [1, def. 0.3]). Indeed, there is often a
bijection between the cluster tilting objects in a triangulated category and the support
7-tilting pairs in a suitable (abelian) module category, see [1, thm. 4.1].

This paper investigates the analogous theory in (d + 2)-angulated and d-abelian cat-
egories, which are the main objects of higher homological algebra, see [8, def. 2.1] and
[15, def. 3.1]. Several key properties from the classic case do not carry over. For example,
cluster tilting objects are maximal d-rigid, but the converse is rarely true. Moreover,
the higher analogue of support 7-rigid pairs permit a bijection to the maximal d-rigid
objects, but not to the cluster tilting objects.

For further reading in higher homological algebra a number of references have been
included in the bibliography, see [3], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21].

Let k be an algebraically closed field, d > 1 an integer, .7 a k-linear Hom-finite
(d 4+ 2)-angulated category with split idempotents, see [8, def. 2.1]. Assume that J is
2d-Calabi-Yau, see [21, def. 5.2], and let ¥¢ denote the d-suspension functor of .7.

Cluster tilting and maximal d-rigid objects. An object X € 7 is d-rigid if Extdg(X ,X) =
0. We recall three important definitions.

Definition 0.1 (/21, def. 5.3]). An object X € .7 is Oppermann—Thomas cluster tilting
in 7 if:

(i) X is d-rigid.
(ii) For any Y € .7 there exists a (d 4 2)-angle

Xg— = Xo—=Y = XX,
with X; € add X for all 0 <14 < d.
Definition 0.2. An object X € .7 is d-self-perpendicular in 7 if
addX ={Y € 7 | Ext%L(X,Y)=0}.
Definition 0.3. An object X € .7 is maximal d-rigid in 7 if
addX ={Y € 7 |ExtL (X oV, X®Y)=0}.
Our first main result is:

Theorem A. X is Oppermann—Thomas cluster tilting = X is d-self-perpendicular = X
is maximal d-rigid.
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We prove this in Theorem 1.1. Of equal importance is that the implications cannot
be reversed in general, see Remark 1.2. In particular, when d > 2, the class of maximal
d-rigid objects is typically strictly larger than the class of Oppermann—Thomas cluster
tilting objects, in contrast to the classic case d = 1 where the two classes usually coincide,
see [22, thm. 2.6].

Maximal 74-rigid pairs. Let T' € .7 be an Oppermann—Thomas cluster tilting object and
let I' = End 7 (T'). Recall the following result.

Theorem 0.4 ([14, thm. 0.6]). Consider the essential image 2 of the functor 7 (T, —) :
Z — modl'. Then 2 is a d-cluster tilting subcategory of modI'. There is a commutative
diagram, as shown below, where the vertical arrow is the quotient functor and the diagonal
arrow is an equivalence of categories:

9(T,—)

)

T/ add 24T

The category 2 is a d-abelian category by [15, thm. 3.16]. It has a d-Auslander—Reiten
translation 74, which is a higher analogue of the classic Auslander—Reiten translation 7,
see [12, sec. 1.4.1]. A module M € 7 is called 74-rigid if Homp (M, 74M) = 0.

Remark 0.5. The classic add-proj-correspondence holds, as .7 (T, —) restricts to an equiv-
alence add T' — proj I'. The functor also restricts to an equivalence add ST — injT. [14,
lem. 2.1]

It is natural to ask if & permits a higher analogue of the 7-tilting theory of [1]. We
will not answer this question, but will instead introduce the following definitions inspired
by it.

Definition 0.6. A pair (M, P) with M € 2 and P € proj T is called a 74-rigid pair in 2
if M is 74-rigid and Homp (P, M) = 0.

Definition 0.7. A pair (M, P) with M € 2 and P € projT is called a mazimal 74-rigid
pair in 9 if it satisfies:
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(i) If N € 2 then

Homp(M,74N) =0,
N €add M HOmF(N,TdM) =0,
Homrp(P,N) = 0.

(ii) If @ € projT', then
Q € add P & Homrp(Q, M) = 0.

A maximal 74-rigid pair is a 74-rigid pair.
Our second main result is:

Theorem B. If each indecomposable object of T is d-rigid, then there is a bijection

{ isomorphism classes of } . { isomorphism classes of }

maximal d-rigid objects in T mazimal T4-Tigid pairs in 9

We prove this in Section 3. If d = 1, then (M, P) is a maximal 7-rigid pair if and
only if it is a support 7-tilting pair in the sense of [1, def. 0.3(b)], see [1, def. 0.3, prop.
2.3, and cor. 2.13]. Hence Theorem B is a higher analogue of the bijection

{ isomorphism classes of } N { isomorphism classes of }
cluster tilting object in 7 support 7-tilting pairs in mod T"
which exists by [1, thm. 4.1] when .7 is triangulated, i.e. in the case d = 1. However,
when d > 2, we do not think of maximal 74-rigid pairs as support 74-tilting pairs. The
reason is that by Theorem B, maximal 74-rigid pairs are linked to maximal d-rigid objects
in higher angulated categories. As remarked above, this class is typically strictly larger
than the class of Oppermann—Thomas cluster tilting objects when d > 2.

Note that [19] makes an approach to higher support tilting theory.

This paper is organised as follows: Section 1 proves Theorem A, Section 2 investigates
the precise relation between Hom spaces in .7 and &, Section 3 proves Theorem B, and
Section 4 gives an example.

Setup 0.8. Throughout the paper we use the following notation:

k: An algebraically closed field.
D: The duality functor Homy(—, k).
. A k-linear, Hom-finite, (d + 2)-angulated category with split idempotents. We as-
sume that 7 is 2d-Calabi-Yau, that is 7(X,Y) = D.7(Y,¥2¢X) naturally in
X, YeZT.
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The d-suspension functor on 7.

s

An Oppermann—Thomas cluster tilting object in 7.
: The canonical functor .7 — .7 /add 2T, whose target is the naive quotient cate-

—
L

gory of .7 modulo the morphisms which factor through an object in add X¢7.
I": The endomorphism ring End & (T).
vr: The Nakayama functor on modT'.
74: The d-Auslander—Reiten translation on modT.
2: The essential image of the functor 7 (T, —) : .7 — modT.

1. Proof of Theorem A
Theorem 1.1. Let X € 7 be given.

(i) There are implications

X is Oppermann—Thomas cluster tilting
\
X is d-self-perpendicular
U
X is maximal d-rigid

4
X s d-rigid.

(i) If each indecomposable object in T is d-rigid, then

X is d-self-perpendicular < X is mazximal d-rigid.

Proof. (i), the first implication: Suppose X is Oppermann—Thomas cluster tilting. We
must prove the equality in Definition 0.2, and the inclusion C is clear. For the inclusion
D, suppose Extdg(X, Y) = 0. Then each morphism X, — X% with Xy € add X is
zero. This applies in particular to the (d + 2)-angle Xg4 — --- — Xy — 29V — 29X,
with X; € add X, which exists since X is Oppermann—Thomas cluster tilting. But then
the morphism 24Y — 29X, is a split monomorphism, and applying ¥~% gives a split
monomorphism Y — X, proving Y € add X.

(i), the second implication: Suppose that X is d-self-perpendicular. We must prove
the equality in Definition 0.3, and the inclusion C is clear. For the inclusion O, suppose
Ext% (X @Y, X ®Y) = 0. Then in particular, Ext% (X,Y) = 0, whence Y € add X.

(i), the third implication: This is clear.

(ii): Suppose that each indecomposable object in 7 is d-rigid. Because of part (i), it
is enough to prove the implication < in (ii), so suppose that X is maximal d-rigid. We
must prove the equality in Definition 0.2, and C is clear.

For the inclusion D, observe that {Y € .7 | Ext%(X,Y) =0} is closed under direct
sums and summands by additivity of Ext. Hence it is enough to suppose that Y is an
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indecomposable object in this set and prove Y € add X. However, Extfig(X ,Y) =0 im-
plies Ext% (Y, X) = 0 because .7 is 2d-Calabi-Yau, and Ext% (Y,Y") = 0 by assumption.
Finally, X is d-rigid by part (i), so Extflg(X ,X) = 0. Combining these equalities shows
Ext% (X @Y, X ®Y)=0,and Y € add X follows. O

Remark 1.2. The implications in Theorem 1.1(i) cannot be reversed in general:

— An example of a d-self-perpendicular object X which is not Oppermann—Thomas
cluster tilting is given in Section 4. In fact, the objects in the last three rows of
Fig. 4 are such examples. The example was originally given in [21, p. 1735].

— An example of a maximal d-rigid object which is not d-self-perpendicular can be
obtained by combining proposition 2.6 and corollary 2.7 in [5]. These results give a
maximal 1-rigid object which is not cluster tilting, but in the triangulated setting of
[5], cluster tilting is equivalent to 1-self-perpendicular, see [5, bottom of p. 963].

— Finally, an example of a d-rigid object which is not maximal d-rigid is the zero object,
as soon as 7 has a non-zero d-rigid object.

We end the section by observing that Theorem 1.1(ii) can be applied to an important
class of categories.

Proposition 1.3. Let A be a d-representation finite algebra, Oy the (d + 2)-angulated
cluster category associated to A in [21, thm. 5.2]. Then each X € Oy satisfies

X is d-self-perpendicular < X is maximal d-rigid.

Proof. Each indecomposable in & is d-rigid by [21, Lemma 5.41], so the equivalence
follows from Theorem 1.1(ii). O

2. A dimension formula for Extdg
Recall from Setup 0.8 that T is a fixed Oppermann—Thomas cluster tilting object
in 7, and that .7 is 2d-Calabi-Yau, that is, .7(X,Y) = D.7(Y,¥2?X) naturally in
XYeT.
Lemma 2.1. There is a natural isomorphism
v I (T, 7)) = 7 (T,2*(T"))
for T € addT.

Proof. By the 2d-Calabi-Yau property we have

T(T,2*YT")) 2 DI (T',T).
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By [14, Lemma 2.2(i)],
D.7(T',T) = DHomr ((T,T'), 7(T,T)) = DHomr (7 (T, T"),T).
Finally, by definition we have
DHomy (7(T,T'),T) = vp.7 (T, T"),
see [2, def. II1.2.8]. O

Lemma 2.2. If X € .7 has no non-zero direct summands in add 4T, then there exists a
(d+ 2)-angle

Ty— - — Ty — X — 2Ty

in J with the following properties: Each T; is in add T, and applying the functor 7 (T, —)
gives a complex

T, Ty) — - — T (1T, T) > T(T,X)—0
which is the start of the augmented minimal projective resolution of 7 (T, X).
Proof. Given X, there exists a (d + 2)-angle
YOX 5Ty — =Ty — X

with each T; in addT by Definition 0.1. Since X has no non-zero direct summands in
add X7, the first morphism in the (d + 2)-angle is in the radical of .7. By dropping
trivial summands of the form 7" —» T" , we can assume that so are the other morphisms
except the last morphism.

By [8, prop. 2.5(a)], applying the functor .7 (T, —) gives an exact sequence

T(T,57X) = T(T,Ty) — - — T(T,Ty) = T(T,X) = F(T,%T,) = 0.

By Theorem 0.4, applying the functor & (T, —) is, up to isomorphism, just to apply a
quotient functor, and this preserves radical morphisms. So in the exact sequence each
morphism, except possibly 7 (T, Ty) — Z (T, X), is in the radical of modT'. This proves
the claim of the lemma. O

Lemma 2.3. If X € 7 has no non-zero direct summands in add 2T, then there is a
natural isomorphism

a7 (T, X) = 7 (T, %X).
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Proof. As X has no non-zero direct summands in add X297, we can consider the (d +
2)-angle from Lemma 2.2. Apply 7 (T, —) to get the following part of an augmented
minimal projective resolution in modI™:

T(T,Ty) — - — T(T,To) — T(T,X) — 0.

Using the Nakayama functor and Lemma 2.1 we get the following commutative diagram.

0 Tdy(T7X) pr<T,Td) Z/Fy(T7T0)
2 2
0 T (T, %4X) T (T, 224Ty) e T (T, $2Ty)

The top sequence is exact by the definition of 74, see [12, sec. 1.4.1]. The bottom sequence
is exact because it is obtained by applying Hom o (T, —) to a (d + 2)-angle in 7, see [8,
prop. 2.5(a)]. The first term of the bottom sequence is actually .7 (T, %4Ty), but this is
zero. Since we have d > 1, the diagram implies

a7 (T,X) =2 7(T,%4X). O
We write [add T)(X,Y) ={f € F(X,Y) | f factors through an object of addT }.
Lemma 2.4. There is a natural isomorphism
D[add T](X,Y) & Hom g yaq sar (Y, 229X)
for XY € 7.

Proof. Pick a (d 4 2)-angle in 7:

Ty—...—Ty—Y — 2Ty,

with T; € add T Use .7 (X, —) to obtain the morphism ¥ : 7 (X,Ty) — Z(X,Y). This
is a homomorphism of k-vector spaces, hence we can talk about the image of U. We first
note that any morphism f in the image of ¥ must factor through addT. Now suppose
f € 7(X,Y) factors through 77 € add T. We have the following commutative diagram,
where the lower row is a part of the (d + 2)-angle above:
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X
f

T 0

Ty Y YTy

The dashed arrow exists by completing the commutative square to a morphism of (d +
2)-angles. We conclude that f € Im W. Hence

Im¥ = [add T)(X,Y).
We now return to the long exact sequence
Lo T(X,T) L T(X,Y) = T(X,2T,) —

Using the duality functor D and Serre duality we get the following diagram with exact

TroOws:
D7 (X,24T,) D7 (X,Y) DY D7 (X,Tp)
2 2 2
T (29T, $24X) T(Y, 2% X) T (Tp, £%X)
ladd X4T](Y, £24X) Y, $24X) /[add $4T](Y, £24X)

Analogous to the above discussion, the space [add X47T](Y,¥2?X) is the image of the
map «'. Hence « is the kernel of 8’ and DV (by isomorphism). The morphism S is by
definition the cokernel of a, and 7 (Y, ¥2?X)/[add 2T)(Y, X% X) is thus the image of
DW¥. Thus we have

D[add T)(X,Y) 2 DIm ¥ = ImD¥ = 7 (Y, £2?X) /[add 2¢T](Y, £2¢X)

=~ Hom g yaq ser (Y, ¥%X). O

Lemma 2.5. Suppose X,Y € 7. Then we have a short exact sequence

0 — DHom g/ yqq nar (Y, 29X) = Ext% (X, Y) — Hom g aqq zar (X, 24Y) — 0
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Proof. By the definition of the quotient functor we have a short exact sequence
0 = [add 2T)(X, 87Y) = 7 (X, %) = Hom g 4qa sar (X, 54Y) = 0.

We have [add X4T)(X, 2%Y) = [add T)(X X, Y). By Lemma 2.4 we have

[add T] (E_dX, Y) = DHomg/ add EdT(?v E2d27dX) = DHOH’Ig/ add EdT(?a EdX)
We also know that .7 (X, 24V = Ext% (X, Y), so the conclusion follows. 0O

Lemma 2.6. Suppose X,Y € 7 have no non-zero direct summands in add X¢T. Then
we have a short exact sequence

0 — DHomr (7(T,Y), 747 (T, X)) — Ext%(X,Y)
— Homp (y(T,X),Tdy(T7Y)) — 0.

Proof. Consider the short exact sequence from Lemma 2.5. By Theorem 0.4 we know
that

DHom 5/ yqq zar (Y, £9X) = DHomr (7(T.,Y), 7 (T, £X)).
Applying Lemma 2.3 we have
DHomr (Z(T,Y), 7(T,2%X)) = DHomr (7(T,Y), 747 (T, X)).
Similarly we can show Hom g/ yqq sar (X, %4Y) = Homp (7(T,X),747(T,Y)). O

The map defined next will eventually induce the equivalence of Theorem B.

Definition 2.7. For each X € 7, pick an isomorphism X = X’ @ X" such that X’ has
no non-zero direct summands in add 247 and X" € add 24T Let

AX) = (7(T, X", 7(T,274X")).
This is a pair of [-modules where 7 (T, X') is in 2 and 7 (T,%~¢X") is in projT.

Proposition 2.8. Given X,Y € 7, set (M,P) = A(X) and (N,Q) = A(Y), where A is
the map in Definition 2.7. Then

dimy, Ext% (X,Y") = dimy, Homp (M, 74N) + dimg Homp(N, 74M)
+ dimy Homp (P, N) + dimy, Homp(Q, M).
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Proof. By additivity of Ext we have

Ext% (X,Y) 2 ExtL (X' @ X", Y & Y")
=~ Exth (X', V') @ Exth (X', V") @ Ext% (X", Y") @ Ext% (X", Y").

As T is d-rigid, we see that Ext%, (X" Y") = 0, and hence we have
dim Ext% (X,Y) = dim Ext% (X', Y") + dim Ext% (X', Y") 4+ dim Ext% (X", Y"). (2.1)
From Lemma 2.6 we have the short exact sequence:

0 — DHomr (Z(T,Y"), 747 (T, X")) — Ext% (X', Y")
— Homr (<7(T7 X", 14T (T, Y’)) — 0,

which means that

dim Ext% (X', Y") = dimg Homr (F (T, X'), 7.7 (T, Y"))
+ dimy, Homp (7 (T,Y"), 747 (T, X"))
= dimy Homp (M, 74 N) + dimy, Homp (N, 74 M). (2.2)

We see that

Ext% (X", Y) = 7(X",2%') 2 7(57X",Y') = Homr (7 (T, 57 X"), 7(T,Y"))
= Homr (P, N).

The third isomorphism follows from [14, Lemma 2.2(i)] and the fact that ©~¢X” € add T.
Similarly,

Ext% (X', Y") = DExt%(Y”, X') = DHomp(Q, M).
Thus we have

dim Ext% (X", Y') = dimy, Homp (P, N) (2.3)
dim Ext% (X', Y"") = dimy, Homp(Q, M). (2.4)

Substituting (2.2), (2.3), and (2.4) into (2.1) gives the result. O
As a consequence we have:
Corollary 2.9. Given X,Y € 7, set (M, P) = A(X) and (N,Q) = A(Y). Then

Ext%(X,Y) =0«
Homrp (M, 74N) = Homrp (N, 7¢M) = Homr (P, N) = Homr(Q, M) = 0.
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3. Proof of Theorem B

The following results use the map A from Definition 2.7.

Lemma 3.1. Given X,Y € 7, set (M,P) = A(X) and (N,Q) = A(Y). ThenY € add X
if and only if N € add M and Q € add P.

Proof. Let X = X’ @ X" be the decomposition from Definition 2.7, where X’ has no
non-zero direct summands from add 24T while X" is in add X¢T. We have (M, P) =
(7(T,X"), 7(T,£~1X")). Similarly, (N, Q) = (F(T,Y"), 7(T, £=4Y")).

The condition @ € add P is equivalent to Y” € add X" by the add-proj-correspon-
dence, (see Remark 0.5). The condition N € add M is equivalent to Y’ € add X’ by
Theorem 0.4 because X’,Y” have no non-zero direct summands in add %7 The result
follows. O

Lemma 3.2. The category 7 is skeletally small. The map A induces a bijection
0 :is0 7 — iso Z x isoproj T, (3.1)
where iso denotes the set of isomorphism classes of a skeletally small category.

Proof. Let Iso denote the class of isomorphisms of a category. For a skeletally small
category ¥ we have that Iso % = iso ©. Note that since a module category over a ring is
skeletally small, we have that 2, projI" C modI" are skeletally small.

It is clear that A induces a well-defined map of the form

8 :1s0 T — is0 2 x isoprojT.

To see that 4’ is injective, argue like the proof of Lemma 3.1, replacing membership
of add with isomorphism.

It follows that .7 is skeletally small. We can thus replace ¢’ with the map 0 from (3.1).

To see that ¢ is surjective, let (M, P) be a pair with M € 2 and P € projI'. By
Theorem 0.4 there is an object X’ € .7 with no non-zero direct summands in add LT
such that M = (T, X’). By the add-proj correspondence, see Remark 0.5, there is
an object X" € addX?T such that P = 7(T,L£9X"). Setting X = X' @ X" gives
(M,P)=2 A(X). O

Lemma 3.3. If X € .7 is d-self-perpendicular, then (M, P) = A(X) is a mazimal 14-rigid
pair.

Proof. Let N € & and @ € projI" be given. By Lemma 3.2, there is an object Y € .
such that (N, Q) =2 A(Y). Then
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N € add M and @ € add P
&Y caddX
& Extd(X,Y) =0
< Homyr (M, 7yN) = Homrp (N, 74M) = Homp (P, N) = Homr(Q, M) = 0,

where the equivalences, respectively, are by Lemma 3.1, Definition 0.2, and Corollary 2.9.
The conditions of Definition 0.7 are recovered by setting @@ = 0 respectively N =0. O

Lemma 3.4. Let X € F be given. If (M, P) = A(X) is a maximal 74-rigid pair, then X
1s d-self-perpendicular.

Proof. Let Y € .7 be given and set (N, Q) = A(Y). Then

Ext%(X,Y) =0

< Homp (M, 74N) = Homp (N, 7¢M) = Homp (P, N) = Homp(Q, M) =0
< N eadd M and Q € add P

&Y cadd X,

where the equivalences, respectively, are by Corollary 2.9, Definition 0.7, and Lemma 3.1.
O

Theorem 3.5. Recall that the map A from Definition 2.7 induces the bijection ¢ : iso T —
iso Z x isoprojI' from Lemma 3.2.

(i) & restricts to a bijection

isomorphism classes of isomorphism classes of
. . . . . . . . .
d-rigid objects in T Ta-rigid pairs in 9

(ii) & restricts further to a bijection

isomorphism classes of isomorphism classes of
d-self-perpendicular objects in T mazimal T4-rigid pairs in 2 [

Proof. (i): Consider X € 7 and set (M, P) = A(X). Then
Ext% (X, X) = 0 & Homp (M, 74M) = 0 and Homp(P, M) =0

by Corollary 2.9, so the result follows.
(ii): See Lemmas 3.3 and 3.4. O

Proof of Theorem B (from the introduction). Combine Theorems 3.5(ii) and 1.1(ii). O
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— 1368
1468

. N
\

( 1357

2469 /
\ 3579

2479 /

T 2579

Fig. 1. The AR quiver of the 5-angulated category 7.
4. An example

In this section we let d = 3 and J = 0 43. This is the 5-angulated (higher) cluster
category of type Ag, see [21, def. 5.2, sec. 6, and sec. 8]. The indecomposable objects can
be identified with the elements of the set

OI3 = {1357, 1358, 1368, 1468, 2468, 2469, 2479, 2579, 3579 },

see [21, sec. 8]. The AR quiver of .7 is shown in Fig. 1. By [21, thm. 5.5 and sec. 8], the
object

T = 1357 @ 1358 @ 1368 @ 1468

is Oppermann—Thomas cluster tilting.
If X,Y € 9 are indecomposable objects, then

k if Y is X or its immediate successor in the AR quiver,
0  otherwise,

T(X,Y) = {

see [21, prop. 6.1 and def. 6.9]. It follows that I' = End & (T') = kQ/I, where
RQ=1—-2—-3-4

and I is the ideal generated by all compositions of two consecutive arrows. The action of
the functor (T, —) :  — mod T on indecomposable objects is shown in Fig. 2, where
P(q) and I(g) denote the indecomposable projective and injective modules associated to
the vertex ¢ € Q. Note that the essential image of .7 (T, —) is
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X | 1357 1358 1368 1468 2468 2469 2479 2579 3579
7(T,X) | P4) P(3) P2 PQ1 IQ) 0 0 0 0

Fig. 2. The action of the functor (T, —) : J — modT.

/ o
: \

AN .
: e

— °

Fig. 3. The functor Ext‘} (X, —) is non-zero on Y7 and Y>. It is zero on every other indecomposable object.

Maximal 3-rigid object X Maximal 73-rigid pair A(X)

1357 @ 1358 @ 1368 @ 1468 (T, 0)

1358 @ 1368 @ 1468 ¢ 2468 (DI, 0)

1368 @ 1468 @ 2468 @ 2469 (P(2)® P(1) ® I(1), P(4))

1468 @ 2468 & 2469 & 2479 | (P(1) & I1(1), P(4) @ P (3))

2468 @ 2469 & 2479 H 2579 (I(1),P(4)® P(3 P(2))
( )

2469 © 2479 @ 2579 @ 3579 (0, F)

2479 @ 2579 @ 3579 ® 1357 | (P(4), P(3) @ P(2) ® P(1)

2579 @ 3579 @ 1357 4 1358 | (P(4) @ P(3), P(2) & P(1)
P( )

3579 @ 1357 @ 1358 & 1368 4) ® P(3) @ P(2), P(1
1357 @ 1468 @ 2479 (P(4) ® P(1), P(3))
1358 @ 2468 @ 2579 (P(3) ® I(1), P(2))
1368 @ 2469 @ 3579 (P(2), P(4) ® P(1))

Fig. 4. These are all the basic maximal 3-rigid objects of 7 and their corresponding maximal 73-rigid pairs

in 2.

2 = add{ P(4), P(3), P(2), P(1),1(1) }.

This is a 3-cluster tilting subcategory of modI" and hence it is 3-abelian.

The 3-suspension functor X3 acts on the AR quiver by moving four steps clockwise.
Combined with our knowledge of Hom, this shows that if X is a fixed indecomposable
object in .7, then the indecomposable objects Y with Ext:} (X,Y) # 0 are precisely the
two objects furthest from X in the AR quiver, see Fig. 3.

Based on this, we can compute all basic 3-self-perpendicular objects in .7, and by
Proposition 1.3 they coincide with the basic maximal 3-rigid objects in 7. For each
such object X, there is a maximal 73-rigid pair A(X) = (J(T, X"), 7(T,573X")) by
Theorem B. See Fig. 4. Note that the first nine objects in Fig. 4 are Oppermann—Thomas
cluster tilting, but the three last objects are not.
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