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Summary
This thesis aims to explore practical implications from using a maritime simulator for
quick generation of synthetic labelled images, with the purpose of training Convolutional
Neural Networks (CNNs) for instance segmentation and classification in maritime scenar-
ios. The motivation has been to contribute towards overcoming the challenges associated
with building large real-world datasets due to the intrinsic difficulty of image acquisition
and the time-consuming manual labelling effort, through the use of computer graphics. In
addition, it aims to investigate if methods within the area of Explainable AI (XAI) can be
used to obtain explanations from instance segmentation models.

First, the area of XAI is presented and a method is proposed for dedicating an existing
XAI method named Local Interpretable Model-agnostic Explanations (LIME) for instance
segmentation models for generating explanation. Later, the proposed method shows that
LIME can be used to explain both object detection and mask prediction from an instance
segmentation model

Second, a method is developed for acquiring synthetic images from a maritime simulator
with instance-level labels of deployable objects, based on a solution with access only to the
user interface and the model library, that is without access to the software. Two replays of
the same simulation, and manipulation of texture between these two replays highlights the
objects and serves as basis for the acquisition and labeling of images. Synchronized pairs
of images is then obtained by screen capture from these two replays, with timing based on
reading the internal log clock made visually available in the user interface using a Random
Forest digital digit classifier. Object masks are subsequently extracted from images with
manipulated texture using thresholding of weak background colors, morphological trans-
formation, connected component calculation, probabilistic hierarchical clustering based
on Variational Bayesian learning of Gaussian Mixture Models (VBGMM) and agglom-
erative hierarchical clustering, and subsequent manual assessment and adjustment. This
method allows for further studying the implications of using synthetic data.

Last, an experiment is conducted based on a synthetic dataset, a limited sized real-world
dataset, a Convolution Neural Network (CNN) named Mask R-CNN, domain adaptation
techniques based on both three-stage gradual fine-tuning and full fine-tuning, and data
augmentation. LIME is also part of this experiment. Six different models are trained;
two pure synthetic models, two real-world adapted models based on the best performing
synthetic model on the synthetic test-set, and two pure real-world control models. Re-
sults suggests that the use of synthetic images has a slight performance impact on all the
adapted models and that they contained a greater portion of knowledge about cross-domain
features than the corresponding control models with in terms of fine-tuning approaches. In
the case of the pure domain models, gradual fine-tuning achieved better performance than
full fine-tuning and was more capable of learning domain-invariant features. In the case
of the adapted models, gradual fine-tuning and full fine-tuning achieved approximately
equal performance. Furthermore, results indicate that learning of domain-invariant fea-
tures continuous after stagnation in validation-loss during the training of synthetic models,
suggesting that validation data from both the synthetic and real-world domain should be
used when training of synthetic models.
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Sammendrag
Denne avhandlingen tar sikte på å utforske praktiske implikasjoner ved bruk av en maritim
simulator for rask generering av syntetiske instans-baserte sannhets-merkede bilder med
det formål å trene modeller basert på konvolusjonelle nevrale nettverk (CNNs) for instans-
segmentering og klassifisering av bilder i maritime scenarioer. Motivasjonen har vært å
bidra til å overvinne utfordringene knyttet til å bygge store reelle datasett, grunnet den
iboende vanskeligheten knyttet til anskaffe relevante bilder og det tidkrevende manuelle
merkingsarbeidet, ved bruk av datagrafikk. I tillegg tar avhandlingen til sikte på å under-
søke om metoder innenfor fag-området Explainable AI (XAI) kan brukes til å generere
forklaringer for instans-segmenteringsmodeller.

Først presenteres et fagområde XAI. Deretter fremlegges et forslag for å dedikere en ek-
sisterende XAI-metode, kalt Local Interpretable Model-agnostic Explanations (LIME), til
instans-baserte segmenteringsmodeller for å generere forklaringer på prediksjoner. Senere
blir LIME vist til å kunne gi forklaringer på både objekt-deteksjon og silhuett-prediksjon
fra en instans-basert modell.

Deretter utvikles en metode for å skaffe syntetiske bilder fra en maritim simulator med
instans-basert sannhets-merking av objekter, basert på en løsning med tilgang kun til bruk-
ergrensesnittet og modellbiblioteket. To opptak av samme simulering med manipulering
av tekstur mellom disse to opptakene, fremhever objektene og fungerer i etterkant som
grunnlag for anskaffelse og merking av bilder. Deretter tas par med synkroniserte skjerm-
bilder, med synkronisering basert på intern logg-klokke i simulatoren gjort visuelt tilgjen-
gelig i brukergrensesnittet og avlest automatisk ved hjelp av en Random Forest digital
tall klassifikator. Instans-baserte sannhets-merker blir deretter generert basert på bilder
med manipulert tekstur ved hjelp av filtrering av bakgrunns-farger, morfologiske trans-
formasjoner, beregninger av tilkoblede komponenter, sannsynlighets-hierarkisk cluster-
ing basert på Variasjonel Bayesisk læring av Gaussiske komponent-modeller (VGBMM)
og agglomerativ hierarkisk clustering, og etterfølgende manuell vurdering og justering.
Denne metoden tillater for videre studier av implikasjonene ved bruk av syntetiske data.

Deretter utføres et eksperiment basert på et syntetisk datasett, et reelt datasett av liten stør-
relse, et konvolusjonelle nevrale nettverk kalt Mask R-CNN, domenetilpasningsteknikker
basert på både tre-trinns gradvis finjustering og full finjustering, og data-augmentering.
Seks forskjellige modeller trenes; To rene syntetiske modeller, to reelle domenetilpassede
modeller basert på den beste syntetiske modellen på det syntetiske testsettet, og to rene
reelle kontrollmodeller. Resultatene tyder på at bruken av syntetiske bilder har en merk-
bar påvirkning på prestasjonen til alle domenetilpassede modeller, og at de inneholdt en
større del av kunnskaper på tvers av domenene sammenlignet med de korresponderende
kontrollmodellene. Videre tyder resultatene fra de rene domenemodellene at gradvis fin-
justering oppnår en bedre prestasjon enn full finjustering, og var bedre i stand til å lære
kunnskaper på tvers av domenene. For de tilpassede modellene oppnådde gradvis fin-
justering og full finjustering omtrent like stor prestasjon. Videre indikerer resultatene at
læring av kunnskaper på tvers av domenene fortsetter etter stagnasjon i valideringstap un-
der opplæring av syntetiske modeller, noe som tyder på at valideringsdata fra både det
syntetiske og det reelle domenet bør brukes ved trening av syntetiske modeller.
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Preface

This thesis is the culmination of my work carried out during the spring and early summer
of 2019 at the Norwegian University of Science and Technology under the supervision of
Anastasios Lekkas and in cooperation with Kongsberg Digital, and concludes my Master
of Science in Cybernetics and Robotics in Autonomous Systems. Writing this thesis has
been both inspiring and challenging, as it’s about a technology that has experienced a
renaissance in the past few years.

Kongsberg Digital has provided me the tools necessary to carry out the research in this
thesis. In addition, multiple software libraries and online services were utilized. The
following is a summary of all information and software used as a basis for the research, as
well as the help I received during the work.

• A Dell Optiplex 9010 computer and a workplace was provided by NTNU.
• Kongsberg Digital provided a maritime simulator named K-Sim, and a model library

with both vessel models and geographical area models.
• Kongsberg Digital provided a HP ZBook 15 computer with Windows 10 that was

used to run K-Sim during the implementation and acquisition of synthetic images.
Sigrid Fosen at Kongsberg Digital has taken care of access to the computer and IT
security efforts.

• An open-source implementation of the instance-segmentation neural network archi-
tecture Mask R-CNN was obtained from github.com/matterport/Mask_RCNN, used
as a basis for the experiment about instance segmentation.

• An open-source implementation of LIME was obtained from github.com/marcotcr/lime,
and used as a basis for the experiment regarding instance segmentation and LIME.

• The OpenCV software library was used to perform image processing tasks.
• The Imgaug software library was used to perform image augmentation transforma-

tion.
• The Scikit-learn software library was used for building machine learners.
• The Scikit-image software library was used for image segmenting techniques.
• The Google Colaboratory free-of-charge cloud service was used for training of

MASK R-CNN models and execution of LIME.
• The version-control system Git and hosting platform Github was used for version

control and file transferring between the two computers and Google Colaboratory.

My supervisor has assisted me through fruitful discussions and providing feedback on my
thesis. Pierluigi Salvo Rossi has been the industrial contact person at Kongsberg Digi-
tal, Pierluigi has provided for the collaboration with Kongsberg Digital. Industrial co-
supervisor Thorvald Grindstad at Kongsberg has provided guidance in the use of K-Sim,
and offered access to software and model libraries. Besides this and from the elements on
the list above, my work has been independent in its nature.
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Chapter 1
Introduction

1.1 Background

In recent years, Convolutional Neural Networks (CNNs) has within the field of Computer
Vision achieved amazing performances in various tasks, e.g. image classification, object
detection, and image segmentation. In particular, Deep Learning (DL) have in combina-
tion with high flexibility of software frameworks, large public image repositories, and es-
pecially the advancement in GPU-accelerated computation techniques played an essential
role. Unfortunately, today’s deep neural networks require large amounts of data to gener-
alize well beyond the data used in training due to their massive size in terms of trainable
model parameters, often exceeding the number of samples they are trained on. The process
of acquisition, processing and labelling of customized data may be time-consuming and
costly, due to the intrinsic difficulty of image acquisition or substantial demand for man-
ual labelling effort. Recently, computer graphics have drawn the attention of academia and
the industry as a way of automating this process by generating synthetic training data, to
be used as a substitute when real-world data is unavailable, scarce or limited in diversity.
Domain Adaption techniques enables the use through fine tuning, layer freezing, data aug-
mentation, and mixing a synthetic and real-world data. However, synthetic data meant to
imitate the real-world suffers from a covariate shift as the distribution of features changes
between the domains. Due to the poorly understood nature of "black-box" Deep Neural
Networks (DNNs), particularly in terms of generalization and transferability of features
[4, 5], it is hard to tell how a transition between synthetic and real-world data affects these
machine learners.

Kongsberg Digital has proposed to use their maritime simulator, named K-Sim, to ex-
plore, understand and summarize practical implications of using computer graphics for
quick generation of useful labelled images, for image segmentation and classification in
the maritime domain. K-Sim offers highly realistic maritime scenarios in multiple geo-
graphical areas and all possible weather conditions, with a wide variety of vessels and
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objects, and is used for maritime education, training and studies. An advanced physical
engine and state-of-the-art hydrodynamic modelling bring the maritime scenarios close to
the real world. Therefore, it would be interesting to gain insight into the implication of
using synthetic data acquired from K-Sim for training various CNN for later deployment
into the real-world maritime domain, in terms of acquisition and labeling, domain adapta-
tion, and performance influence. The benefits from using synthetic images and data from
K-Sim are many, as the real-world maritime domain has limited accessibility both visual
and informational, due to the vast number of different types of vessels, scenarios, environ-
ments, and the fact the open ocean naturally demands time and resources to access. K-Sim
could be used to create pure synthetic image datasets, to balance unbalanced real-world
dataset, or create datasets from specific scenarios that may be practically inaccessible in
the real world. Besides, since K-Sim is developed for maritime education and training,
there are reasons to believe that it can contribute to the development of autonomous mar-
itime systems by providing it’s virtual maritime environment.

Recently, the implications of the "black-box" nature of machine learning models have
gained attention from the community and academia, who ask questions regarding trust
and explanations in connection with societal, moral, legal norms, and regulations, and
which has lead to a new paradigm within AI, called Explainable AI (XAI). It is believed
that machine learning models that offer explainability cannot only assert trust and meet
legal regulations, but also help scientists and developers to reveal flaws, bottlenecks, and
opportunities for improvement in the model design. It might also lead to more principled
architecture design. Therefore, it would also be interesting to explore if recent methods
within the area of XAI can be used for obtaining insight into image segmentation models.

Figure 1.1: K-Sim graphic illustration. Source: [6]
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1.2 Problem description

The problem that this thesis aims to answer is summarized as:

The main objectives in this thesis is to explore, understand, and summarize
the practical implication of using a maritime simulator for quick generation
of "useful" labelled images, for instance segmentation and classification in
maritime scenarios. The study is based on the use of the Kongsberg Digital
Maritime Simulator for computer-generated synthetic training data, Mask
R-CNN for image segmentation and classification, and different domain

adaption techniques for fine tuning of networks. In addition, to the extent
possible, the interpretability of the models developed in this thesis is

investigated using recent methods within the area of XAI.

1.3 Objectives

The objectives based on the problem description in the previous section have been divided
into four main parts:

1. Conduct a short study on the topic of Explainable AI, and investigate if there is
a method that can be used for obtaining explanation from instance segmentation
models.

2. Develop and implement a method for generation of instance-level labelled images
from K-Sim. The method will be based on K-Sim’s user interface, access to the
model library, and manipulation of graphics followed by a mask extraction step.

3. Conduct an experiment based on domain adaptation with different fine-tuning ap-
proaches, appropriate image augmentation, synthetic images from K-Sim as source
data, and real-world images as target data. We will use Mask R-CNN as the CNN
architecture.

4. Attempt to obtain insight or explanations of detections from an instance segmenta-
tion model using the proposed Explainable AI method.

1.4 Outline

This thesis is organized into mainly five parts:

1. Theoretical background and Explainable AI.

2. Development, implementation, and evaluation of a method for acquisition of instance-
level labelled synthetic data from K-Sim
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3. Domain adaptation and LIME experiment.

4. Results, discussion, conclusion, and future work.

The chapter has been organized with respect to these parts. The theoretical background
in Chapter 2 serves as the theoretical foundation for the rest of the thesis, and has been
written with the novice reader in mind. It starts by covering the basic paradigms within
machine learning before it covers in details the tools that have been utilized throughout the
thesis.

Chapter 3 presents a brief introduction to the topic of Explainable AI in the context of
computer vision, by giving the motivation and proposing the use of a method called LIME
for obtaining explanations from an instance segmentation model.

Chapter 4 introduces Kongsberg Digital’s maritime simulator called K-Sim, before cover-
ing in details the method developed for acquiring instance-level labelled synthetic images.
It is based on the manipulation of the simulator’s graphics and a method which can be
described as probabilistic hierarchical clustering based on the hue-dimension of the domi-
nant colors and spatially closely connected regions. We delay a discussion of this method
until the discussion.

Chapter 5 conducts an experiment based on domain adaptation with different fine-tuning
approaches, appropriate image augmentation, synthetic images from K-Sim as source data,
and real-world images as target data. Based on the best performing adapted model, LIME
is used to obtain an explanation for two different detections. The chapter ends with a brief
discussion and evaluation of the method and proposals for improvements.

Chapter 6 presents the results from the experiment along with a few performance inspec-
tion tools to shed light on the performance and differences.

Chapter 7 discusses the results from the experiment, compares the different domain adap-
tation techniques, and gives suggestions to how the performance or results could have
been improved. Also, it discusses the method developed for acquisition of instance-level
labeled images from K-Sim in terms of what it can offer and its limitations.

Lastly and finally, Chapter 8 wraps up the knowledge obtained throughout the thesis and
reaches a conclusion. The thesis ends with proposals for further work on the topics.
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Chapter 2
Theoretical background

This chapter presents the relevant terminology and the many theories, methods, and con-
cepts that form the theoretical and technological foundation of this thesis, and has dived
them into six parts:

• Section 2.1 introduces the field of machine learning.

• Section 2.2 cover an ensemble classification approach named Random Forests Clas-
sification

• Section 2.3 covers two distinct methods for clustering; variational learning for Gaus-
sian Mixture Models and agglomerative hierarchical clustering.

• Section 2.4 covers the technology behind image segmentation. It first clarifies what
separates the task of image and instance segmentation from other tasks within com-
puter vision then covers the concept of artificial -and convolutional neural networks,
and lastly presents different neural network architectures that have laid the road to-
wards state-of-the-art performance within the task of instance segmentation.

• Section 2.5 covers the field of transfer learning and domain adaptation, and different
types of dataset biases that can affect performance.

• Section 2.6 covers synthetic data for visual applications.

The competent reader can expect to find the content of these sections familiar. Never-
theless, it is encouraged to read Section 2.5 since it states related terminology to domain
adaptation used throughout the thesis.
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2.1 Machine Learning

Machine Learning (ML) is a discipline within computer science that is concerned about
algorithms and statistical models that can accomplish the task effectively by relying on
inference and learning from given data. The core idea is that knowledge is learned from
experience after having witnessed the outcome from a decision taken based on input data.
Models that are capable of learning are denoted as learners throughout this thesis. There
are mainly three machine different learning paradigms:

• Supervised learning
• Unsupervised learning
• Reinforcement learning

In supervised learning, a training set is given to the learner that contains pairs of input
and output, denoted as labelled data points or data points with ground truth. The learner
then attempts to learn an inferred function which can map new input. In other words, the
learner attempts to learn the relationship between the input and output, such that it can
predict the correct output for new unseen input datasets. The full-relationship between
input and output are called the target function, which predicts with 100 % accuracy. In
unsupervised learning, a learner is instead given a training set without ground truths and
has to find unknown patterns. Thus the problem at hand becomes what is called pattern
recognition, that is categorization without supervision. Lastly, in reinforcement learning,
the learner or actor is deployed into unknown environments and ought to take actions
to maximize some notion of cumulative reward. In layman’s term, the learner searches
for ways to accomplish a set of goals by taking actions in the environment and receive
occasional rewards, as in an escape-room fashion. The methods implemented in this thesis
exclusively base themselves on supervised and unsupervised learning.

2.2 Random Forests Classifier

Random Forests Classifier or Random Forests is a supervised ensemble method that ex-
clusively uses trees as base learners. A digital digit classifier in Section 4.2.2 used to read
time from a digital screen used a random forest classifier. We shall explain the method by
cutting it down to its basics, by first looking at a single decision tree, then bagged decision
trees, and finally, Random forest.

Decision Tree

Decision tree is a category of learners that solves supervised tasks using only conditional
split statements represented by a tree structure. A tree is constructed as a connection of
nodes, which starts at the root node, splits into subsequent branches, and end at the termi-
nal branches or leaves. These learners take a set of different sorts of values or attributes as
input, splits on one of the given attributes per node into the tree in an iterative fashion, and
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terminate at the leaves where it makes a decision. The attributes may be binary, numerical,
strings, or any other data type. A decision tree is illustrated in Figure 2.1.

The challenge is how to build the tree that it how to determine the tree structure of condi-
tional split statements. If it is desired to minimize the depth of the tree, it is common to use
an algorithm called ID3 after J.R. Quinland[7] which employed a top-down, greedy search
through the space of possible splits using entropy and information gain. The entropy is a
measure of uncertainty of a set after C.E. Shannon and can be understood intuitively as
the length of the encoding necessary to represent a set based on the attribute frequencies.
Entropy is for a given sample of sets given by:

H(S) =

C∑
i=1

−pi log2 pi (2.1)

where C is a set of attributes, S is the sample of sets, and pi is the relative attribute
frequency of S. The information gain is based on the decrease in entropy after splitting on
an attribute, which entails the removal of that attribute from the set. Information gain is
given by:

I(S,A) = H(S)−
∑
θ∈A

|Sθ|
|S|
·H (Sθ) (2.2)

= H(S)−H(S|A), (2.3)

where A is the attribute that splits the set S, θ is each value or range of values of A, and
Sθ is the subsets with equal values of A. Information gain can be understood intuitively as
the reduction in entropy given an additional piece of information A about S. Hence, the
attribute that gives the greatest entropy reduction is chosen as the condition variable for
the split.

The procedure of splitting is repeated until reaching a full dataset splitting or maximum
depth. The maximum depth hyper-parameter is often used to avoid overfitting of the de-
cision three, that is a too closely fit to a limited set of datapoints which may result in a
failure to predict future datapoints.

The implementation of the decision tree used in this thesis is obtained from scikit-learn[8],
and is based on an algorithm called Classification And Regression Trees (CART) which
constructs binary trees. CART is a variant of a decision-tree algorithm named C4.5 which
is a widely used algorithm, which in turn is a successor of the ID3 algorithm.
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Figure 2.1: An illustration of an decision tree for deciding whether to wait for a table. Source: [9].

Bagged Tree ensemble

Ensemble learning or combined predictors is a powerful machine learning paradigm which
combines multiple weak learners to solve a task. Unlike general base learners, which
learns a single model from data, ensemble methods combine predictions from multiple
base learners to improve performance. Decision trees have high variance and low bias,
since it is highly susceptible to variances in data but make almost no assumption about the
target function.

Bagged trees use a technique called bagging or bootstrapping aggregating, were many
decision trees are trained on different training set sampled randomly with replacement and
combined using the average of predictions. The result is a reduction in the variance due to
averaging of predictions compared to a single decision tree, but at the cost of an increased
bias since there is less data for each decision tree to learn from. If the output of the decision
trees is probabilities, it is also possible if not beneficial to average over the probabilities
rather than averaging over binary class prediction, for example.

Random Forest Classifier

Random Forest takes one extra step from bagging where in addition to sampling subsets
at random, it also selects a subset of attributes at random rather than using all attributes.
There are several different benefits from this approach:

• It results in a moderate variance compared to the high variance for single decision
trees, while keeping the bias low.

• It decorrelates the trees, which is helpful in case there is a big difference in the
predictive ability among the attributes.

• It contributes towards handling higher dimensional data since each tree only consid-
ers a subset of attributes
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• It handles unbalanced data by allowing for higher error rate for small classes com-
pared to larger classes.

• It allows for parallel computation.

However, random forest learners are not very interpretable and acts as a "black box", they
can take up a large amount of memory, and they tend to overfit. due to Due to the risk
of overfitting, it is necessary to tune the hyper-parameters. A list of important and useful
hyper-parameters is given below:

• The number of estimators which is the number of trees in the forest.

• The maximum number of features when considering the best split

• The maximum depth, that is the maximum number of successive splits.

• The class weight, in case that class imbalance requires compensation.

2.3 Probabilistic and Hierachical clustering

Clustering or clustering analysis is a type of unsupervised learning method within machine
learning that is used to find clusters or groups inherent in a set of datapoints. Based on a
measure of similarity that serves a specific purpose, datapoints in the same cluster should
be more similar to each other than to those in other groups. Two different types of un-
supervised clustering algorithms are Variational Bayesian Gaussian Mixture Models and
agglomerative weighted hierarchical clustering. The following two sections will give an
insight into these two algorithms. However, since the content of this thesis does not de-
pend on understanding the algorithm’s technical and statistical complexity, we stick to the
main concepts along with strengths and weaknesses. We refer to the sources from which
the content of these two section are based, and advise the inquisitive reader to seek more
information there. Section 4.2.3 further combine them into a two-stage probabilistic hier-
archical clustering method for obtaining non-Gaussian clusters out of a large collection of
datapoints within reasonable time.

2.3.1 Variational Bayesian Gaussian Mixture Models

The content of this section is based on [10, 11].

Gaussian Mixture Models (GMM) are probabilistic representations for multimodal distri-
butions and are based on a linear combination of unimodal Gaussian component distri-
butions. GMM maintain many of the theoretical and computational benefits of Gaussian
models, making them convenient for efficiently modelling huge amount of data. Clustering
can be implemented based on a GMM by choosing the most likely component assignment
using Bayes’ theorem. Given that the numbers of components are unknown, the learning
task consists of estimating the number of components, as well as estimating the parame-
ters that characterize the distributions. Conventional approaches for finding the number of
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components based on exhaustive cross-validation in the number of components up to max-
imum value are computationally expensive, are wasteful of data, and give noisy estimates.
Instead, it is possible to use variational Bayesian methods for estimating the number of
components as well as estimating the parameters. We denote the inference algorithm of
learning a GMM using Variational Bayes as Variational Bayesian Gaussian Mixture Mod-
els (VBGMM). The following subsection covers the two main aspects of this inference
algorithm, first the GMM and then Variational Bayes. The subsection gives the reader an
idea of the principals of the algorithm.

Gaussian Mixture Models and clustering

A GMM is defined by the following equation:

p(x) =

K∑
i=1

πiN (x|µi,Σi) , (2.4)

where πk are the mixing coefficients who satisfies 0 ≤ πi ≤ 1 and
∑M
i=1 πi = 1, µi are

the means,
∑
i are the covariance matrix, and N (x|µi,Σi) are the multivariate Gaussian

distribution.

Each datapoint xn also have an associated latent one-to-K binary vector cn of length K,
which indicates which component distribution xn originates from. If xn originates from
component k, then ck is equal to one, while all other elements are equal to zero. Given
a component ck and a GMM, the posterior component distribution assignment probability
can be calculated using Bayes’ theorem:

p (ck|x) =
p (x, ck)

p(x)
=

p (ck) p (x|ck)∑K
j=1 p (cj) p (x|cj)

=
φkN (x|µk,Σk)∑K
j=1 φjN (x|µj ,Σj)

(2.5)

Choosing the most likely component assignment provides a way to learn clusters.

Variational Bayes estimation

The learning task consists of estimating the number of components and the parameters that
characterize the distributions.

Bayesian statistics frames all inference about unknown quantities as calculation about the
posterior, meaning that posterior knowledge about unknown quantities is obtained based
on prior knowledge and new evidence using Bayes’ theorem. Given a set of observed
variables x = x1:n and a set of unobserved variables z = z1:n, a conditional distribution
based on Bayes’ theorem can be written as:

p(z|x) =
p(z,x)

p(x)
=

p(z,x)∫
p(z,x)dz

. (2.6)

However, the denominator or evidence integral is often unavailable in closed form or in-
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tractable as it often requires exponential time to compute. Variational inference is used to
approximate posterior distribution for Bayesian models by using a variational distribution:

p(z|x) ≈ q(z). (2.7)

The variational distribution is found by minimizing a dissimilarity function given the fol-
lowing optimization problem:

q∗(z) = arg min
q(z)∈Q

KL(q(z)‖p(z|x)), (2.8)

where KL is the probability distribution dissimilarity function named Kullback-Leibler
divergence, and Q is a variational family of distribution over the unobserved variables.
Once solved, q∗(z) is the best approximation of the conditional distribution, within the
variational family of Q. KL(q||p) is given by:

KL(q(z)‖p(z|x)) = E[log q(z)]− E[log p(z,x)] + log p(x), (2.9)

but is not computable due to the dependency on log p(x). However, since p(x) is constant,
maximizing the negative of the first two terms, called the evidence lower bound (ELBO):

ELBO(q) = E[log p(z,x)]− E[log q(z)], (2.10)

is equivalent to minimizing the KL divergence. The complexity of Q determines the
complexity of the optimization; it is more complex to optimize a complex family than a
simple family.

The mean-field variational family defines a specific class of joint distributions that are
based on the assumption of mutually independent unobserved variables that are governed
by distinct factors in the variational distribution. The factorization is given by:

q(z) =

m∏
i=1

qj (zj) . (2.11)

In the optimization, these variational factors are chosen to maximize the evidence lower
bound in Eq. 2.10 using variational calculus. VBGMM is obtained by choosing one factor
for each latent variable in the Gaussian mixture model.

2.3.2 Agglomerative Weighted Hierarchical Clustering

Hierarchical clustering is a method which seeks to build a hierarchy of clusters. There
are two types of hierarchical clustering, namely divisive and agglomerative. The former is
a top-down clustering method where we start with a single cluster and then partition the
cluster to two least similar clusters based on a dissimilarity measure. We are concerned
about the latter, which is a bottom-up clustering method where we start with as many clus-
ters as datapoints, and combines in an iterative fashion the two most similar clusters based
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on a similarity measure. This iterative fashion proceeds until there is only one cluster left,
yielding a hierarchical structure of the clusters called a dendrogram. The data is clustered
by implementing a threshold for the maximum allowed distance between clusters, which
divides the dendrogram into final distinct clusters. This method is illustrated in Figure
2.2, where ten datapoints with values from 8 to 85 are clustered into 4 clusters using a
threshold equal to 10.

Figure 2.2: Illustration of agglomera-
tive weighted hierarchical Clustering

There are various similarity measures or linkage
methods, such as a single linkage which considers
the shortest distance between two points in each
cluster, and complete linkage which considers the
longest distance between two points in each cluster.
The similarity measure used in this thesis is based
on what can be described as a weighted pairwise
distance measure. After having combined the two
nearest cluster, say s and t, into a single cluster v,
its distance to a new cluster u is given by:

d(u, v) = (dist(s, v) + dist(t, v))/2. (2.12)

where dist(. . . ) is a distance measure, e.g. Manhat-
tan metric.

2.4 Image segmentation

Image segmentation is a sub-field within image recognition, and addresses the problem
of partitioning an digital image or video into multiple segments or set of pixels. This
section covers in details the road from the classical task of image classification towards
the task if instance segmentation, which this thesis is based, covering the terminology,
concepts, and technology that lies behind it. We start by explaining different tasks within
image segmentation and clarify what separates instance segmentation from other tasks. We
then proceed with covering the concepts of artificial and convolutions neural networks and
present different neural network architectures. Note that these architectures are referred to
from the beginning in the context of the different tasks.

By the end of this section, the reader should have a clear view of what image and instance
segmentation is and how it deep learning solves these tasks.

2.4.1 Main tasks within image recognition

Image recognition in the context of single two-dimensional images may roughly be divided
into four main tasks, as shown in Figure 2.3. Note that they are not isolated fields but rather
natural steps in the progression from coarse to finer inference and that there are other tasks
as well.
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Image Classification

Image Classification is the task of assigning an image one label from a fixed set of cate-
gories. It is common practice to output a probability prediction distributed over all classes
representing the classification confidence that an image belongs to certain classes. Be-
cause many other tasks within image recognition such as object detection involve the task
of image classification, it has a large variety of practical applications and is considered one
of the core problems in Computer Vision. For instance, the problem of handwritten digit
classification is a well-studied image classification problem. Today, deep neural networks
and convolutional neural networks, in particular, has been widely adopted for this task.

Figure 2.3: Illustration of four different objectives within image recognition. Upper left: image
handwritten digit classification, source: Mnist handwritten dataser). Upper right: object detection.
Lower left: semantic segmentation, source: Cityscrapes dataset. Lower right: instance segmentation,
source: Matterport[12]

Object detection

Object detection is the task of locating and classifying semantically meaningful objects
of a certain class in an image, and usually involves encapsulation of each object by a
bounding box together with an assigned class label and a detection confidence score sim-
ilar to that of image classification. A comprehensive survey of recent achievements in the
field of object detection brought by deep learning techniques is given by [13]. Here it
is noted that one of the factors for the tremendous success in object detection has been
the development of better detection frameworks, mainly two-state region-based (R-CNN
[14], Fast R-CNN [15], Faster R-CNN [16], and Mask R-CNN [17]) and one-state de-
tectors (YOLO [18] and SSD [19]). While the best accuracy is obtained by region-based
detection frameworks, they are too computationally intensive for embedded or real-time
systems. Contrary, single-state frameworks is simpler and faster and achieves real-time
detection, but they have not reached the same accuracy as region-based architectures.
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Semantic segmentation

Semantic segmentation or scene segmentation can be described as a per-pixel labelling
problem, concerned about labelling each pixel in an image or scene with the class of its
enclosing object or region. Thus each pixel is assigned with a label based on its semantic
meaning in the picture. Many different sophisticated neural network architectures pro-
posed for this task have had great success, which is beyond the topic of this thesis. How-
ever, they make use of a similar neural network backbone such as residual neural networks
and feature pyramid networks. We shall explain these techniques and neural networks in
the upcoming sections.

Instance segmentation

Instance segmentation is the task of localizing and predicting class label and pixel-wise
mask together with detection confidence to a varying number of instances present in an
image. Besides, a bounding box can be also be predicted or given implicitly by the object
mask. Thus, instance segmentation can also be considered a type of object detection task.
The instances can be larger objects such as cars, pedestrians, and roads, or smaller parts of
larger objects such as wheels of cars and bikes, and bags and hats on people. The task is
seen as one of the most essential computer vision tasks. For instance, it is expected to con-
tribute to the development of autonomous systems. Nonetheless, it is also one of the most
challenging tasks as overlapping objects of the same class must be separated. Proposed in
2017, Mask R-CNN has in the recent years been among the state-of-the instance segmen-
tation architectures [17] and is characterized as a simple and effective system. Today, it
still serves as a basis for further development of architectures within the task of instance
segmentation.

2.4.2 Performance measures

Before we dive into the neural network paradigm, we need to cover a popular metric
for measuring accuracy within object detection and instance segmentation. The mean
Average Precision (mAP) accuracy metric offers a unified way of comparing machine
learners across different experiments, and takes into account a trade-off between what
is called precision and recall, and potential class imbalance which could make accuracy
metrics biased. As mentioned in the previous section, each of the tasks usually involves
outputting a confidence score for each detection. The inherent problem which occurs is a
what threshold should a detection be considered a valid detection. Lower thresholds yield
more valid detections but with lesser confidence, resulting in a lower percentage of correct
detections but higher recall; a fraction of actually detected object instances compared to the
total amount of object instances. On the contrary, higher thresholds yield fewer detections
but with higher confidence, resulting in a lower recall but a higher precision; a fraction of
actually detected object instances among the total number of object detections. Thus, there
is an inverse relationship between precision and recall and that these metrics are dependent
on the model score threshold. Furthermore, class imbalance could make accuracy metrics
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biased in case of a dominant class in terms of number demands a relatively high model
capacity, archives high accuracy, and consequently dominates the accuracy matrices.

In mAP, all detections are kept to keep maximum information about a model while si-
multaneously handling the precision-recall trade-off and class unbalance. The following
section describes the metric in details in the context of object detection and instance seg-
mentation.

Detection conditions

The terminology related to the condition or correction of detections from a model in object
detection is as follows:

• True-Positive (TP): A detection where the model correctly predicts the localization
and the class.

• False-Positive (FP): A detection where the model incorrectly predicts the localiza-
tion or/and the class.

• False Negative (FN): A detection where the model failed to predict the localization
and class of a present object.

• True Negative (FN): Does not apply. The model did correctly not predict any pres-
ence of an object.

This terminology also applies to other machine learning tasks as well.

Intersection of Union

The Intersection over Union (IoU), or Jaccard similarity coefficient after the frenchman
Paul Jaccard, measures the similarity between finite sample sets and is defined as the in-
tersection divided by the union. In object detection and instance segmentation, a detection
is considered a "correct match" if IoU between the bounding box or the instance mask and
the ground truth segment is greater than a certain threshold, and is given by:

TP (Pr) =
Pr ∩ Gt
Pr ∪ Gt

> T, (2.13)

where TP(Pr) is True-Positive given the prediction segment Pr and the ground truth seg-
ment Gt, and T is the IoU threshold. In case of instance segmentation where the predicted
segment is pixel-wise masks, summation of pixels are used. It is common to vary the
threshold T , depending on the requirements for considering a detection a correct match.
Low values for T will allow inadequate segment to be accepted, while high values will
impose strict requirements for accuracy.
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Precision and Recall

Precision is a model’s ability to identify only relevant object instances. It is the percentage
of true-positive detections among all relevant detections and is given by:

Precision =
TP

TP + FP
=
TP

n
, (2.14)

where n is the total number of detections.

Recall is a model’s ability to identify all relevant object instances. It is the percentage of
true-positive detections among all relevant object ground truth instances and is given by:

Precision =
TP

TP + FN
=
TP

m
, (2.15)

where m is the total number of ground truth instances.

The inclusion of the notion relevant is in case there are multiple classes in the data points.
As we see in the section after the next, mAP is based on an independent calculation of
precision and recall between the classes.

Precision-Recall curve

The precision-recall curve is based on calculating precision and recall from most confident
relevant detection and then towards the least confident relevant detection. Beforehand, the
total number of ground truth segments is counted to get m as to calculate the recall. The
corresponding precision and recall pairs are then calculated based on the accumulating
number of true-positives and false-positives as one moves through the sorted detections.
The precision-recall curve is finally given by the pairs of precision and recall values and
limited to the quadrant given by the minimum value of zero and maximum value of one
for both precision and recall.

Mean Average Precision

mean Average Precision (mAP) is based on calculating the mean area under the different
precision-recall curves from each class over the whole dataset. The mathematical defini-
tion is:

mAP =
1

C

C∑
j

∫ 1

0

pj(r)dr (2.16)

where C is the number of classes present in the dataset, and pj(r) is precision given
recall r. However, the area under the precision-recall curve can be difficult to calculate.
Therefore, we have in this thesis used a technique based on interpolation through all point
in such a way that:
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mAP =
1

C

C∑
j

1∑
r=0

(rn+1 − r1)ρ̃interp,j(rn+1) (2.17)

with:
ρinterp,j(rn+1) = max

r̃≥rn+1

ρ(r̃) (2.18)

An illustration of precision-recall curves and calculations of average precisions is given
in Figure 2.4. The area under the precision-recall curve is a good way to evaluate the
accuracy of object detections and instance segmentations as confidence thresholds would
not increase performance but rather possibly decrease it. Furthermore, mAP is a good
way to evaluate performance for a dataset with class imbalance, since the maximum area
under the curve is limited to one, thus mitigating the effect of biased accuracy. Since
true-positives are based on the IoU-threshold, a common notation is mAP@T for telling
that mAP is based a certain threshold. mAP is also extended by averaging over different
thresholds, denoted as mAP@[T1...Tn]. The results Section 6 from the experiment in
Section 5 utilized both regular mAP and averaged mAP to provide good insight into the
test results.

Figure 2.4: Illustration of precision-recall curves and calculation of average precision (green area).
mAP is later calculated by taking the mean of the average precisions.

2.4.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) denotes a computational tool that is inspired by and
modelled after biological neural systems, by the use of simplified mathematical models of
how the neurons in the human brain operate. Composing these simple models into a large
graph or network where layers of nodes are connected by directed edges gives massive
modelling power and flexibility.

Each node which is denoted as a neuron consist of a linear transformation of input with
adjustable weights, a bias input, and a non-linear piece-wise continuous thresholding func-
tion denoted as activation function. The adjustable weights enable for learning, the bias
allows for shifting the activation function, and the activation function allows for non-linear
mapping and continuous output. The weights and bias are often denoted as the parame-
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ters θ of the neuron. There are a variety of different activation functions with different
non-linear characteristics. It is each of these neurons that process the information through
scaling, shifting and non-linear mapping and thresholding as it flows through the neural
networks.

(a) Artificial neuron. Source: [20] (b) Activation functions

Figure 2.5: Artificial neuron inspired by a biological neuron.

The neurons are organized in layers, where directed edges connect neuron in one layer
to neuron in another subsequent layer. A layer can be represented mathematically by an
unit bias vector b, a weighting matrix W , and an activation function σ(·). Given an input
vector x, the output vector y is given by

y = σ(Wx+ b), (2.19)

where the activation function is applied to each of the elements of the vector from the
linear transform. If all neuron in two adjacent layers is fully pair-wise connected, but
the neurons within the single layers are not connected, those two layers are called fully-
connected layers. A composition of layers constitutes a ANN, which is illustrated in Figure
2.6. During what is called the forward pass, inputs are propagated through the network.
No cycles are allowed to happen as it would imply an infinite loop, and consequentially
the network behaves like an acyclic graph and is called feed-forward neural network.

A loss function measures the goodness of fit between the neural network and the desired
relationship between the input data and the ground truth. However, the choice of loss
function depends on the objective. Within classification where outputs are probabilities
and predict class membership, the cross-entropy cost function is the basis for many loss
functions and is given by:

C = − 1

n

∑
x

∑
i

[zi ln yi + (1− zi) ln (1− yi)] , (2.20)

where i is the number of output neurons, yi is the output of neuron i, zi is the desired
ground truth of neuron i, x is the input to the network, n is the total number of training
instances, and ln is the natural logarithm with base 2. The natural logarithms is used due
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Figure 2.6: An illustration of an ANN consisting of an input layer with eight inputs, three hidden
layers with nine neurons each, and one output layer with four neurons. Source: [21] (Note: text have
been changed and colors have been added to the image.)

to the ease of calculating the derivatives, among other reasons. The reason for using cross-
entropy is mainly for avoiding a slowdown in learning in case of a significant loss where
activation functions are saturated. The reason for having the second term in the equation
is to add a penalty for false-positives. Because ground truth class membership is binary, a
false-negative would result in losing the sum over i if it was not for this term.

The challenge is how to determine the parameterization which best fits the neural network
to the loss function. Because of the structured characteristics of neural network architec-
ture, optimization of the loss function with respect to the parameters θ offers a supervised
learning scheme. A standard method for implementing this is backpropagation, short for
"backwards propagation of errors", which distributes the errors calculated from the loss
function backwards into the network and updates the parameters using gradient descent.
The gradient descent algorithm can be expressed by:

θ ← θ − α∇θC(θ), (2.21)

where α is the learning rate and C(θ) is the loss function. To speed up learning speed,
an optional algorithm called Stochastic Gradient Descent (SGD) updates the parameters
based on evaluation of the loss function and the gradients on randomly selected subsets
of the training data. Hence, SGD can be regarded as a stochastic approximation of gra-
dient descent optimization. Besides, SGD in itself adds a regularization effort due to the
stochastic nature of the algorithm. We shall cover the topic of regularization together with
convolution neural networks in the section after the next.
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2.4.4 Deep Neural Networks

The universal approximation theorem of feed-forward neural networks states that every
continuous function on a compact subset Rn can be arbitrary well approximated by a
feed-forward neural network with one hidden layer, a finite number of neurons, and some
mild assumptions about the activation function [22]. Intuitively, this can be explained sim-
ply by understanding that combination of activation functions, where height and shift are
determined by the weight and bias respectfully, can fit any continuous function [21]. This
continuous function will in practice corresponds to the relationship between the input data
and the ground truth which the neural network is to predict. For that reason, artificial neu-
ral networks are also called universal function approximators. On the contrary, depending
on the complexity of this relationship, the number of neurons in the hidden layer may
become in-feasible large. Therefore, another approach is to use multiple hidden layers
with a limited number of neurons in each layer. Such network architectures are called
Deep Neural Network (DNN), and is very powerful and efficient. This is explained by the
fact that the number of linear regions grows exponentially with depth L and polynomial
with the number of neurons n per hidden layer [23]. Therefore, the number of linear re-
gions grows much faster for deep architectures compared to shallow architectures with nL
hidden neurons.

2.4.5 Convolutional Neural Networks

Convolutional Neural Network is a variant of deep neural networks that takes images as
input and constrains the architecture more sensibly by implementing three different kinds
of layers: convolutional layers, pooling layers, and fully connected layers. These layers
are stacked to form a full CNN architecture.

Convolutional layer

The convolutional layer is the core building block of the CNN and has inspiration from
biology, where the visual cortex of organisms contains receptive fields that fire based on
certain types of stimuli. Convolutional layers persuade this where learned filters are sys-
tematically applied to the input to create feature maps that summarize the presence of
features in the input. A convolutional layer if visualized in Figure 2.7 along with an acti-
vation function.

A filter is arranged in three dimensions: spatial (width, height) and depth. During a
forward-pass, the filter slides horizontally and vertically across the previous layer, and
at each sliding step, it computes the dot product between its weights and the current re-
gion of neurons denoted as receptive fields. Then element-vice activation is performed
on the output of the filter operations, which leaves the resulting spatial and depth dimen-
sions from the filter operation unchanged while still allowing for non-linear transforms
and thresholding. The resulting value is the output of the corresponding neuron in the
convolutional layer. If the filter weights match sufficiently with a current receptive, then
the corresponding neuron fire, analogous to the receptive fields found in biology. This
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Figure 2.7: Illustration of a convolutional layer. A filter of size 2x2 slides horizontally and vertically
with stride equal to 2 across the first layer. Element-wise activation with ReLU maps the dot product
between the filter and the receptive field.

arrangement avoids the impractical connection of every neuron to all neurons in a subse-
quent layer when dealing with high-dimensional input such as colour images, which does
not scale well and could easily lead to overfitting. Besides, the use of filters reduces the
number of learnable weights since each filter only has a specific and low limited number
of weights. The convolutional layer may implement multiple filters, which increases the
depth of the layer. Note, the depth of the layer is different from the depth of each filter and
the depth of the deep neural network. In addition to the spatial and depth dimension, it is
common to implement what is called stride. When the filter slides over the previous layer,
it can skip a certain number of neurons corresponding to the stride, which further reduces
the computational cost. Zero-padding is also used to make the dimensions match.

Pooling layer

The pooling layer implements a down-sampling operation, meant to reduce the spatial di-
mensions, and is based on that the output from the convolutional layer may store redundant
information since the filter sizes are small compared to the input size and that the receptive
fields may overlap. It can be considered as a special type of filtering where one value is
extracted out of multiple values based on a pre-defined rule, but the stride is always equal
to the filter size. Pooling results in a reduction in the number of values and parameters
needed in the next convolutional layer. Basic spatial pooling types are maximum, sum-
mation, and average pooling. A maximum pooling layer is visualized in Figure 2.8. The
drawback is that spatial information may get lost due to the reduction of information, de-
pendent on the pooling functions. The pooling layer does not have learnable parameters
and works as fixed functions.

Fully connected layer

After a stack of pairs of convolutional layer and pooling layer, the extracted features are
flattened into a one-dimensional matrix which by now holds information that is vital to the
input. Several fully connected layers that constitute a fully connected network then learn to
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Figure 2.8: Illustration of maximum pool layer. A filter size of 2x2 and a corresponding stride of 2
is used to down-sample the output from the convolutional layer.

combine these extracted features for class prediction. The final neurons at the output layer
contain an activation function dedicated to the class prediction task at hand. For instance,
if the class prediction task is a multi-class one, which means that each neuron out class
probabilities, it is desired that the output of the neuron is a probability distribution. The
softmax activation function achieves this and is given by:

σ(z)j =
ezj∑K
k=1 e

zk
j = 1, . . . ,K, (2.22)

where z is the output vector before activation, zj is the current output neuron and K is
the total number of output neurons. This function sums to one over j, which is sensible in
multi-class prediction since if some neuron outputs increases, others must decrease.

However, in the context of image segmentation where the output is a single-channel seg-
mentation map, the last layers may be kept as convolutional, which preserves the spatial
dimensions and spatial dependencies. The last layer then uses a thresholding activation
function such as the sigmoid function (see Section 2.4.3, Figure 2.6) since the predictions
are decoupled.

Figure 2.9: Illustration of a typical CNN architecture composed of the basic types of layers. A
ReLU activation function is used, which is a common activation function in CNNs
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2.4.6 Overfitting, regularization and data augmentation

Overfitting has briefly been mentioned earlier as the case when a model too closely fit
a limited set of data points which may result in a failure to predict future data points.
When a model contains more learnable or free parameters that can be justified by the data,
it becomes prone to overfitting as large numbers of trainable parameters can describe a
strikingly wide range of phenomena [24]. State-of-the-art deep neural architectures may
contain millions of parameters, and efforts must be made to reduce the chance of overfit-
ting.

Regularization refers to methods that are used to reduce overfitting by adding constraints
a machine learner as to constrain the learnable parameters or information to expand the
learning requirements. We have already touched upon such methods. The softmax activa-
tion function, which sums up to one forces the network to limit the prediction probabilities
regardless of the number of output neurons. CNNs restricts the number of weights through
filters and shared weights, and pooling, and is capable of generalizing well to avoid overfit-
ting. Stochastic gradient descent is also in-itself a regularization effort due to its stochastic
nature. There are numerous other methods, but we shall restrict us to mainly four different
methods that have been used directly in this thesis, besides the intrinsic regularization in
CNNs.

First, the model capacity is critical to consider to avoid having too many learnable param-
eters. Convolutional neural architectures often have what is called a backbone, that is a
feature map extraction part in which the rest of the architecture is based upon. Choosing
a backbone with a suitable model capacity for the prediction task is the first step towards
avoiding overfitting. Second, limited training data is a source of overfitting because the
domain that data is sampled from may not be adequately represented. Data augmenta-
tion attempts to overcome these implications, in which image transformation techniques
are used to increase the diversity and to squeeze out as much information contained in the
available training-set. Geometric transformation such as affine and perspective transforma-
tion, translation, and rotation are examples of such techniques. Third, data augmentation
can also involve adding occlusion the images to make it more challenging and to force the
neural network to increase versatility and cooperation between neurons. Randomly adding
noise and black, white, or grainy squares and dots are examples of such techniques. Fourth
and last, early stopping may be considered essential for avoiding overfitting. During the
training of a machine learner, the validation error or score is calculated concurrently with
training error or score. Training is stopped if validation error stagnates for too long or
starts to increase, as this is a sign of overfitting taking place, especially if the training error
continues to improve. Early stopping is thus to stop training at the smallest error with
respect to the validation set.

2.4.7 Residual Networks

Deep neural networks achieve high accuracy by utilizing a stack of many layers (see Sec-
tion 2.4.3). However, as shown by He and Sun at Microsoft Research, that adding too much
depth can actually decrease performance [25]. Stacking layers can accumulate derivatives
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during backpropagation, which results in the weight becoming more and more sensitive to
changes the deeper one moves into the network. Regularization, correct weight initializa-
tion, and good choices of activation functions can restrict the problem to a certain degree,
but eventually, the depth becomes a problem. Therefore, He and Sun et al. (2015) pur-
posed Deep residual networks with residual blocks as a way to circumvent this problem.
The residual block adds a feed-forward connection across two layers, which allows for
the passing of useful concepts learned earlier in the network, as illustrated in Figure 2.10,
where the identity x can pass the two weighted layer without being scrambled. The team
found that residual block made networks easier to optimize and gained accuracy from con-
siderably increased depth. The accuracy measured by mAP reached the top at around 100
layers, but decreased when going towards 1000 layers. The neural network architecture
used in the experiment in Section 4 used a backbone based on Resnet101, that is a residual
network of 101 layers.

Figure 2.10: Residual learning: a building block in deep residual learning frameworks. Source: [26]

2.4.8 Mask R-CNN

The previous sections have laid the foundation for understanding how object detection and
instance segmentation can be solved using deep learning. We shall now outline a convo-
lutional neural architecture named Mask R-CNN that solves the task of object detection
and instance segmentation, and which our experiment in Section 4 utilizes. Mask R-CNN
is based on multiple predecessors, and to fully understand the inner workings of Mask
R-CNN, we start by giving an overview. The predecessors and Mask R-CNN architectures
are illustrated in Figure 2.11.

R-CNN

R-CNN or Regions with CNN features in an object detection algorithm that was devel-
oped by Ross Girshick and a team of researchers at EECS Berkeley in 2014. It relied on
a Selective Search Algorithm to generate region proposals, improvement of a well-known
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CNN architecture named AlexNet [27] to extract features from the proposed regions, and
a Support Vector Machine to detect and classify the presence of objects based on the ex-
tracted features in parallel with a bounding box regressor for adjusting the region proposals
afterwards. Selective Search is a region proposal algorithm based on creating hierarchical
groupings regions based on colour, texture, size, and shape similarity and compatibility.
Furthermore, Support Vector Machine is an unsupervised clustering algorithm that sorts
data with the margins between clusters as far apart as possible. After years of stagnation
in object detection performance, R-CNN offered a scalable detection algorithm that im-
proved mean average precision by more than 30 % relative to the previous best results at
VOC 2007, achieving a mAP of 53.3 % at VOC 2012. While these algorithms have an
okay runtime, the running of the CNN architecture on each of the proposed regions mas-
sively slows down the runtime to 49 seconds per test image. Moreover, since the Selective
Search algorithm is a fixed algorithm without room for improvement, it could lead to the
generation of lousy candidate region proposals, such that R-CNN consequently would be
wasting CNN detection which further contributed to a slowdown in speed.

Fast R-CNN

In 2015, Ross Girshick, which was now working at Microsoft Research, expanded on the
idea of R-CNN. Instead of feeding all regions proposals to a CNN, the input image was
fed into a CNN directly to generate what has later been named a feature map. Region
proposals from the selective search that were used to pool out the Regions of Interest
(RoIs) using what has been denoted as RoIPool, before these regions were feed into a fully
connected network terminated with a softmax classifier and a bounding box regressor to
adjust the region of interest. This improved runtime per image significantly to 2.3 seconds
per image.

Faster R-CNN

Thinking that speed could be further improved by replacing the Selective Search algo-
rithm, a Microsoft Research team in China proposed in 2016 instead used a Region Pro-
posal Network for obtaining Region of Interests based on the backbone feature extraction
network.

Regions were generated in the Region Proposal Network using a sliding window over
the feature map with anchors in different sizes and ratios, and at the same time given a
confidence score based on how well they lined up with potential objects. Sliding window
is a traditional technique which is known to be slow, but selection based on the confidence
score of the proposed regions allowed for a dramatic reduction in the number of ROIs,
effectively separating background and objects. The process of selection proposals with a
confidence score higher than a specific limit is denoted as non-max suppression (NMS).
This improved runtime per image yet more to 0.2 seconds per image.
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Mask R-CNN

Then, in 2017, a team at Facebook AI Research (FAIR) come up with the idea to extend
the prediction tasks to more than just classification and bounding box refinement. A mask
header was added as a third header for prediction object masks in parallel with the existing
branch for bounding box recognition. The header is a small FCN applied to each RoI,
predicting a segmentation mask in a pixel-to-pixel manner. Since Faster R-CNN’s RoIPool
was not designed for pixel-to-pixel alignment and led to spatial quantization for feature
extraction, the team proposed a simple, quantization-free layer called RoIAling improving
mask accuracy to as much as 50 %. Besides, it was found essential to decouple mask
and class predictions by predicting a binary mask for each class independently to avoid
competition among classes, in contrast to the usual per-pixel multi-class categorization in
FCNs.

The final architecture involved five different dynamic parts being the backbone feature ex-
tractor, the Region Proposal Network, the RoIAlign, the bounding box recognition header,
and the mask header. The backbone feature extractor can be any FCN, but the experiment
of Section 4 have used Resnet101 along with a FPN as proposed by the authors of Mask
R-CNN[17].

Figure 2.11: Illustration of architectures that have laid the road toward Mask R-CNN . Source: [28]
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2.4.9 Feature Pyramid Network

Detecting and segmenting object in different scales can be challenging, in particular for
small objects. A regular CNN progressively reduces the spatial size of the feature maps,
which hurts the ability to detect and segment small objects. In 2017, a team based on
cooperation between Facebook AI Research (FAIR) and Cornell University and Cornell
Tech came up with a feature extractor named Feature Pyramid Network (FPN) designed
based on a pyramid concept with accuracy and speed in mind [29]. It generates multi-scale
feature maps, based on combining low-resolution semantically strong features with high-
resolution semantically weak features via a top-down pathway and lateral connections.
This architecture can better represent information from different scales in the input image.
The bottom-up pathway is a regular CNN but defined in a pyramid fashion with multiple
steps. The steps are connected to the top-down pathway but are first convoluted using
a filter of size 1x1 for obtaining a weighted sum of spatial information contained in the
depth, and by such reducing the dimensions along the depth. Furthermore, the top-down
pathway is up-sampled by a factor of two using nearest neighbour in a similar but opposite
fashion as the down-sampling during pooling operations, before being merged by element-
wise addition in the lateral connection with the feature map from the bottom-up pathway
of the same spatial size.

The team went further and embedded a FPN into the region proposal network of Faster
R-CNN, persistently improving its performance. Since Mask R-CNN allows for any back-
bone, it has also embedded a FPN into its resnet-backbone for creating segmentation pro-
posals, as illustrated in Figure 2.12

Figure 2.12: Illustration of a FPN extended for segmentation proposals. A bottom-up pathway is
combined with a subsequent top-down pathway through lateral connection as to produce multi-scale
feature maps. Segmentation proposals is generated by sliding anchors across the multi-scale feature
maps. Source: [29]

2.5 Domain adaptation in CNN

When the domain and task changes, it can be expensive or impossible to recollect the
needed training data and rebuild models, especially within deep learning and CNNs. In-
stead, an already trained model on a large dataset from one domain can be transferred
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to another domain using a smaller dataset. This learning framework is named Transfer
Learning (TL) and may be summarized as a method for improving the performance of a
machine learner in one domain using knowledge learned from other domains. Domain
Adaption (DA) is a special case within transfer learning, where domains are different, but
labels are the same. Transfer learning does not necessarily demand sophisticated methods,
and standard practice based on fine-tuning can be sufficient to obtain good performance.

The following two sections present some definitions and notations regarding transfer learn-
ing and domain adaptation and cover two different domain adaptation learning methods —
the experiment of Section 4 relay heavily on the definitions and content of this section.

2.5.1 Domain adaptation and covariate shift

The section is primarily based on [30] and has inspiration from [31]. Notation has been
modified slightly.

A domain D can be said to consist of two components: a feature space X and a marginal
probability distribution P (X), where X = {x1, . . . , xn} ∈ X . In general, if two domains
are different, then they may have different feature spaces or different marginal probabil-
ity distributions. Given a specific domain D = {X , P (X)}, a task T consist of two
components: a label space Y and a conditional probability distribution P (Y |X), where
Y = {y1, . . . , yn} ∈ Y . The task can be denoted as T = {Y, P (Y |X)}, and cannot be
observed but learned by any machine learner as a model P̂ (X|Y ) from training data. If
the training data consist of pairs {xi, yi} , where xi ∈ X and yi ∈ Y , the learning of the
model is called supervised learning. In the context of this thesis, the machine learner will
be an CNN architecture. The authors of [30] considers two domains in regards to transfer
learning: the source domain DS and the target domain DT , and defines transfer learning
as:

"Given a source domain DS and learning task TS , and a target domain DT and learning
task TT , transfer learning aims to help improve the learning of the target predictive function
f(·) (i.e P̂ (X|Y )) in DT using the knowledge in DS and TS , where DS 6= DT , or TS 6=
TT ."

This definition gives rise to four different learning scenarios:

1. DS = DT and TS = TT

2. DS = DT and TS 6= TT

3. DS 6= DT and TS 6= TT

4. DS 6= DT and TS = TT

Since a domain is a pair D = {X , P (X)}, the condition DS 6= DT implies that ei-
ther XS 6= XT or PS(X) 6= PT (X). Similarly, since a task is defined as a pair T =
{Y, P (Y |X)}, the condition TS 6= TT implies that either YS 6= YT or P (YS |XS) 6=
P (YT |XT ). This gives rise to various additional learning settings.
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When the target and source domains are the same, i.e. DS = DT and their learning tasks
are the same, i.e. TS = TT , as in learning scenario (1), the learning problem becomes a
traditional machine learning problem. Domain adaptation, on the other hand, is a special
problem that finds itself between learning scenarios (3) and (4). The domains are different
due to a difference in the feature space, i.e. XS 6= XT , the marginal probability distribu-
tions of the input data are different, i.e. P (XS) 6= P (XT ), and the tasks are different
due to a difference in the conditional probabilities, i.e. P (YS |XS) 6= P (YT |XT ), but the
label space are the same, i.e. YS = YT . These are similar to the requirements for a covari-
ate shift, where the marginal probability distribution of the input data changes. Domain
adaptation covers the problem of training a model in a source domain, and deploying it
across one or more different target domains which are separated from the source domain
by a covariate shifts. As a final note, we mention the sampling selection bias, which de-
notes the case when the feature space in two domains are the same, while the selection of
samples from the two domains introduces a feature distribution bias towards the domains
and between the samples.

2.5.2 Fine-tuning and Gradually Fine-tuning

Modern deep neural networks are found to exhibit a common phenomenon reliably; when
trained on images, they all tend to learn first-layer features that resemble either Gabor filter
or colour blobs [32]. Gabon filters are linear filters and are widely used within computer
vision due to their ability for extracting texture feature. In general, features in neural
networks have been found to reliably transition from general in the first layers to specific
by the last layers of a network. This observation has given rise to the notion about general
and specific layers, based on how well or how short features at a specific layer transfers
from one task to another, respectively. Furthermore, training a deep neural network from
the bottom in a new domain can be expensive or impossible, as mentioned in the intro of
this section.

Therefore, a common approach within deep learning is first to train a base or source net-
work in one domain on a large dataset, and then fine-tune an arbitrary number of layers
or replaced layers in another domain and possibly with a different prediction task. Layers
that should be kept as they were are locked in a process called freezing. If the label space
or prediction task changes in some way from the source to the target, it is necessary to
replace the top layers of a source network with a new building block learner consisting of
custom layers or other custom machine learners dedicated for the new target task.

"Off-the-shelf" methods denote such approaches since one or more shelves are taken off
and replaced. The remaining layers from the source network can then either be frozen
or further fine-tuned on the target domain and task along with the training of the new
building block learner. The remaining layers will then, to a great extent, work as general
feature extractors considering their generality, while the new building block will learn the
conditional probabilities for the new target task. A study from 2016 conducted by a team
from Berkeley at University of California found that the best practice is fine-tuning by
keeping as many layers as possible from the source network and adjust the level of fine-
tuning based on the visual distance from the source and the amount of available target
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training data [33].

In domain adaptation where the label space remains the same, fine-tuning without remov-
ing and replacing layers may be sufficient. Two popular fine-tuning approaches where all
layers from the source network are copied are:

• Full fine-tuning: All layers in the network are kept open during fine-tuning.
• Gradual fine-tuning: Deepest layers progressively unfroze during fine-tuning.

The first of these two approaches allows for flexibility during training by allowing all
weight to be fine-tuned. The team at Berkeley found that that the more data that are
used, less freezing is better [33]. Besides, the more the source and the target domains
are different, the more adaptation would be necessary. Restricting the network through
excessive freezing could lead to the fine-tuned network under-performing compared to
it’s potential. However, if the dataset is small relative to the number of parameters, full
fine-tuning may result in overfitting, where the network starts to memorize the training
images. Then the second of these two approaches may be more suitable since it allows
for keeping general features untouched for a more extended period during the fine-tuning
process. Besides, there is a tendency within neural networks to forget previously learned
information when learning new information, known as catastrophic interference. Gradual
fine-tuning can intuitively be though to avoid this to a more significant extent than full fine-
tuning. We will, throughout the thesis, denote models that have been adapted using one of
these two methods as "fully fine-tuned" and "gradually fine-tuned" models, respectively.

2.6 Synthetic data

The problem in this thesis is concerned about synthetic data in the maritime domain in
the context of computer vision. Synthetic data may be defined as any information that has
been artificially manufactured to imitate the real-world to meet specific needs not found or
accessible in the real world. The various statistics of the synthetic data must, to a sufficient
degree, match those that are expected to be found in the real world, such that the data can
be used as a substitute. The motivations for using synthetic data can be summarized as
overcoming constraints regarding data acquisition in the real world. For instance, this
can be different constraints from costs, scenarios, sensitivity or regulations of data, and
labelling accuracy.

Convolutional neural networks have within computer vision shown outstanding perfor-
mance and the ability to resist overfitting but pay in terms of requiring a massive amount
of data during training. The acquisition process of labelled data can be laborious, costly,
and in some cases, restricted due to real-world constraints on scenarios and regulation of
data. Synthetic data can ease this process as it comes in vast quantities offered by auto-
matic generation and high-quality labelling with pixel-vice accuracy. A German team at
the University of Darmstadt injected a wrapper between a game running on a computer
and the operating system, allowing them to record, modify, and reproduce the rendering
pipeline [34]. After having implemented the tool, they were able to create pixel-level se-
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mantic segmentation for 25 thousand images within 49 hours, an astonishing volume con-
sidering the labelling time and pixel-level accuracy. In contrast, the CityScapes Dataset
contains high-quality pixel-wise instance-level annotations for 30 classes and 5 thousand
images [35] and required 1.5 hours labelling per image. Besides, high-quality labelling
contributes to increasing the value of the data. A paper published by a team at Mas-
sachusetts Institute of Technology (MIT) showed that a larger coarsely-annotated dataset
could yield the same performance as a smaller finely-annotated one within semantic seg-
mentation [36]. Furthermore, automatic labelling can, in addition to class labels, also offer
other labels as well, i.e. depth, mesh, hierarchy, speed, and heading, which may require an
immense manual workload.

Today’s computer games and simulators offer highly realistic graphics to the human eye,
enabled by computer graphics and 3D models that imitate light, shapes, and combina-
tions of shapes. Furthermore, mixing of synthetic and real-world data, combinations of
real-world objects and data, or other variants can also be considered synthetic data and
help increase the volume and diversity of datasets. However, synthetic data also comes
with a bias as they introduce features not present in real-world digital images. This bias
can contribute towards making models trained on synthetic data under-perform in the real
world.
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Chapter 3
Computer Vision: Explainable AI

This chapter takes a look at a new paradigm within artificial intelligence, namely Explain-
able AI (XAI). We start by giving a general presentation regarding the rising concern about
obtaining explanations within artificial intelligence, before covering a method named Lo-
cal Interpretable Model-agnostic Explanations (LIME) and proposing a way to extend it
to instance segmentation.

3.1 How can you trust your AI?

The success of AI can be explained by the inherent capability in machine learners to ac-
quire knowledge and to successfully act with respect to a given narrow objective based on
pre-programmed algorithms. While the algorithms become more sophisticated, our human
ability to interpret internal workings decreases, and they perform as an algorithmic "black
box". The community, academia, authorities, and the industry sees a growing need for
ensuring that the much-needed beneficial AI systems are trustworthy in that they behave
accordingly; in that they can comply to societal, moral, and legal norms [37] if desired, in
that they make rational decisions and recommendations, in that they satisfy performance
and robustness requirements, and in that they do so in all future time. Explainable AI is
the desire to enable machine learners to provide a rationale of how they arrived at their
decisions or recommendation, to characterize their strength and weaknesses, and to do so
in ways that are interpretable to humans [38, 39]. Such machine learners may not only
meet legal regulations and become trustworthy for future use, but may also help to reveal
flaws, bottlenecks, and provide suggestions for improvement in the model design.

The first question is about the requirement for the explanations beyond the requirement
of interpretability. Firstly, it is essential that the explanations are honest, such that there
is a consistency between the internal decision-making process of the machine learner and
its explanations. This honesty will both ensure that human can trust the explanations,

33



and force the machine learners to act according to the given explanations. Secondly, the
content of the explanations must be representative of the workings of the machine learner,
such that factors important for the internal decision-making process are also included in
the explanation. Thus, telling the truth means telling the whole truth. Lastly, the size of
the explanations must conform to the complexity of the machine learners, proportionally
speaking. Naturally, complex models have complex internal workings, and therefore, the
explanations should also be expected to be comprehensive. While complexity is seen as
the source to the black box nature om machine learners, Montavon et al. (2017) [40]
argues that recent advances in interpreting neural networks allow users deeper insights
unavailable from simple models because of their complexity. This claim makes sense,
considering their assumed ability to provide meaningfully complex explanations which
simple models cannot provide.

The second question is, what requirement should be placed on the content of the expla-
nations for them to satisfy the demand for explanations. The demand is highly dependant
on multiple factors, e.g. the purpose and workings of the machine learner, the purpose
of the explanations, and for whom the explanation is meant. For instance, the EU’s Gen-
eral Data Protection Regulation (GDPR) imposes a legal right for explanation to the data
subjects, being the natural person to whom data relates, but is vague in its description for
what content in the explanation is required [41]. In the context of instance segmentation
and a desire to obtain trust in a model, a technical explanation based on saliency maps and
information flow charts in the neural network would perhaps be an overload considering
the purpose of the explanation. Instead, an explanation based on the unique characteristics
of an object in an image would perhaps be more suitable. Such an explanation could con-
tain related characteristics to the object, but also discriminating characteristics between
the object and other similar but different objects. Hendricks et al. (2016) [42] proposed a
neural network with embedded explainability that was able to generate explanations that
were both image relevant and class relevant. They were able to both classify the bird in
each image, give a description of the bird in the image, a definition for the predicted class,
and a visual description, as seen in the results in Figure 3.1. A good match between the
description and the definition, along with a meaningful visual explanation, asserted trust in
that the model successfully considered important and unique characteristics of the bird. In
addition, a false-positive classification would also explain itself by implicitly telling what
the basis for the false-positive classification was.

The bird classification application is an example of explainability by design, one of three
common approaches for obtaining explanations. It introduces the third question; how
should explainability be incorporated into an AI application? Several approaches for ob-
taining explanations exist, and can roughly be divided into model-agnostics approaches,
algorithm-specific approaches, and explainability by design approaches. Model-agnostic
approaches are black-box explainers, which is based on perturbing the features in the in-
put and observing the output, which gives local and features specific approximation of the
model’s response. Such approaches wrap another component around the machine learn-
ers, and will often approximate a complex model with a simpler one that is interpretable
to humans. Algorithm specific approaches inspect the inner workings of a model, such
as decision tree splitting conditions, neural network information flow, or saliency maps.
Explainability by design aims closest towards the true goal of XAI, that is enabling the
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Figure 3.1: Visual explanation for bird classification based on class and image relevant descrip-
tion. A neural network generated explanations that were both image relevant and class relevant. In
contrast, descriptions are image relevant, but not necessarily class relevant, and definitions are class
relevant but not necessarily image relevant. Source: [42]

machine learners to offer explanations by them self. It is important that explainability
does not harm the performance of the machine learners through a trade-off. Instead, it is
desired that explainability achieves synergy with the machine learners, and helps improve
performance and model design as mentioned earlier. Model-agnostic approaches are in
principle applicable to any machine learner, does only reduce runtime, but are limited in
their capability to explain complex models due to their simpler approximation. Algorithm
specific approaches are model specific and may be complex, but allows for inner insight
to the workings of the model. Comparably, these approaches require more expertise and
effort than model-agnostic approaches. Explainability by design are model specific and
requires expertise to be implemented. In addition, they will also be part of the develop-
ment process and adds complexity to the model. They are most prone to affecting the
performance, but the explanations can be expected to be dedicated to the purpose of the
machine learner and hence yield the best explanations.

3.2 Local Interpretable Model-Agnostic Explanations

In 2016, Riberio, Singh and Guestrin released a paper named "Why Should I Trust You:
Explaining the Predictions of Any Classifier" [43]. This section is primarily based on
this paper and uses the same terminology and definitions. Within this paper, the authors
propose a method named Local Interpretable Model-agnostic Explanations (LIME) as a
means of "providing explanations for individual predictions as a solution to the ‘trust the
prediction problem’, and selecting multiple such predictions (and explanations) as a solu-
tion to ‘trusting the model’ problem." They describe it as a novel explanation technique
that can "explain the predictions of any classifier or regressor in a faithful way, by approx-
imating it locally with an interpretable model." The overall goal of LIME is to identify an
interpretable model over the interpretable representation that is locally faithful to the clas-
sifier or regressor. By interpretable model, it is meant that it is understandable to humans,
regardless of the actual features used by the model. Furthermore, by locally faithful, it is
meant that an explanation exhibits local fidelity, i.e. it must correspond to how the model
behaves in the vicinity of the instance being predicted. In its essence, LIME enables the
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user to perturb input to a model in different ways that makes sense and observe how the
predictions may change, before it builds a few explanations on individual predictions that
are presented to the user, such that they are representative of the model. The user can then
evaluate whether or not to trust the model for the specific tasks associated with the inputs.

Figure 3.2: Illustration of local faith-
ful explanation obtained from LIME.
A black-box model’s complex decision
function f (unknown to LIME) is rep-
resented by the blue/pink background,
which cannot be approximated well by
a linear model. The bright, bold red
cross is the instance being explained.
LIME samples instances, gets predic-
tions using f , and weighs them by
the proximity to the instance being ex-
plained (represented here by size). The
dashed line is the learned explanation
that is locally (but not globally) faithful.
Source: [43]. (Note: the description is
modified slightly)

Behind the workings of LIME lies the assumption
that every complex model is linear on the log scale,
i.e. it is to be expected that two very similar obser-
vations should behave predictably even in a com-
plex model, and that it is possible to approximate
a simple model around a single instance that will
mimic how the global model behaves at that lo-
cality [44]. Moreover, a simple model learned on
the change in predictions based on perturbation of
the input to an underlying complex model becomes
model-agnostic. Thus, LIME is based on the intu-
ition that it is much easier to approximate a black-
box model by a simple model locally. A simple lin-
ear model is learned by fitting the simple model to
the perturbed prediction instances by their similarity
to the instance that is to be explained, as illustrated
in Figure 3.2. Then, features are selected from the
simple model and used as an explanation for the
complex model behaviour. The simple model to use,
the method for perturbation, the measure of similar-
ity, and the method for feature selection are depen-
dent on the complex model and the prediction prob-
lem.

Explanations within image classification are illus-
trated in Figure 3.3, where an explanation is obtained for an image classifier based on the
task of predicting how likely it is for the image to contain a frog. In this case, the image
is perturbed by using different collections of super-pixels obtained by any regular image
segmentation algorithm, i.e. the watershed algorithm. After having performed a certain
number of detection steps, the super-pixels are weighted by regression based on the as-
sociated probability scores and K super-pixels or features are put together though feature
selection, i.e based on highest weights, to produce an explanation. In this case, the head of
the frog is considered an important feature for obtaining predictions with high probability
and given as an explanation.

The runtime is highly dependent on the complexity of the black box. The authors of the
paper mention that explaining predictions from a random forest with 1000 estimators in a
laptop with 5000 steps took around 3 seconds. On the contrary, explaining each prediction
from the Inception neural network architecture for image classification took around 10
minutes.
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Figure 3.3: Illustration of acquiring an explaining of a prediction with LIME. Source: [45]

3.2.1 LIME for instance segmentation

As mentioned in the background of the introduction to this thesis, it would be interesting
to see if recent methods within the area of XAI could be used to obtain explanations and
insight into the workings of instance segmentation models. We saw an example in the
previous section for how LIME could be used for obtaining an explanation for image
classification, and therefore it is natural to ask our self whether it is possible to extend the
method to image segmentation or precisely instance segmentation. It would be interesting
to obtain an explanation not only for the classification of objects but the mask as well. In
theory, since LIME is a model-agnostic method which relies on perturbation of input and
the scoring of predictions, it should be possible to extend it to give explanations for masks
predictions as well as the detection confidence. It is possible that the explanations for these
two tasks will be different, since they may depend on different characteristics of objects.

Therefore, it is proposed to give two different scores for a single detection in an image,
based on the detection confidence and the mask quality measured by comparison to the
originally predicted mask. These two scores will consequently give two different explana-
tion for each detected object in an image. This proposal is investigated further through an
experiment based on a trained instance segmentation model as a part of the experiment in
Chapter 5. We delay a further description of the details of this experiment. Furthermore,
there is a possibility of cropping images around detected objects based on the predicted
bounding box. This cropping will effectively decrease the runtime, as the number of seg-
ments could be limited while having semantically meaningful segments of objects. How-
ever, the drawback is that the relationship to surrounding environments will get lost. This
possibility is investigated in the experiment, as well.
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Chapter 4
Synthetic Data acquisition and
labelling

The process of data acquisition, preparation, and labelling of instance-level labelled syn-
thetic data by using Kongsberg Digital’s K-Sim have been so extensive that it is justified
to dedicate a separate chapter for explaining the details this process. Therefore, we will in
this chapter first present K-Sim and what it can offer, before explaining in detail the deli-
cate method develop for acquiring instance-level labelled images from the simulator based
on screen captures and texture mortification. Run-times of the method are mentioned,
while time consumption statistics related to labelling of synthetic data is delayed until the
next chapter and compared to manual labelling of real-world data. In total, this chapter
gives insight into the practical implications of using K-Sim for the generation of labelled
synthetic images in the maritime domain. Later, we will in Chapter 7 as mentioned in the
outline in Section 1.4 discuss the acquisition method in light of what it can offer and its
limitations. This discussion serves as a basis for the related conclusion in the final and
conclusive chapter of this thesis.

4.1 K-Sim

Kongsberg Digital’s K-Sim simulates highly realistic maritime scenarios and provides
maritime education, training and studies. It provides a wide range of vessels and ob-
ject that behaves as in the real world, multiple geographical areas and all possible weather
condition. These possibilities enable a vast amount of scenarios, such as navigation, ship
handling & manoeuvring, towing and tugging, High Speed and RHIB, Inland Waterways,
Search and Rescue (SAR), and many more.

Simulations are created before the start and later controlled during implementation through
the user interface, as shown in Figure 4.1. Vessels and other models such as buoys and
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ice are inserted into a simulation using a drag-and-drop fashion and behave according to
predefined behaviour. As far as they are able, they can follow predefined routes as shown in
Figure 4.2, receive and follow course and speed orders during the simulations, or maintain
their position through dynamic positioning. Multiple users can also take direct control of
the vessels at the same time, or interact with the different objects. The vessels are authentic
models of real-world vessels, and therefore, the visual characteristics of these vessels can
be found in the real world, making them highly realistic. The camera perspectives are
also similar to that in the real world, resembling how we see objects, waves, clouds, and
land environments in the real world. Light conditions are diverse and imitate those in the
real world, but since the engine technology and computer capacity set some limits, it is
naturally expected that a covariate shift is present. The simulator is capable of simulating
any weather condition such as wind, waves, swell of sea, cloud types and density, rain,
fog, hail, snow, sea colour, at any time of the day.

Figure 4.1: K-Sim user interface with 3D-view option. The upper panel controls the runtime of the
simulator and the configuration of the camera perspective. The left side-panel controls the setup,
planing of scenarios, and all the states in the simulator. All the logs in the simulator are accessed
through the bottom right panel and presented in a new window frame. The open log window shows
a timestamp in the right bottom corner for one of the states in the simulator. In the bottom left corner
there is a menu for different views, among them being the chart and 3D-view.

During the simulation, a detailed overview of all the states in the simulator is provided to
the user through the user interface at a sample rate down to a hundred-millisecond resolu-
tion. This information is accessible both through the user interface during the simulations
and as downloadable .csv files with timestamps. The camera angle can mainly be config-
ured in two ways, either in a fixed position and perspective in the world or attached to an
object. However, this can be changed at any time. The simulator runs in real time, but the
recording of each simulation can be saved and replayed at different speeds from 0.1 up to
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10. The recordings contain all the information about the simulations, and can, therefore,
show the simulations from any desired perspective.

Figure 4.2: K-Sim user interface chart view. A route is shown as the sequence of connected green
lines. Object are aligned en encapsulated by the route.

Before simulations can be created, the model of each object that is to be inserted into
simulation has to be deployed using K-Sim’s deployment tool. Each object is created
by using the deployment tool to compile it’s model, containing the physical characteristics
and the texture with determines it’s behaviour and looks, respectively. A model library was
made available for this thesis, with both restricted and unrestricted models. The restricted
models were allowed to be used, but not displayed or mentioned by name such that they
could be recognized in the thesis. In addition, multiple geographical areas were also made
available, which included cities, harbours, and regular shores. Due to the restriction, we
do not specify the number of models in the model library and the numbers and names
of geographical areas. There is a restriction of 100 objects per simulation, due to the
increasing demand for computational power per object added to a simulation. The laptop
provided by Kongsberg Digital was able to include up to approximately 50-60 objects
before running into performance issues and crashes.

The simulator does not offer any option for screen recording or periodic screen-captures,
nor scene segmentation information through its user interface. Moreover, no access to any
application programming interface or to the internal workings of the software was avail-
able during the work with the simulator. Therefore there was no way to obtain images or
scene information directly from the simulator, which made data acquisition a challenging
task. However, based on a proposal from industrial co-supervisor Thorvald Grindstad, it
was discovered that it was possible to change the look of objects by changing the texture
in their models between simulations and replays of recordings. Besides, screen-captures
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gave high-resolution images of the simulator interface and the 3D-view. These possibil-
ities were in combination with making information about timestamps visually available
in the user interface, utilized in a method developed for acquiring instance-level labelled
images based on capturing the screen while running the simulator. The following section
covers this method.

4.2 Data acquisition

K-Sim does not offer the opportunity of directly acquiring images together with ground-
truth masks from simulations. Therefore, a method was developed for creating instance-
level labelled images based on creating, carrying out, and saving the recording of a sim-
ulation, taking screen captures during replays of the recording, and exploitation of the
possibility of changing textures between simulation and replays of a recording. A brief
overview is shown in Figure 4.3 and in the description given below. The following section
will expand upon each of the steps of the method.

The task of creating instance-level labelled images from K-sim simulations was defined
as: capture two sufficiently similar images where one image has the texture of objects
exchanged by any uniformed color that is not in the blue range of the color spectrum, and
use these two images to obtain masks for the other image with objects having the true
texture. This gave the opportunity of labelling objects using any arbitrary uniform color
not being a part of the blue range of the color spectrum.

1. The first step of the method was about setting up a simulation in a way that dynam-
ically produced different 3D-views when later being carried out and recorded.

2. The second step was to take synchronized pairs of screen captures from the 3D-
view by replaying the recording twice, with the difference being a change in texture
between the real texture and an arbitrary uniform color texture with a color that was
not in the blue range of the color spectrum. The screen captures of images with
objects having real texture constituted the data, while the screen captures of images
with objects having uniform color was used for extracting the masks. These two
types of images are further in the context of image labelling denoted as the target
images and the source images, respectively. The second step also involved manual
labour based on filtering out bad synchronized pairs of screen captures.

3. The third step was to extract the masks from uniformly colored objects in the image,
by clustering pixel of non-background dominant colors and smoothing the resulting
masks by morphological noise removal. The clustering of pixels can be divided into
mainly three sequential steps:

3.1. The first step was to threshold the image in the HSV color space to remove as
much of the background as possible, based on predefined thresholding limits,
before dissecting the resulting image into spatially closely connected regions.

3.2. The second step was to cluster pixels in spatially closely connected regions
based on similarity in the hue property of color and proximity in the image.
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This was achieved using Bayesian Gaussian Mixture Models (BGMMs) for
representing the different hue and pixel proximity distribution.

3.3. The third was to cluster the different hue and pixel proximity distributions
together using hierarchical clustering of hue color centre.

3.4. The fourth and final step of the mask extraction step was to dissect the resulting
clusters into spatially closely connected regions again.

4. The fourth and final step was to assess and adjust the extracted masks, based on
accepting or rejecting false positive masks and vertically and horizontally adjust the
accepted masks to compensate for synchronization error.

It should be mentioned that while the mask extraction may seem like a trivial task when
looking at the overview in Figure 4.3, the task quickly becomes a challenge. The light
condition in the simulator affects colors in a different range of the color spectrum differ-
ently in terms of change in the bandwidth, brightness, and contrast. This discrimination
of colors makes it harder to cluster colors together correctly, especially when objects with
close uniform colors start to overlap. Moreover, environmental noise mitigates the colors,
and coastal areas and land constructions that may be present in the background can have a
range of different colors. Besides, the change of texture to uniform color texture files did
not always result in uniformly colored objects. This effect was due to models using mul-
tiple different texture files, which gave inconsistent variation in the color of the objects.
Even worse, some of the texture files were gray-scale only. The mask extraction step had
to overcome all these challenges to be reliable and to allow for flexible use of the simulator
when creating labelled data.
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Figure 4.3: K-Sim instance-level labeling method overview

4.2.1 Simulation setup

To acquire images through the use of K-Sim, simulations had to be created manually before
carrying them out and sampling images. The creation of a simulation involved mainly four
main tasks:

44



• Collection and deployment of object models, and location of created objects in a
directory where K-Sim could find them, before creating a simulation

• Insertion of objects into the simulation
• Creation of a route that a fast, agile, and wave resilient vessel with the viewpoint

attached could follow to automate the change of viewpoint
• Planing the environmental noise throughout the simulation

The three-step process had to be done such that carrying out a screen capture process by
running the created simulation would yield images with diverse viewpoints and objects,
and within a short time period. The vessel that would be carrying the viewpoint around in
the maritime virtual world and the route that it would follow are further denoted simply
as the viewpoint vessel and the viewpoint route respectively. The solution to the four
main tasks is covered below, while the three characteristics of the viewpoint vessel are
elaborated later in the next section.

The deployment of objects first involved, as briefly mentioned in the last section, choosing
a collection of object models. At this step, the different classes of objects that would
appear in the simulation had to be decided upon. As we explain later in Section 4.2.2, the
number of different classes of objects was depended on the encoding of object classes in
a change of texture for labelling. Also, a model of a fast, agile, and wave resilient vessel
that would be the viewpoint vessel had to be picked. After having gathered a collection
of models, they had to be separately deployed using the deployment tool. A script was
written to automate this process given that all desired models were listed together in a
text file. The script would create objects by deploying the models listed and collect them
together in a new directory located where K-Sim could find it. Later, this directory would
be used by the K-Sim to list available objects for insertion into a simulation, if having the
correct name "Object". Changing the name but keeping the directory in the same location
would make K-Sim unable to locate it. This way of creating, storing, and naming object
directories utilized the path variables K-Sim used to find the correct object directory and
made it easy to change available objects in the simulator later on.

After having prepared the objects, a simulation would be created, and objects would be
inserted into the maritime virtual world. The insertion of objects and planning of the route
that the viewpoint vessel would follow was done more or less concurrently. A setup that
was mainly used was to align every object after each other, and lay the viewpoint route
around them. This type of setup is shown in Figure 4.2 from the last section.

The viewpoint that was attached to the viewpoint vessel would then be configured to have
a fixed perspective from the viewpoint vessel throughout the whole simulation. K-Sim had
the option of saving such a configuration, making it possible to reliably obtain the same
dynamic 3D-view for all replays of a simulation. This option is essential for obtaining
pairs of sufficiently similar target and source images, and later accurate masks.

The last step is to plan the amount of environmental noise such as fog density, and rain, hail
and snow intensity throughout the simulation. This is partly for allowing the simulation to
be carried out under a minimum of manual control, like controlling the weather. However,
most importantly, it was to keep the mitigation of colors in the simulator more or less
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constant due to the way mask would later be extracted. This is made clear in Section 4.2.3
that is about mask extraction.

4.2.2 Synchronized Screen Capture

To achieve accurate masks of objects in an image, a pair of target and source image has to
be sufficiently similar. Naturally, this could be achieved by taking screen captures of the
same 3D-view at the same time in two replays of the same recording, which gave rise to
two different tasks:

• Obtaining the same 3D-view between the target and source image
• Replacing of real texture files with uniformly colored texture files
• Reading the simulator log timestamp

The first part of the solution to the first task has already been covered in the last section,
and was based upon attaching the viewpoint to a viewpoint vessel, and then saving that
specific configuration of the viewpoint. The fast and agile characteristics of the viewpoint
vessel should be apparent, as to enable high speed and fast manoeuvring, which is essential
for being able to change the viewpoints rapidly. The wave resilient characteristic, on the
other hand, was essential for obtaining a stable 3D-viewpoint between two replays. This
aspect becomes apparent in the first part of this section, which covers the main challenge
and the solution for obtaining sufficient similarity between the target and source image in
a pair of synchronized screen captures. The second part of this section briefly describes
the method of replacing texture files having uniformly colored texture files. The third and
final part of this section explaines the solution for reading the simulator log timestamp in
the screen captures for enabling screen captures at the same time.

Obtaining the same 3D-view between the target and the source image

During trial and error, it was discovered that two replays of a simulation viewed from
the same view-point would not necessarily create the same sequence of frames. Frames
displayed at precisely the same simulation log timestamp with 100-millisecond resolution
would therefore not necessarily be exactly alike. Even worse, the sample rate was only
between 8-12 samples per second, and two replays of the same recording would not yield
the same samples and timestamps. Therefore, it was not possible to guaranteed that the two
pairs of images taken at the same time would be sufficiently similar, as to obtain accurate
masks.

This issue was solved by first frequently taking screen captures and labelling them with
the log timestamp, before attempting to match the timestamp in screen captures in the
next replay. The timestamp of the new screen capture was compared to the old timestamp,
and a pair of images was omitted if the difference between the timestamp excited a given
threshold. The threshold was after trial and error set to ±25 ms. To make this way of syn-
chronizing screen capture efficient, the screen capture was adjusted as to contain both the
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3D-view and the part where the simulator log timestamp was made visible. The timestamp
would then be read, and the 3D-view cropped out of the screen capture if the difference
between timestamps was within the threshold. This trick avoided a source to higher syn-
chronization error by first having to take a screen capture of the simulator log timestamp,
before taking a new screen capture of the 3D-view. There was no loss in image quality due
to cropping, because it does not involve any re-size transformation of the screen capture.

After obtaining a sequence of pairs of images that all satisfied the error threshold, they
were compared by visually inspecting the difference in color-space values. A script was
written to iterate through the pairs of images and show their color-space difference in an
ordinary 2D image. Precise pairs of images would give a difference only for the objects
since they would have their texture changed, while everything else would be empty. Impre-
cise pairs of images would, on the other hand, be noisy, and the displacement between the
objects would be visible. Two comparisons of one precise pair and one imprecise pair of
target and source image are shown in Figure 4.4. A reliable filter for automatically identi-
fying and extracting precisely synchronized pairs of images could have been implemented
based on finding the amount of noise in the image. However, with proper adjustment of
the masks, many of the imprecise synchronized pairs of images were still useful if the
objects did not intersect with both sides of the images. The process of adjusting masks is
explained in Section 4.2.4. The time it took to inspect pairs of images would vary, since
the quality of synchronizations varied throughout a simulation and between simulations.
This variation is most likely due to variation in hardware performance. It was measured
that it took around 36 minutes to inspect 2182 images.

To limit time consummation, the speed in the replays was set to 2, effectively reducing
the time it took to replay simulation and taking screen captures. Empirically shown, this
improved the quality of the synchronization between the target and source images. This
improvement can be due to a change in the ratio between frame rate and timestamps per
second, which may give a more consistent creating of frames.

With speed set to 2, it was found that 2 out of 3 attempts of synchronization was rejected.
Based on the speed of the viewpoint vessel, the period between each screen capture in the
first replay was attempted to be set to a high enough value such that the pairs of images
after synchronization and inspection would be distinctive as not to introduce a source to
bias in the dataset by creating dependencies between images. Objects at close range would
end up with being captured from 1 to 3 different angles, while objects at long range could
end up with being captured from between 1 to as much as 8 times.

Replacing of real texture files with uniformly colored texture files

The texture files for a specific model are all collected in the same directory, but with possi-
ble sub-directories. The texture files are based on multiple different file-types, like regular
.png -and .jpg-files, and special file-types as gray-scale .inta files. Various file-types with
same colors as far as they were able, did not necessarily result in the same color in simu-
lations. An object that did not obtain sufficiently uniform color was removed, and colors
that did vary to much due to light-conditions was avoided. A color-file library was created
where all colors had one of all possible file-types as far as the file-types was able. Then a
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Figure 4.4: K-Sim target and source image compared by differentiating color-space. Left side shows
comparison of a precise pair of images. Right side shows comparison of an imprecise pair of images.

script was written to automatically iterate over multiple models and give them specific uni-
form colors. It made a copy of the folder and file structure of the texture directory for each
model and assigned it the same name as the original texture directory, before replacing
each texture file with the corresponding uniform-color texture file.r This way, a collection
of models could automatically have their texture files replaced by given uniform colors.
The deployment script would then deploy all models into objects. By pairing a objects
directory with original texture to its uniform color counterpart, the exchange in the look
of the objects in the simulator was just about changing which object directory to use by
naming it "Object". K-Sim would then find it through the path in the software.

Reading the simulator log timestamp

In order to read the timestamps, a Random Forest Classifier (see Section 2.2) provided
by Scikit-learn[8] was used to build a classifier for the digital digits in the simulators log
timestamp which achieved an accuracy of 100 percent on an acquired training dataset and
was able to pass a simple but effective test consistently. The classified digits were then
used to calculate the time. A training dataset consisting of 76 images of timestamps was
first sampled with a filename corresponding to the label of last 5 digits in the timestamp.
This way of manual labelling was both fast and accurate. Each of these timestamps was
then dissected by cropping into 5 distinct images of digits, giving a total of 380 digits. A
binary image of the digits was then created by:

1. Conversion into a gray-scale image.

2. Re-scaling into a 12x12 image by bi-cubic interpolation.

3. Gray-scale inversion.

4. Thresholding for binarization of digit and background.

5. Filtering by keeping the largest connected component with connectivity equal to 4
to remove noise.
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Figure 4.5: K-Sim log-clock digit training-set for building a Random Forest Classifier. The training-
set is heavily unbalanced, but did not have any noticeable implications.

Each of these binary images of single digits was then augmented by translation both hor-
izontally and vertically by 1 and 2 pixels in all directions, giving additionally 20 images
per digit. Augmentation by translation was considered necessary to make the classifier
robust to imprecise adjustment of the simulator log clock timestamp in the screen. Al-
though it was considered to centre the centroid of the binary images for the same reasons
for augmentation by translation, the former was empirically shown through testing to be
sufficient. Centring of centroid could also have given unpredictable behaviour if some of
the digits was partially cropped. Unfortunately, the training set ended up heavily unbal-
anced in terms of the number of digits per digit (Figure 4.5), since the sampling process
inherited a distribution bias for digit appearance in simulator log clock. However, this did
not become a problem as the test developed for verification and described below showed
itself to be sufficient for avoiding any problems during usage of the models. Besides, Ran-
dom Forest Classifier is resilient against dataset unbalance, which may explain why this
did not become a problem.

A test dataset was created by collecting screen captures of log clock timestamp sequen-
tially. In total, 100 timestamps from a period of 5 minutes were collected. A simple test
was then based on classifying the time and then later comparing it to the former and later
classification of timestamps. If the classification showed a non-monotonic growth in time,
the model would be considered to be faulty. While the test could have been more robust
by being extended to having from a few hundred milliseconds to many hours in time dif-
ference, the models that passed the test during the later experiment never failed, and thus
there was no need for improvement.

A random forest classifier for the timestamp digit was then build using between 60 and 100
estimators. A dedicated and straightforward method was used to determine this hyper-
parameter. In order to achieve fast classification of the timestamps, it was desirable to
keep the number of estimators low while still sufficiently high as to pass the test. This
desideration was achieved by first building and testing a classifier with approximately
60 estimators, before steadily increasing the number up to 100 estimators until a model
would pass the test. The lower and upper bound on the number of estimators was set
based on an initial test comparing models build using between 10 to 140 estimators. The
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models started to consistently pass the test at around 50 estimators, while rarely failing at
around 100 estimators. A lower and upper bound of 60 and 100 estimators respectively
was therefore considered reasonable. The ability to save and reuse the same model in
the Scikit-Learn library was not used. Instead, a new classifier was build for each screen
capture session. The reason was always to have the ability to increase the training and test
set without having to save the model. Indeed, this is not optimal in terms of consistency
and a classifier should have been built and comprehensively tested and reused. Other
approaches for choosing this and other hyper-parameters as well could have been based
on using scikit-learns cross validation tool.

Prediction of time requires 9 correct classifications of digits in order correctly classify the
time, and it is required to work for all the 24 hours. However, to speed up the reading of
timestamps the opportunity to set the time resolution was build into the timestamp reading
module. This way, knowledge about the current time could be used to shorten the predic-
tion time by limiting the number of digit classifications. For instance, if the simulation
lasted only 2 hours, it would be required to classify timestamp with hourly resolution only
for half of the time, effectively limiting the number of required classifications of digits to
5 digits for half the simulation.

Other approaches for classification of digits were also attempted:

• 1-Nearest Neighbour based on summing binary values in 84x84 binary pixel image.
Digits representing 8 and 9 was to close in terms of the number of pixels to give
reliable classification in the presence of cropping.

• Tesseract OCR for text recognition. Successfully read the timestamps, but was to
slow as it used.

• k-Nearest Neighbour on 12x12 binary pixel image did not achieve sufficient accu-
racy.

• Support Vector Machine on 12x12 binary pixel image did not achieve sufficient
accuracy.

• Skikit Learn’s handwritten digit dataset was used to increase the volume of the
dataset and to make the models more robust, but it decreased the performance of
the Random Forrest Classifier models.

It could also have been attempted to build a classifier based on pre-extracted features from
the binary images of the digits. For instance, high-resolution images of a digit could have
been divided into multiple different predefined grids with different cell shapes, before
summing the binaries of the resulting cells. This feature extraction approach could have
been implemented either by using predefined cells or approximated using multiple differ-
ent kernels for re-sizing the image. However, the Random Forrest Classifier based on the
12x12 pixel image was more than sufficient enough in terms of speed and accuracy. On
average, the classifier obtained a prediction time of 4.4 milliseconds per digit.
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4.2.3 Mask extraction

Based on pairs of sufficiently synchronized target and source images, the source image was
used to extract masks of the objects in the source image. As briefly mentioned in earlier
in the intro of Section 4.2, this task was about clustering pixels belonging to the non-
background dominant colors in an image, and can be divided into mainly three steps in
addition to noise removal and smoothing of edges. For an overview of the mask extraction
method, we refer to the intro and Figure 4.3. This section walks through each of the steps
and ends with a short discussion about possible extensions and improvements.

Thresholding and Closely Connected Spatial Region Dissection

The first step is about removing as much of the background as possible through custom
thresholding in the HSV color space, depending on the distribution of pixel values of
uniformly colored vessels.

It was discovered that the simulator did not use strong colors for the background such as
the sea or coastal areas, while the color of uniformly colored objects would get high values
in the value and saturation dimension of the HSV color-space. This can be seen in Figure
4.6. This simulator behaviour made the pixel values separable, such that it was possible
to remove the background by a suitable thresholding scene. In addition, the blue spectrum
of the hue dimension was removed by thresholding since the background naturally would
contain a lot of blue colors due to characteristics of the maritime environment. This fact
is the reason that the blue range of the color spectrum was avoided when replacing the
texture with uniform colors. However, the task became harder with high intensity of en-

Figure 4.6: K-Sim 3D-view of source images with no environmental noise and their common HSV
pixel distribution. The scatter plot shows that vessel colors are separable from the colors of the sea,
sky, and sun, while the environmental colors and vessel colors are weakly mixed.

vironmental noise, which would mitigate all colors, and in the presence of coastal areas
with building in the background that would contain many different colors. In Figure 4.7 it
is seen that buildings in one of the images have orange rooftops and that the correspond-
ing pixels likely blends with the vessel colors. This background interference was a source
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to mask error, but the section later explained how this was handled by a change in the
bandwidth hyper-parameter in the hierarchical clustering. Nevertheless, it illustrates the
importance of setting the thresholding limits properly and why it was advantageous that
a sequence of source images has more or less the same distribution of colors. This back-
ground interference was also the reason for the importance of planing the environmental
noise throughout a simulation beforehand. From the figures, it can be seen that a combi-
nation of the distributions in the two scatter-plots would have made the background pixels
and the object pixel inseparable without compromises on the cost of threshold accuracy.

Figure 4.7: K-Sim 3D-view source images with a high degree of environmental noise and their
common HSV color-space pixel scatter-plot. The scatter plot shows that the colors of the sea are
separable from all other colors, while the environmental colors and the vessel colors are mixed.

A script was written to visualize the distribution of pixel values in order to determine
suitable thresholding values and to do the subsequent thresholding. Thresholding was
done by combining multiple rectangles with one corner attached to the maximum values
for saturation and value. The height and the width of these rectangles were then chosen
based on the visualization such that dominant colors from vessels were kept while the
background colors was removed. In addition, the blue spectrum was also removed. The
removal of the blue spectrum was also beneficial for the mask extraction step, as will be
explained in the following section. An illustration of a thresholding scheme is shown in
Figure 4.8.

The thresholded images were then dissected by splitting groups of objects that were not
closely connected. By closely connected regions, it is meant that two or more regions
are spatially close to each other without actually being connected. This region dissection
was done by first expanding groups of pixels through morphological dilation, and then
computing the connected components, before using the arithmetic bitwise-and operation
between the connected component masks and the original thresholded image. This way,
the image was dissected into multiple segments, each containing a closely connected group
of pixels. This process is further denoted as closely connected spatial region dissection or
only region dissection. There were two reasons for doing so. The first reason was that
overlapping vessels and elements in coastal environments could divide the vessels into
multiple parts, and it was desired to connect these divided parts of vessels as to not get
multiple close masks of the same vessel. Size of the pixel segments was not taken into
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consideration, which is unfortunate since groups of vessels far away naturally require a
different magnitude of dilation compared to vessels at close range. This aspect could have
been implemented simply by using a different number of iteration in the dilation transform
based on the segment sizes but was not considered before after having completed the use
of the data acquisition method. Therefore, it proposed as a possible future improvement.
The second reason was to ease the subsequent clustering process by separating regions
having objects of similar colors, and becomes apparent in the following section.

Figure 4.8: Illustration of a threshold-
ing scheme. Strong colors are kept,
while weak colors and the blue spec-
trum is removed by thresholding

The thresholding scheme is characterized as be-
ing very simple and not at least dependent on an
error prone manual effort for tuning the thresh-
olds. There exist multiple ways of solving this
task since it is about separation in its nature. For
instance, a set of labeled images with representa-
tive distribution could have been used for building
a SVM. However, a natural solution would have
been to embed the thresholding task into the fol-
lowing VBGMM clustering. Given a set of clusters
obtained from VBGMM, background colors could
have been threshold based on the saturation and
value centres of the clusters. This embedding would
have required an extension of the existing methods,
and is disscussed in the end of the following section.

Bayesian Gaussian Mixture Model Clustering

An image with the resolution of 1394x924x3 would have 1 288 056 data points per chan-
nel, and after having thresholded the source image and dissected the resulting image into
closely connected regions, these regions could contain a massive number of data points.
The clustering method had to be able to handle such a large amount of data in each region
within a reasonable time, as well as finding the unknown number of true color regions.
While hierarchical clustering or other unsupervised clustering methods would have been
able to identify the correct number of regions, they would require to much time to be use-
ful. Furthermore, the clustering method had to be able to cluster objects that could consist
of closely non-connected parts, and that was highly concave, while still considering the
spatial location of the object. Separation of different regions not being closely connected
relaxed the spatial dependency requirement because it narrowed the spatial region. Still,
clustering was based on both color similarity and pixel proximity.

The solution was a two-step clustering method followed by region dissection of resulting
clusters. First, probabilistic clustering based on VBGMM would find sub-clusters based
on color similarity and spatial proximity, and by such reduce this information adequately
considering that GMM have the capability of representing distributions in vast amounts
of data and is computational effective due to its Gaussian nature. In addition, since vari-
ational learning only needs an upper limit for the number of components and finds the
optimal number by suppression, those components that don’t contribute, it reduced the
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effort in the next step. Next, agglomerative hierarchical clustering would combine these
sub-clusters based on the hue color distance between the centres of these sub-clusters. Fi-
nally, since distinct objects of similar colors may have been connected by a third but now
separated object, region dissection would split clusters if they had two segments of similar
colors being sufficiently spatially separated. Seen in retrospect, the combination of prob-
abilistic clusters by hierarchical clustering made the spatial variable as input to VBGMM
redundant, led only to increased runtime. However, if the range of object had been taken
into consideration in the context of region dissection, the spatial information would have
been necessary for being able to adjust the magnitude of dilation of regions, based on the
size of connected regions being made up of probabilistic clusters.

The Scikit-learn[8] software library provided an algorithm for VBGMM. The hue color in
the HSV color-space and spatial location of each pixel was used as input variables. The
maximum number of components was set to 25 and the maximum number of iteration
was set to 350. No other parameters were set differently than the default values set by
the implementation. A subset of 8000 datapoints was chosen for fitting to limit runtime, a
small number compared to the maximum number of possible datapoints. However, since
the centre of the red spectrum is equal to 0 degrees, it is numerically split in half since
the color spectrum wraps around from 360 degrees to 0 degrees. This orientation of the
hue-dimension would affect problems for the clustering if not appropriately handled. The
solution was to exploit the fact that the blue spectrum with centre at 240 degrees had been
removed thresholding, by rotating the hue-dimension by 100 degrees and placing the blue
spectrum at 0 degrees. Each closely connected region in thresholded images was then
clustered by fitting a VBGMM to the input datapoints and then classifying the rest of the
pixels. The clustering is visualized in Figure 4.9, and we can see that each region and
each vessel contains multiple clusters. These sub-object segments are the motivation for
applying another layer of clustering for combining these different clusters such that they
constitute semantically meaning-full objects. Another illustration is shown in Figure 4.10,
and supports the need for a step or sub-process that extracts the different spatial color
components from objects.

The main drawback from only using the hue dimension in the HSV color-space is that it is
not robust against insufficient thresholding. If pixels were to pass through, the clustering
would not have been able to distinguish between them and pixels belonging to objects.
Even worse, if the background pixels and object pixels were to be inseparable by thresh-
olding but still belonging to different distinguishable distributions, the capability of the
GMM for representing these distributions would not have been utilized. By using the sat-
uration and the value dimensions and a suitable method for combination of clusters, it
should be possible extend the method as a whole to separate and remove background pixel
clusters from and object pixel clusters, and by such relaxing the requirements for accu-
rate thresholding or even removing its current need. This alternative way of thresholding
should therefore have been implemented between the probabilistic clustering step and the
subsequent hierarchical clustering step. In addition, since background colors tend to dom-
inate the image, it could be wise to address the issue of the unbalance between object and
background colors, such that the majority of Gaussian components are spent on object
colors; Bias selection of datapoints, smoothing of weak colors, and proper initialization
of algorithm are examples of suitable efforts. All these and other possible extensions or
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Figure 4.9: Visualization of clustering based on hue similarity and spatial proximity in a thresholded
K-Sim source image using VBGMM

improvements are not discussed any further but is instead proposed for future development
on the topic of mask extraction from images with distinguishable distributions of strong
and dominant colors. The reader is encouraged to keep it in mind in the following sec-
tions. The proposal is also given in Chapter 8. We continue by covering how the clusters
are combined by hierarchical clustering in the following section.

Figure 4.10: Visualization of extracted components of objects by clustering based on hue similarity
and spatial proximity using VBGMM. The circular pattern is due to light-conditions caused by the
sun in the simulations, and gives strong color variations despite the object having an uniform color.

Hierarchical clustering

At this point, the pixels in closely connected regions of thresholded pictures would have
been clustered based on their probability of belonging to different Gaussian distributions
in a GMM based on hue and pixel location. However, multiple distributions would, as
shown in the last section, constitute different segments of one object. Therefore, different
clusters had to be combined to assign each pixel to a semantically meaningful object.

This combination was done by agglomerative hierarchical clustering (see Section 2.3.2)
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using the Manhatten metric for distance measure and weighted generation of new centres,
based on hue mean centres of distributions. The threshold or maximum distance between
the centre of two clusters before they were considered two final distinct clusters were set
empirically from testing. A value equal to 10 was found to give good results for images
without any environmental noise, which was the light conditions that would spread the
uniform color of the objects the most. For images with some intensity of environmental
noise, a lower value was sufficient. Besides, a lower threshold value allowed for increased
separability between objects of similar colors and between objects and coastal background.

Figure 4.11: Visualization of probabilistic hierarchical clustering based on hue similarity and spa-
tial proximity in a thresholded K-Sim source image using variational learning of Gaussian mixture
models and agglomerative hierarchical clustering.

It was also considered to use mean spatial centres and their relative proximity for connect-
ing the different distributions based on a proximity closeness measure. This option could
have made the clustering more robust and also allowed for an increased color similar-
ity between distinct objects in close proximity. By using the covariances between spatial
centres, different sized vessels could have been into account as well. Nevertheless, hierar-
chical clustering along hue dimension proved to be sufficient, and therefore this was not
attempted.

Closely connected spatiel region dissection of clusters

After having clustered the different hue mean centres of the distributions, the closely con-
nected regions were split into multiple clusters. However, if a third object had connected
two different objects with the same color, these would now have been combined into a sin-
gle cluster. To deal with this possibility, the resulting clusters were attempted connected
using morphological dilation and connected component calculation in a similar fashion as
the last time. If they where close enough they would end up being connected and thus
combined, and if not they were split into two clusters. Again as in Section 4.2.1, the spa-
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tial size of the objects was not taken into consideration, and therefore objects at different
ranges was not discriminated differently. This option could as mentioned have been im-
plemented by using a different number of iteration in the dilation transform based on the
size of the pixel segments, but it was also not thought of before after having completed the
data acquisition.

Morphological noise removal and edge smoothing

The final extracted masks would contain noise is the form of grains and holes due to either
insufficient uniform coloring, inaccurate thresholding, or environmental noise. Besides,
the masks would have rough edges, which was considered undesired. Morphological clos-
ing was therefore used to smoothing the images, as seen in Figure 4.12.

(a) Before smoothing by morphological closing transformation

(b) After smoothing by morphological closing transformation

Figure 4.12: Visualization of smoothing of masks by morphological closing transformation, and
final masks after applying the mask extraction method.

Time consumption

Measurements showed that it took 25 minutes and 35 seconds to extract masks for 285
images that, on average, contained two to three objects at a close to a moderate distance.
The time per image was highly dependent on the number of vessels and the corresponding
number of pixels in the image. An image with a single and small vessel could require only
0.5 seconds to process, while an image with multiple vessels or a single huge vessel could
require up to between 12 and 15 seconds to process.

4.2.4 Mask assessment and adjustment

The steps so far in the mask extraction method would have produced masks for each pair
of target and source images. However, there are multiple sources of mask errors, such
as insufficient thresholding leading to false positive masks, or displacement or rotation
between objects in the target image and the extracted masks due to synchronization error.
Therefore, there was a need for manual assessment and adjustment of the extracted masks.
A script was written to enable this need with the following features:
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• Rejection of specific masks, to remove false positives.
• Horizontal and vertical adjustment of all masks simultaneously, to overcome dis-

placement. Masks connected to the boundary of the images was padded using the
edge of the mask if adjusted into the image by.

• Repeating extraction of masks with a different bandwidth within ±3 around 12 in
hue, in case of having multiple masks per objects due to a large variation in hue, or
having a single mask covering multiple objects or elements.

The step is illustrated in Figure 4.13, where multiple false positive masks are rejected and
the remaining three masks are adjusted.

Figure 4.13: K-Sim target image with masks before (left) and after (right) assessment and adjust-
ment. The image before assessment of masks has both false positive masks and displaced masks.
False positive masks are removed, and remaining masks adjusted simultaneously both horizontally
and vertically.

The script would take a collection of instance-labelled images with potentially false posi-
tive or inaccurate masks, and make it possible to process them one at the time. During the
creating of the synthetic dataset, measurement showed that it took 1 hour and 55 minutes
to assess and adjust 922 images in which 819 images were kept. These images contained
none to moderate levels of environmental noise.

4.2.5 Time efficiency and memory load minimization

Since the mask extraction step was computational demanding but could run automatically,
while the others required manual labour or supervision, the pipeline was divided into four
parts that could partly be implemented simultaneously. Firstly, simulations could be car-
ried more or less without supervision once the setup was ready, which was beneficial as
the simulator runs in real time. The same applied for the process of sampling synchronized
pairs of images, except that the speed is twice as high. Secondly, given that there existed a
dataset with assessed synchronized pairs of images, its masks could be extracted automat-
ically. Thirdly and lastly, either the manual assessment of synchronized pairs of images or
the manual assessment and adjustment of extracted masks could be done simultaneously
with the two other tasks. This setup was highly effective in terms of time consumption
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because it allowed for concurrent work when creating data.

Furthermore, masks were saved as binary images with a size equal to the bounding box
implicitly given by the mask. The filename was used to encode the location of the mask
relative to the width and height of the corresponding target image. It was necessary to save
the masks as binary images for preserving the accuracy of the masks, as other approaches
such as saving masks as polygons would have been insufficient. Moreover, a size equal to
the bounding box saved memory, essential during the training of machine learns to save
RAM, besides easing file transferring and storage.
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Chapter 5
Experiment

Based on the method for acquiring synthetic labelled data from K-Sim that was developed
and explained in the last chapter, we will in this and the next chapter cover an experiment
that was conducted to continue exploring the practical implication of using synthetic data
for instance segmentation in the maritime domain, as well as applying LIME to explain
instance segmentation models. The first section of this chapter states the motivation and
priorities for the experiments and give a brief overview of the different experimental steps.
Then, the second section sequentially covers the different steps of the experiment. The
results from the experiment is presented and discussed in the following chapters.

5.1 Experimental background

5.1.1 Motivation

The ability to use synthetic images and data from K-Sim could, as mentioned in the intro-
duction of this thesis, be highly beneficial for development of computer vision models and
autonomous systems in the maritime domain. This experiment has therefore been aimed to
further study the implications of its usage. Since the development and implementation of a
method for extracting instance-level labeled data from K-Sim took a considerable amount
of work, some priorities have been made to focus on what was deemed the most interesting
aspects of the use of synthetic data. Firstly, it was of high interest to see how well models
trained purely on synthetic images would perform in the real world, and how the use of
synthetic images affected performance of real-world adapted models. Secondly, it was of
interest to see if the models would have the ability to distinguish between similar vessels,
and how synthetic images would affect this ability. Thirdly, it was of interest to see how
different domain adaptation techniques based on augmentation and different fine-tuning
approaches would affect performance. Lastly, it was of interest to see if LIME could offer
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some explainability for the performance of trained models.

Furthermore, the experiment has been based on the Mask R-CNN instance segmentation
model as stated in the problem description (see Section 1.2). It is among the state-of-the-
art instance segmentation architectures [17], and it still serves as a basis for further de-
velopment of architectures within instance segmentation. Besides, a popular open-source
implementation by Matterport [12], which uses ResNet101 in the ResNet-FPN backbone
for feature extraction, makes the architecture easily available. Therefore, the architecture
a good basis for research within the topic of instance segmentation.

5.1.2 Overview

An instance segmentation task was defined as: Detect, classify and predict masks of four
different vessel classes: tankers, container ships, LNG carriers, and tugboats. Mask R-
CNN was to be used for training models to achieve this task.

The preparation before the training av models consisted of five separate tasks:

• A popular implementation of Mask R-CNN, implemented using Keras and Tensor-
flow, and based on a Feature Pyramid Network (FPN) and a Resnet101 backbone,
was obtained from Matterport’s open-source repository [12]. The implementation
was then configured for the instance segmentation task as it is defined above.

• A synthetic training dataset and a synthetic testing dataset from distinct simulations
in K-Sim was acquired using the method developed and explained in Chapter 4. In
addition, a short video was created to be used for additional visual assessment.

• A real-world training dataset was created by collecting images from two vessel im-
age repositories[46, 47], and a real-world testing dataset was created by sampling
46 frames from a video that was put together from multiple video clips gathered
from tree youtube channels [48, 49, 50] plus an additional 26 images the same im-
age repositories. The training and testing dataset was then manually labeled using
VGG Image Annotator (VIA) [2, 3]. Due to reasons that will be given in Section
5.2.9, the video-frames in the testset were used as the validation set.

• The training dataset was doubled in size by augmentation based on random zoom,
random rotation, and cropping. It was then split into a training and validation set
with a ratio of 2220:80, before images in the training set which was related to im-
ages in the validation set though augmentation was removed. Final split the be-
came 2061:80. Justification for pre-training augmentation will be given in Section
5.2.4. An augmentation scheme to be used during training for regularization and for
decreasing the dataset bias between the synthetic and real-world dataset was then
established.

• Two different domain adaptation methods for adapting a synthetic model to the real-
world domain based on the use of the labeled real-world dataset were established.
They consisted of two different training methods and a common data augmentation
scheme to increase the diversity of the real-world dataset for the two methods.

62



An overview of the datasets are given in Table 5.1. Augmentation was implemented using
Imgaug [51], a popular library for image augmentation, in addition to custom scripts for
the pre-training augmentation.

Six different Mask R-CNN models where then trained with the task that was defined in
the beginning of this section. Two pure synthetic models, two adapted models from the
synthetic domain to the real-world domain, and two pure real-world models. Fully fine-
tuning and gradually fine-tuning was decided to use as fine-tuning approaches, to see how
no freezing and gradually unfreezing layers would affect performance. A list of the six
different models is given below:

• A fully fine-tuned synthetic model

• A gradually fine-tuned synthetic model

• A fully fine-tuned adapted model

• A gradually fine-tuned adapted model

• A fully fine-tuned real-world model

• A gradually fine-tuned real-world model

Fully fine-tuning was done in one stage, corresponding to the last stage in the gradually
fine-tuning approach. Gradually fine-tuning was done in three stages:

1. The heads of the Mask R-CNN architecture was opened for training, that is classifi-
cation, bounding box, mask header and RPN.

2. All layers following the fourth layer in Resnet101 was opened for training.

3. All layers were opened for fine-tuning, with 1/10 of the original learning rate used
at the previous stages.

The two pure synthetic models and the two pure real-world control models were based
on a Mask R-CNN model pre-trained on the MS COCO dataset, resulting in a transfer
learning problem due to a change in domain and label space. The best performing model
among the two synthetic models on the synthetic testset was chosen as a target model for
the real-world domain adaptation. In addition, the two pure synthetic models and the two
pure real-world models would work as control models to see if domain adaptation took
place, and to see what effect the use of synthetic data had. The same augmentation scheme
was used for training both for the the adapted models and the real-world models.

All training was done using the free-of-charge cloud-based service Google Colaboratory
which is based on Jupyter Notebooks. Training of each of the models lasted between 12
hours and 2 days, as the length of the training determined by early stopping based either
on stagnation in validation loss or overfitting characterized by increasing validation loss
together with decreasing training loss. The performance was measured using mAP (see
Section 2.4.2), and was visualized and monitored using the visualization tool Tensorboard
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which comes with Tensorflow. Epoch size was varied dependent on the need for frequent
calculation of validation scores.

Additionally, it was attempted to get explanations for the prediction from Mask R-CNN
by the use of LIME (see Section 3.2). Two types of explanations were attempted obtained;
one explanation for the class probability score, and one explanation for the mask prediction
only based on mask pixel-wise IoU (see Section 2.4.2).

Synthetic Real-World
Train Val Test Train Val Test

Images 2061 (1031) 80 149 151 45 71 [26]
Tankers 2071 (1047) 84 68 82 16 24 [8]
Cargo ships 1946 (984) 81 75 77 15 24 [9]
Tugboats 632 (326) 32 58 69 18 25 [7]
LNG carriers 1522 (769) 57 64 78 14 25 [7]

Table 5.1: Synthetic and Real-World datasets overview. The numbers in parentheses are the numbers
in the original synthetic dataset before pre-training augmentation. The numbers in square brackets
are the numbers in the additional real-world testset which was not used for validation.

5.2 Method

5.2.1 Synthetic dataset generation

Based on the method for acquiring synthetic labelled data from K-Sim that was developed
and explained in the last chapter, a synthetic training and a synthetic testing dataset was
created from distinct simulations.

The number of different classes was limited to four, while the original plan was to use
all 25 available classes of vessels. To simultaneously test the robustness of the mask
extraction step of the data acquisition method, which relied upon the color encoding of
classes, it was planned to increase the number of classes progressively. However, due
to time consumption during the creation of the dataset, it was determined to limit the
number of classes to only the four that were chosen from the start. However, this was
considered a possible outcome, and therefore, the initial first classes were chosen such
that the final dataset would both have similar and distinct classes of vessels in case the
number of classes became restricted to the initial classes. The final classes were tankers,
container ships, LNG carriers, and tugboats.

The entire process of creating the dataset lasted approximately ten days, and a total of
eleven simulations were created. Nine simulations for creating the training dataset, and
two simulations for creating the testing dataset, respectively. In addition, a video was
created to be used for an additional visual assessment of the performance. The majority of
the time during these ten days were spent on creating and carrying out these simulations
and taking synchronized screen captures from the recording. A total of approximately 8
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hours were used on the mask extraction step and mask assessment and adjustment step, in
addition to the tuning of the hyper-parameters. Besides, much time was spent on regular
file handling. The final dataset contained 1261 instance-level labelled images with a total
of 3645 vessels.

Each of the simulations used to create the training and testing datasets had different objec-
tives in terms of adding diversity. For instance, the first simulations contained only aligned
non-overlapping vessels with their side towards the viewpoint route, while the fourth sim-
ulation contained clusters of overlapping vessels with a variety of different heading. Sim-
ulation seven, eight, and nine all contained a moderate to a high level of environmental
noise, with simulation eight having a mix of overlapping and non-overlapping vessels.
Simulation four had a city and harbour in the background. In the two last simulations
used for creating the testing dataset, it was attempted to capture all the diversities that was
thought to be in the training dataset. While the simulations contributed towards diversity, it
is clear that there exist numerous additional ways to add diversity, such as having overlap-
ping vessels from the same class. During the mask assessment step, only masks of vessels
that were considered possible to classify was kept. That is, masks for barely visible vessels
due to either being partly hidden by other vessels or coastal environments or cropped out
of the image was rejected. Some images were also rejected due to containing vessel parts
that were considered impossible to classify for both human and machine learners. The
training dataset ended up heavily unbalanced in terms of the number of different vessels
between the classes, as seen in Table 5.1. Unfortunately, this was not thought of before
after having started the training of the models. We delay the discussion of the implications
of the imbalance until the discussion in Chapter 7. A sample of synthetic images with their
masks from the synthetic dataset is shown in Figure 5.1.

Figure 5.1: Samples of instance-level labeled synthetic images
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5.2.2 Real-World dataset generation

Two different approaches were followed in order to create a training set and testing set.
First, a collection of images were gathered from mainly ShipSpotting.com and some from
Vesseltracker [46, 47]. The images were if necessary re-sized to less than or equal to 896 in
width. Then, a collection of clips from videos were gathered from Vesseltracker and three
YouTube channels [48, 49, 50], and put together for a testing video, before a total of 50
frames were sampled periodically and re-sized to a width of 896 pixels. The images were
used in the training dataset, and the frames were used in the testing dataset. They were then
labelled using VGG Image Annotator [3]. This process resulted in 151 training images
and 45 testing images with a total of 306 and 63 vessels, respectively. However, since the
testing images was determined to be used as validation images as well, due to reasons that
is explained in Section 5.2.9, and the fact that 45 testing images was considered to provide
an insufficient statistical significance, it was determined to create an additional 26 labeled
testing images. Therefore, the total size of the testset became 71 images with a total of 98
vessels. All the images required approximately 9 hours and 50 minutes of manual labelling
effort. Compared to the 3645 vessels contained in the synthetic dataset, which required
approximately 8 hours to label, the difference is captivating. All the images and the video
were collected over approximately one month.

Caution was taken for not having common ships in the training and testing dataset, as
many images found online would be screen captures from videos. Images with huge and
detailed-rich harbours or other dominating coastal environments in the images were at-
tempted limited, while breakwaters, shores, or coastal environment at far ranges were
included. This caution ensured a similarity between the synthetic and the real-world im-
ages. It was also attempted to keep light condition the same between all the images, and
between the images and the video.

A sample of instance-level labelled real-world images is shown in Figure 5.2, and shows
all the four classes of vessels.

5.2.3 Dataset biases

The synthetic training dataset and the real-world training dataset consists of 1030 and 151
images, respectively, with four different classes. Both these numbers can be considered
a small number of images in the context of deep learning. Therefore, there was a risk
of overfitting, or loss in generalization ability, should the training last too long. Since
the experimental plan did not allow for comprehensive training and testing due to time
constraints, it was important to identify sources to biases that could contribute towards
overfitting, and which could be encountered by appropriate data augmentation techniques.
Here, we shall specify what was thought to be the different types of sources to different
biases between the synthetic and the real-world maritime domains. These sources are
referred to in the following section about data augmentation and training. The different
sources were thought to be:

• Computer graphic bias:
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Figure 5.2: Samples of instance-level labeled real-world images

While today’s real-time 3D-engines can produce highly photo-realistic graphics, it
is often limited due to hardware restrictions. Light conditions can be limited in
terms of reflection and shadows to reduce the computational cost, and texture and
scenery can be kept simple to reduce memory load, among other aspects. Real
images will contrastively, will be affected by, for example, camera devices, lighting
conditions, blur due to shaking or bad focus, and lens occlusion. These aspects
introduces numerous sources to a covariate shift (see Section 2.5). Moreover, the
different rendering techniques could introduce features that would not be present in
real-world images, which in turn can be caught by deep learning.

• Sampling selection bias:
The content and diversity of the synthetic dataset are highly dependent on the setup
of the simulations, which affected the number of object instances in each image, the
range of objects, the environmental noise, the coastal environment, the orientation
of objects, and the viewpoint perspective, among other aspects. In addition, K-Sim
allows for all possible viewpoint. Contrary, real-world photographers and perspec-
tives are often limited to harbours, breakwaters, other vessels, and occasionally air-
craft. The ability to orchestrate the collection or orientation of maritime objects is
also restricted or non-existent. The real-world dataset used in this experiment is
based on photos and video footage from mainly ship spotters at harbours or shores.
This difference introduces a sampling selection bias (see Section 2.5) between the
synthetic dataset and real-world dataset due to a difference in the distribution of
domain-invariant features. In particular, there is a significant difference in the dis-
tribution of range from camera and objects between the datasets. The same goes for
the number of objects in each image and the overlap between them. These features
can be denoted as geographical features, and are a significant source of bias.

• Compression bias:
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Images and videos collected online are affected by digital image procession such as
editing and compression techniques for storing. This would introduce features that
would not necessarily be present in synthetic images.

• Instance-level mask bias:
Since the labelling method of the synthetic and real-world datasets was different,
a difference between the two types of masked was observed. While the masks of
objects in the synthetic data were characterized by having a high amount of details,
the masks of objects in the real-world were characterized as blobs around objects.
The smoothing of the masks in the synthetic data had reduced this difference on
some level, but it was still clearly present.

5.2.4 Synthetic dataset augmentation

In order to close the gap between the synthetic and real-world datasets and to add regular-
ization effort, the synthetic training dataset was augmented both before training and during
training.

Due to having observed a scene bias in terms of the size, range, and rotation of objects
and sea surface between the synthetic and real-world dataset, it was desired to apply ran-
dom zoom-in and random rotation. However, due to the size of the objects, there was a
high risk of cropping objects due to zoom-in to a degree where they would be barely vis-
ible. Moreover, the random rotation would naturally and occasionally lead to triangles of
empty pixels at the corner of the images, and to amplify zoom-in, it was desired to crop
away as much of the image containing empty pixels as possible. This cropping would
also reduce the chance of having the neural network learning the rotational transformation
between original and rotated images, which could have removed the effect of the rotation.
Nevertheless, the former was the primary motivation.

The reason why the training set was augmented before training, was due to the fact it was
not found a way to fully augment the data as desired during training because of restriction
in the augmentation abilities. In addition, when attempting to do minor random rotation
and cropping, there was complains from the Mask R-CNN implementation about changes
in mask shapes, which eventually became fatal such that the training frequently crashed.
It is thought that this would be been possible to fix, but it was not considered at the time
when the training setup was implemented.

Therefore a script was written to randomly zoom in on objects, randomly rotate images,
cropping away empty pixels, while simultaneously avoiding exaggerated cropped masks
by either entirely cropping out objects or restrict cropping to the boundary of the masks. In
addition, the script would re-size all images to having a maximum width of 896 pixels. The
reason was that it was determined to limit the maximum dimension to 896 pixels, based on
the fact that the real-world images mostly had a width between 600 and 800 pixels, except
those few having a width up to 3000 pixels. The dimension of 896 is divisible by 32,
which was required because of the FPN in the Mask R-CNN backbone. Re-sizing reduced
padding of small images during training, and the re-scale effort on the synthetic images.
Re-sizing before training was also desirable as to limit file transferring time during the
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setup of training in the cloud-service Google Colaboratory and during training for limiting
memory load on GPUs. The script was then used to first augment the whole dataset,
before re-sizing it. Then the original dataset was re-sized. This transformation effectively
doubled the size of the training dataset while saving memory due to file size. Re-sizing
was done after cropping in order to avoid as much loss in image quality in order to limit
the degradation of image quality due to re-sizing.

The training dataset was then split into a training and validation set with a ratio of 2141:80
at first, before the images in the training set that was related to images in the validation
set by augmentation was removed. This removal avoided a possibility for obtaining an
artificially low validation loss based on the presence of similar images between the two
sets, but at the cost of less data to use for training. The final ratio then became 2061:80,
which means that 79 images were removed from the training set. The reason why only 79
images and not 80 images were removed, is likely due to an image in the validation set not
having been augmented beforehand due to the caution for not losing a significant presence
of objects due to random zoom, rotation and cropping. Thus an image in the validation set
likely did not have an image counterpart in the training set which could be removed.

Then the augmentation scheme to be used during training was created by the use of a com-
prehensive image augmentation library called Imgaug [51]. Below is a short description
and explanation:

• 50 % of the images was flipped.
• 70 % of all images was augmented with 1 to 4 filters among 4 different filters:

Gamma and contrast was used to simulate overexposure, equal add to colors to add
darkness or brightness, per channel add to colors in RGB color space and add to
hue and saturation, to gain an extended range of colors. 5 % of all images not being
augmented by these one or more of these filters, was overlayed by the gray-scale
variant by between 40 % and 100 % to extend the range of color intensities.

• 50 % if all images was augmented with 1 to 2 filters among 6 different filters with
different purposes. Emboss and sharpening was used for simulation shadows and
highlight shapes and edges. Simplex noise, Gaussian noise and Gaussian blur was
used to make the synthetic images closer to the real-world.

• 50 % of all images was augmented with 1 of 6 occlusion filters such as black, white,
pepper-salt, and snowflake spots and squares. They were added as a regularization
effort.

• These four different types of augmentations schemes was used in random orders for
each image.

The augmentation scheme would augment as much as 93.75 % of all images to some
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degree when excluding flipping, based on:

Pr(A ∪B ∪ C ∪D) = 1− Pr(Ā ∩ B̄ ∩ C̄ ∩ D̄)

= 1− (Pr(Ā) + Pr(B̄)) · Pr(C̄) · Pr(D̄)

= 1− (1− 0.7− 0.5) · (1− 0.5)2

= 0.9375

(5.1)

whereA,B, C, andD are the probability of applying the different augmentations schemes
respectively. A sample of augmented synthetic images are shown in Figure 5.3.

Figure 5.3: Samples of augmented synthetic images using during training of Mask R-CNN model.

5.2.5 Real-World dataset augmentation

The augmentation scheme of the synthetic data was based on the desire to close the gap
in terms of bias between the two representation of each their respective domain, namely
the virtual maritime domain of K-Sim and the maritime domain of the real world. On
the other hand, the augmentation of real-world images attempted to increase the size and
diversity of what could be considered a small dataset with few object instances per class.
It was intended to be used for both the fine-tuning and the gradually fine-tuning adapta-
tions techniques, as well as in the training of the two pure real-world control models. The
augmentation intended to get as much out of the information about the real-world repre-
sentation of the four classes and maritime domain, contained in the small dataset, without
introducing features that are not present in the real-world or adding a too strong regular-
ization effort. The latter could have contributed towards making the models under-fit to
unseen target test data, by seizing too much of model capacity on non-existing features.
Therefore, an augmentation scheme was restricted to flipping, geometric augmentation,
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and mild change in colors, brightness, and contrast. The magnitude of the geometric aug-
mentations allowed for a substantial decrease in the scale of the images, to obtain smaller
objects. The reason was a scene bias between test and training images in terms of the
range of objects. The majority of the images in the training set where close-up photos of
vessels, while the test images created from video clips had vessels at various ranges, both
short and long range.

An overview of the augmentation scheme is given below:

• 50 % of the images was flipped.
• 100 % of images was augmented with either:

◦ Affine transformation with scaling, translation, rotation, and shear mapping,
with either nearest neighbour or bi-linear interpolation.

◦ Perspective transformation, padding, cropping, and rotation.
◦ Padding, cropping, and rotation

• 100 % of images was augmented with 1 to 2 filters per image among 3 different
filters: gamma and contrast, add to color channels both equally or per channel, and
add to hue and saturation per channel.

This resulted in that all images where augmented to some degree. The setup for the aug-
mentation scheme can be found in Appendix A in Listing A.2. A sample of augmented
real-world images is shown in Figure 5.4.

Figure 5.4: Samples of augmented real-world images using during training of Mask R-CNN models.
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5.2.6 Mask RCNN configuration and training

A configuration file for training of Mask R-CNN was inherited from an basic configuration
file from the implementation, and customized from training.

The backbone was chosen as Resnet101. Another option would be to use resnet50, which
would give a lower model capacity. Considering the size of the dataset, this could have
been a good option. However, since the model would later be adapted to the real-world,
Resnet101 with a larger model capacity was considered to be desirable. The implementa-
tion automatically takes care of embedding a FPN into the model architecture. The number
of classes was set to 5; 1 for the background and 4 for the different vessels classes. Re-
size mode was set to "square" with max and min dimension set to 896 pixels, based on
the justification given in Section 5.2.4. Images being of different size would be re-sized
to having their max dimension equal to the max dimension given in the configuration file,
and padded with empty (black) pixels to become squared. Max number of ground truth in-
stances per image was set to 12. The use of mini masks to save memory load was allowed
and set 112 pixels in both height and width. Learning momentum and weight decay were
held equal to default values of 0.9 and 0.0001, respectively. Learning rate was set to 0.001
for the two first steps of the gradually fine-tuning, and set to 0.0001 for the last step of the
gradually fine-tuning and the fully fine-tuning.

The implementation allowed for a custom image size in the epoch and the validation step,
which can be different from the size of the training and validation dataset, respectively.
This option is for enables optional frequency in the calculation of validation loss, and
adjustment of time spent on calculating loss and accuracy of loss in the validation step.
Frequent validation and high accuracy help for monitoring the training progress which is
done after completion of each epoch, but increases time spent on validation. The number of
training and validation instances in the epoch and the validation steps was at any moment
depending on the purpose of the training.

As a last step, some layers were required to be skipped and retrained due since the num-
ber of classes was different from the pre-trained MS COCO model: mrcnn_class_logits,
mrcnn_bbox_fc, mrcnn_bbox, mrcnn_mask.

During training a total of five different validation losses had to be monitored due to Mask
R-CNN having a complicated pipeline:

• rpn_class_loss: The Region Proposal Networks classification loss describing a bi-
nary class label prediction (being an object or not)

• rpn_bbox_loss: The Region Proposal Networks bounding box loss describing the
distance between the true and predicted bounding box parameters of any class

• mrcnn_class_loss: Loss describing how confident the model is to predict the correct
class.

• mrcnn_bbox_loss: Loss describing the distance between the true and predicted
bounding box parameters.

• mrcnn_mask_loss: Mask average binary cross-entropy loss for masks heads
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Early stopping was based on the mrcnn_class_loss, mrcnn_bbox_loss, and mrcnn_mask_loss,
and a sixth validation loss being the combination of all five validation losses.

5.2.7 Google Colaboratory training setup

The authors of the Mask R-CNN paper [17] estimated that it took between one to two
days to train the architecture on the MS COCO dataset when using an 8-GPU machine.
To minimize the time used to train models, it was decided to use a cloud-based service.
Amazingly, Google offers a free-of-charge cloud-based Jupyter notebook service which
offers a NIVIDA Tesla K80 GPUGPU with 12GB RAM and 350GB memory and a TPU
hardware accelerators. It comes with common machine learning libraries such a PyTorch,
TensorFlow, Keras, and OpenCV pre-installed. It allows for Linux commands which en-
able arbitrary instalment of other python libraries, the use of git, and the use of zip-files.
Since it is a Google service, it also can mount Google Drive.

However, there is a 12-hour session limitation, meaning that all activity is limited to that
available time. Afterwards, all memory erased. Since Mask R-CNN training session may
require more than 12 hours, it is simply not possible to use the service without having
to save and back up the progress. This restriction is highly impracticable, since pausing
after a 12-hour session can lead to unfortunate timing, in addition to a possible demand
for intricate file management.

However, it was discovered that if two separate Jupyter notebooks were connected to the
service at the same time, they would both run on the same hardware. This exploitation
allowed for both accessing files during training and for running multiple processes con-
currently. Moreover, Mask R-CNN saves model weights for each epoch and moderates a
Tensorflow tfevent log file. As a result, this was utilized by writing a script that periodi-
cally took a backup of the most recent model weights and tfevent log files by saving copies
to Google Drive. This backup scheme allowed for un-monitored training for 12 hours at
the time. By using Google Drive, file management was done effectively by managing
copies in the Google cloud-service. There where only two minor drawbacks. First, that
training had to be restarted from where it was aborted. Second, since each model weight is
approximately 450MB, and since Google Drive only allows for 12GB free-of-charge stor-
age, the period between backups had to be large enough as to not lose significant training
progress due to memory overload. Together, these drawbacks resulted in a minor loss of
epochs due to the service shutting down before having taken the last backup. Regardless,
the fact that it was possible to train for free on a powerful GPU massively surpassed the
drawbacks.

Therefore, two separate Jupyter notebooks were created. The first configured and ran the
training, by mounting Google Drive, cloning the custom git Mask R-CNN repository with
code and training data, installing Mask R-CNN, moving any backup weight to the correct
logdir location if the training was to be continued, before starting a training session. The
second configured and ran the backup process. In addition, two scripts were implemented
in order to monitor the GPU load and to monitor the training progression. The script to
monitor GPU load can be found in Appendix A in Listing A.3. In order to monitor training,
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a dashboard provided by Tensorflow’s Tensorboard was used. However, since the training
was running on a local network located at a Google server, the Tensorboard process had to
be tunnelled to the local client computer. Tunnelling was enabled by a free service called
ngrok [52], which would output a public URL, which exposed the local server. The script
for implementing the use of Tensorboard through ngrok can be found in Appendix A in
Listing A.4. The solution and explanation was based on a tutorial by Chengwei Zhang[53]

5.2.8 Training of synthetic models

Configuration and training was done according to the description in the experiment overview
of Section 5.1.2, and training setup and configuration of sections 5.2.6 and 5.2.7, but
adapted to the synthetic training set and the synthetic intra-training augmentation scheme.

The synthetic data was earlier split into a training:validation ratio of 2061:80, but since
the Mask R-CNN implementation of Matterport allowed for an optional epoch size, it was
varied depending on the necessity for frequent validation loss. In the early phases of the
training that was characterized by progressive improvements in performance, an epoch size
of 1031 was sufficient. When the progression was close to stagnation, the epoch size was
lowered, making it easier to control the training progression by applying early stopping.
Each step of the training lasted until they reached stagnation in the improvement of the
validation loss. If a significant undesired increase in validation loss became present after
stagnation, the training was re-started at an earlier point at stagnation to avoid effects of
overfitting.

If considering an epoch size equal to 2061, that is the size of the training set, the fully
fine-tuned model and the gradually fine-tuned model was trained for 35 and 41 epochs
respectively. This means that the models by the end of the training had seen 71 085 and
84 501 images respectively, and approximately 93.75 % of the images would have been
unique in some way due to data augmentation as shown in Section 5.2.4. Unfortunately,
the data augmentation was without random zoom or random rotation due to the complaints
during training about changes in mask shapes as mentioned in Section 5.2.4. Training
progression over time can be seen in figures 5.5 and 5.6.
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Figure 5.5: Training of fully fine-tuned synthetic model over time. Left shows training loss, right
shows validation loss. The bend at epoch 76 is due to an increase in epoch size. Epochs (epoch
size): 1 - 75 (220), 76 - 117 (1031), 118 - 150 (515). Model after epoch 142 (circle) was chosen as
the final model, due to stagnation in validation loss.

Figure 5.6: Training of gradually fine-tuned synthetic model over time. Left shows training loss,
right shows validation loss. Epochs (layers, epoch size): 1 - 13 (heads, 1031), 14 - 64 (heads, 515),
65 - 129 (4+, 515), 130-176 (all, 515). Model after epoch 152 (circle) was chosen as the final model,
at a point some epochs before loss increases.

5.2.9 Domain adaptation by fine-tuning and gradually fine-tuning

It was at the beginning of the experiment decided to use the synthetic model that performed
achieved the highest mAP on the synthetic dataset due to a restriction in time.

We will in Section 5.2.11 see how the models were tested, but for now it is sufficient to
say that that it was the gradually fine-tuned model that performed best on the synthetic
test set, and therefore was chosen to serve as the target model from the real-world domain
adaptation.

Domain adaptation was then done twice with the two different fine-tuning approaches,
according to experiment overview of Section 5.1.2, and training setup and configuration
of sections 5.2.6 and 5.2.7. As mentioned, there was a challenge and a drawback that
there was no validation set to be used, due to the limited real-world training and testing
data of 151 and 45 images at first, respectively. It was deemed a possibility to use some
of the training images as validation data at the cost of less data for training, but it was
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expected that the statistical significance would have been insufficient due to the resulting
low number of images and number of vessels. Therefore, it was determined to use the first
45 images of testing dataset as the validation set. This was justified on the basis that no
hyper-parameters was to be determined, that the real-world data augmentation scheme was
already decided upon, and that only the number of epochs was to be determined best on
validation scores. Moreover, since the numbers of epochs were to be determined by early
stopping both for the adapted and real-world control models, the ground rules would be
the same. On the other hand, if the experiment had aimed to find an optimal augmentation
scheme, or to obtain an absolute measure of model performance for comparison with other
previously trained and may be deployed model, the issue should have been resolved by
having a distinct validation-set and test set.

It should then be noted that choosing the target model based on performance on the real-
world test set could have been better since it can intuitively be thought to be the best basis
for domain adaptation. However, at the point of determining the target model, this was
thought to be invalid use of the test set since it would give the adapted models an unfair
advantage, based on the discussion above. To sum up, this demonstrates the challenges
that limited data pose, which in this case led to using the synthetic data for choosing the
target model as a basis for domain adaptation.

The training progress over time is shown in figures 5.7 and 5.8. In addition to the combined
validation loss, the bounding box loss, the classification loss, and the mask validation loss
are also shown. When deciding which models to use, a compromise had to be made be-
tween optimizing the different losses. Classification loss was weighted the most, followed
by the mask loss. This was also done for real-world control models later on as well. In
retrospect, the model should have been based on an earlier epoch, considering that over-
fitting seems to have become present at epoch 151. However, model-weights before 151
was not saved for later use, and it was therefore not possible afterwards.
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Figure 5.7: Training of fully fine-tuned adapted model over time. Epochs (epoch size): 1 - 149
(all). Model after epoch 149 (circle) was chosen as the final model, before bbox, class, and mask
loss started to rise.

Figure 5.8: Training of gradually fine-tuned adapted model over time. Epochs (layers, epoch size):
1 - 48 (heads, 151), 49 - 88 (4+, 151), 89 - 208: (all, 151). Model after epoch 165 (circle) was chosen
as the final model, due to a stagnation in loss.
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5.2.10 Training of real-world control models

The real-world control models were trained in the same way as the adapted models, except
that the target model used was the pre-trained Mask R-CNN model trained on the MS
COCO dataset, which is the same target model as used for the synthetic models.

Figure 5.9: Training of fully fine-tuned real-world model over time. Epochs (epoch size): 1 - 203
(all). Model after epoch 193 (circle) was chosen as the final model due to stagnation in loss and
signs of overfitting.

Figure 5.10: Training of gradually fine-tuned real-world model over time. Epochs (layers, epoch
size): 1 - 48 (heads, 151), 49 - 88 (4+, 151), 89 - 125: (all, 151). Model after epoch 203 (circle) was
chosen as the final model, before overfitting became present as observed by significant increasing
validation loss.

5.2.11 Model testing setup

The common way of measuring and comparing object detection performance is to cal-
culate and compare the mAP score (see Section 2.4.2). In addition, the precision-recall
curves and the detection confusion matrix can give useful insight into the strength and
weaknesses of the model detection performance. These three performance measures is
used in the next chapter to test and compare models.

A script was therefore written to calculate mAP by:
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1. Iterating through every image in a given test set, performs detection, keeping pre-
dictions with a confidence score higher than a given limit, correcting the remaining
predictions as either true -or false-positive based on mask IoU higher than a given
limit and correct class label, and saving these stats along with their confidence score.

2. Calculating the precisions and recalls for each class, and therefore indirectly con-
structing the precision-recall curve by the pairwise correspondence between the two
sequences.

3. Calculating the area under each of the precision-recall curves using "all point inter-
polation".

4. Calculating the means of the areas under the curves.

Based on the precision-recall curves and true -and false-positive detections of actual ob-
jects, a precision-recall curve plot and a confusion matrix were also created.

It was observed that objects occasionally would be detected more than once with different
detection labels, as shown in Figure 5.11. Therefore, it was decided to calculate scores
based on allowing only one detection per vessel by keeping the detection with the high-
est confidence among duplicates. Two detections were considered duplicates if the IoU
between their masks was greater than or equal to a certain threshold. This threshold was
unpretentiously set to 0.9, based on the belief that no detection would be wrongly rejected
with a limit that high. If a model should have been used in an application of some sort,
this limit should admittedly be based on testing. This sort of filtering of detections was
embedded in the procedure given by the list above.

Figure 5.11: Overlapping detections of a real-world cargo ship. The detection with label "Tanker"
would be removed since it has the lowest detection confidence.

5.2.12 Explanation by LIME

It is of interest to see if we can gain some insight into what the instance segmentation
models considers important for obtaining a object detection. Section 3.2.1 proposed a way
to extend the model-agnostic method called LIME (see section 3.2) to give explanations
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for masks as well as detection confidence, by scoring the mask quality based on the orig-
inal mask prediction. To investigate this proposal, an experiment was conducted based
on dedicating LIME to instance segmentation. Multiple methods has been attempted, and
we shall take a look at two successful cases based on their respective experiments. We
first present the dedication of LIME to instance segmentation, then the motivation and the
setup for the two sub-experiments in connection with the methods. The gradually fine-
tuned adapted model has been used for obtaining detections and mask predictions that was
to be explained. The work has been based on an open-source implementation of LIME
released by its authors [43]. Additional work were needed in order to dedicate this im-
plementation to the chosen scoring scheme for detections. Segmentation algorithms used
during the experiment are based implementations provided by scikit-image[54]. Note, the
experiment based on their methods have been part of a trial-and-error phase in order to
obtain a working solutions. A selection of the resulting explanations that gives insight into
the quality of the explanations are presented in along with the other results in the next
chapter.

Dedication of LIME to instance segmentation

We start by considering the segmentation of images, as this is a prerequisite for obtain-
ing explanation for any image processing task with LIME. The aim is according to [43]
to segment the image and objects into semantically meaningful segments or super-pixels
which we humans consider as important characteristics which should be included in an
explanation, as to assert trust in the model at the locality of the image. Figure 5.12 illus-
trates different segmentation algorithms and segmentation results with different degree of
specificity, implemented using the scikit-image[54] software library. Whether it is best to
apply specific and dedicated segmentation for each object or to apply a general segmen-
tation scheme is uncertain. A specific segmentation such as Felzenszwalb’s segmentation
algorithm as seen in the figure may become biased towards the object and prevent the sur-
roundings from being taken into consideration, while a to general segmentation may result
in wasting time on unimportant aspects. We have not stuck with a specific segmentation
scheme or algorithm is this experiment, but rather experimented using different ones. In
the second part of this two-stage experiment we use two different segmentation algorithm.
However, the task of deciding whats good practice is left for future work. Furthermore,
the segments that are to be replayed during perturbation of an image are set to be replaced
with the mean value of all pixels in the image not part of the original predicted masks of
objects, as to introduce as little bias as possible. Figure 5.13 illustrates detections based
on a original image and perturbations based on pre-segmentation.

Next, we consider how to score a detection based on a segmented image, that is how to
score the detection and classification of an object and how to score the predicted mask.
We start by omitting those detection that has an IoU between the predicted mask and the
original predicted mask less than a certain threshold. We set this threshold to be 2.5 %,
such that even relative small masks are accepted, while those that are totally off the object
are omitted. It is unlikely that such omitted detections are part of the explanation, and
thus it is reasonable to omit them. The score of a detection can simply be taken as the
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Figure 5.12: Illustration of different segmentation algorithms. Felzenszwalb’s algorithms obtains a
very specific and dedicated segmentation, the SLIC algorithm obtains a coarse and general segmen-
tation, and Quick shift obtains a fine and general segmentation. The segmentation result is dependent
on the hyper-parameters of each segmentation algorithm. Implemented

Figure 5.13: Illustration of detection from an original image and perturbed versions based on seg-
mentation.

detection confidence, already provided by the detection. The score of the mask quality
can be based on the IoU between the predicted mask and the original predicted mask from
the original detection that is to be explained. IoU has the advantage that masks which is
inside the original mask gets penalized less than masks that have the same size but which
are partly localized outside the original mask. However, the drawback is that this way
of scoring predicted masks ignores the fact that masks which is fully contained in the
original mask may be as optimal as one could expect given a specific set of segments.
For instance, if a considerable side of a vessel is completely hidden while the rest of the
vessel is completely visible, the optimal and intuitively correct mask would be the one that
covers the visible part. Thus, the score for such a case will be unjustifiably low. We leave
the solution for a metric that takes this aspect into consideration as further work on the
topic. Nevertheless, it will be interesting to see how these two types of scoring schemes
will affect the explanations. Finally, we expand the scores for an object to include all
possible classes. Scores for a specific predicted class is therefore assigned to that class.
This expansion is useful, since it allows us the also gain insight into why a model would
consider one type of vessel to be another type of vessel. The result was that each detected
object gave eight different scores, two for each possible class.

The LIME implementation requires a function pointer to a scoring function, that takes a
set of images as input, and that returns a two-dimensional array containing the scores.
The number of rows corresponds to the number of perturbed images based on the same
image, while the columns correspond to the number of explanations that are to be obtained
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from the original image. Therefore, a scoring function was written based on access to the
original detections. The original detections were used for determining the size of the
output array based on the number of detections, such that a given number of original
detections gave an output array of length equal to eight times the given number of original
detections. Since the number of original detections is constant, the length of the output
array is also constant. In addition, the original mask predictions were used to calculate the
mask scores.

Two objects experiment

The first part in this two-stage experiment involves an image with two vessels, one cargo
ship and one tugboat. There will be two sets of pairs of explanations, one set of pairs for
the cargo ship and one set of pairs for the tugboat. Detection confidence explanations and
mask IoU explanations constitute the pair.

The primary aim is to see whether the method is able to obtain two explanations that is
clearly separate, or if there is a relationship between the explanations. The secondary aim
is to see whether the explanations assert trust in the sense that important characteristics of
the vessels have been taken into consideration. Since the tugboat is small in size compared
to the cargo ship, it is believed that the explanations will be coarse. On the contrary,
the cargo ship is large in size compared to the image, and therefore it is believed that
the explanation is finer and will highlight important characteristics. The image and the
original detection along with the segmented image are shown in Figure 5.14. The third
and last aim is to see if there is a difference within the pair of explanations, that is if there
is a difference between the detection confidence explanation and the mask explanation.

The image is segmented into 150 segments using the watershed algorithm, and the number
of samples are set to 2000. The watershed algorithm treats the gray-scale variant of the
image as a topological map with height based on the pixel brightness, and finds the lines
that run along the tops of ridges. It is important that the number of samples exceeds the
number of segments, such that there is a significant statistical basis for the regression.
It took approximately 326 minutes to obtain the explanations. In short, a considerable
amount of time. The explanations are presented in along with the other results in Section
6.5.1.

Single object experiment

The second part in this two-stage experiment involves four images with a single vessel,
each of one class. For each image, we consider a set of explanations for all vessel-classes.
The first aim is to see which characteristics of a ship belonging to a particular class that
are considered essential for a detection’s particular explanation, and for obtaining false-
positives detections for the other vessel classes. For instance, this may give insight to why
a LNG carrier may be wrongly detected as a tanker.

First, all images are segmented into between 80 and 100 segments using the SLIC algo-
rithm and the LAB color space as recommended by scikit-learn. SLIC uses k-means clus-
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Figure 5.14: Original detection and super-pixel segmentation of image with a cargo ship and a tug-
boat in first LIME experiment. Left-hand side: The original detections. Right-hand side: Segmented
image with 150 segments by using the watershed algorithm.

tering in the chosen color space of the image. The hyper-parameters have been adjusted
to obtain a reasonable segmentation for each image. The original detection of objects, the
predictions of masks, and the segmentation of the images are shown in Figure 5.14. Then,

Figure 5.15: Original detection and super-pixel segmentation of images in the second LIME exper-
iment. LNG carrier: 88 segments. Cargo ship: 100 segments. Tanker: 92 segments. Tugboat: 104
segments.

LIME and Google Colaboratory was used to obtain four sets of explanations for each of
the detections, one for each class. The number of samples was set proportionally to the
number of segments in each image by a factor of ten, which was found to give a suffi-
cient statistical foundation for the regression, and by such providing clear explanations.
Run-time per detection was on average 10.03 seconds, such that the total run-time became
considerable large. An overview is given below:

• LNG carrier: 88 segments, 880 samples, 2 hours and 26 minutes.
• Cargo ship: 100 segments, 1000 samples, 2 hours and 46 minutes.
• Tanker: 92 segments, 920 samples, 2 hours and 35 minutes
• Tugboat: 104 segments, 1040 samples, 2 hours and 55 minutes
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Chapter 6
Results

This chapter first presents performance results from all models trained in the previous
chapter. The models were tested on both the synthetic and the real-world test set to as-
sess their performance across the domains. In addition, the models that constitute each
step during gradual fine-tuning have been tested to see if they can give additional insight
into the workings of domain adaptation. Second, this chapter presents the results from the
LIME experiments. Visual explanations for different detections are presented. Interpreta-
tions and observations are commented while results are presented, and further discussed
in the next chapter.

6.1 Performance results

All performance scores of the different models are shown in Table 6.1 and visualized in
Figure 6.1. Scores are given as mAP@[50:70] and mAP@[75:90] in percentage, that is the
average mAP over different IoU thresholds. These two metrics give a broader and clearer
view of the performance than what isolated mAP values can give. mAP@[50:70] can be
interpreted as a measure of how good the models are to detect objects in images, while
mAP@[75:90] can be interpreted the same way but with a stricter requirement for mask
accuracy and thus how good the models are on both detecting and locating the objects.
These two metrics are suitable for comparing models. However, average mAP does not
give sufficient insight into the precision and recall for each model, nor does it give insight
into the performance at each class. Therefore, the precision-recall curves and confusion
matrix are also provided in the next chapter, when seen as necessary to gain sufficient
insight. For instance, the precision-recall curve will give insight into why the scores for
each metrics was approximately at best 92 mAP@[50:70] and 68 mAP@[75:90].
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Performance measured by average mAP[%:%].
(average mean Average Precision over different IoU thresholds.)

Synthetic testset Real-world testset
mAP@[50:70] mAP@[75:90] mAP@[50:70] mAP@[75:90]

Synthetic models
Fully fine-tuning 85,44 31,18 58,37 33,44
Grad. fine-tuning, heads 86,92 27,07 73,97 27,33
Grad. fine-tuning, 4+ 90,61 37,69 69,01 37,84
Grad. fine-tuning, all 90,63 37,35 75,77 43,10
R-w control models
Fully fine-tuning 39,83 7,31 85,20 55,48
Grad. fine-tuning, heads 52,47 6,42 88,40 54,66
Grad. fine-tuning, 4+ 51,47 13,44 87,15 64,55
Grad. fine-tuning, all 63,94 15,19 91,22 67,74
R-w adapted models
Fully fine-tuning 86,64 36,83 90,41 66,41
Grad. fine-tuning, heads 84,59 30,53 92,78 60,27
Grad. fine-tuning, 4+ 89.00 32,07 90,70 65,98
Grad. fine-tuning, all 87,88 33,96 91,56 68,60

Table 6.1: Results from all Mask R-CNN models. Only the most confident detection among over-
lapping predicted masks with an IoU greater or equal to 90 % has been kept. Numbers represents
performance scores in percentage based on allowing no duplicate predictions (see Section 5.2.11).
Best performance per metric overall is highlighted in bold, while best performance per metric within
the different groups of models are highlighted with underline.

Figure 6.1: Visualized results from all Mask R-CNN models at mAP@[75:90]. Upper legend de-
scribes the color encodings based on category of models, while the lower left legend describes the
line -and marker-styles encodings based on the different domain adaptation techniques and the two
test sets from their respective domains.
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6.2 Synthetic models performance

Performances of the synthetic models on the synthetic test set (see Synthetic models in
Table 6.1) are persistently high and quite similar when considering mAP@[50:70], while
they drop when considering mAP@[75:90] with more than 50 pp between the best scores.
These results suggest that it is easy to correctly detect and locate the different types of
vessels in the synthetic dataset, while it is harder to obtain accurate masks. Best perfor-
mance at mAP@[50:70] is achieved by the gradual fine-tuning all-layers model with a
score of 90.63 %, while the gradual fine-tuning 4+ model achieves the best performance at
mAP@[75:90] with a score of 37.69 %. The performance differences between these two
models are small, suggesting that performance improvement has stagnated at the second
step of the gradual fine-tuning approach. Worst performances are achieved by the gradual
fine-tuning of overheads and full fine-tuning with a noticeable distance in scores compared
to the other two fine-tuning approaches. A visual interpretation of the performance on the
synthetic test set is seen in Figure 6.2.

Figure 6.2: Gradually fine-tuned synthetic model all-layers performing on the synthetic testset.
Images has been cropped around the bounding boxes to make detections more visible.

Moreover, performance on the real-world data drops when considering mAP@[50:70],
but actually persists and even increases when considering mAP@[75:90]. Gradual fine-
tuning toward all layers achieves the best performance of 75.77 mAP@[50:70] and 43.10
mAP@[75:90], were the former score should be considered high. Since it is expected that
the covariate shift would make it challenging for models trained purely in one domain
to perform in another domain that it has newer learned from, it is unexpected that perfor-
mances would persist and even increase. This is likely due to what was earlier described as
a sampling selection bias (see Section 5.2.3), being that the domain-invariant features such
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as range, orientation, and combination of objects and coastal environment are distributed
differently. In short, the real-world test set is likely less challenging than the synthetic
test set. Therefore, it is plausible that mAP@[50:70] drops closer to mAP@[75:90] be-
cause challenging detection tasks in the synthetic testset does not appear in the real-world
testset, while the simpler does. A critical observation is that gradual fine-tuning experi-
ences an significant increased performance of 4.07 pp at mAP@[50:70] and 5.26 pp at
mAP@[75:90] on the real-world test set after the performance improvement has stagnated
on the synthetic test set. Thus, knowledge about domain-invariant features continuous to
increase despite stagnation on the synthetic test set. This observation is crucial, since it
tells us that this improvement is not observable in the synthetic domain, and that we cannot
tell if this progression would have continued to increase, and if so for how much, had the
training lasted for longer. We discuss this observation in the next chapter.

Since the instance segmentation task involves multiple classes, it is also interesting to take
a look at the performance of the models with respect to the different classes. We base
our self on the best performing adapted model, that is the gradually fine-tuned all-layers
model. The precision-recall curves at mAP@50 and mAP@75 and the confusion matrix
at mAP@75 are shown in Figure 6.3 and gives insight into the detection performance of
the model among the different vessel classes. The precision-recall curves are for mAP at
single IoU values only, since precision-recall curves for average mAP are not defined. It
was suggested that the drop in score from mAP@[50:70] to mAP@[75:90] was because it
is easy to correctly detect the different types of vessels while it is harder to obtain accurate
masks. The precision-recall curves confirm this claims as the recall is close to one for all
the vessel classes at mAP@50, but drops dramatically for mAP@75. It is also evident that
it is the tugboat class that contributes the most towards a decrease in mAP@75, followed
by the tanker class and then the cargo ship class. From the precision-recall curve, it is seen
that the model detects six false-positive tugboats after the first seven true-positives, sorted
by decreasing detection confidence score. This results in that the scores drop significantly
before the next stream of true-positives. Then there are an additional seven false-positives.
If the false-positives at the start have had lower detection confidence, the score from the
tugboat class would have been notably higher. This is partly true for the tanker class as
well, but it does a better job in determining the detection confidence. From the confusion
matrix based on mAP@75, it is seen that model only detects 33 out of the 58 tugboats,
comparably lower than for the other vessel classes. In addition, the model wrongly detects
four cargo ships and one LNG carrier as a tanker, and one LNG carrier as a cargo ship.
There is a good reason to believe that class imbalance is partly responsible for these results.
We will discuss this further in the next chapter.
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Figure 6.3: (Left) Precision-Recall curves at mAP@50 and mAP@75 and (right) confusion matrix
at mAP@75 for the gradually fine-tuned all-layers synthetic model performance on the synthetic
test set. The curves have slightly been vertically shifted to highlight the details. Bottom integer
numbers on the diagonal of the confusion matrix are the total number of class instances. Duplicate
and omitted detections (see Section 5.2.11) are shown in the parenthesis.

As a final note, the performance of the synthetic models on the synthetic test set has likely
been hurt by the data augmentation scheme used during training. The augmentation was
intended to increase the adaptation ability of the models towards the real-world domain
by increasing the diversity of the synthetic training-set in terms of colors, shadows, edges,
and occlusion. This has likely made the synthetic models under-fitted for synthetic data.
Moreover, augmentation can explain why the all-layers gradually fine-tuned model per-
forms best on the real-world testset, while only second best on the synthetic test set. It can
simply be that since the synthetic models are trained on augmented synthetic data, the dif-
ference in performance becomes visible only when the models are challenged on difficult
detection tasks, while is non-visible when they are challenged with simple non-augmented
synthetic images.

6.3 Real-world control models performance

Performance of the pure real-world control models on the real-world test set is impres-
sively high, considering that the size of the training-set is only 151 images and between
69 and 82 vessels per vessel class. This may indicate that the real-world training-set has
been sufficiently diverse as for a model to be able to learn features corresponding to dif-
ferent viewpoints and across different vessels within vessel classes. Best performance is
achieved by the gradually fine-tuned all-layers model which achieves 91.22 mAP@[50:70]
and 67.74 mAP@[75:90], while the worst performance is achieved by fully fine-tuning
which achieves 85.20 mAP@[50:70] and 55.48 mAP@[75:90].

Despite this, performance drops significantly in the synthetic domain with the best scores
being 63.94 mAP@[50:70] and only 15.19 mAP@[75:90]. On average, the drop in per-
formance is 36.06 at mAP@[50:70] and 50.02 percentage-points at mAP@[75:90]. Since
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the best mAP@[50:70] score are that low, it is justified to assume that the control models
are not able to detect a significant portion of the vessels. Besides, the control models could
be considered incapable of segmenting vessels with high accuracy in the synthetic domain
since the best mAP@[75:90] score is that terrible. This stands in contrast to the synthetic
models, where the performance at mAP@75 persisted between the domains and supports
the claim that the synthetic test set is more challenging.

6.4 Real-world adapted models performance

When comparing the performance of the real-world adapted models with the performance
of the synthetic source model on the real-world dataset, that is the synthetic gradually
fine-tuned all-layers model; it is clear that domain adaptation has occurred. All adapted
models achieve a significantly better score than the source model. Overall, the perfor-
mance of all the real-world adapted models on the real-world test set is persistently high
at mAP@[50:70], and relatively high but more spread at mAP@[75:90]. Moreover, the
adapted models persistently achieve the best scores on the real-world test set compared
to the corresponding control models. The larges difference between adapted models and
the corresponding control models is between the fully fine-tuned ones, where the adapted
one achieves a 10.03 pp higher mAP@[75:90] score and a 5.21 pp higher mAP@[50:70]
score. The smallest difference is between the gradually fine-tuned all-layers models, were
the adapted one achieves a slightly better score in both mAP@[50:70] and mAP@[75:90].
Best performance among all models on the real-world test set when valuing mask accu-
racy that is high mAP@[75:90] score, can be considered achieved by the adapted and
gradually fine-tuned model; it achieves only 1.22 pp less than the best performing model
at mAP@[50:70], that is the gradually fine-tuned overheads only model, while 8.33 pp
more than the same model at mAP@[75:90] with a score of 68.60 mAP@[75:90]. Second
best performance can be considered achieved by the adapted and fully fine-tuned model;
it achieves 2.37 pp less than the best performing model at mAP@[50:70], while 6.14 pp
more than the same model at mAP@[75:90] with a score of 68.60 mAP@[75:90]. In fact,
the best performing model at mAP@[50:70] achieves the worst score among the adapted
models at mAP@[75:90], which means that it is most capable of detecting object while
worst in prediction accurate masks of detected objects.

When considering testing on the synthetic test set, performance remains consistently high
at mAP@[50:70] for all adapted models with a 7.09 average percentage-points drop from
the real-world test set to the synthetic one, that is when averaging over the differences.
Likewise, there is a 31.97 average percentage-points drop at mAP@[75:90]. Despite the
latter seems dramatic, it is not that bad when comparing the adapted models to the control
models. Rather, the results are impressive as the scores are overall very similar to that of
the pure synthetic models. Compared to the source model, that is the gradually fine-tuned
all-layers synthetic model, the average percentage drop is only 3.61 at mAP@[50:70] and
4.00 at mAP@[75:90]. In addition, the fully fine-tuned model experience only a 0.51
percentage-point drop and the gradually fine-tuned all-layers model experience a 3.39
percentage-point drop at mAP@[75:90]. Besides, gradual fine-tuning experiences an in-
crease the performance in the two last steps after a drop in the first step as seen in the
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visualized results. This is staggering because it suggests that the adapted models have
been able to maintain knowledge about the synthetic domain and avoids any strong signs
of catastrophic interference (see Section 2.5.2). Furthermore, this suggests that the adapted
models is in possession of a far larger portion of domain-invariant features than the control
models.

A visual interpretation of the performance can be seen in Figure 6.4. The masks, bounding
boxes, and vessel labels can be considered accurate. Two false-positive detections can be
observed, where non-vessel elements are falsely detected as vessels. A breakwater with a
lighthouse is falsely detected and classified as an LNG carrier in the above image, while
the shore is falsely detected and classified as a tanker in the lower image. By imagination,
it is understandable that this may occur, as features in the elements may be found in LNG
carriers and tankers. A shore with odd shapes and variations in colors in the distance can
be interpreted as a ship even by humans.

Figure 6.4: Gradually fine-tuned all-layers adapted model performing on the real-world test set.
Images have been slightly cropped around bounding boxes to make detections and tags more visible
despite re-scaling of images. Two false-positive detections can be observed in the second and third
row of the last columns, where a breakwater with a lighthouse and shores are falsely detected as an
LNG carrier and a tanker with detection confidence scores of 0.883 and 0.964 respectively.

We shall gain more insight into the workings of the models by looking at the precision-
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recall curves shown in Figure 6.5. As a supplement, the precision-recall curves for both the
best control model and adapted model have been included. It is seen that it is false-positive
tanker-detections that contribute most towards loss in both mAP@50 and mAP@75 for
both models. The control models achieve a slightly higher recall-value than the adapted
models while assigning higher detection confidence to the false-positives, which results
in a higher loss regarding the tanker class. Next follows the tugboat class. Both models
experience a loss due to achieving a recall value is slightly above 0.8. However, while the
control model has only four false-positives and assigns them the lowest detection confi-
dence scores, the adapted model have as much as eight false-positives and assigns as much
as six of them a higher confidence score than one or more true-positives. Therefore, the
adapted models perform worse than the control model in regards to the tugboat class. Fur-
thermore, the models experience a minor loss due to the cargo ship class. In comparison,
this is a similar pattern that was observed for the synthetic gradually fine-tune all-layers
model as well. There, the tugboats contributed the most towards a decrease in loss fol-
lowed by the tankers and then the cargo ships. While both models struggle with the tanker
class, the difference in performance with regards to the tugboat class is noticeable, sug-
gesting that the adapted model has a bias of some sort that makes it prone to detecting
false-positive tugboats. We discuss this in the following chapter.

(a) Precision-recall curves for gradually fine-
tuned adapted model

(b) Precision-recall curves for gradually fine-
tuned control model

Figure 6.5: Precision-recall curves for the best performing model among the adapted models and
the control models, being the gradually fine-tuned models. The curves have slightly been verti-
cally shifted to highlight the details. False-positive tanker-detections contribute the most towards a
decrease in loss followed by false-positive tugboat-detections for both models.

6.5 Model explanation by LIME

We have conducted an experiment with LIME based on two images, one image with two
objects, and one image with a single object. The results are exclusively visual, and we
present multiple sets of images to present and to gain insight.
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6.5.1 Two objects experiment

The results are shown in figures 6.6 and 6.7, with different number of segments or features.
Firstly, it is clear that the two type of explanations successfully values segments in their
respective object in the image. For instance, the explanation for the cargo ship is based on
segments from the cargo ship. Secondly, the explanation for the cargo ship gives us some
insight into what characteristics of the vessel the model has considered important. Based
on the increasing number of segments in the explanations, it seems like the waterline and
hull below the bridge, and the hull at the stern are most important, while the containers
and the bridge comparably are less critical. However, the explanations do not suggest
whether the most values segments are important for predicting the presence of a vessel
in general or a cargo ship in specific. It could be that the waterline and hull below the
bridge along with the stern is this case is important for determining the presence of a ship,
while the containers are important for classifying the ship. On the contrary, the highest
valued segments in the explanation for the tugboat is too coarse and suggest no more than
the location, while the less valued segments suggest that the waterline below the hull of
the container ships are important. There could perhaps be that the model has learned
that the presence of another object likely means that the smaller object is a tugboat. This
explanation makes sense since tugboats are often seen in proximity to other vessels in
the dataset. While this may be the case, it could also be that the number of segments
included in the explanation exceeds the reasonable numbers in terms of valued number of
segments, at that the last segments are the least worse among all remaining ones. Thirdly
and lastly, there are also some differences between the two types of explanations both for
the cargo ship and the tugboat. The mask prediction explanation for the container ship
seems to value the containers and bridge to a higher degree than the detection confidence
explanation, and the first segment in the tugboat explanations disagrees on whether it is
the bridge or the hull that is the most important characteristics.
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Figure 6.6: Explanations for the cargo ship in the first LIME experiment. The segments explains
why (green) the given cargo ship may be detected as cargo ship. The segments in the image on the
left are valued (highest weights) the most, followed by the extra segments in the next images towards
the right.

Figure 6.7: Explanations for the tugboat in the first LIME experiment. The segments explains why
(green) or why not (red) the given tugboat may be detected as tugboat. The segments in the image
on the left are valued (highest weights) the most, followed by the extra segments in the next images
towards the right.

6.5.2 Single object experiment

We take a look at a selection of explanations given by the experiment, which gives insight
into the quality of these explanations.

Firstly, Figure 6.8 shows explanations for why a specific cargo ship and which parts of the
cargo would result in high detection confidence for a specific class, based on the 20 highest
weighed segments out of a total of 100 segments. We see that the containers on the ship
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Figure 6.8: Detection confidence explanations for a cargo ship in the second LIME experiment. The
number of segments valued (highest weights) the most are shown on the left-side of the images. The
segments explains why (green) or why not (red) a cargo ship may be detected as a certain class given
by the labels above the rows.

seem to be most important for detecting the cargo ship and for discriminating between the
different vessels classes since the first five segments highlight them in green or red. We
also see that the hull is less important for detecting the cargo ship, while it is important
for not detecting a tugboat. Furthermore, we see that there are indications that the model
has considered a collections of containers in the middle of the ship valuable for detection
an LNG carrier, a collection of containers at the stern and the top of the bridge valuable
for detecting a tugboat, and the bow and the stern valuable for detecting a tanker. This
explanation asserts trust in that the model considered the containers valuable for detecting
a container ship. However, the fact that it does only value the bridge to a moderate degree
and the hull to a small degree does not assert trust as it suggests that the model would
detect container ships as long as there is a collection of containers present. Nevertheless,
this is reasonable as the model has only seen containers in connecting with cargo ships and
shouldn’t, for instance, be expected to be able to distinguish between elements in a port
and a container ship.

Secondly, Figure 6.9 shows explanation the same type of explanations as Figure 6.8, but
for all vessel classes and the ten highest weighted segments only. We see the same pattern
in this figure as in the previous figure for all the vessels, being that the unique character-
istic is considered most important for correct detection and classification while also being
important for avoiding false-positive detections. For instance, we see that the mast at the
bow and the surface on the deck of the tanker, and the liquid natural gas tanks on the LNG
carrier, are both positively and negatively highly weighted across the explanations. Fur-
thermore, we see that parts of the bridge of the tanker are highly valued for classifying the
vessel both as a tugboat and as an LNG carrier, which suggests that this characteristic can
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Figure 6.9: Detection confidence explanations for all vessel classes across all vessel classes. The
segments explains why (green) or why not (red) a given vessel may be detected as a certain class
given by the labels above the rows.

be a source to confusion.

Thirdly and lastly, Figure 6.9 shows explanations for which part of specific ships are im-
portant for predicting the original mask prediction (see Figure 5.15 for the respective mask
predictions of the images), based on the 20 highest weighed segments. We see the same
pattern in this figure as in the other figures for all the ships, being that the unique charac-
teristic is considered important. However, this time the waterline and the hull of the cargo
ship and the LNG carrier are considered more important than before. This is reasonable, as
the boundaries of the object could be important for obtaining an accurate mask prediction.
In addition, we see that the characteristic cone-shape of the tugboat is valued.

Considering all the figures, we see that the most valued segments of the tanker are smaller
in size and less uniquely characteristic than those of the cargo ship and the LNG carrier.
For instance, the bridge of the tanker is not valued at all by the ten most valued segments.
We know from the precision-recall curves for the model (see Figure 6.5a) that the tanker
vessel class is a source of high loss compared to the other two. These observations suggest
that it is, in fact, due to the lack of unique characteristics.

Overall, these explanations assert trust in that the model values the unique characteristics
of the vessels. However, as noted in connection with Figure 6.8, the model seems not to
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Figure 6.10: Mask prediction explanations for all vessel classes in the second LIME experiment.
The number of segments valued (highest weights) the most are shown on the left-side of the images.
The segments explains why (green) or why not (red) a given vessel may be detected as a certain class
given by the labels above the rows.

value the combination of unique characteristic and general vessel characteristic. Alterna-
tively, it is not visible in the explanation. The implications of this lack of relationship is
discussed further in the next chapter.
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Chapter 7
Discussion

7.1 Potential sources to error

7.1.1 Class imbalance

We have seen that there was a significant extrinsic imbalance between the vessel-classes in
the synthetic training-set (see Table 5.1 in Section 5.1.2) in favour of the tanker vessel-class
and disfavour of the tugboat vessel-class, due to the external factors during the acquisition
of the dataset. We have also seen the best performing synthetic model overall performed
worse on the tugboat vessel-class compared to the other vessel-classes (see precision-recall
curves and confusion matrix in Figure 6.3 in Section 6.4), and that there was an indication
that the best performing adapted models overall performed worse with respect to that class
when comparing performance between the best performing adapted model and the best
performing control model (see Figure 6.5 in Section 6.4). Therefore, it is good reason to
believe that class imbalance has affected the performance of the synthetic source model
and consequently, the adapted models. Class imbalance is known to have a detrimental
effect on a deep learning models, affecting both convergences during the training phase and
generalization during testing phase [55]. A likely explanation is that the tugboat vessel-
class has lost the battle for model capacity in favour of the other classes during the training
of the source model which has resulted in a lacking ability to generalize to that class. In
other words, the tugboat vessel-class has likely obtained less model capacity compared
to the obtained model capacity of the other classes. This lack of ability has then likely
further been passed to the adapted model. There exist multiple methods for addressing
the imbalance, but since the imbalance in our case is extrinsic, the best effort would be to
balance the dataset during the acquisition phase. This likely impact on performance due
to class balance shows that it can have detrimental across domain adaptation, since there
was a class balance in the real-world data.
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7.2 Synthetic data

7.2.1 Acquisition

We delayed a discussion regarding K-Sim and the developed acquisition method from
Chapter 4 to this chapter. There, we saw how K-Sim could be used to produce synthetic im-
ages and covered in details the method for acquiring accurate instance-level label images
given sufficient thresholding of the source images. Furthermore, the experiment showed
how the acquisition method allowed for exploring the practical implication for using syn-
thetic images produced by K-Sim. This ability is valuable, considering the unfamiliarity
regarding synthetic data. However, there were room from improvement regarding thresh-
olding (see Section 4.2.3). Also, we also see that the method does not allow for exploiting
the full potential offered by K-Sim. The main reason for this was that there was no access
to the internal working of the software such as the rendering process during the work, and
such that an alternative approaches had to be devised instead, as described in Chapter 4.
We summarize the limitations and the unexploited potential below:

• Real-time labeled images is not provided, since labeled images is separated by mul-
tiple seconds in best case scenario due to the reliance of sufficient synchronization

• Only deployable objects is labeled.
• Tracking information is not provided.
• Depth information is not provided.
• Information about states in the simulator is not provided.
• Scenario information is not provided, e.g. collision course, vessel interaction, and

emergency signaling.

From the list above it is clear that we have only scraped the surface of K-Sim’s poten-
tial. While information about the states of the simulator are visually available in the user
interface, it would require a delicate acquisition process beyond what has currently been
implemented. The other unexploited potentials is the list above demands another acquisi-
tion solution based on software access.

Furthermore, the acquisition process is relatively time-consuming relative what could be
expected from using computer graphics to generate synthetic data. This is mainly due
to the simulator running in real-time, which made image acquisition based on the screen
capture process painfully slow. It total, it took 10 days to create approximately 1.200
images, while labeling only took below 9 hours. In comparison, a German team from
University of Darmstadt [34] was able to extract 20.000 unique images with labeled with
pixel-accuracy from a video game in less than 40 hours by implementing a tool based on
a wrapper between the software and the rendering engine that tracked the ids of function
calls.
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7.2.2 Sampling selection bias

Intuitively, we may expect that the amount of highly detailed features present in the real-
world domain would yield a higher difficulty for the instance segmentation task in that
domain compared to the difficulty of that task in the synthetic domain. And yet, the
performances between the synthetic models on the real-world test set and the real-world
control models synthetic test set gives a conflicting suggesting. The synthetic models per-
forms better at mAP@[50:70] and much better at mAP@[75:90] in the real-world test
set compared to the corresponding performance of real-world control models on the syn-
thetic test set. This may be explained by the sampling selection bias between the do-
mains (see Section 5.2.3), being that the domain-invariant features are distributed differ-
ently between the domains. Based on the visual comparisons of the training -and test sets
done in Section 5.2.3 we noted that there was a difference in the distributions of domain-
invariant features between the synthetic and real-world domain in the respective synthetic
and the real-world datasets. It seemed like that the synthetic datasets contained both the
same domain-invariant geographic features as the real-world datasets in addition to other
domain-invariant geographic features not present in the real-world datasets. In particular,
this was the case for geographical features such as range between camera and objects. It
seemed like the common domain-invariant features in the synthetic and real-world datasets
were those from short to moderate range, while the non-common domain-invariant features
in the synthetic dataset were those from moderate to long-range.

In conclusion, based on the performance differences and the sampling selection bias, it
seems likely that the real-world test set is less challenging than the synthetic test set. The
same goes for the real-world training set, as it is very similar to the test set. This may
have given the models trained in the synthetic domain, and possibly the real-world adapted
models with synthetic models as source models, an advantage when they were tested on the
real-world dataset. This is because they can be expected to have become general compared
to the case if the domain-invariant distributions had been equal. If this is the case, then
this is an advantage that the control models have not had. However, this advantage should
not be viewed as an error in the experimental design. Instead, it should be view as an
advantage and a positive implication given by the use of synthetic data, since it allowed
for a more general dataset than what was possible to acquire from the real-world.

Consequently, it may be expected that the performance of the synthetic and adapted models
would drop if the real-world test sets were more representative of their domain as the
dataset would become more diverse. Likewise, it may be expected that the performance
of the real-world control models on the synthetic test set would increase if the real-world
training-set were to be more representative of its domain and share more of the domain-
invariant features with the synthetic test set.

7.2.3 Limitations from only using a synthetic validation set

A critical observation was made in Section 6.2 where it was seen that scores stagnated
on the synthetic test set between stage two and three of the gradual fine-tuning approach,
while scores continued to improve on the real-world test set. Hence, gradual fine-tuning
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was continually capable of learning cross-domain features from the synthetic data despite
this not leading to increased performance on the synthetic test set. It is not possible to
tell how long this would have lasted had the training proceeded for longer. However,
since gradual fine-tuning was stopped due to stagnation in loss improvement based on
the synthetic validation-data (see Figure 5.6 in Section 5.2.8), it is a likely possibility.
Furthermore, this could also be the case for full fine-tuning as well, but since only one
model was tested, it is not possible to tell. However, since full fine-tuning was stopped due
to overfitting, it is less likely. Nevertheless, if it were to be the case despite overfitting in
the synthetic domain, this would have made the observation even more critical. A theory is
that small improvements in the models in the synthetic domain, even almost unobservable,
give noticeable improvements in the real-world domain given the poor performance in that
domain. Hence, only small improvements may be required for having a noticeable impact
on performance.

These results strongly suggest that validations scores should be calculated for both syn-
thetic data and real-world data since this phenomenon is not observable when only using
synthetic data. In addition, it suggests that there may be a compromise between overfitting
in the synthetic domain and increased cross-domain knowledge when using a two-stage
source-target domain adaptation approach. However, cross-domain knowledge is though
to be positively co-related to generalization, which stands in opposition to overfitting.
Therefore, this suggestion stands as a basis for further research on the topic.

As a last note, the remaining potential for cross-domain knowledge in the source model
may have had an effect of the performance impact from using synthetic data, as the gradu-
ally fine-tuned all-layers model was used as a source model for the adapted models despite
not having reached its maximum cross-domain knowledge potential.

7.2.4 Performance impact

We have seen that all adapted models persistently achieved better performance than the
corresponding control models. The difference was most visible between the fully fine-
tuned adapted and control models, while the difference between the gradually fine-tuned
models decreased as more layers were opened for fine-tuning (see the line-plot in Figure
6.1). Since the training of all models lasted until there was a stagnation in loss improve-
ment or before overfitting became present, it cannot be expected that there could be any
further improvement had the training been extended. Hence, it is clear that the use of
a source model which was trained on synthetic data have had a positive impact on the
performance of real-world adapted models that were further fine-tuned with real-world
data of limited size. However, while the difference between the fully fine-tuned models
was significant with 10.93 percentage-points, the difference between the best performing
adapted model and the best performing control model was only 0.86 percentage-points. In
addition, the performance between the later two models on the different types of vessels
were nearly the same (see precision-recall curves in Figure 6.5). Therefore, the positive
impact when considering the real-world performance is noticeable, but small. Conversely,
it is possible that the impact is sub-optimal, considering the discussion in Section 7.2.3
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While this is the case, we have seen that all the adapted models maintained their knowl-
edge about the synthetic domain, were they outclassed the control models. This can partly
be credited to the sampling selection bias as discussed in the previous section, but nev-
ertheless, it seems that the adapted models contains more knowledge about the maritime
domain than the control models. Certainly, this may helps towards generalization and ro-
bustness at a level that the control models cannot match without increased diversity in the
real-world training-set. Hence, the use of synthetic data have had a positive impact beyond
increased performance score on the real-world test set.

7.3 Domain adaptation

We have seen that the gradual fine-tuning approach overall achieved better performance
than the full fine-tuning approach, both in terms of transfer learning phase for the synthetic
models and for the real-world control models, and in terms of domain adaptation for the
adapted models. We first discuss an observation regarding the transfer learning phase
and two observation regarding the domain adaptation phase, and then we discuss some
considerations regarding the real-world training-set augmentation scheme.

We saw during the transfer learning phase that the full fine-tuning approach was con-
sistently inferior to the gradual fine-tuning approach as the progressive opening of layers
proceeded. Complementary to this, the same pattern applied to the test set from the unseen
domains. However, the difference in performance between the full fine-tuning approach
and the gradual fine-tuning approach was significantly higher in the unseen domains com-
pared to the seen domains. This difference was visible already at the first stage of the
gradual fine-tuning approach, and became higher as the approach proceeded. This is stag-
gering, because it suggests that the gradual fine-tuning approach has been more capable
of learning domain-invariant features than the full fine-tuning approach. The explanation
is likely that the domain-unrelated general layers are useful for extracting features from
the maritime domain despite not having seen the maritime domain before. After all, this
is the main motivation for using a pre-trained source model. Since the gradual fine-tuning
approach at first restricts the ability to change the general layers in the source model, the
model will have to adapt the tune-able layers to the features extracted by these general
layers which preserves them. On the contrary, the full fine-tuning approach, which allows
for tuning all layers from the start, will not preserve any general layers and may thus fit
stronger to the synthetic domain-exclusive features.

During the domain adaptation phase, the difference between the two approaches was not
significant and both were among the top three models on the real-world testset together
with the gradually fine-tuned control model. A theory is that since the source model
achieved what has been noted as a good performance on the target domain, it is possible
that it have reached a local minima which the adapted models remained within, irrespective
of the domain adaption approach. It would be interesting to repeat the experiment multiple
times to compare the average performance and to see if the small difference persists, but at
the current moment it is not a sufficient difference in performance to conclude whether the
gradual fine-tuning approach is a better approach for performing in the real-world domain
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given the same well-performing synthetic source model. However, while both approaches
was capable of maintaining the knowledge about the synthetic domain, the fully fine-tuned
adapted model achieved a noticeable higher score at mAP@[75:90]. This is unexpected,
considering the reasoning in the last paragraph based on that the gradual fine-tuning ap-
proach had a greater capability to maintain general features. It can be that this is a matter
of coincidence. Nevertheless, the difference is to small to give any conclusions.

As a final note, we mention that the same data augmentation scheme for the real-world
data was used for all adapted models and for all control models due to time restrictions.
Thus, we can not tell if the augmentation has hurt or improved the performance of the
models on the real-world test set.

7.4 LIME for instance segmentation

Since instance segmentation involves masking of object, this task is in it self an expla-
nation. While that is the case, the experiment demonstrated that LIME could be used to
obtain even finer explanations based on the parts of the mask and the surrounding area. Af-
ter having examined the resulting explanations, they were considered representative of the
models behaviour at the locality of the images used in the experiment. As expected, there
was variations between the two types of explanations. Yet, these variations was considered
reasonable given the scoring schemes. However, it was noted that the mask scoring scheme
had weaknesses because it would give unjustifiably low scores even for optimal mask pre-
dictions given specific cases of image perturbations. Besides, the scoring of masks what
not based on any mask quality score given directly by the model. Therefore, the mask pre-
diction explanation was not a direct explanation of the model’s predicted mask, but rather
an explanation of what part of the vessel which was important for obtaining similar masks
as the original predicted mask. If the model had given a confidence for the mask predic-
tion in the same manner as the detection or classification confidence, the method would
have the ability to explain the mask prediction directly. Likewise, the detection confidence
explanation was affected by the relationship between the predicted mask and the original
mask, since all detections with a mask overlap of less than 2.5 % was omitted. However,
this was justified since non-overlapping detections could be assumed to be non-relevant
for the detection.

In was noted that explanations showed that the model valued unique characteristic of each
vessel type, but did not show noticeable relationship between those types of characteristics
and general vessel characteristics. This did not assert any trust in that the model would be
able to discriminate between vessels and other object with the same characteristics, e.g.
harbours and ports. The explanation approach can be extended to include multiple sets of
segmentation per image, where some sets separates the unique and general vessel charac-
teristics, while other sets combines some of these characteristics. If explanations based on
segments with some combined characteristics values these combinations to a larger extend
than the explanation based on segments with only separated characteristics, there could be
a ground for saying that the model also considers general vessel characteristics important.
This would assert more trust than what was obtained in the experiment.
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Chapter 8
Conclusion and Future Work

8.1 Conclusion

In this thesis we have presented a method developed for acquiring instance-level labeled
synthetic images from Kongsberg Digital’s maritime simulator named K-Sim, explored the
implication of using synthetic data and how its usage and domain adaptation by full and
gradual fine-tuning affects the performance of Mask R-CNN, and explored how a recent
method within Explainable AI named LIME can be used for obtaining explanations from
instance segmentation models. We conclude the findings in a chronological and point-wise
manner:

• The method developed for acquisition of synthetic data from a simulator proposes
a way to label objects in images obtained by computer graphics without access to
the inner workings of the software given the user interface with a visible clock, ac-
cess to the model library, and separability between colors of manipulated texture of
object that are to be labeled and colors of other elements such as the background.
Furthermore, the method shows how a combination of thresholding, morphological
transformation, calculation of connected components, probabilistic clustering using
Variational Bayesian Gaussian Mixture Models (VBGMM) and subsequent agglom-
erative hierarchical clustering could be used to cluster regions of strong colors in an
image. Therefore, the method is a source to inspiration for image labelling tech-
niques. Besides, the probabilistic hierarchical clustering method in it self is also a
source to knowledge in the field of machine learning.

• The use of a synthetic source model for the domain adaptation showed a consistently
positive impact on the performance in the real-world. In addition, the experiment
suggested that pure synthetic models trained on heavy augmented synthetic images
were able to learn a greater portion of domain-invariant features than the corre-
sponding pure real-world models trained on augmented real-world images. This is
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explained by positive implication from using synthetic data; simplistic representa-
tion of the synthetic domain highlighted domain-invariant features, use of synthetic
data provided far greater numbers of images and vessels, and that simulation setup
freedom gives greater diversity than what is possible to obtain in the real-world
dataset. In addition, a suitable augmentation scheme is believed to have eased do-
main adaptation by increasing diversity, highlighting features, and closing the gap
between the synthetic and real-world dataset.

• Inspection and comparison between the precision-recall curves from the best per-
forming adapted model and control model suggested that the adapted models had
brought a class-based bias from the synthetic dataset due to class imbalance, despite
there being a class balance in the real-world dataset. This observation shows that
dataset imbalance can have detrimental effects across domain adaptation.

• The results suggest that when the source and target domain are very different (MS
COCO dataset and K-Sim synthetic dataset), and when the source and target tasks
are completely different which requires replacement of the overheads, gradual fine-
tuning beyond the overheads is superior to full fine-tuning. Given the same condi-
tions, the results strongly suggests that gradual fine-tuning, even for overheads only,
is far more capable of learning domain-invariant features in the target domain than
full fine-tuning.

• The results suggests that when the source and target domain shares a high but un-
known portion of domain-invariant features, and when a source model has achieved
a good performance in the target domain (mAP@[50:70]≈> 75 % and mAP@[75:95]
≈> 43 %), there is little difference between gradual and full fine-tuning.

• The results indicates that when the source and target domain shares a high but un-
known portion of domain-invariant features, fine-tuning during gradual fine-tuning
in the source domain can continue to improve performance in the target domain after
it has stagnated in the source domain. It can neither be concluded nor debunked that
this is possible for full fine-tuning as well.

• LIME has been shown to able to give explanations for detection by instance seg-
mentation models beyond the explainable value of the mask prediction.

8.2 Future Work

Much work has been put into implementing the experimental framework, and therefore,
little effort is required to expand on and beyond the objectives of this thesis. The following
is an overview over proposals for further work to utilize the experimental framework, as
well as other research ideas.

• The image acquisition method in Chapter 4 can be improved in multiple ways. Some
proposals has been been in the chapter, and has been concerned about embedding the
thresholding into the VBGMM clustering. Further improvements can be based on
utilizing both images in pairs of synchronized images by obtaining region proposals
from the difference image between the two.
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• The experiment should be replicated without augmentation of the real-world data.
Since the aim has been to experiment has been to study the implications of using
synthetic data for training of instance segmentation models, augmentation of real-
world data adds an additional and unnecessary element which may distort the ability
to interpret results directly related to the use of synthetic data.

• The experiment should expand on the topic of synthetic data augmentation. In ad-
dition, more advanced DA techniques[31] could be explored and implemented.

• The thesis has just briefly touched on the topic of Explainable AI. It has been pro-
posed to improve the dedication of LIME to instance segmentation by improving
the scoring of predicted masks based on original predicted masks. Furthermore, the
implementation of Mask R-CNN used in this thesis provides the ability to obtain
saliency map from the different layers of the architecture and access to an complete
overview over region proposals, which may provide insight into its workings. In
addition, since the implementation is based on Tensorflow, and there exist multiple
libraries for running different backwards pass algorithms in order to obtain different
saliency maps which integrates this software library, it would be very interesting to
see if it is possible to pass predicted masks backwards into the architecture, and to
see what this may reveal.

• K-Sim is used for education of professional personnel in maritime operations. A
research proposal is to see if and how the virtual world of the simulator can be made
available for AI actors.
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Appendix A
Listings

1 i m p o r t imgaug as i a
2 from imgaug i m p o r t a u g m e n t e r s a s i a a
3

4 seq = i a a . S e q u e n t i a l ( [
5 i a a . F l i p l r ( 0 . 5 ) ,
6

7 i a a . Sometimes ( 0 . 7 ,
8 i a a . SomeOf ( ( 1 , 4 ) , [
9 i a a . GammaContrast ( gamma = ( 0 . 5 , 1 ) ) ,

10 i a a . Add (( −30 ,30) ) ,
11 i a a . Add (( −25 ,25) , p e r _ c h a n n e l = 0 . 5 ) ,
12 i a a . AddToHueAndSaturat ion ( ( −20 ,20) )
13 ] ) ,
14 i a a . Sometimes ( 0 . 1 6 6 6 6 ,
15 i a a . G r a y s c a l e ( a l p h a = ( 0 . 4 , 0 . 8 ) ) ) ,
16 ) ,
17

18 i a a . Sometimes ( 0 . 5 , i a a . SomeOf ( ( 1 , 2 ) , [
19 i a a . S implexNoiseAlpha ( i a a . EdgeDe tec t ( np . random . r a n d i n t ( 1 , 3 ) / 5 ) ) ,
20 i a a . JpegCompress ion ( c o m p r e s s i o n = [ 0 , 7 0 ] ) ,
21 i a a . G a u s s i a n B l u r ( s igma = ( 0 . 2 5 , 3 . 0 ) ) ,
22 i a a . A d d i t i v e G a u s s i a n N o i s e ( s c a l e = ( 0 . 0 1∗2 5 5 , 0 . 0 6∗2 5 5 ) ) ,
23 i a a . Emboss ( a l p h a = 1 . 0 , s t r e n g t h = ( 0 , 0 . 5 ) ) ,
24 i a a . Sharpen ( a l p h a = ( 0 , 1 . 0 ) , l i g h t n e s s = ( 0 . 7 5 , 1 . 5 ) ) ,
25 ] ) ) ,
26

27 i a a . Sometimes ( 0 . 5 0 , i a a . OneOf ( [
28 i a a . Coar seDropou t ( p = ( 0 . 0 0 5 , 0 . 0 5 ) , s i z e _ p e r c e n t = ( 0 . 1 , 0 . 0 5 ) ) ,
29 i a a . C o a r s e S a l t ( p = ( 0 . 0 0 5 , 0 . 0 5 ) , s i z e _ p e r c e n t = ( 0 . 1 , 0 . 0 5 ) ) ,
30 i a a . C o a r s e P e p p e r ( p = ( 0 . 0 0 5 , 0 . 0 5 ) , s i z e _ p e r c e n t = ( 0 . 1 , 0 . 0 5 ) ) ,
31 i a a . C o a r s e S a l t A n d P e p p e r ( p = ( 0 . 0 0 5 , 0 . 0 5 ) , s i z e _ p e r c e n t = ( 0 . 1 , 0 . 0 5 ) ) ,
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32 i a a . Snowf lakes ( d e n s i t y = ( 0 . 0 0 5 , 0 . 0 1 5 ) , f l a k e _ s i z e = ( 0 . 8 , 1 ) , speed =0) ,
33 ] ) )
34 ] , r andom_order = True )

Listing A.1: Augmentation scheme for synthetic data

1 i m p o r t imgaug as i a
2 from imgaug i m p o r t a u g m e n t e r s a s i a a
3

4 a u g m e n t a t i o n = i a a . S e q u e n t i a l ( [
5 i a a . F l i p l r ( 0 . 5 ) ,
6

7 i a a . OneOf ( [
8 i a a . A f f i n e (
9 s c a l e ={ " x " : ( 0 . 8 , 1 . 0 ) , " y " : ( 0 . 8 , 1 . 0 ) } ,

10 t r a n s l a t e _ p e r c e n t ={ " x " : ( −0 . 1 , 0 . 1 ) , " y " : ( −0 . 1 , 0 . 1 ) } ,
11 r o t a t e =(−3 ,3) ,
12 s h e a r =(−3 ,3) ,
13 o r d e r = [ 0 , 1 ] ,
14 c v a l = 0 ,
15 mode= " c o n s t a n t " ,
16 ) ,
17 i a a . S e q u e n t i a l ( [
18 i a a . SomeOf ( ( 1 , 4 ) , [
19 i a a . P e r s p e c t i v e T r a n s f o r m ( s c a l e = ( 0 . 0 , 0 . 1 5 ) ,
20 k e e p _ s i z e = True ,
21 c v a l = 0 ,
22 mode = " c o n s t a n t " ) ,
23 i a a . Pad ( p e r c e n t = ( ( 0 , 0 . 5 ) , ( 0 , 0 . 5 ) , ( 0 , 0 . 5 ) , ( 0 , 0 . 5 ) ) ,
24 pad_mode = " c o n s t a n t " ,
25 p a d _ c v a l = 0 ,
26 k e e p _ s i z e = True ) ,
27 i a a . Crop ( p e r c e n t = ( ( 0 , 0 . 2 ) , ( 0 , 0 . 2 ) , ( 0 , 0 . 2 ) , ( 0 , 0 . 2 ) ) ,
28 k e e p _ s i z e = True ) ,
29 ] , r andom_order = True ) ,
30 i a a . A f f i n e ( r o t a t e = ( −2 ,2) , c v a l = 0 , mode = " c o n s t a n t " )
31 ] ) ,
32 i a a . S e q u e n t i a l ( [
33 i a a . SomeOf ( ( 1 , 4 ) , [
34 i a a . Pad ( p e r c e n t = ( ( 0 , 0 . 5 ) , ( 0 , 0 . 5 ) , ( 0 , 0 . 5 ) , ( 0 , 0 . 5 ) ) ,
35 pad_mode = " c o n s t a n t " ,
36 p a d _ c v a l = 0 ,
37 k e e p _ s i z e = True ) ,
38 i a a . Crop ( p e r c e n t = ( ( 0 , 0 . 3 ) , ( 0 , 0 . 3 ) , ( 0 , 0 . 3 ) , ( 0 , 0 . 3 ) ) ,
39 k e e p _ s i z e = True )
40 ] , r andom_order = True ) ,
41 i a a . A f f i n e ( r o t a t e = ( −2 ,2) , c v a l = 0 , mode = " c o n s t a n t " )
42 ] ) ,
43 ] ) ,
44

45 i a a . SomeOf ( ( 1 , 2 ) , [
46 i a a . GammaContrast ( gamma = ( 0 . 5 , 1 . 2 ) ) ,
47 i a a . Add (( −15 ,20) , p e r _ c h a n n e l = 0 . 5 ) ,
48 i a a . AddToHueAndSaturat ion ( ( −20 ,20) )
49 ] ) ,
50 ] , r andom_order = True )

Listing A.2: Augmentation scheme for real-world data
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1 ! l n −s f / o p t / b i n / n v i d i a−smi / u s r / b i n / n v i d i a−smi
2 ! p i p i n s t a l l g p u t i l
3 ! p i p i n s t a l l p s u t i l
4 ! p i p i n s t a l l humanize
5 i m p o r t p s u t i l
6 i m p o r t humanize
7 i m p o r t os
8 i m p o r t GPUti l a s GPU
9

10 GPUs = GPU. getGPUs ( )
11 gpu = GPUs [ 0 ]
12 d e f p r i n t m ( ) :
13 p r o c e s s = p s u t i l . P r o c e s s ( os . g e t p i d ( ) )
14 p r i n t ( " Gen RAM Free : " + humanize . n a t u r a l s i z e ( p s u t i l . v i r t u a l _ m e m o r y ( ) .

a v a i l a b l e ) , " | P roc s i z e : " + humanize . n a t u r a l s i z e ( p r o c e s s .
memory_info ( ) . r s s ) )

15 p r i n t ( "GPU RAM Free : { 0 : . 0 f }MB | Used : { 1 : . 0 f }MB | U t i l { 2 : 3 . 0 f}% | T o t a l
{ 3 : . 0 f }MB" . f o r m a t ( gpu . memoryFree , gpu . memoryUsed , gpu . memoryUti l ∗100 ,
gpu . memoryTotal ) )

16 p r i n t m ( )

Listing A.3: Script for monitoring GPU load in Google Colaboratory

1 LOG_DIR = ’ / c o n t e n t / KSim_Mask_RCNN / t r a i n _ o w n _ d a t a s e t / l o g s / k−
sim20190604T1408 ’

2

3 ! wget h t t p s : / / b i n . equ inox . i o / c / 4 VmDzA7iaHb / ngrok−s t a b l e −l i n u x−amd64 . z i p
4 ! u n z i p ngrok−s t a b l e −l i n u x−amd64 . z i p
5

6 g e t _ i p y t h o n ( ) . sys tem_raw ( ’ t e n s o r b o a r d −−l o g d i r {} −−h o s t 0 . 0 . 0 . 0 −−p o r t
6007 &’ . f o r m a t (LOG_DIR) )

7 g e t _ i p y t h o n ( ) . sys tem_raw ( ’ . / ngrok h t t p 6007 &’ )
8 ! c u r l −s h t t p : / / l o c a l h o s t : 4 0 4 1 / a p i / t u n n e l s | py thon3 −c \
9 " i m p o r t sys , j s o n ; p r i n t ( j s o n . l o a d ( s y s . s t d i n ) [ ’ t u n n e l s ’ ] [ 0 ] [ ’

p u b l i c _ u r l ’ ] ) "

Listing A.4: Script for tunneling of Tensorboard Dashboard from Google Colaboratory by the use
of ngrok [53]
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