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Abstract—This paper presents a self-supervised method for
visual detection of the active speaker in a multi-person spoken
interaction scenario. Active speaker detection is a fundamental
prerequisite for any artificial cognitive system attempting to
acquire language in social settings. The proposed method is in-
tended to complement the acoustic detection of the active speaker,
thus improving the system robustness in noisy conditions. The
method can detect an arbitrary number of possibly overlapping
active speakers based exclusively on visual information about
their face. Furthermore, the method does not rely on external
annotations, thus complying with cognitive development. Instead,
the method uses information from the auditory modality to
support learning in the visual domain. This paper reports an
extensive evaluation of the proposed method using a large multi-
person face-to-face interaction dataset. The results show good
performance in a speaker dependent setting. However, in a
speaker independent setting the proposed method yields a signif-
icantly lower performance. We believe that the proposed method
represents an essential component of any artificial cognitive
system or robotic platform engaging in social interactions.

Index Terms—active speaker detection and localization, lan-
guage acquisition through development, transfer learning, cogni-
tive systems and development

I. INTRODUCTION

THE ability to acquire and use language in a similar man-
ner as humans may provide artificial cognitive systems

with a unique communication capability and the means for
referencing to objects, events and relationships. In turn, an
artificial cognitive system with this capability will be able
to engage in natural and effective interactions with humans.
Furthermore, developing such systems can help us further
understand the underlying processes in language acquisition
during the initial stages of the human life. As mentioned
in [1], modeling language acquisition is very complex and
should integrate different aspects of signal processing, statisti-
cal learning, visual processing, pattern discovery, and memory
access and organization.
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According to many studies (e.g., [2]) there are two alterna-
tives to human language acquisition — individualistic learning
and social learning. In the case of individualistic learning, the
infant exploits the statistical regularities in the multi-modal
sensory inputs to discover linguistic units such as phonemes
and words and word-referent mappings. In the case of social
learning, the infant can determine the intentions of others by
exploiting different social cues. Therefore, in social learning,
the participants in the interaction with the infant play a crucial
role by constraining the interaction and providing feedback.

From a social learning perspective, the main prerequisite
for language acquisition is the ability to engage in social
interactions. For an artificial cognitive system to address this
challenge, it must at least 1) be aware of the people in the
environment, 2) detect their state: speaking or not speaking,
and 3) infer possible objects the active speaker is focusing
attention on.

In this study we address the problem of detecting the
active speaker in a multi-person language learning scenario.
The auditory modality is fundamental for this task and much
research has been devoted to audio-based active speaker de-
tection (Section II-B). In this study, however, we propose to
take advantage of the temporal synchronization of the visual
and auditory modalities in order to improve the robustness of
audio-based active speaker detection. The paper proposes and
evaluates three self-supervised methods that use the auditory
input as reference in order to learn an active speaker detector
based on the visual input alone. The goal is not to replace the
auditory modality, but to complement it with visual informa-
tion whenever the auditory input is unreliable.

In order to impose as little constraints as possible on the
social interaction, we have two requirements for the proposed
methods. The first is that any particular method must operate in
real-time (possibly with a short lag), which in practice means
that the method should not require any future information.
The second requirement is that the methods should make
as few assumptions as possible about the environment in
which the artificial cognitive system will engage in social
interactions. Therefore, the methods should not assume noise-
free environment, known number of participants in the inter-
action, or known spatial configuration. The proposed methods
address the requirements for engagement in social interactions
outlined above, by detecting the people in the environment
and detecting their state — speaking or not speaking. In turn,
this information is a prerequisite to hypothesizing the possible
objects a speaking person is focusing his/her attention on,
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which has been shown to play an important role in language
acquisition (Section II-A).

The rest of the paper is organized as follows. First we
examine previous research that forms the context for the
current study in Section II, then we describe the proposed
methods in Section III. The experiments we conducted are
described in Section IV and the results of these experiments
are presented in Section V. Discussion on the used evaluation
metric, together with the assumptions made can be found in
Section VI. We conclude the paper in Section VII.

II. RELATED WORK

This section is divided in two parts. First we introduce
research on language acquisition which supports our moti-
vation to build an active speaker detector for a language
learning artificial cognitive system. In the second part of the
section we turn our focus on research related to the problem
of identifying the active speaker through visual and auditory
perceptual inputs.

A. Language Acquisition

The literature on language acquisition offers several theories
of how infants learn their first words. One of the main
problems which researchers face in this field is the referential
ambiguity as discussed for example in [3–5]. Referential am-
biguity stems from the idea that infants must acquire language
by linking heard words with perceived visual scenes, in order
to form word-referent mappings. In everyday life however,
these visual scenes are highly cluttered which results in many
possible referents for any heard word, within any learning
event [6, 7]. Similarly, many computational models of lan-
guage acquisition are rooted in finding statistical associations
between verbal descriptions and the visual scene [3, 8–10],
or in more interactive robotic manipulation experiments [11].
However, nearly all of them assume a clutter-free visual
scene, where objects are observed in isolation on a simplified
background (often white table).

Different theories offer alternative mechanisms through
which infants reduce the uncertainty present in the learning
environment. One such mechanism is statistical aggregation
of word-referent co-occurrences across learning events. The
problem of referential ambiguity within a single learning event
has been addressed by Smith et al. [12, 13], suggesting that
infants can keep track of co-occurring words and potential
referents across learning events and use this aggregated in-
formation to statistically determine the most likely word-
referent mapping. However, the authors argued that this type of
statistical learning may be beyond the abilities of infants when
considering highly cluttered visual scenes. In order to study
the visual scene clutter from the infants’ perspective, Pereira
et al. [4] and Yurovsky et al. [5] performed experiments in
which the infants were equipped with a head-mounted eye-
tracker. The conclusion was that some learning events are not
ambiguous because there was only one dominant object when
considering the infants’ point of view. As a consequence, the
researchers argued that the input to language learning must be
understood from the infants’ perspective, and only regularities

that make contact with the infants’ sensory system can affect
their language learning. Although not related to language
acquisition, an attempt at modeling the saliency of multi-modal
stimuli from the learner’s (robot’s) perspective was proposed
in [14]. This bottom up approach is based exclusively on the
statistical properties of the sensory inputs.

Another mechanism to cope with the uncertainty in the
learning environment might be related to social cues to the
caregivers’ intent, as mentioned in the above studies. Although
a word is heard in the context of many objects, infants may
not treat the objects as equally likely referents. Instead, infants
can use social cues to rule out contenders to the named object.
Yu and Smith [15] used eye-tracking to record gaze data from
both caregivers and infants and found that when the caregiver
visually attended to the object to which infants’ attention was
directed, infants extended the duration of their visual attention
to that object, thus increasing the probability for successful
word-referent mapping.

Infants do not learn only from interactions they are directly
involved in, but also observe and attend to interactions between
their caregivers. Handl et al. [16] and Meng et al. [17]
performed studies to examine how the body orientation can
influence the infants’ gaze shifts. These studies were inspired
by large body of research on gaze following which suggests
that infants’ use others’ gaze to guide their own attention, that
infants pay attention to conversations, and that joint attention
has an effect on early learning. The main conclusion was
that static body orientation alone can function as a cue for
infants’ observations and guides their attention. Barton and
Tomasello [18] also reasoned that multi-person context is
important in language acquisition. In their triadic experiments,
joint attention was an important factor facilitating infants’
participation in conversations; infants were more likely to take
a turn when they shared a joint attentional focus with the
speaker. Yu and Ballard [9] also proposed that speakers’ eye
movements and head movements among others, can reveal
their referential intentions in verbal utterances, which could
play a significant role in an automatic language acquisition
system.

The above studies do not consider how infants might know
which caregiver is actively speaking and therefore requires
attention. We believe that this is an important prerequisite
to modeling automatic language acquisition. The focus of
the study described in this paper is, therefore, to investigate
different methods for inferring the active speaker. We are
interested in methods that are plausible from a developmental
cognitive system perspective. One of the main implications is
that the methods should not require manual annotations.

B. Active Speaker Detection

Identifying the active speaker is important for many ap-
plications. In each area, different constraints are imposed to
the methods. Generally, there are three different approaches:
audio-only, audio-visual, and approaches that use other forms
of inputs for detection.

Audio-only active speaker detection is the process of finding
segments in the input audio signal associated with different
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Fig. 1. Example of an output of a visual active speaker detector.

speakers. This type of detection is known as speaker diariza-
tion. Speaker diarization has been studied extensively. Miro
et al. [19] offer a comprehensive review of recent research in
this field. In realistic situations, with far-field microphones,
or microphone arrays, the task of active speaker detection
from audio is far from trivial. Most methods (e.g., [20, 21]),
use some form of model-based supervised training. This is
one of the motivation for our study: firstly, we believe that
complementing the auditory modality with visual information
can be useful if not necessary for this task, especially in the
more challenging acoustic conditions. Secondly, we want to
comply with a developmental approach, where the learning
system only uses the information available through its senses
in the interaction with humans. We therefore want to avoid
the need for careful annotations that are required by the
aforementioned supervised methods.

Audio-visual speaker detection combines information from
both the audio and the video signals. The application of audio-
visual synchronization to speaker detection in broadcast videos
was explored by Nock et al. [22]. Unsupervised audio-visual
detection of the speaker in meetings was proposed in [23].
Zhang et al. [24] presented a boosting-based multi-modal
speaker detection algorithm applied to distributed meetings,
to give three examples. Mutual correlations to associate an
audio source with regions in the video signal was demonstrated
by Fisher et al. [25], and Slaney and Covell [26] showed
that audio-visual correlation can be used to find the temporal
synchronization between audio signal and a speaking face. An
elegant solution was proposed in [27] where the mutual infor-
mation between the acoustic and visual signals is computed
by means of a joint multivariate Gaussian process, with the
assumption that only one audio and one video streams were
present and that locating the source corresponds to finding
the pixels in the image that correlate with acoustic activity.
In more recent studies, researchers have employed artificial
neural network architectures to build active speaker detectors
from audio-visual input. A multi-modal Long Short-Term
Memory model that learns shared weights between modalities
was proposed in [28]. The model was applied to speaker
naming in TV shows. Hu et al. [29] proposed a Convolutional

Neural Network model that learns the fusion function of face
and audio information.

Other approaches for speaker detection include a general
pattern recognition framework used by Besson and Kunt [30]
applied to detection of the speaker in audio-visual sequences.
Visual activity (the amount of movement) and focus of vi-
sual attention were used as inputs by Hung and Ba [31] to
determine the current speaker on real meetings. Stefanov et
al. [32] used action units as inputs to Hidden Markov Models
to determine the active speaker in multi-party interactions and
Vajaria et al. [33] demonstrated that information for body
movements can improve the detection performance.

Most of the approaches cited in this section are either
evaluated on small amounts of data, or have not been proved
to be usable in real-time settings. Furthermore, they usually
require manual annotations and the spatial configuration of
the interaction and the relative position of the input sensors
is known. The goal is usually an offline video/audio analysis
task, such as semantic indexing and retrieval of TV broadcasts
or meetings, or video/audio summarization. We believe that
the challenge of real-time detection of the active speaker in
dynamic and cluttered environments remains. In the context of
automatic language acquisition, we want to infer the possible
objects the active speaker is focusing attention on. In this
context, assumptions such as known sensor arrangement or
participants’ position and number in the environment are
unrealistic, and should be avoided. Therefore, in this study we
present methods which have several desirable characteristics
for such types of scenarios: 1) they work in real-time, 2)
they do not assume specific spatial configuration (sensors
or participants), 3) the number of possible (simultaneously)
speaking participants is free to change during the interaction,
and 4) no externally produced labels are required, but rather
the acoustic inputs are used as reference to the visually based
learning.

III. METHODS

The goal of the methods described in this section is to detect
in real-time the state (speaking or not speaking) of all visible
faces in a multi-person language learning scenario, using only
visual information (the RGB color data). An illustration of
the desired output of an active speaker detector can be seen
in Figure 1.

We use a self-supervised learning approach to construct
an active speaker detector: the machine learning methods are
supervised, but the labels are obtained automatically from the
auditory modality to learn models in the visual modality. An
overview of the approaches considered in the study is given in
Figure 2. The first row in the figure illustrates the perceptual
inputs that are automatically extracted from the raw audio
and video streams. The visual input consists of RGB images
of each face extracted from the video stream with the Viola
and Jones’s face detector [34]. The auditory input consists of
labels extracted from the audio stream which correspond to
the voice activity. The used audio-only voice activity detector
(VAD) [35] is based on two thresholds on the energy of the
signal, one to start a speech segment and one to end it. These
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Fig. 2. Approaches to visual active speaker detection considered in the study. In the first row are the perceptual inputs automatically extracted from the video
and audio streams. These inputs are passed to the task specific learning (second row), transfer learning (third row) and temporal learning (forth row) methods.

thresholds are adaptive and based on a histogram method. The
ability to extract face images and VAD labels is given as a
starting point to the system and is motivated in Section VI.

The methods use a feature extractor based on a Convolu-
tional Neural Network, followed by a classifier. Two types of
classifiers are tested: non-temporal (Perceptron) and temporal
(Long Short-Term Memory Network). Additionally, two tech-
niques for training the models are considered: transfer learning
that employs a pre-trained feature extractor and only trains a
classifier specifically for the task; and task specific learning
that trains a feature extractor and a classifier simultaneously
for the task.

Each method outputs a posterior probability distribution
over the two possible outcomes (speaking or not speaking).
Since the goal is a binary classification, the detection of the
active speaker happens when the corresponding probability
exceeds 0.5. The evaluation of each method is performed by
computing the accuracy of the predictions on frame-by-frame
basis (Section IV).

A. Task Specific Learning

An illustration of the task specific learning method is shown
in the second row of Figure 2. This method trains a Convolu-
tional Neural Network (CNN) feature extractor in combination
with a Perceptron classifier with the goal of classifying each
input image either as speaking or not speaking. During the
training phase both images and labels are used by a gradient-
based optimization procedure [36] to adjust the weights of
the CNN and Perceptron models. During the prediction phase,

only images are used by the trained models to generate labels.
The CNN and Perceptron models work on a frame-by-frame
basis and have no memory of past frames.

B. Transfer Learning

An illustration of this method can be seen in the third row
of Figure 2. Similarly to the previous method, the transfer
learning method uses a CNN and a Perceptron model. In this
method, however, the CNN model is pre-trained on an object
recognition task (i.e., VGG16 [37]). To adapt the VGG16
model to the active speaker detection task, the object classifica-
tion layer is removed and the truncated VGG16 model is used
as a feature extractor. Then the method consists of training
only a Perceptron model to map the features generated by the
VGG16 model to the speaker activity information. As for the
task specific learning method, this method has no memory of
past frames.

Because the VGG16 model was originally trained in a
supervised manner to classify objects, this raises the question
on how suitable this model is in the context of developmental
language acquisition. Support to the use of this model comes
from the literature on visual perception that demonstrates
the ability of infants to recognize objects very early in their
development [38, 39].

C. Temporal Learning

The temporal learning method is illustrated by the forth
row of Figure 2. This method is based on the previously
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Fig. 3. Spatial configuration of the sensors and participants in the dataset.

described feature extractors, but introduces a model of the time
evolution of the perceptual inputs. During the training phase
a custom (CNN) or pre-trained (VGG16) feature extractor
constructs a feature vector for each input image. Then the
features and labels are used by a gradient-based optimization
procedure [36] to adjust the weights of a Long Short-Term
Memory (LSTM) model [40]. During the prediction phase,
images are converted into features with a custom CNN or
VGG16 model, which features are then used by the trained
detector (LSTM) to generate labels.

D. Acoustic Noise

In order to test the effect of noise on the audio-only VAD,
stationary noise is added to the audio signal. The noise is
sampled from a Gaussian distribution with zero mean and
variance σ2. For every recording, the active segments are first
located by means of the audio-only VAD. These are then used
to estimate the energy Ex of the signal as the mean squares
of the samples. Then σ2 is computed as the ratio between
the energy of the signal and the desired signal-to-noise ratio
(SNR):

σ2 =
Ex

10
SNR
10

. (1)

Finally, the noise is added to the signal, and the samples are re-
normalized to fit in the 16 bit linear representation. The audio-
only VAD is used again on the noisy signal and its accuracy
is computed on the result.

IV. EXPERIMENTS

This section is divided in two parts. The first part describes
the dataset used to build and evaluate the active speaker
detectors. The second part describes the general setup of the
conducted experiments.

Fig. 4. Example of a difficult visual input from the first and second condition
in the dataset.

A. Dataset

The methods presented in Section III are implemented and
evaluated using a multimodal multiparty interaction dataset
described in [41]. The main purpose of the dataset is to explore
patterns in the focus of visual attention of humans under the
following three different conditions: two humans involved in
task-based interaction with a robot; the same two humans
involved in task-based interaction where the robot is replaced
by a third human, and a free three-party human interaction.
The dataset contains two parts: 6 sessions with duration of
approximately 30 minutes each, and 9 sessions, each of which
is with duration of approximately 40 minutes. The dataset
is rich in modalities and recorded data streams. It includes
the streams generated from 3 Kinect v2 devices (color, depth,
infrared, body and face data), 3 high quality audio streams
generated from close-talking microphones, 3 high resolution
video streams generated from GoPro cameras, touch-events
stream for the task-based interactions generated from an
interactive surface, and the system state stream generated by
the robot involved in the first condition. The second part of the
dataset also includes the data streams generated from 3 Tobii
Pro Glasses 2 eye trackers. The interactions are in English
and all data streams are spatially and temporally synchronized
and aligned. The interactions occur around a round interactive
surface and all 24 unique participants are seated. Figure 3
illustrates the spatial configuration of the setup in the dataset.

As described previously, each interaction in the dataset is
divided into three conditions, with the first and second condi-
tion being related to a collaborative task-based interaction in
which the participants play a game on a touch surface. During
this two conditions the participants interact mainly with the
touch surface and discuss with their partner how to solve the
given task. Therefore, the participants’ overall gaze direction
(head orientation) is towards the touch surface. This raises
some very challenging visual conditions for extracting speech
activity information from the face. We show three examples in
Figure 4. This observation motivated experiments using only
the data from the third condition of each interaction.

B. Experimental Setup

This section describes the general setup of the experiments.
In all experiments the video stream is generated by the Kinect
v2 device directed at the participant under consideration and
the audio stream is generated by the participant’s close-
talking microphone. The total amount of frames used in the
experiments is 690000 (∼6.5 hours).
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Fig. 5. Accuracy versus participant and method. The participants are sorted by overall accuracy. The segment length for the LSTMs is 15 frames (500 ms).
The boxplots show the results over all 10 folds.

TABLE I
SPEAKER DEPENDENT RESULTS (10-FOLD CROSS-VALIDATION); MEAN ACCURACY AND STANDARD DEVIATION.

Features Perceptron LSTM 15 LSTM 30 LSTM 150 LSTM 300
CNN 73.13 (7.81) 72.92 (8.47) 73.13 (8.67) 72.61 (9.54) 72.46 (9.56)

VGG16 72.61 (8.27) 72.90 (8.85) 73.27 (9.14) 72.46 (9.97) 72.55 (10.22)

The CNN models comprise three convolutional layers of
width 32, 32, and 64 with receptive fields of 3×3 and rectifier
activations, interleaved by max pooling layers with window
size of 2 × 2. The output of the last max pooling layer is
used by a densely connected layer of size 64 with rectifier
activation functions and finally by a perceptron layer with
logistic sigmoid activations. The LSTM models include one
long short-term memory layer of size 128 with hyperbolic
tangent activations, followed by a densely connected and a
perceptron layer similarly to the CNN models.

During the training phase the models use Adam optimizer
with default parameters (α = 0.001, β1 = 0.9, β2 = 0.999,
and ε = 10−8) and binary crossentropy loss function. Each
non-temporal model (CNN and Perceptron) is trained for
50 epochs and each temporal model (LSTM) is trained for
100 epochs. The LSTM models are trained with 15, 30,
150, and 300 frame (500 ms, 1 s, 5 s, and 10 s) long
segments without overlaps. The models corresponding to the
best validation performance are selected for evaluation on
the test set. The models are implemented in Keras [42] with
TensorFlow [43] backend. During the prediction phase only
the RGB color images extracted with the face detector are
used as input. As described previously, each of the considered
methods outputs a posterior probability distribution over the
two possible outcomes — speaking or not speaking. Therefore,
when evaluating the models’ performance, 0.5 is used as a
threshold for assigning a class to each frame-level prediction.
The results are reported in terms of frame-by-frame weighted
accuracy which is calculated with,

wacc = 100×
tp

tp+fn + tn
fp+tn

2
, (2)

where tp, fp, tn, and fn are the number of true positives, false
positives, true negatives and false negatives, respectively. As
a consequence, regardless of the actual class distribution in
the test set (which is in general different for each participant),
the baseline chance performance using this metric is always
50%. Although this metric allows an easy comparison of
results between different participants and methods, it is a very
conservative measure of performance (Section VI-A).

The study presents three experiments with the proposed
methods: speaker dependent, multi-speaker dependent, and
speaker independent. The speaker dependent experiment builds
a model for each participant and tests it on independent data
from the same participant. This process is repeated 10 times
per participant with splits generated through a 10-fold cross-
validation procedure. The multi-speaker dependent experiment
uses the splits generated in speaker dependent experiment.
This experiment, however, builds a model with the data for
all participants and tests it on the independent data from
all participants. This experiment tests the scalability of the
proposed methods to more than one participant. The speaker
independent experiment uses a leave-one-out cross-validation
procedure to build and evaluate the models. This experiment
tests the transferability of the proposed methods to unseen
participants.

Finally, as described in Section III-D, the effect of noise is
tested on the audio-only VAD. The proposed video-only active
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Fig. 6. Comparison between audio-only and video-only method in noise (the solid lines are accuracies and the shaded areas are standard deviations). The
accuracy in the speaker dependent experiment (left) is averaged over 24 participants and 10 folds. The accuracy in the multi-speaker dependent experiment
(center) is averaged over 10 folds each containing data from 24 participants. The accuracy in the speaker independent experiment (right) is averaged over 24
folds each containing data from the participant that was left out during training. In all cases the performance of the audio-only method degrades with the
reduction in SNR, whereas the video-only method is not affected by acoustic noise.

speaker detectors are compared with audio-only VAD where
the SNR varies from 0 to 30 in increments of 5.

V. RESULTS

This section presents the numerical results obtained from
the experiments.

A. Speaker Dependent

The mean accuracy and standard deviation per method
obtained in the speaker dependent experiment are provided in
Table I. The highest mean result in this experiment is 73.13%
for the LSTM 30 models when using custom CNN feature
extractors and 73.27% for the LSTM 30 models when using
pre-trained VGG16 feature extractors. The complete results
are illustrated in Figure 5. The figure shows that the accuracy
varies significantly between participants. Also the variability
between participants is higher than the difference obtained
with different methods per participant. A comparison between
the best performing video-only method and an audio-only
VAD is illustrated in the left plot of Figure 6. The two methods
give similar results for a range of SNRs around 12. The video-
only method outperforms the audio-only VAD for more noisy
conditions, whereas the opposite is true if the SNR is greater
than 20.

B. Multi-Speaker Dependent

The summarized results of the multi-speaker dependent
experiment are provided in Table II. The highest mean result
in this experiment is 75.76% for the LSTM 150 models when
using custom CNN feature extractors. A comparison between
the best performing video-only method and an audio-only
VAD is illustrated in the center plot of Figure 6. Similarly
to the speaker dependent case, the two methods give similar
results for a range of SNRs around 12. However, in this
case the spread around the mean is much reduced because
every fold includes a large collection of samples from all
participants.

C. Speaker Independent

The summarized results of the speaker independent experi-
ment are provided in Table III. The highest mean result in this
experiment is 57.11% for the LSTM 30 models when using
custom CNN feature extractors. A comparison between the
best performing video-only method and an audio-only VAD is
illustrated in the right plot of Figure 6. As can be observed,
the results from the video-only method are only slightly above
chance level, hence falling far behind the audio-based VAD.

VI. DISCUSSION

In order to interpret the results presented in Section V we
need to make a number of considerations about the evaluation
method. We will also consider the advantages and limitations
of the metric used and detail the assumptions made in the
methods and the main contributions of the study.

The proposed methods estimate the probability of speaking
independently for each face. This has the advantage of being
able to detect several speakers that are active at the same
time, but for many applications it might be sufficient to
select the active speaker among the detected faces. Doing this
would allow us to combine the single predictions into a joint
probability, thus increasing the performance.

It is important to note that the conditions in the experiment
that compared audio-only and video-only methods were fa-
vorable to the audio-only method due to the use of stationary
noise. The VAD employed for the audio-based detection uses
adaptive thresholds that are specifically suitable for stationary
noise. Therefore we would expect a larger advantage for the
video-based speaker detection in low to medium SNRs in
the presence of non-stationary noises often present in natural
communication environments.

A. Metric

Evaluating the proposed methods on a frame-by-frame basis
gives a detailed measure of performance. However, one might
argue that frame-level (33 ms) accuracy is not necessary for
artificial cognitive systems employing the proposed methods
in the context of automatic language acquisition. Evaluating
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TABLE II
MULTI-SPEAKER DEPENDENT RESULTS (10-FOLD CROSS-VALIDATION); MEAN ACCURACY AND STANDARD DEVIATION.

Features Perceptron LSTM 15 LSTM 30 LSTM 150 LSTM 300
CNN 74.80 (1.63) 74.91 (1.54) 75.11 (1.57) 75.76 (1.65) 75.26 (1.46)

TABLE III
SPEAKER INDEPENDENT RESULTS (LEAVE-ONE-OUT CROSS-VALIDATION); MEAN ACCURACY AND STANDARD DEVIATION.

Features Perceptron LSTM 15 LSTM 30 LSTM 150 LSTM 300
CNN 55.39 (5.74) 56.33 (6.56) 57.11 (6.44) 56.96 (6.50) 57.55 (7.02)

the methods on a fixed-length sliding time window (e.g., 200
ms) might be sufficient for this application.

Furthermore, the definition of the weighted accuracy ampli-
fies short mistakes. For example, if in 100 frames, 98 belong
to the active class and 2 to the inactive class, a method
that classifies all frames as active will have wacc = 100

2 ×[
98

98+0 + 0
2+0

]
= 50%. If we consider a case of continuous

talking, where the speaker takes short pauses to recollect a
memory or structure the argument, then a perfect audio-only
method will detect silence of certain length (at least 200 ms) in
the acoustic signal and label the corresponding video frames as
not speaking. However, from the interaction point of view the
speaker might be still active, resulting also in visual activity.
A video-only method that misses these short pauses would be
strongly penalized by the used metric, achieving as low as
50% accuracy when all other frames are classified correctly.
Similar situation occurs when a person is listening and gives
short acoustic feedbacks which are missed by the video-only
methods.

The advantage of the weighted accuracy metric, however, is
that it enables us to seamlessly compare the performance be-
tween participants and methods. This is because, the different
underlying class distributions due to each particular dataset,
are accounted for by the metric and the resulting baseline is
50% for all considered experimental configurations.

B. Assumptions

The proposed methods make the following assumptions:
• the system is able to detect faces,
• the system is able to detect speech for a single speaker,
• there are situations in which the system only interacts

with one speaker, and can therefore use the audio-only
VAD to train the video-only active speaker detector.

In order to motivate the plausibility of these assumptions in the
context of a computational method for language acquisition,
we consider research in developmental psychology. According
to studies reported in [44, 45] infants can discriminate between
several facial expressions which suggests that they are capable
of detecting human faces. The assumption that the system
can detect speech seems to be supported by research on
recognition of mother’s voice in infants (e.g., [46]). However,
whereas infants can detect the voice at a certain distance from
the speaker, here we make the simplifying assumption that
we can record and detect speech activity from close-talking
microphones for each speaker. It remains to be verified if we
can obtain similar performance from the audio-only VAD in

case we use far-field microphones or microphone arrays, or in
noisy acoustic conditions. The final assumption is reasonable
considering that infants interact with small number of speakers
in their first months, and in many cases only one parent is
available as caregiver at any specific time.

C. Contributions

This study extends our previous work [47] on vision-
based methods for detection of the active speaker in multi-
party human-robot interactions. We will summarize the main
differences between this study and [47] in this section. The first
difference is the use of a better performing pre-trained CNN
model for feature extraction (i.e., VGG16 [37]) compared
to the previously used AlexNet [48]. We also significantly
extended the set of experiments to evaluate and compare the
proposed methods. In the current study we evaluated the effect
of using temporal models by comparing the performance of
LSTM models similar to the ones evaluated in [47], to non-
temporal Perceptron models. Furthermore, we compared the
performance of transfer learning models, with models that
are built specifically for the current application and trained
exclusively on the task specific data. Finally we reported
results for multi-speaker and speaker independent experiments.

One of our findings is that, given that we optimize the
classifier to the task (Perceptron or LSTM), it is not nec-
essary to optimize the feature extractor (the custom CNNs
perform similarly to the pre-trained VGG16). This suggests
that a pre-trained feature extractor such as VGG16 works well
independently of the speaker and can be used to extend the
results beyond the participants in the present dataset. Also,
the result of the multi-speaker dependent experiment shows
that the proposed methods can scale beyond a single speaker
without decrease in performance. Combining this observation
with the observation for the applicability of transfer learning
suggests that a mixture of the proposed methods can be indeed
an useful component of a real life artificial cognitive system.

Finally, the speaker independent experiment yields signif-
icantly lower performance compared to the other two exper-
iments. We should mention, however, that, from a cognitive
system’s perspective, this might be an unnecessarily challeng-
ing condition. We can in fact expect infants to be familiar
with a number of caregivers, thus justifying a condition
more similar to the settings in the multi-speaker dependent
experiment.
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VII. CONCLUSIONS

In this study we proposed and evaluated three methods for
automatic detection of the active speaker based solely on visual
input. The proposed methods are intended to complement
acoustic methods, especially in noisy conditions, and could
assist an artificial cognitive system to engage in social inter-
actions which has been shown to be beneficial for language
acquisition.

We tried to reduce the assumptions about the language
learning environment to a minimum. Therefore, the proposed
methods allow different speakers to speak simultaneously
as well as to be all silent; the methods do not assume a
specific number of speakers, and the probability of speaking is
estimated independently for each speakers, thus allowing the
number of speakers to change during the social interaction.

We evaluated the proposed methods on a large multi-person
dataset. The methods perform well on a speaker dependent and
multi-speaker dependent fashion, reaching accuracy of over
75% (baseline 50%) on a weighted frame-based evaluation
metric. The combined results obtained from the transfer learn-
ing and multi-speaker learning experiments are promising and
suggest that the proposed methods can generalize to unseen
perceptual inputs by incorporating a model adaptation step for
each new face.

We should acknowledge the general difficulty of the prob-
lem addressed in this study. Humans generally produce many
facial configurations when they are not speaking that might be
highly overlapping to the configurations associated with when
they are speaking.

The methods proposed in this study are in support to
socially-aware language acquisition and they can be seen as
mechanisms for constraining the visual input thus providing
higher quality and more appropriate data for a statistical learn-
ing of word-referent mappings. Therefore, the main purpose
of the methods is to help bringing an artificial cognitive
system one step closer to resolving the referential ambiguity
in cluttered, dynamic, and noisy environments.
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