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Abstract 

Nonlinear model predictive control applications have been deployed on two large pilot plants for 

post combustion CO2 capture. The control objective is formulated in such a way that the CO2 capture 

ratio is controlled at a desired value, while the reboiler duty is formulated as an unreachable 

maximum constraint. With a correct tuning, it is demonstrated that the controllers automatically 

compensate for disturbances in flue gas rates and compositions to obtain the desired capture ratio 

while the reboiler duty is minimized. The applications are able to minimize the transient periods 

between two different capture rates with the use of minimum reboiler duty.  
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1. Introduction 
One of the main challenges for large scale CO2 capture deployment, in addition to large capital 

investment, is the energy cost. For a coal fired power plant it is estimated that carbon capture at the 

end of the pipe will penalize energy output by approximately 20% (Florin and Fennell, 2010), while 

House et al. (2009) claim that the penalty cannot be lower than 11%.  The energy penalty may even 

be higher if the operation of the capture plant is not at an optimal operating point. In the present 

work, optimality refers to minimum specific reboiler duty.  For a given capture ratio, there is a lean 

loading that minimizes the specific reboiler duty. Under-stripping of the solvent, meaning the lean 

loading is higher than the optimal, will cost more energy per kg CO2 captured because more liquid 

needs to be circulated and thus more cold liquid need to be heated by the reboiler. However, the 

energy penalty of over-stripping, where the lean loading is lower than the optimal, is even more 
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severe. Figure 12 shows the loss of energy by over- and under-stripping. The optimal point of 

operation will change with the amount and composition of the flue gas in addition to the capture 

ratio.  As the power plant load is changing, the optimal operating point of the capture plant will 

change. Manual operation of the capture plant will hardly keep the optimal lean loading at any time, 

even though an experienced process operator may be able to come close to optimal operation. 

For post combustion carbon capture plants, the basic control loops mostly suggested in the 

literature is one that controls the capture rate by adjusting the solvent fed to the absorber, and 

another that controls a desorber temperature by adjusting the reboiler duty (Mejdell et al., 2017). 

There are other basic control loops, such as level controllers of tanks and sumps in addition to 

pressure and temperature control loops that also need to be present in the plant (Karimi et al. 

2012).  Tuned properly, these control loops will work well, but after and during load changes or large 

disturbances, some setpoints need to be adjusted in order to achieve minimum specific reboiler duty 

(SRD)  

There are several studies that have proposed Model Predictive Control (MPC) solutions for post 

combustion CO2 capture processes. Luu et al. (2015) propose to use an MPC solution with a 

linearization of a nonlinear model approximated by a first order dynamics and a dead time.  Åkesson 

et al. (2012) and Prölß (2011) did a simulation study to test nonlinear MPC with one degree and two 

degree of freedom.  He and coworkers (2017) have implemented both linear and nonlinear MPC, 

while He et al. (2016) use a linearized model in their MPC solution.  Mehleri et al. (2015) designed an 

advanced MPC scheme to evaluate the controllability of a post-combustion plant in the presence of 

disturbances associated with the dynamic operation of the power plant. 

In the present work an optimal control solution based on nonlinear model predictive control (NMPC) 

is developed and implemented on two large pilot plants for CO2 capture. The NMPC solution is a 2x2 

control scheme, where the objective is to control the reboiler duty to a minimum, while keeping the 

capture ratio at a given setpoint. The specifications for these two controlled variables (CVs) are 

obtained by manipulating the two manipulated variables (MVs); reboiler duty (or reboiler steam 

pressure) and solvent flowrate. The solution is implemented on two pilot plants; the Tiller pilot and 

the Technology Center Mongstad (TCM) test facility. The TCM plant has a capacity of 47000 Sm3/h 

flue gas, while the Sintefs Tiller pilot has a capacity of 250 Sm3/h. It is demonstrated that the NMPC 

applications are able to keep the capture ratio at the desired level and at the same time at an 

optimal lean loading. The main contributions here are 1) formulation and tuning of objective 

function so that the capture ratio is at the desired value with the use of minimum reboiler duty and 

2) the deployment and demonstration of the NMPC solution on two large pilot plants. In addition, 

the original dynamic model developed by Enaasen Flø (2015) is reduced as described here in section 

2.1.   

       

2. The Nonlinear Model Predictive Control Application 
Model predictive control (MPC) refers to the class of algorithms that compute a sequence of future 

control inputs in order to optimize the predicted behavior of the process to be controlled. As 

disturbances enter the process, the optimization is repeated for each sampling time, and therefore 



only the first part of the input sequence is implemented on the process. Most MPC applications are 

based on linear step-response models generated by stepping the actual plant. On the other hand, 

nonlinear model predictive control is based on a nonlinear process model, normally developed from 

conservation laws and phenomenological relations. These models also need to be validated from 

plant data, but the plant does not need to be perturbed as much as with linear step-response 

models. The model, represented by a vector of state variables (x), is expressed as a system of 

ordinary differential equations.      

 
0 0

d
( , ); ( )

d
t

t
= =

x
f x u x x   (1) 

The vector u represents the manipulated variables (MVs) or the handles that we apply to optimize 

the predicted behavior of the plant. The predicted behavior is represented by the control variables 

(CVs) that are in general nonlinear functions of the state variables and the MVs; ( , )=z h x u . 

The vector ( , )=y g x u  is a vector of calculated or estimated measurements that are compared with 

the actual measurements from the plant. The deviation is applied in an online estimation algorithm 

to adjust the state variables and model parameters to ensure that the model does not deviate too 

much from the actual plant. Figure 1 gives a graphical picture of the functionality of the different 

blocks.  

 

Figure 1: The NMPC system, consisting of a nonlinear plant model, an online estimator and the NMPC algorithm.  

The objective of the optimization, embedded in the NMPC algorithm, is to calculate the future input 

sequence that minimizes the future deviations of the controlled variables and their reference 

trajectory. In addition, the manipulated and control variables may be subject to constraints. This is 

illustrated in Figure 2. 



 

Figure 2: Illustration of the past (history) and future (prediction horizon) behavior of an NMPC system. The future input 
(MV) sequence is calculated in order to optimize the behavior of the predicted CVs, which in this illustration is to follow 
a future reference trajectory. After a complete input (MV) sequence is calculated, only the first value is implemented on 
the plant. The entire optimization is repeated at every controller sample. 

The NMPC is implemented in the tool Cybernetica CENIT, which includes the properties of the red 

blocks in Figure 1. Cybernetica CENIT is a widely used tool for NMPC applications, particularly within 

the polymer, metallurgical industries and batch processing (Singstad, 2017; Kolås and Wasbø, 2010; 

Foss and Schei, 2007; Elgsæter et al., 2012; Schei, 2007).   

 

2.1 The dynamic process model 
The dynamic model of the capture plant is developed by NTNU and SINTEF and a complete 

description of the model is given by Enaasen Flø (2015). The model is also described in two journal 

articles (Enaasen Flø et al., 2015; Enaasen Flø et al., 2016). The model was originally formulated as a 

system of differential-algebraic equations, containing 1022 dynamic and algebraic states. In order to 

speed up the computational time, the number of states has been reduced to 448.  The following  

All algebraic states are removed by elimination of superfluous boundary conditions of the different 

process units. The different units are now connected through intermediate input variables instead of 

algebraic states.  In addition, algebraic state variables are eliminated by describing the pressure 

profiles of the absorber and desorber as an explicit linear interpolation between inlet and outlet 

pressure.    Furthermore, some chemical components are lumped or omitted as they have minor 

influence on the model predictions; e.g. oxygen and nitrogen are lumped to an inert component in 

the absorber gas phase, while in the desorber gas phase these components are removed all 

together. The number of collocation points to describe the axial gradients of the columns and the 

heat exchanger are reduced.  Some detailed thermodynamic relations are substituted by simpler 

equations, and finally a first order dynamics was introduce in the  mass transfer between gas and 

liquid in order to reduce to stiffness of the ordinary differential equations. 
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The model reduction has not altered the prediction capacities of the model significantly. The 

resulting model contains dynamic states only. The model (1) can be integrated as an ordinary 

differential system, and the code CVODE from Sundials (Hindmarsh et al., 2005) is applied to solve 

the system.  Having a sampling time of 60 seconds, meaning that the numerical integrator should 

give a new state vector every 60 seconds, possibly with new inputs, the model is able to simulate 

faster than 10000 times real time. This is fast enough in order to fulfill the NMPC optimization within 

a sample time of 60 seconds.  

A simplified process flow diagram of the TCM plant is shown in Figure 3. The model of the plant 

includes the following process units: Absorber, absorber sump, lean/rich cross heat exchanger, 

desorber, reboiler/desorber sump and overhead condenser. The flue gas fan, direct contact cooler 

(DCC) system and absorber and desorber water washes are not modeled. 

 

Figure 3: Simplified process flow diagram of the TCM plant. 

 

2.2 Model validation against Tiller and TCM data 
Both the TCM and Tiller plants are well instrumented.  Temperature, pressure, densities and 

composition measurements are used to validate and fit a few model parameters off-line.  A 

parameter called the wetting factor in the correlation describing the gas liquid contact area is 

adjusted offline to fit the measurements.   An SQP type optimization algorithm is used to estimate 

some of the most critical model parameters by minimizing the squared sum of deviations between 

the plant-model and measurements. 



Below, two examples of model validation plots are presented. Figure 4 shows a steady-state 

temperature profile in the Tiller pilot absorber column. Figure 5 shows the dynamic responses of the 

absorber outlet concentration of CO2 after a step change in the reboiler steam pressure (duty) for 

the TCM plant. 

 

Figure 4: Example of steady-state temperature profile in the Tiller pilot absorber column. 

 

Figure 5: Example of a dynamic step response from the TCM absorber column, resulting from steps in the reboiler steam 

pressure. All other inputs are kept constant. The black curve is the measured CO2 concentration in the depleted flue gas 

(absorber top), while the blue curve is the ballistic model prediction of the same variable. 



Similar plots have been constructed for step changes of a number of input variables in order to verify 

the prediction properties of the dynamic model. The collection of these plots certainly indicates that 

the model is suitable for use in an NMPC application.  

 

2.3 Online model estimation  
Based on the off-line fitted model, some critical measurements used for online estimation are 

selected. That means, which elements of the y-vector should be considered in the Estimator block in 

Figure 1.  The most important function of the Estimator is to ensure that offset-free control is 

obtained, which means zero deviation on the average between the selected controlled variables (z) 

and their corresponding setpoints. 

The main controlled variable is the CO2 capture rate in the absorber, which is closely related to the 

CO2 concentration in the absorber top. As can be seen from Figure 5, the model predictions of this 

variable seem adequate. However, one should always expect drift between the model and the plant 

measurement over time, due to un-modelled phenomena, unmeasured disturbances etc.  

Different types of online estimators have been investigated, including the Extended Kalman Filter 

(EKF) for combined state- and parameter estimation, which is a built-in component of the 

Cybernetica CENIT system. Initial tests performed with the EKF algorithm revealed that possible 

model deviations were not entirely eliminated by updating the physical model parameters.  

Therefore, a simple updating scheme, based on updating an artificial bias flow of CO2 in the CO2 

mass balance, was chosen.  

It is assumed that the average measurement of CO2 product flow from the desorber is more reliable 

than the average GC analysis of CO2 in the absorber outlet.  The measured and estimated CO2 

product flow is therefore compared for close to steady state conditions, and the bias flow is further 

used to adjust the absorber outlet CO2 flow. Thus, the absorber CO2 capture rate is corrected 

according to the measured desorber CO2 product flow to get an online updated value of the 

absorber capture rate. It should be emphasized that the correction from sample to sample is very 

slow, in order to prevent any dynamic influence on the absorber CO2 concentration. 

The concept is illustrated in Figure 6 for the TCM plant. The upper plot shows the desorber flow 

variables. The black curve is the measured product flow of CO2. The blue curve represents the 

ballistic (non-updated) calculated product flow from the model, while the green curve shows the 

online corrected value. Before the change in operating conditions, it is observed that the corrected 

model value has converged to the measured level. Despite this fact, there is a small deviation 

between the two corresponding curves representing the absorber top concentrations in the right 

part of the figure. The reason is that the input- and output measurements for the CO2 balance are 

not completely consistent. From the left plot it is also observed that the model bias (average 

difference between the black and blue curve) is slightly larger after the condition changes, and that 

the online corrector slowly “pulls” the green estimate towards the black measurement values. 

Finally, it is observed that the “undershoot” in left side CO2 flow is not influencing the corrected 

model value, due to the slow correction. 



As the main controlled variable is the CO2 capture rate in the absorber, CENIT actually controls a 

capture ratio being equivalent to the CO2 concentration as indicated by the green curve in the right 

part of the plot.  

 

 

 

Figure 6: Online estimation of capture rate at TCM. The model mismatch is almost eliminated for the desorber product 

flow (upper plot), while minor mismatch may still be seen for the absorber concentrations (lower plot). The black curves 

represent measured variables, the blue curves represent the non-corrected model values, and the green curves 

represent the corrected model values. 

 

 



2.4 The NMPC control structure  
The NMPC objective may be defined by minimizing the quadratic object function (2) below. The first 

sum represents the penalty of CV setpoint deviations, the second sum is penalty of MV moves and 

the last sum is soft CV constraints.   
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The objective function is minimized subject to a set of constraints. The model is solved at discrete 

time steps by the numerical integrator and the control variables are calculated at the same discrete 

time steps.   
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In addition to the penalty of MV moves, given by Sj, there are hard constrains on the manipulated 

variables both on the actual values and the change from one sample to the next. 
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Constraints on the controlled variables are implemented as hard constrains with slack variables. The 

slack variables will prevent the optimization to run into infeasible solutions. With hard constraints 

both on input and output, it is easy to specify constraints that are infeasible.   The control variables 

may therefore violate their minimum and maximum bounds, but there is a penalty for doing that 

given by the weights rj.  

min max

max

1, ...,

1, ...,

,

0 ,

k j k j k j

k j

j P

j P

+ + +

+

=

=

−   +

 

z ε z z ε

ε ε
   (5a,b) 

For the applications implemented at the two pilot plants, the elements of the u-vector are  

1. u1 or MV1: The reboiler duty (Tiller application) or the reboiler steam pressure setpoint (TCM 

application) 

2. u2 or MV2: The liquid absorbent flow rate. Specified on lean side (Tiller) or rich side (TCM) 

The two elements of the z-vector are 

1. z1 or CV1: The absorber capture rate; calculated by the model and updated online as 

described in section 2.3 

2. z2 or CV2: The reboiler duty 

As seen from the MV- and CV lists above, CV2 is identical to MV1 (the reboiler duty) in the Tiller case. 

The mapping function between the MV and the CV (section 2) is thus trivial; 

z2 = h2 (x,u) = u1 



The operator specifies the setpoint trajectory for CV1, denoted by zref,k+j,1 for all future samples 

defined by j=1,..,P, where P is the prediction horizon. Typically, the setpoint is fixed during the entire 

horizon. Internally in the NMPC, this value is also regarded as a minimum value. At the same time, 

an artificial, non-obtainable maximum value for CV2 is specified, which is typically set to zero (zmax,2 = 

0.0). 

Thus, the controller has apparently been given an unreachable control problem; i.e. to obtain a 

specific capture rate with “zero” reboiler duty. The NMPC handles this by careful parameterization 

of the last term in the objective function, where slack variables 𝜀𝑘+𝑗 are added to the objective, 

which allows for zk+j,1 < zmin,1 and zk+j,2 > zmax,2. By assigning linear penalties rj  on the constraint 

intersections, the optimizer in fact prioritizes between the two constraints: The constraint for CV1 

has sufficiently higher priority than the constraint for CV2, and the optimal solution will fulfill 

completely the constraint (and setpoint) for the absorber capture rate at steady-state, while at the 

same time a minimum violation of the duty constraint. In this way, the specified capture rate will 

always be obtained by the particular combination of MV1 and MV2 with the lowest use of energy. 

This is equivalent to obtaining the specified capture rate with minimum specific reboiler duty (SRD). 

Willersrud et al. (2013) discuss solutions for handling unreachable targets in order to obtain 

production optimization. Their case study deals with maximization of oil flow through an offshore oil 

and gas production plant, while at the same time respecting targets on critical plant variables like 

flowline and separator pressures.  

The disturbance vector v mainly contains the flue gas flow rate and the flue gas composition, in 

addition to variables like boundary pressures and temperatures. 

The controller sampling time is set equal to the model sampling time of 60 seconds. The objective 

function has a prediction horizon of 300 minutes (P=300). As indicated in Figure 2, the future MV 

moves are not changed every controller sample during optimization, in order to decrease the 

computational load of the NMPC. In the given configuration, the optimized MVs are fixed (blocked) 

during four intervals (M=4) through the prediction horizon, starting at future time samples 1, 15, 45 

and 90 minutes ahead. As the optimization is repeated every sample, the simplification introduced 

by the MV blocking is insignificant as long as the block lengths are selected according to the required 

closed loop responses. 

 

3. Results  
Five different controller tests were planned at both the Tiller and the TCM plant. The tests at the 

smaller Tiller pilot were scheduled ahead of the tests in the larger test facilities at TCM. Except for 

some operational differences between the two campaigns, the table below describes the main 

intentions of the common controller tests. 

 



Table 1: Controller tests at the Tiller and TCM plants. 

Controller 
test # 

Activity description Purpose 
Variable to be 

changed 
manually 

Set-point 
range 

Objective function 
for NMPC 

1 

Initial set-point 
changes of CO2 
capture rate 
without 
minimization of 
reboiler duty 

Observe manipulated 
variables (solvent flow-
rate and reboiler duty). 
Verify changes and 
response time. 

CO2 capture 
rate set point 

80 - 90% 

 

Keep CO2 capture 
rate at specified set-
point.  

2 
Determination of 
SRD at base case 
conditions 

Determine minimum 
SRD for constant base 
case conditions (gas 
flow rate and 
concentration). 

None None 

Keep CO2 capture 
rate at specific set-
point while 
minimizing reboiler 
duty 

3 
Set-point changes in 
CO2 capture rate 

Check that minimum 
SRD is achieved for each 
specific CO2 capture rate 

CO2 capture 
rate set point 

80 - 90% 

 

Keep CO2 capture 
rate at specific set-
point while 
minimizing reboiler 
duty 

4 
Changes in flue gas 
flow rate 

Check that specified CO2 
capture rate and 
minimum SRD is 
achieved for each flue 
gas flow rate 

Flue gas flow-
rate 

60 – 80% 
load 

Keep CO2 capture 
rate at specific set-
point while 
minimizing reboiler 
duty 

5 
Changes in flue gas 
CO2 concentration 

Check that specified CO2 
capture rate and 
minimum SRD is 
achieved for each CO2 
gas concentration 

Flue gas CO2 
inlet 
concentration 

3.5 - 13 
vol% 

Keep CO2 capture 
rate at specific set-
point while 
minimizing reboiler 
duty 

 

Controller test 1 is different from tests 2-5 in the sense that reboiler duty or SRD is not minimized in 

this case. The main intention of this initial test was to verify that the NMPC was able to reach the 

given setpoints of capture ratio. With reference to the configuration in section 2, this means that 

zero penalty is put on the constraint intersection for z2 or CV2. Thus, there is only one active CV, 

which is the capture ratio, but still two manipulated variables. Obviously, this configuration does not 

define a unique steady-state solution for the controller, independent of tuning. In fact, the steady-

state combination of the two manipulated variables will be a result of the tuning parameters of the 

dynamic optimization problem in equation (2). 

In the below sections, some selected results from both Tiller and TCM pilot plants are presented. All 

figures are screenshots from the CENIT NMPC software, showing the most important variables 

related to the control objective. The vertical line in each subplot represents present time, with the 

history trend on the left hand side and the predicted future to the right. See Figure 2 for 

comparisons. The screenshots are taken when the plant has settled to nearly steady-state 

conditions, and this gives rather constant predictions for all variables. 

 



3.1 Closed loop control on the Tiller plant 
Figure 7 shows some set-point changes from controller test 1 at the Tiller plant. As observed from 

Figure 7a and Figure 7b, both reboiler duty (MV1) and the liquid absorbent flow rate (MV2) change to 

obtain new setpoints of the capture ratio (CV1). The application is able to control the CO2 capture 

ratio to set-point as shown in the left figure on second row. Minimum SRD or minimum reboiler duty 

is not considered in this test. 

 

Figure 7: Controller test 1, Tiller: Changes in capture ratio setpoint. Curves to the left of the vertical line marking 
time 0 are historical values, while the predictions from CENIT are shown to the right. 

Figure 8 shows some results from controller test 5 at Tiller. The flue gas concentration of CO2 is in 

this case changed rapidly from 4.5% to 7.0%, approximately within two minutes. As observed from 

Figure 8a and Figure 8b, both reboiler duty (MV1) and the liquid absorbent flow rate (MV2) changes 

significantly in order to keep the capture ratio on the desired setpoint, which is set to 84% (left 

figure on second row). In this case, a more aggressive controller tuning could have led to less 

transient setpoint deviations for the capture ratio. 

Both CV1 and CV2 are active in this test (see table 1), so the final values of MV1 and MV2 is meant to 

be the combination of manipulated variable that gives the lowest value of SRD. 



 

Figure 8: Controller test 5, Tiller: Changes in flue gas composition from 4.5% to 7.0%. Curves to the left of the vertical 
line marking time 0 are historical values, while the predictions from CENIT are shown to the right. 

 

3.2 Closed loop control on the TCM plant 
Figure 9 shows some setpoint changes from controller test 1 at the TCM plant. As explained in 

section 2.4, MV1 is now the setpoint of the reboiler steam pressure, which indirectly controls the 

reboiler duty. As for the controller test 1 in the Tiller case, only CV1 is considered in the NMPC 

criterion. 



 

Figure 9: Controller test 1, TCM – setpoint changes in capture ratio. Curves to the left of the vertical line marking time 0 
are historical values, while the predictions from CENIT are shown to the right. The reboiler steam pressure input is given 
in barg (upper left graph). The mass flow of lean amine is given in kg/hours (upper right graph), the set-point changes 
(dashed line) and the resulting response (solid line) in capture rate is given in % (lower left graph), and the SRD is given 
in MJ/kg CO2 captured (lower right graph). 

The operators at TCM were told to make similar changes in capture ratio as the NMPC did. Figure 10 

shows the very first instance of manual control, in order to change the capture ratio from about 80% 

to 90%. This manual control is less precise than the automatic control shown in Figure 9. However, it 

should be emphasized that the operators learnt from test to test, and they were able to improve the 

manual operation in some of the subsequent tests. Notice also that the second MV (MV2) was never 

manipulated, and this was due to the consideration that multivariable manual control was too 

challenging. 



 

Figure 10: Example of manual control at TCM to changed capture ratio. Note that only MV1 was manipulated. Curves to 
the left of the vertical line marking time 0 are historical values, while the predictions from CENIT are shown to the right. 

Figure 11 shows the start of controller test 2. Before the manipulated variables start to change, a 

base case condition for the TCM plant with capture ratio of 85% was applied. In that particular base 

case, still a part of controller test 1, only CV1 is active in the NMPC optimization. The time where CV2 

is activated, approximately at time -7.3 h when MV2 starts reducing, defines the start of controller 

test 2. Large reductions in liquid absorbent flow rate are observed when the NMPC searches for 

minimum SRD. 

 

Figure 11: Controller test 2, TCM – changes in the direction of minimum SRD. Curves to the left of the vertical line 
marking time 0 are historical values, while the predictions from CENIT are shown to the right. 



The exact minimum is not localized, due to some model mismatch which is not completely 

accounted for through the model updating algorithm described in section 2.3. Because of the very 

steep left-hand side of the “U-curve”, as shown in Figure 12, a resulting solvent flow just slightly 

below the real optimum may increase the SRD significantly. In fact, for this specific TCM test, the 

optimal decrease in solvent flow should be from the nominal value of approximately 68000 kg/h to 

approximately 48000 kg/h, giving an SRD of about 3.65 MJ/kg CO2. The controller reduced the flow 

to approximately 44000 kg/h, which gave a final SRD close to 4.0 MJ/kg CO2. 

During further plant tests at TCM, an improvement of the minimum SRD control will be tested by 

using additional measurements in the online estimator algorithm (Figure 1 and section 2.3). Utilizing 

the measured lean and rich CO2 loading (densities), we can directly adjust the effect of changes in 

the solvent circulation rate to the CO2 capture ratio. 

 

Figure 12: Typical simulated “U-curve” for the TCM plant. This specific curve is valid for a capture ratio of 90% and a flue 

gas CO2 concentration of 4.28%. 

 

Figure 13 shows results of controller test 4. The flue gas rate is changed in two steps; from 47000 

Sm3/h to 41000 Sm3/h and later from 41000 Sm3/h to 35000 Sm3/h. Due to operational 

considerations, a setpoint change in capture ratio, from 85% to 90%, was implemented 

simultaneously with the second flue gas flow disturbance. As can be seen from Figure 13a and Figure 

13b, both MVs are reduced, but MV2 reaches its minimum operator specified value after the second 

change. 



 

Figure 13: Controller test 4, TCM – changes in flue gas rate. Curves to the left of the vertical line marking time 0 are 
historical values, while the predictions from CENIT are shown to the right.  

4. Discussion 
The NMPC application is in general able to provide a tight control of the CO2 capture rate at specified 

set-point both at Tiller and TCM. It is also able to adapt the process to set-point changes in CO2 

capture as was the goal for controller test 3 (see Table 1) in an efficient manner, and the stabilization 

time is typically less than 1 hour at both Tiller and TCM. For controller tests 4 and 5 with changes in 

flue gas flow input (flow rate and CO2 concentration, respectively) some deviation in CO2 capture 

set-point is typically observed in the transient phase just after the change is implemented, especially 

for large and/or rapid changes. This is observed in Figure 8 and Figure 13. However, the specified 

CO2 capture rate is always obtained towards the end of the transient period when the process is 

about to stabilize at new steady state conditions. The stabilization time is in this case up to 1 hour. 

Tuning is possible to obtain more aggressive controllers, reduce set-point off-set in transient periods 

and decrease stabilization time, however, a conservative approach was used here in the initial stage. 

High requirements to closed loop controller response time is highly dependent on the model quality 

in order to avoid possible overshoots and even controller instability..   

The main challenge in the optimization problem is localizing minimum reboiler duty. Hitting the u-
curve minimum with optimal solvent flow rate is crucial for localizing minimum SRD. Under-
estimated solvent flow rate is especially critical with the consequence of over-stripping the solvent.  
This has a large effect on SRD for even very small off-sets in solvent flow (refer to Figure 12, left side 
of SRD minimum). It is evident from the tests conducted at TCM that the application typically 
resulted in solvent over-stripping which led to suboptimal SRD.  Future work will involve 
software/model improvement to better fit optimal solvent flow rate to experimental results, 
especially focused on this range of the u-curve. A simple solution where a correction factor to the 
solvent flow rate was preliminary tested at TCM. The results showed that the SRD could be 
successfully reduced from about 4 MJ/kg CO2 to about 3.65 MJ/kg CO2 which is close to the 



expected minimum, only by adjusting the solvent flow +4000 kg/h (9%). An alternative strategy 
could be to utilize the difference between lean and rich loading for an additional model correction.  
In order to evaluate the potential of the NMPC application it should be compared to manual 
operation. However, making a fair comparison between automatic and manual operation is 
challenging. The operators at TCM were instructed to make similar changes in CO2 capture rate as in 
the tests with NMPC. It was however too challenging to optimize manually two manipulated 
variables at the time, thus only the steam pressure (reboiler duty) was manipulated manually. This 
means that the manual tests at TCM were conducted with one degree of freedom only. This fact 
alone supports use of advanced optimization tools. By comparing the results of manual and 
automatic control at TCM, it was observed that manual control in general was less precise than the 
automatic control. Manual control is also largely affected by the strategy of the individual operator 
on duty, which can lead to large variation in results. However, the operators were able to learn from 
test to test, and by looking at historic data they were able to improve the manual operation in some 
of the subsequent tests.  
 
The settling times after setpoint changes of the capture ratio are shown to be faster with the NMPC 
application compared to manual operation. An indication of this is shown in Figures 9 and 10. This is 
an important aspect for pilot plan operation where swift transitions from one operating point to 
another have large economic benefits.  Also when large flue gas flowrate disturbances occurs, the 
NMPC application is able to compensate the liquid flowrate faster with the use of minimum reboiler 
duty.  
 
Future work will involve 1) economic optimization in a two level approach (Real Time Optimization) 

and 2) use of intermediate storage tanks for flexible solvent regeneration. 

The two-level optimization routine will minimize energy costs during a 24 hour time horizon 

assuming varying energy prices. The first level will be similar to the approach described in the 

present work, while the second level will have a much longer prediction horizon and will optimize 

the average capture rate over the given time horizon under varying energy prices. Utilization of 

intermediate solvent storage tanks enabling flexible solvent regeneration according to variations in 

energy process will also be included in the future. 

5. Conclusions 
In the present work, an optimal control strategy based on nonlinear model predictive control is 

successfully developed and demonstrated in two different scale CO2 capture pilot plants. The NMPC 

application involves 2x2 control where the objective is to minimize reboiler duty while controlling 

the CO2 capture rate to specified set-point by manipulating the two controlled variables reboiler 

duty and solvent flow rate. The demonstration is fulfilled by completing a rather extensive test 

program (refer to Table 1) at the Tiller and TCM test facilities in order to validate the NMPC 

applications ability to control the reboiler duty to minimum while keeping the CO2 capture rate at 

specified set-points, but also rejecting disturbances or load changes in flue gas input. It is 

demonstrated that the NMPC applications are successfully able to keep the CO2 capture rate at 

specified set-point, while the minimization of reboiler duty still can be improved.  

In large scale facilities, this type of control system may reduce costs with respect to energy 

consumption and the number of operators. We have seen from the tests that application is able 

reduce the transient time period from one steady state to another, after changing operating 

conditions.  



Future work will focus on model improvement to better match the experimental u-curve at low lean 

loadings (low solvent flow rates). Future work will also include extension of the current NMPC 

application to a two-layer approach in order to enable optimization of energy cost assuming variable 

energy prices.  
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