
Echo state networks

TTK4550 - ENGINEERING CYBERNETICS, SPECIALIZATION PROJECT

Desember 18 2018

Written by

Sivert Vonen

Summary

The purpose of this project is to provide a better understanding of Echo State Network

(ESN) in the contexts of system identification. This is an artificial neural network and it is

used as a ”black-box” model approach. ESN is a subgroup of Recurrent Neural Network

which means it has a memory. This gives an elegant solution to model history dependent

systems.

ESN was implemented and trained to model a nonlinear system. The example

chosen to model in this project, was the velocity of the height of a tank based on volume

inflow. The training data was also contaminated by measurement noise. The results from

this test was that ESN in a satisfying way was able to model the tank height velocity.

For ESN there exist a stability property called echo state property, which is true

if it is able to ”forget” the initial states over time. This report elaborate on the tuning of the

range of initialized weights to achieve the echo state property. For this example the best

performance was found in the boarder area of the echo state property. This result supports

known theory on how to select parameters [9].

Another positive aspect of ESN is that it is easy to train, it is done with regres-

sion. This report explores the differences in using Ridge, OLS and LASSO regression.

Ridge and LASSO showed good results while OLS showed variable results. LASSO pro-

vides a simpler model but is more vulnerable to overfitting than ridge.

i

Table of Contents

Summary i

Table of Contents v

List of Figures viii

Abbreviations viii

1 Introduction 1

1.1 Motivation . 1

1.2 Structure of Work . 4

2 Background 7

2.1 Mathematical properties of Echo state network 7

2.2 Training of Echo states network . 8

iii

2.2.1 Ordinary Least Squares (OLS) Regression 9

2.2.2 Ridge regression . 10

2.2.3 LASSO . 10

2.3 Echo State Property . 10

3 Experiment 13

3.1 Tank Dynamics . 13

3.2 Initialization of Weights . 15

3.3 Leaking Rate . 16

3.3.1 Echo State Property . 17

3.4 Simulation . 21

3.4.1 System Identification with Noise 24

3.4.2 System Identification using Feedforward 26

3.4.3 Improving Time and Simplicity 28

4 Discussion 33

4.1 Results . 33

4.2 Errors and Model limitations . 34

4.3 Different Learning Algorithms and Sparsity 34

5 Conclusion 37

5.1 ESN for system identification . 37

iv

5.2 Future Work . 38

Bibliography 39

Appendix 41

v

vi

List of Figures

1.1 Neuron, Drawn freely after [11] . 2

1.2 Structure of different neural networks 3

1.3 ESN test with hold from time 3500 to 4500 3

1.4 Input related to fig. 1.3. 4

1.5 Work flow when working with ESN . 5

2.1 Sigmoid functions from [2] . 8

3.1 An illustration of tank . 14

3.2 Simulink model of tank dynamics. 15

3.3 line search to find best leaking rate α. Note y-axis should say error not RSS 17

3.4 Echo state analysis (above) and error (under) as function of C with interval

(0.025:0.05:0.075) . 18

vii

3.5 Echo state analysis of fig.3.4 zoomed . 18

3.6 zero input stability test . 19

3.7 Estimations with different initial internal states 20

3.8 Error between states (Note logarithmic scale) 20

3.9 Training set: height of tank and input . 21

3.10 Training set: results of estimation . 22

3.11 Test set:height of tank and input . 23

3.12 Test set: results of estimation . 24

3.13 Training set: results of estimation with noise 25

3.14 set: results of estimation, trained with noise 26

3.15 Test set: results of feedforward . 27

3.16 Histogram RIDGE Wout . 29

3.17 Histogram LASSO Wout. 62 of 1000 weights are non-zero 30

3.18 Test set: results of estimation with different regression methods. 31

3.19 fig. 3.18 zoomed . 31

Abbreviations

viii

ESN = Echo State Network

RNN = Recurrent Neural Network

OLS = Ordinary Linear Squares

LASSO = Least Absolute Shrinkage and Selection Operator

RSS = Residual Sum of Squares

ix

x

Chapter 1
Introduction

This project aim is to provide a better understanding of Echo State Network (ESN) . Echo

states networks can be used for ”black box” modeling of certain nonlinear problem. ESN’s

main advantage is that they are easy to train.

1.1 Motivation

System identification is the process of deriving a mathematical model of a system using

observed data. It is an important subject in optimization and control where a good model

is essential. Most real-world processes is nonlinear and cannot be completely modeled or

a considerable modeling effort is needed.

The use of artificial neural networks to system identification is today a hot topic

in the industry. It can make a model only based on data instead of the laws of physics.

Neural networks consist of many neurons which again consist of inputs, weights, input

function and an activation function, see fig.1.1. The input to a neuron can either be an

output from other neurons or the input to the network. A combination of neurons with a

1

Chapter 1. Introduction

special combination of weights can be a model for a nonlinear system. The combination

of weights are found through a learning process [11].

Figure 1.1: Neuron, Drawn freely after [11]

Recurrent neural networks are a subgroup of Artificial Neural Networks. What

separates Recurrent neural networks from other types is that it has a memory of previous

inputs and/or outputs. This is in contrast to feedforward neural networks where one set

of input only can give one output, thus independent of the history of inputs. Notice in

fig 1.2 that in RNN the direction of the internal states x goes back to itself instead of just

forward like in feedforward. However a feedforward network can have memory outside

the network and thus have the history as input. Memory makes Recurrent neural net-

works applicable for system prediction of systems that are dependent of the history. One

of the most popular types of RNNs are deep learning using gradient descent on all hidden

weights. The drawbacks of this method are the long time to train and the vanishing gra-

dient problem. This can give a slow convergence and no guarantee for reaching a global

convergence [5].

2

1.1 Motivation

(a) Feedforward network, drawn freely with in-
spiration from[11]

(b) ESN subgroup of RNN, Drawn freely with
inspiration from [7]

Figure 1.2: Structure of different neural networks

ESNs are a type of Recurrent Neural Network that can be used for modelling

certain classes of nonlinear systems, while at the same time being easy to train using

one-shot regression instead of gradient descent. This makes them suitable for system

identification and control application [8].

Figure 1.3: ESN test with hold from time 3500 to 4500

3

Chapter 1. Introduction

Figure 1.4: Input related to fig. 1.3.

Fig 1.3 is a test where an ESN estimates a function but is temporarily put on

hold. When the network starts to estimate again, it contains the memory from when it

was put on hold. In addition, the input for the system is the same when it went on hold

and when it began estimating again. So it estimates the path for where it was put on hold.

It i also worth to notice that it forgets the memory with time so it follows good in the

end. This was meant to illustrate the same behaviour we also find in an echo. It

keeps repeating but slowly fades away. Other positive sides to ESN is that it allows to

add output from same internal states, by just training the output weights separately. Echo

state network was proposed by Herbert Jaege in 2001 [6]. It has successfully been used

in system identification several times, one example from the oil industry is: downhole

pressure estimation in gas-lift oil wells [1].

1.2 Structure of Work

The main part of this task is based on an example with a simulated tank. This was im-

plemented to test system identification based on ESN. The system to be identified is the

derivative of the height of a fluid inside a tank which is a nonlinear problem.

4

1.2 Structure of Work

Figure 1.5: Work flow when working with ESN

There are several choices and hyperparameters that has to be considered before

one can obtain an ESN. This report will focus on the size of the reservoir, within what range

the weights are in, leaking rate, and method of learning. Figure 1.5 gives an overview of

the main part of implementing ESN. Harvesting states based on training input is needed

since training of ESN is based on internal states. Good result is mainly based on the

error between estimated and real value, but there will also be a discussion about stability,

efficiency, and simplicity.

5

Chapter 1. Introduction

6

Chapter 2
Background

2.1 Mathematical properties of Echo state network

The main body of ESN that separates ESN from other network is the way internal states

(neurons) X and output Y is updated. They have the following equations [9]:

x[n] = (1− α)x[n− 1] + αf(Win ∗ u[n] +W ∗ x[n− 1] +Wfb ∗ y[n− 1]) (2.1)

y[n] =Wout ∗ x[n] (2.2)

The memory features of an ESN can here be seen by the fact that new states are dependent

on prior states. The structure represented in fig.1.2 b) and the neuron 1.1 is in more detailed

described by equation 2.1 and 2.2.

Consider an Echo state network with Nu inputs, Nx internal states and Ny out-

puts. Win, W , Wout and Wfb are the weight matrices of the Echo state network. Their

given dimensions are: input weights Win ∈ RNx×Nu , state reservoir W ∈ RNx×Nx ,

output weights Wout ∈ RNy×Nx , and feedback weights Wfb ∈ RNx×Ny

7

Chapter 2. Background

α ∈ (0, 1] is a hyper-parameter called the leakingrate which decides how fast

the states forgets previous states, input and output. This weights the influence previous

states and input has on the new states. For the special case of α = 1 we say the model is

without leaky integration. Leaky integration is mathematical term that is used to describe a

component or system that takes the integral of an input, but gradually leaks a small amount

of input over time. To include a leaking rate means we have a leaky integrator ESN.

f is a sigmoid function. A sigmoid function is a function being shaped as like

an ”S”. There exist several examples that can be used here and the most common are: the

logistic function, tanh, and arctan. For a neuron this is called the activation function [4].

Figure 2.1: Sigmoid functions from [2]

2.2 Training of Echo states network

In general the weight matrices Win, W and Wfb are chosen arbitrarily with a uniformly

distribution and Wout is trained using regression [9]. The idea behind this approach is

that for a sufficient given random reservoir one linear combination of the states will be a

good approximation for the system. Wout Will then represent this linear combination. To

train an Echo state network one need to have initialized Wout usually uniformly random

8

2.2 Training of Echo states network

and obtained training data for a training period n = 1, .., T which consists of the input

U ∈ RNu×T and the output Ytarget ∈ RNx×T training data for the system. Then run

through the equations 2.1 and 2.2 with training inputs U for all timesteps in order to

collect states x[n] and output y[n] over the timeseries combining them to a new matrices

X ∈ RNx×T and the same for output y[n] to give Y ∈ RNy×T . This relates to harvesting

states in fig. 1.5 [9].

The training of Wout has the goal of minimizing the error between the output

Y and Ytarget. The training is then done with one shot learning using regression. The

different methods will be discussed next in this chapter.

2.2.1 Ordinary Least Squares (OLS) Regression

Ordinary Least Square is a standard method for estimating parameters in linear regression.

It takes a set of known data points (xi, yi) and produces a hyperplane based on this. To

make the hyperplane it can be represented as a minimization problem with the objective

function:

RSSOLS =

n∑
i=1

(yi − (β0 +

p∑
j=1

βjxij))
2 = ‖Ytarget −XWout‖22 (2.3)

β ∈ Rp+1×1 is the variables that will be solved in the optimization problem. The vector

consisting of all β is Wout in an ESN. Recall from equation 2.2 how Y is estimated. The

hyperplane is made up of these parameters and states X. RSS stands for Residual Sum of

Squares. A residual is the distance between our data point (xi, yi) and the hyperplane.

The analytic solution will be:

Wout = (X ′X)
−1
X ′Ytarget (2.4)

9

Chapter 2. Background

2.2.2 Ridge regression

Ridge regression is also known as Tikhonov regularization and L2 − Regularisation. It

consist of the same part as RSSOLS in 2.3 and a parameter λ times the weights of W 2
out.

This new terms adds a penalty on high weights [3].

RSSRidge =

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

+ λ

p∑
i=1

β2
j = RSSOLS + λ

p∑
i=1

β2
j (2.5)

The analytic solution will now be [3]:

Wout = (X ′X + λI)
−1
X ′Ytarget (2.6)

2.2.3 LASSO

Least Absolute Shrinkage and Selection Operator LASSO is a regularization algorithm

much similar to Ridge. The difference is that it contains the absolute value of the weights

instead of squared. The result is that now weights belonging to irrelevant states will be set

to zero [12].

RSSLASSO =

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

+λ

p∑
i=1

|βj | = RSSoLS+λ

p∑
i=1

|βj | (2.7)

2.3 Echo State Property

The echo state property is a basic stability property for the network. It says that an ESN

needs to be independent of it’s initial states. The reason it is so important to be able to

forget the initial states is that for the first iteration there is no history. The inital state is

therefore set to zero and be wrong. Therefore it will have a hard time to estimate until it

do have a sufficient history. On the next page follows a definition, sufficient condition and

necessary condition for echo state property as proposed in [8].

10

2.3 Echo State Property

Definition[8] An ESN with reservoir states x(n) has the echo state property if

for any compact C ⊂ Rk, there exist a null sequence (δh)h=1,2,... such that for any input

sequence (u(n))n=0,1,2,... ⊆ C it holds that ‖x(h)− x′(h)‖22 ≤ δh for any starting states

x(0),x′(h) and h ≥ 0

Sufficient condition[8] Assume leaky a integrator ESN according to equa-

tion 2.1 where the sigmoid f the tanh function and there are no output feedbacks, that is,

Wfb = 0. Let σmax be the maximal singular value of W. Then if:

|1− α(1− σmax)| ≤ 1 (2.8)

is satisfied. The ESN has the echo state property. |1− α(1− σmax)| is a global Lipschitz

rate by wich any two states approach each other in a network update.

Necessary condition[8] Assume a leaky integrator ESN according to equa-

tion 2.1, where the sigmoid f is the tanh function. Then we look at the matrix:

W̃ = αW + (1− α)I (2.9)

Where I is the identity matrix of same size as W. If W̃ has a spectral radius greater than

1 the ESN does not have the echo state property. This gives the Necessary condition for

an ESN to have the echo state property:

ρ(W̃) = max(|eig(W̃)|) ≤ 1 (2.10)

A suggestion for practical use of ESN that is based on empirical data suggests

that the if spectral radius of W is smaller than 1. ESN have the Echo state property. This

is however not a proof nor does a larger spectral radius means that it does not have echo

state property. It was also suggested that values close to 1 is a good choice [9].

ρ(W) = max(|eig(W)|) ≤ 1 (2.11)

11

Chapter 2. Background

Another practical suggestion to check if it not have the echo state property is to

implement zero input to the ESN and then check if the system is unstable. If it is unstable

for zero input it does not have the echo state property [8]. Related to the definition it can

be seen that different initial states will then provide different states even if the weights and

inputs are the same.

12

Chapter 3
Experiment

This section look at an example of system identification on a nonlinear problem, the ve-

locity of the height of a fluid inside a tank. This experiment was implemented in Matlab

and simulink and can be found in the appendix.

3.1 Tank Dynamics

In this section we will go through the dynamics of the velocity of a fluid inside a tank. The

tank is described by fig. 3.1.

13

Chapter 3. Experiment

h

Q
in

Q
out

Figure 3.1: An illustration of tank

Several simplification is done in this model. We assume that the flow is steady

and incompressible, that the friction by viscous forces is zero, that neither work nor heat is

exchange between the surface and outflow. With these assumptions the Bernoulli equation

is valid.

The change of volume inside a tank is equal to the change of height times the

area of the bottom. Since we assumed incompressible fluid the change of volume is equal

to the difference between inflow and outflow.

V̇tank = ḣA1 = Qin −Qout = Qin −A2 ∗ v2 (3.1)

Next step is to use the Bernoulli equation:

v21
2

+
ρ

P1
+ gz1 =

v22
2

+
ρ

P2
+ gz2 (3.2)

14

3.2 Initialization of Weights

Both sides ends in the atmosphere meaning P1 = P2 = Patm. We also make the assump-

tion v1 << v2 meaning v22−v21 ≈ v22 . The reference height is set with z2 = 0 and z1 = h.

From Bernoulli we now get the following expression for v2:

v2 =
√

2gh (3.3)

Combining both equations

ḣ =
Qin

A1
− A2

A1
·
√

2gh (3.4)

Radius of tank is r1 = 5m, Radius of outflow pipe is r2 = 0.5m. The inflow is discrete

integer values in the range from 2− 6[m3/s]. The inflow changes every 100 seconds to a

random valid number. The output is measured every 2 seconds. Equation 3.4 implemented

results in fig. 3.2.

Figure 3.2: Simulink model of tank dynamics.

3.2 Initialization of Weights

There are several factors to be chosen for this part of producing an ESN. Most significantly

there is the size of the reservoir Nx and the distribution of weights in W .

A good size for the reservoir is related to the limit of computation time, complex-

15

Chapter 3. Experiment

ity of the system, acceptable error, available training data, ”memory” needed. The larger

the reservoir size Nx the better is the performance. The drawback is that the time to train

increases exponentially. Therefor Nx = 1000 was chosen. As ESN still has reasonable

training time.

There are several different suggestions for distribution of W , Win, and Wfb

including uniformly, normal, discrete bi-valued, and a sparse distribution. Normal and

uniformly distribution gives much of the same performance. A sparse matrix will set most

of the values to zero and thus make the computation more effective. Discrete bi-valued

distribution is more interpretive but typically gives poorer performance due to its space

of outcomes decreases. The range of the distribution C will affect the spectral radius of

W , therefor it’s important to choose a value that does not break the necessary condition of

Echo state property. Therefore it will be chosen after further testing. To include feedback

Wfb or not is depending on the task. The general approach is to only include it if the task

requires it due to the complexity as it might decrease the stability and simplicity. For this

task a uniform distribution around zero is chosen, the reason behind this is its continuity

of values and boundedness.

3.3 Leaking Rate

Selecting leaking rate α was done by a line search with α against the sum of errors

(
∑T

i=200 |yi − Woutxi|) in test data. The error does not include the time to converge

200s. The search was done two times. First with large intervals fig.3.3 a) and then a

smaller between 0.05 and 0.25 fig.3.3 b). The smaller area was chosen because the sum of

error where smallest at α = 0.1 and α = 0.2. The line search was done using ridge

with lambda = 0.8, Nx = 1000, and C = 0.05. The training and test data was the same

for all iterations. The value chosen was in the end α = 0.15 as it gave the best result fig.

3.3b).

16

3.3 Leaking Rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

alpha)

5

10

15

20

25

30

35

R
S

S

alpha grid search

(a) line search with intervals of 0.1

0.05 0.1 0.15 0.2 0.25

alpha

7.5

8

8.5

9

9.5

10

10.5

R
S

S

alpha grid search

(b) line search with intervals of 0.05

Figure 3.3: line search to find best leaking rate α. Note y-axis should say error not RSS

3.3.1 Echo State Property

The approach for selecting range of distribution of weights C was based on echo state

analysis and performance. What is meant by performance in this context is the sum of

errors between estimated values with ESN and real value, excluding the time to converge

(100s). Same as in section 3.3. The echo state analysis consist of sufficient condition,

17

Chapter 3. Experiment

necessary condition and spectralradius(W) (as described in section 2.3) plotted against

values of C. The analysis was done using ridge with lambda = 0.8, Nx = 1000, and

α = 0.15. The training and test data was the same for all iterations.

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075

Range

0.4

0.6

0.8

1

1.2

1.4

1.6
Stability analysis

spectral
r
adius(W)

Sufficient cond

Necessary cond

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075

Range of W

4

6

8

10

12

14

16

E
rr

o
r

Sum of error Error

Figure 3.4: Echo state analysis (above) and error (under) as function of C with interval
(0.025:0.05:0.075)

0.05 0.051 0.052 0.053 0.054 0.055 0.056 0.057 0.058 0.059 0.06

Range

0.94

0.96

0.98

1

1.02

1.04

1.06

Stability analysis

spectral
r
adius(W)

Sufficient cond

Necessary cond

Figure 3.5: Echo state analysis of fig.3.4 zoomed

From fig.3.4 and it can be seen that the sum of errors is at its lowest withC in the

area of 0.055 to 0.065. However neither of those values satisfies the sufficient condition

and have a spectral radius larger than 1. For C = 0.055 it is barely under the necessary

condition fig. 3.5 while for C = 0.065 is just above. To further investigate this a zero

18

3.3 Leaking Rate

input signal was sent. The result from fig. 3.6 shows that C=0.065 is unstable and does

not have the echo state property.

0 1000 2000 3000 4000 5000

Time(s)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

H
e
ig

h
t
v
e
lo

c
it
y
(m

/s
)

Estimate vs Real test

estimated

(a) C=0.065

0 1000 2000 3000 4000 5000

Time(s)

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

H
e
ig

h
t
v
e
lo

c
it
y
(m

/s
)

Estimate vs Real test

estimated

(b) C=0.055

Figure 3.6: zero input stability test

The final test to check if the ESN for C = 0.055 has the echo state property

is to use the definition described in section 2.3. The initial condition of x was selected

with random numbers between 0 and 1 and with all zeros. From fig. 3.7 and fig. 3.8

wee can see that the sum errors between all internal states from two different initial states∑Nx

i=1 |xi − x′i| decreases to zero meaning it becomes independent of the initial state. It is

therefore likely to have the echo state property and testing for all inital states would prove

the echo state property.

19

Chapter 3. Experiment

0 200 400 600 800 1000

Time(s)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

H
e
ig

h
t
v
e
lo

c
it
y
(m

/s
)

Estimate vs Real test

estimated x
0
 = 0

real

estimed random x
0

Figure 3.7: Estimations with different initial internal states

0 1000 2000 3000 4000 5000

Time(s)

10
-15

10
-10

10
-5

10
0

10
5

s
u
m

 o
f
s
ta

te
 e

rr
o
r

error differend start values

Figure 3.8: Error between states (Note logarithmic scale)

20

3.4 Simulation

3.4 Simulation

All simulation was done with a training set of 5000 sampling points while changing the

input 50 times and a test set with 2500 sampling points while the input changes 25 times.

All simulations in this section used α = 0.15, c = 0.55, Nx = 1000, tanh as sigmoid

function, and Ridge regression is used with λ = 0.8.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time(s)

0

2

4

6

8

H
e

ig
h

t

h training

2800 3000 3200 3400 3600 3800 4000

Time(s)

2

4

6

8

10

q
in

Figure 3.9: Training set: height of tank and input

21

Chapter 3. Experiment

0 2000 4000 6000 8000 10000

Time(s)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

H
e

ig
h

t
v
e

lo
c
it
y
(m

/s
)

Estimate vs Real on training

estimated

meassured

Figure 3.10: Training set: results of estimation

22

3.4 Simulation

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time(s)

0

2

4

6

8
H

e
ig

h
t

h test

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
2

4

6

8

10

q
in

Figure 3.11: Test set:height of tank and input

23

Chapter 3. Experiment

0 1000 2000 3000 4000 5000

Time(s)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

H
e

ig
h

t
v
e

lo
c
it
y
(m

/s
)

Estimate vs Real test

estimated

real

Figure 3.12: Test set: results of estimation

3.4.1 System Identification with Noise

White noise was added to Ytarget from the training set as can be seen in 3.2. This repre-

sents measurement noise from the real world.

24

3.4 Simulation

4600 4800 5000 5200 5400 5600 5800

Time(s)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

H
e

ig
h

t
v
e

lo
c
it
y
(m

/s
)

Estimate vs Real on training

meassured

estimated

real

Figure 3.13: Training set: results of estimation with noise

25

Chapter 3. Experiment

0 1000 2000 3000 4000 5000

Time(s)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

H
e

ig
h

t
v
e

lo
c
it
y
(m

/s
)

Estimate vs Real test

estimated

real

Figure 3.14: set: results of estimation, trained with noise

3.4.2 System Identification using Feedforward

For comparison a feedforward network was implemented in a similar way as ESN. It in-

cluded a random reservoir W and ridge regression was used to train Wout. All the pa-

rameters used except for C=0.025 and the training and test data was the same as for ESN.

The input was a vector with all the inputs from 200 seconds back in time and current input

to the system. U(n) = [u(n), u(n − 1), ..., u(n − 99)] note u is discrete variable despite

normal parentheses. The feed forward network was updated by following equations:

x[n] = tanh(U [n] ∗WT
inW) (3.5)

y[n] =Woutx[n] (3.6)

26

3.4 Simulation

0 1000 2000 3000 4000 5000

Time(s)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

H
e
ig

h
t
v
e
lo

c
it
y
(m

/s
)

Estimate vs Real test

estimated

real

(a) complete timeline

100 150 200 250 300 350 400 450 500 550

Time(s)

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

H
e
ig

h
t
v
e
lo

c
it
y
(m

/s
)

Estimate vs Real test

estimated

real

(b) zoomed

Figure 3.15: Test set: results of feedforward

27

Chapter 3. Experiment

3.4.3 Improving Time and Simplicity

This section will investigate how to improve training and running time as well as the sim-

plicity. To improve this, different learning algorithms were used as well a sparse input

matrix and decreasing reservoir size. Running time is the time ESN uses to predict 2500

points. Training time is the time to train the network. To measure the time the matlab func-

tions tic and toc were used [10]. This was done using a standard laptop computer. LASSO

have a high training time as it uses matlab’s built-in LASSO function tests it for different λ

parameter while for Ridge it was solved using the analytic solution from section 2.6 with

λ set manually. It is therfore not fair to compare them.

Training time(s) Running time(s)

Ridge,sparsity(Wi)=0%, Nx = 1000 0,0999 1,3478

Ridge, sparsity(Wi)=95%, Nx = 1000 0,1044 1,3915

OLS, sparsity(Wi)=95%, Nx = 1000 0.0982 1.3924

LASSO,sparsity(Wi)=95%, Nx = 1000 107,3330 1.2847

LASSO,sparsity(Wi)=90%, Nx = 500 56.4692 0.2792

The differences between LASSO and Ridge is shown with histograms of the

Wout matrices. The histograms are based on Nx = 1000 and no sparsity.

28

3.4 Simulation

Figure 3.16: Histogram RIDGE Wout

29

Chapter 3. Experiment

Figure 3.17: Histogram LASSO Wout. 62 of 1000 weights are non-zero

Lastly the performance of the different learning algorithms are tested. This time

the test was run with a size 500 and a sparsity of 90% on Wout. The results are shown

below in fig.3.18 and 3.19.

30

3.4 Simulation

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time(s)

-0.1

-0.05

0

0.05

0.1

0.15
H

e
ig

h
t
v
e
lo

c
it
y
(m

/s
)

LASSO vs RIDGE vs OLS

OLS

real

Ridge

Lasso

Figure 3.18: Test set: results of estimation with different regression methods.

4300 4350 4400 4450 4500 4550 4600 4650 4700 4750

Time(s)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

H
e

ig
h

t
v
e

lo
c
it
y
(m

/s
)

LASSO vs RIDGE vs OLS

OLS

real

Ridge

Lasso

Figure 3.19: fig. 3.18 zoomed

31

Chapter 3. Experiment

32

Chapter 4
Discussion

4.1 Results

The result from fig. 3.12 shows that ESN to a high level of success can be used to model

the nonlinear tank model. The ESN handles the introduction of noise fig. 3.14 very well.

It can therefore be said that it filters the measurement noise away. The time to converge

seconds for ESN to converge is dependent of the time. The typical time to converge was

about 400s like in fig. 3.7. The fact that there only is marginally differences in performance

between restult from test and training data suggest that it is robust against overfitting. One

of the reason for this is that the training set was selected sufficiently large.

The trained network is in the margin area of having the echo state property. It

barely satisfied necessary condition in section 3.5 such that small changes in the random

W weights could be enough to not have the echo state property. A thing to notice is that

the sum of error seem to be optimal in the boundary area.

When comparing ESN to feed forward the feature of ESN to have memory in-

cluded in the states felt like a much more elegant approach than having 200 inputs. When

33

Chapter 4. Discussion

comparing ?? and 3.14 the results was better for ESN since feed forward was fast os-

cillating and in general further away from target. It is however worth to mention that

significantly more time was spent on improving ESN than feed forward. But then again

ESN has more parameters.

4.2 Errors and Model limitations

When describing implementing the tank dynamics 3.2 several assumptions were made.

These assumptions are simplifications of the real world, but are likely not significant. In

3.2 there is no delay between a change in input and change in the inflow. In real world

this can be a valve opening which is not happening instantly. This could actually make the

modelling easier since the dynamics becomes slower. The measurement noise in 3.2 was

implemented as white noise. White noise is not found in the real world and is therefore an

error. The impact real world noise would have is dependent on the sensors. If there also

was an constant error in the measurements which happens in the real world, ESN would

fit the model to these bad data. This is one drawback with neural network, it does not have

any knowledge to determine if the data make sense. Therefore the user needs to know this.

4.3 Different Learning Algorithms and Sparsity

The general discussion of choosing between Ridge and LASSO is whether or not all states

are useful since LASSO can set the weights to those who are not to zero. Ridge is consid-

ered a good method if when countering overfitting since the weights are small. Notice the

difference in range between 3.16 and 3.17. Ridge is therefore the most common approach

to train ESN. LASSO can be useful if the reservoir size Nx is large related to the com-

plexity and sufficient training data available. An interesting observation is that the whith a

decrease in Nx from 1000 to 500 it gave an increase in non-zero elements in Wout. While

increasing zero elements in Win increases non-zero elements in Wout. To use LASSO

34

4.3 Different Learning Algorithms and Sparsity

provides a simpler model that slightly decreases running time with same performance as

Ridge 3.18 and 3.19. OLS did not perform well and was not much investigated as it is a

special case of ridge. A sparse input matrix had only a negligible impact on performance,

training and running time. Reducing the size ofNx had a large impact on the running time,

but it also impacts the performance.

35

Chapter 4. Discussion

36

Chapter 5
Conclusion

5.1 ESN for system identification

The problem discussed in this project gave the expected results that ESN can successfully

be used in modeling nonlinear problems. This support the previous work done in this field

[1] [7].

One of the difficult parts of this project was to find good values for the hyperpa-

rameters. There are several values to consider as well as satisfying the echo state property.

For this example the best performance was found in the boarder area of the echo state

property. This result supports known theory on how to select parameters [9]. From section

3.4.3 Improving Time and Simplicity, the result shows that for task with strong time re-

quirements, ESN is suitable for modeling. Ridge and LASSO is to prefer of OLS method

of regression as they provided better results. To choose between LASSO and ridge is

dependent on the problem. LASSO provides a simpler model but is more vulnerable to

overfitting than ridge.

37

Chapter 5. Conclusion

5.2 Future Work

Recommended future work is to investigate to what extent the structure of ESNs make

them suitable for dynamic optimization. A useful application could be to use ESN as a

predictor in Model Predictive Control (MPC). One advantage would then be that a model

could be the target of online learning. Meaning the model is re-trained as new measure-

ments are acquired. ESN as could also open up to new problems suitable for MPC since it

is data driven modeling.

To test ESN on more complex systems to explore the limitations of where ESN

is useful. For some higher dimension problems like language and speech processing, prob-

ably the best method is RNN with deep learning on all the hidden weights and not ESN.

This is due to the size of the reservoir needed in ESN to solve higher dimension problem

would be much larger[7].

There are also several parts of ESN that could be further explored in this exam-

ple. The most interesting aspect not discussed in this report is feedback from the output

back to the reservoir. It was tested once but the performance decreased and was not ex-

plored any further. Including feedback provided a better result for a more complex system:

downhole pressure estimation in gas-lift oil wells [1]. Other thing that could be further ex-

plored is limitations of available training data. It could therefor be interesting to further

investigate what type of problems it is useful for.

38

Bibliography

[1] E. A. Antonelo, E. Camponogara, and B. Foss. Echo state networks for data-driven

downhole pressure estimation in gas-lift oil wells. Neural Networks, 85:106 – 117,

2017.

[2] W. Commons. Sigmoid functions, 2010.

[3] A. Hadgu. An application of ridge regression analysis in the study of syphilis data.

Statistics in Medicine, 3(3):293–299, 1984.

[4] J. Han and C. Moraga. The influence of the sigmoid function parameters on the speed

of backpropagation learning. In J. Mira and F. Sandoval, editors, From Natural to

Artificial Neural Computation, pages 195–201, Berlin, Heidelberg, 1995. Springer

Berlin Heidelberg.

[5] S. Hochreiter. The vanishing gradient problem during learning recurrent neural

nets and problem solutions. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 06(02):107–116, 1998.

[6] H. Jaeger. The” echo state” approach to analysing and training recurrent neural

networks-with an erratum note’. Bonn, Germany: German National Research Center

for Information Technology GMD Technical Report, 148, 01 2001.

[7] H. Jaeger. Echo state network. Scholarpedia, 2(9):2330, 2007. revision #186395.

39

[8] H. Jaeger, M. Lukoeviius, D. Popovici, and U. Siewert. Optimization and appli-

cations of echo state networks with leaky- integrator neurons. Neural Networks,

20(3):335 – 352, 2007. Echo State Networks and Liquid State Machines.

[9] M. Lukoševičius. A practical guide to applying echo state networks. In Neural

networks: Tricks of the trade, pages 659–686. Springer, 2012.

[10] Mathwaorks. Start stopwatch timer.

[11] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall

Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.

[12] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society. Series B (Methodological), 58:267288, 01 1996.

40

Appendix

Matlab Code

1 close all;

2 clc;

3 rng('default'); % for repeatability of random numbers

4

5 %% Build ESN

6 n_r = 1000; % reservoir size

7 n_i = 1; % input size 1 for input flow and 2 for input flow and ...

hight

8 n_o = 1; %output size

9 % range of uniformly distrubution of weights

10 good_ranges = [0.055, 0.085, 0.025];

11 range = good_ranges(1); % n_r -> index: 1000 -> 1, 500 -> 2, ...

1000(FF) -> 3

12 fb = 0; % 1 for including feedback, 0 for exclude

13 zero_elements = 0; % percentage og zero elements in W_in

14 [W_r,W_i,W_o,W_f] = ...

Initilize_weights(n_r,n_i,n_o,range,fb,zero_elements);

15

16 alpha = .15; % leaking rate

17 lambda = .8; % regularization coefficient for analythic solution

18 reg_choise = 1; % choose regularization method 1 for LASSO and ...

10ˆ-5 for Ridge

19

41

20

21 % analasys of Echo state property

22 spectral_radius = max(abs(eig(W_r)))

23 max_singular_value = max(svds(W_r));

24 ESP_test = 1-alpha*(1-max_singular_value) % Sufficient condidtion ...

for < 1

25 W_tilde = alpha*W_r+(1-alpha)*eye(n_r);

26 effective_spectral_radius = max(abs(eig(W_tilde))) % necessary ...

condotion for < 1

27

28 %% Generate training and test data

29 noise=0.000; % 0.00005 to add noise to meassurements h

30 time_length = 10000; %simulation time

31 n_inputs = 100; % how many different inputs

32 sample_time_u = time_length/n_inputs; %hold time for input

33 sample_time_sys = 2; %sample stime for system

34 training_samples = time_length/sample_time_sys;

35 h_0 = 4; %initial tank hight

36 rho = 1; % density fluid

37 g = 9.81; %gravity constant

38 r1=5; %radius of tank

39 r2=0.5; %radius of output pipe

40 q_low = 2; %lowest inflow

41 q_max =10; %highest inflow

42 input.time=sample_time_u*(0:n_inputs-1)';

43 input.signals.values =randi([q_low, q_max],n_inputs,1);

44

45 %simulate

46 options = simset('SrcWorkspace','current');

47 sim('generate_trainingset',[],options);

48 Y_target=h_dot_noise;

49 h_dot_real = h_dot;

50 h_training=h;

51 U_training=u;

52

53 %generate test data

54 noise=0;

55 time_length=5000; %simulation time

42

56 n_inputs = 50; % how many different inputs

57 sample_time_u = time_length/n_inputs;

58 test_samples = time_length/sample_time_sys;

59 input.time=sample_time_u*(0:n_inputs-1)';

60 input.signals.values =randi([q_low, q_max],n_inputs,1);

61

62 %simulate

63 options = simset('SrcWorkspace','current');

64 sim('generate_trainingset',[],options);

65 h_dot_test=h;

66 U_test = u;

67

68 %% harveset states X

69 x = zeros(n_r,1); %initial contidion for states

70 y = Y_target(1); %initial contidion for estimate

71 X=zeros(n_r+n_i,training_samples+1);

72 for i = 2:training_samples+1

73 x = update_x_ESN(x,y,U_training(i,1:n_i),W_r,W_i,W_f,alpha);

74 %x = update_x_FF(u(i,1:n_i),W_r,W_i)';

75 x_o=[x;U_training(i,1:n_i)']; % connect input directly to output

76 %y = update_y(x_o,W_o);

77 X(:,i)=x_o;

78 end

79

80 %% Train ESN

81 tstart = tic; %start time of training

82 W_o=((Y_target' * X')/(X * X' + lambda * eye(n_r+n_i)))'; % RIDGE ...

analytic solution

83 output_constant = 0; % no constant part

84 % [BlassoAll,FitInfo] = lasso(X',Y_target', 'Alpha', reg_choise, ...

'CV', 10);% training using built in function

85 % Blasso=[FitInfo.Intercept(FitInfo.Index1SE); ...

BlassoAll(:,FitInfo.Index1SE)];

86 % output_constant = Blasso(1); % constant part

87 % W_o=Blasso(2:n_r+n_i+1); %

88 t_training_time = toc(tstart); % time to train ESN

89

90 %% test on training data

43

91 x = zeros(n_r,1); %initial contidion for states

92 h_dot_est_training = zeros(training_samples+1,1);

93 y = h_dot_real(1);

94 h_dot_est_training(1)=y;

95

96 for i = 2:training_samples+1 % start on two

97 x = update_x_ESN(x,y,U_training(i,1:n_i),W_r,W_i,W_f,alpha);

98 %x = update_x_FF(u(i,1:n_i),W_r,W_i)';

99 x_o=[x;U_training(i,1:n_i)']; % connect input directly to output

100 y = update_y(x_o,W_o)+output_constant;

101 h_dot_est_training(i)=y;

102 end

103

104 %% test ESN

105

106 x_0_zero_states = zeros(n_r,test_samples+1);

107 x = zeros(n_r,1); %initial contidion for states

108 x_0_zero_states(:,1)= x;

109 h_dot_est_test = zeros(test_samples+1,1);

110 y = h_dot(1); %initial contidion for y

111 h_dot_est_test(1)=y;

112 tstart5= tic; % timw to train ESN %start time of training

113 for i = 2:test_samples+1

114 x = update_x_ESN(x,y,U_test(i,1:n_i),W_r,W_i,W_f,alpha);

115 %x = update_x_FF(u(i,1:n_i),W_r,W_i)';

116 x_o=[x;U_test(i,1:n_i)']; % connect input directly to output

117 y = update_y(x_o,W_o)+output_constant;

118 h_dot_est_test(i)=y;

119 x_0_zero_states(:,i) = x;

120 end

121 t_running_time = toc(tstart5); % timw to run ESN

122 %% print figueres

123 t=sample_time_sys*(0:test_samples)';

124 figure(1)

125 plot(t,h_dot_est_test(:,1))

126 hold on

127 plot(t,h_dot)

128 title('Test h_dot')

44

129 xlabel('Time(s)')

130 ylabel('Height velocity(m/s)')

131 legend('Estimated', 'real')

132 grid on;

133

134 figure(4)

135 title('h test')

136 xlabel('Time(s)')

137 subplot(2,1,1)

138 plot(t,h_dot_test(:,1),'r')

139 title('h test')

140 xlabel('Time(s)')

141 ylabel('Height ')

142 grid on;

143 subplot(2,1,2)

144 plot(t,u(:,1),'g')

145 ylabel('q_{in} ')

146 grid on;

147

148 t=sample_time_sys*(0:training_samples)';

149 figure(2)

150 plot(t,h_dot_est_training(:,1),'r')

151 hold on

152 plot(t,Y_target)

153 hold on

154 %plot(t,h_dot_real,'g')

155 xlabel('Time(s)')

156 ylabel('Height velocity(m/s)');

157 title('Estimate vs Real on training')

158 legend('estimated', 'meassured', 'real');

159 grid on;

160

161 figure(3)

162 subplot(2,1,1)

163 plot(t,h_training(:,1),'r')

164 ylabel('Height ');

165 xlabel('Time(s)')

166 title('h training')

45

167 grid on;

168 subplot(2,1,2)

169 plot(t,U_training(:,1),'g')

170 xlabel('Time(s)')

171 ylabel('q_{in} ')

172 grid on;

1 function x = update_x_ESN(x_prev,y_prev,input,W_r,W_i,W_f,alpha)

2 x = (1-alpha) * x_prev + alpha * tanh((W_r * x_prev + W_i * input' ...

+ W_f * y_prev));

3 end

1 function x = update_x_FF(input,W_r,W_i)

2 x = tanh((input*W_i'*W_r));

3 end

1 function y = update_y(x_o,W_o)

2 y = W_o' * x_o;

3 end

1 function [W_r,W_i,W_o,W_f] = ...

Initilize_weights(n_r,n_i,n_o,a,fb,zero_elements)

2 W_r = -a+(2*a).*rand(n_r); %reservoir wieghts

3 W_i = -a+(2*a).*rand(n_r,n_i); %input weights

4 W_o = -a+(2*a).*rand(n_r+n_i,n_o); % output weights

5 W_f = 0.*rand(n_r,n_o); % feedback weights

6 if fb == 1

7 W_f = -a+(2*a).*rand(n_r,n_o); % feedback weights if fb included

8 end

9 W_i(rand(n_r,1)<zero_elements) = 0; % set percentage to zero

10 end

46

	Summary
	Table of Contents
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Structure of Work

	Background
	Mathematical properties of Echo state network
	Training of Echo states network
	Ordinary Least Squares (OLS) Regression
	Ridge regression
	LASSO

	Echo State Property

	Experiment
	Tank Dynamics
	Initialization of Weights
	Leaking Rate
	Echo State Property

	Simulation
	System Identification with Noise
	System Identification using Feedforward
	Improving Time and Simplicity

	Discussion
	Results
	Errors and Model limitations
	Different Learning Algorithms and Sparsity

	Conclusion
	ESN for system identification
	Future Work

	Bibliography
	Appendix

