
Andreas Møllerløkken 
 
 
 
Reduction of vascular bubbles: methods to prevent the adverse effects of decompression 
 
 
 
 
 
 
 
Norwegian University of Science and Technology 
2008 



Reduksjon av gassbobler i blodbanen: metoder for å forebygge ugunstige effekter av 
dekompresjon.  
 
Når en dykker returnerer til overflaten etter dykking, kan det dannes gassbobler i kroppen 
som følge av overmetning av gasser. Slike gassbobler kan igjen føre til trykkfallsyke, men det 
gjenstår fremdeles å finne alle mekanismene bak denne sammenhengen. Gassbobler er 
derimot gode indikatorer på risiko for trykkfallsyke, og den gjennomgående arbeidshypotesen 
i denne avhandlingen har vært at gassbobler i blodbanen er den bakenforliggende årsaken til 
alvorlig trykkfallsyke. Det å redusere mengden gassbobler vil dermed øke sikkerheten for 
dykkeren. 
 
Avhandlingen består av tre studier som på forskjellige måter forsøker å redusere 
boblemengden ved trykkreduksjon. Alle arbeidene er gjennomført med bruk av gris som 
forsøksdyr, og alle dykkene er simulert i trykk-kammer spesielt laget for slike studier. For å 
måle gassbobler har vi benyttet ultralydavbildning, samt at vi har tatt ut kar for å måle 
eventuelle funksjonelle endringer i disse i etterkant av dykkene.  
 
Den første studien demonstrer en ny metode for å redusere gassbobledannelsen ved 
dekompresjon. Ved kortvarig å øke trykket under pågående trykkreduksjon kan 
boblemengden signifikant reduseres, resultatene viser at en modell som tar hensyn til 
bobledannelse beskriver resultatene bedre enn en tradisjonell modell som bare tar hensyn til 
overmetningen. I den andre studien har vi for første gang vist at gassbobler i blodbanen kan 
påvirkes medikamentelt også hos store dyr under dekompresjon fra metning. Ved å gi nitrater 
umiddelbart før dekompresjonen startet, ble mengden gassbobler signifikant redusert 
sammenlignet med kontrollene som ikke fikk tilført nitrater. Studien åpner veien for videre 
studier av biokjemiske prosesser involvert i både dannelsen av og effektene av gassbobler. I 
den siste studien undersøkte vi om en behandlingsprosedyre for trykkfallsyke til bruk når et 
trykk-kammer ikke er tilgjengelig ville være effektiv om behandlingstrykket ble redusert fra 
190 kPa til 160 kPa med pusting av ren oksygen. Vi viste her at trykket var tilstrekkelig for å 
fjerne boblene etter dykket, men vi forhindret ikke skader på blodkarene.  
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ABBREVIATIONS AND DEFINITIONS 
 

ACh Acetylcholine 

ATA Atmosphere absolute 

BK Bradykinine 

CNS Central nervous system 

DCS Decompression sickness 

IWR In-water recompression 

kPa Kilopascal 

NO Nitric oxide 

SNP Sodium nitroprusside 

TEE Transesophaegal echocardiography 

 

Caisson work: Work in hyperbaric air atmosphere. 

  

Critical gradient: The largest difference in the surrounding pressure and internal pressure 

without formation of bubbles.  

 

Decompression: Refers to the process undertaken when moving from surroundings with 

higher pressures to surroundings with lower pressures.  

 

Saturation: In diving, this refers to the state where the body is at equilibrium where no more 

nitrogen can be absorbed, unless the partial pressure of the nitrogen in the breathing gas is 

increased. This form of diving is usually preferred when diving deeper than 50 meters of 

seawater.   

 

Supersaturation: In diving, this refers to a situation where the nitrogen pressure in the tissues 

exceeds the ambient pressure.  

 

Tissue tension: The level of any gas in a specific tissue.  
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INTRODUCTION 
 

Aims of the study 

 

The purpose of all decompression procedures is to prevent injury to the diver, and it is 

generally agreed that these injuries are caused by the formation of gas bubbles in the body. As 

gas bubbles are formed in nearly all decompressions, and the risk of developing 

decompression sickness (DCS) increases with the number of gas bubbles, the underlying 

hypothesis throughout this work has been that vascular gas bubbles are the main initiator of 

serious DCS. Hence, reducing the amount of gas bubbles will consequently increase the 

safety of the diver. The main objective was to:  

 

- Study the effect of changing decompression profiles on the amount of vascular gas 

bubbles 

- Study the effect of nitric oxide on bubble reduction in saturation decompression 

- Study the preventive effects of removing gas bubbles after a strenuous decompression 

by simulating in-water recompression with oxygen on functional changes caused by 

gas bubbles 

 

The activity of diving 

 

Diving is not only a worldwide popular leisure time activity, but also a professional activity 

both in several industries and in the military. Diving has distinct risks to health owing to its 

physical characteristics. Most health hazards in diving are the consequence of changes in gas 

volume and formation of gas bubbles due to reduction of ambient pressure during a diver’s 

ascent. Knowledge of the behaviour of any mixture of breathable gases under increased 

ambient pressure is crucial for safe diving and the understanding of the pathophysiology of 

compression or decompression related disorders.  

 

When diving, the ambient pressure increases with increasing depth underwater and the uptake 

of gas increases both with increasing depth and time at depth. Thus, to keep the lungs from 

collapsing, breathing gas must be supplied under high pressure. A diver breathing air is 

exposed to three different gases; nitrogen (N2), oxygen (O2) and carbon dioxide (CO2). Air 
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contains roughly 21% O2 and 79% N2.  While O2 is being metabolized, N2 is metabolically 

inert and is therefore not consumed. Any inert gas which is inspired under pressure will be 

absorbed, but each gas has different properties of solubility and diffusivity which will affect 

the uptake. The present thesis has focused on N2 as the inert gas. The exchange of dissolved 

inert gas between blood and tissue is controlled by blood flow and diffusion. Because of its 

inert nature, N2 remains dissolved until the N2 pressure in the lungs decreases, at which N2 is 

removed by the reverse respiratory process, a process which may take several hours [1]. 

Decompression procedures have been developed to prevent gas coming out of solution 

forming a gas phase, thus protecting the diver from developing gas bubbles upon surfacing. 

 

Decompression and bubbles  

 

Paul Bert demonstrated in 1887 that bubbles often were associated with symptoms of DCS 

[2]. The pathophysiology of DCS was studied throughout the latter part of the nineteenth 

century, but little work was done on how to prevent injury. Berts hypothesis that bubbles 

caused DCS was later central to Haldanes theory, and he argued that if bubbles could be 

avoided no DCS would occur [3]. Haldane observed caisson workers and discovered that they 

did not experience any symptoms of DCS after being decompressed from 2 ata (absolute 

atmosphere) to 1 ata. Based on his observation Haldane proposed that decompressions would 

be bubble free as long as the difference between the dissolved N2 tension in tissue and the 

absolute pressure, the supersaturation, did not exceed a critical value. We now know that 

bubble formation during decompression is not simply the consequence of inert gas 

supersaturation, as numerous experiments indicate that bubbles originate as pre-existing gas 

nuclei [4].  

 

A systematic study of the phenomena accompanying decompression is complex and difficult, 

as practical measurement methods to monitor the processes taking place in body tissue are 

lacking. Various mathematical models used to describe the decompression process reflect 

only a small part of the total phenomena [5]. However, the introduction of ultrasound, both 

Doppler and imaging, to detect vascular gas bubbles generated during and after a 

decompression, have made it possible to compare different decompression situations and 

models without the binominal endpoint DCS or no DCS. Bubbles detected in the vasculature 

do not necessarily lead to DCS, but their presence may be indicative of bubbles elsewhere in 

the body [6]. Gas bubbles, in the absence of clinical manifestations of DCS, have been 

 7



introduced as “silent bubbles”. However, incidents of DCS are generally accompanied by 

bubbles; hence, the risk of DCS appears to be increased [7] .  

 

Gas bubble formation 

 

If no dissolved gas is present, pure water will not form bubbles until the local pressure is 

reduced to about -1400 atm. This is known as de novo formation of bubbles and represents the 

tensile strength of water [8]. In a decompression situation, such pressure reduction is 

unrealistic, and in stead of de novo formation of bubbles one believes that the bubbles grow 

from some small, ever-existing nuclei containing gas [9].   

 

A bubble in a solution will grow or shrink by gas diffusion according to whether the solution 

is supersaturated or undersaturated. The internal pressure of a spherical gas bubble in a liquid 

depends on the bubble radius, the surface tension of the liquid and the external gas pressure as 

described by LaPlace’s law.  

 

Pbubble - pamb = 2γ/R + δ 

 

where Pbubble is the gas tension inside the bubble, pamb is the gas tension in the fluid 

surrounding the bubble, γ is the surface tension in the liquid-gas interface, R is the bubble 

radius and δ is additional deformation pressure opposing bubble expansion.  

 

It follows from the LaPlace equation that the pressure inside the bubbles is always greater 

than the surrounding pressure. The pressure difference, ∆P, results in an outward diffusion of 

gas, and the bubble will therefore shrink and finally dissolve. Surfactants in the liquid migrate 

to the bubble surface and reduce both γ and ∆P; thus stabilizing the bubble. The smaller the 

bubbles, the grater are their inner pressure. Thus, small bubbles dissolve more quickly then 

large bubbles.  

 

Gas embolism 

 

Intravascular gas bubbles occur in the venous system during most decompressions [10] [11], 

and are also known as vascular air embolism. Air embolisms are of great concern not only in 

activities involving decompression, but also in the operating room or other patient care 
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situations [12]. In the operation room, vascular air embolism is the entrainment of air (or 

exogenously delivered gas) from the operative field or other communication with the 

environment into the venous or arterial vasculature. There are two main categories of gas 

embolism, venous gas embolism (VGE) and arterial gas embolism (AGE). VGE and AGE 

are distinguished by different mechanism of gas entry and site where the emboli ultimately 

may lodge.  

 

Venous gas embolism 

 

Venous air embolism is the most frequent form of VGE, and may occur when gas enters the 

venous system [13]. The gas, if not trapped, will be transported along the venous system and 

enter the pulmonary arteries. The first microvessels encountered by venous bubbles are the 

pulmonary capillaries, and it has been demonstrated in vivo that bubbles, generated by 

decompression or being directly infused to the venous circulation, become trapped here [14]. 

Venous gas bubbles may also develop following laproscopy, by accidental injection or in 

cardiopulmonary bypass surgery [15] [16] [17]. Also, neurosurgery in the sitting position 

seem to predispose for VGE [18].  

  

Arterial gas embolism 

 

There are several possible pathways by which gas bubbles can enter the arterial circulation. 

The lung is considered to be a good filter for gas bubbles, but the lung may be damaged, 

resulting in bubbles travelling through the pulmonary vein and the left atrium. Gas bubbles 

may break through the lung filter if the lung is overloaded with gas [19] and enter the arterial 

circulation. In addition, venous gas bubbles may pass through a patent foramen ovale (PFO) 

or other extraordinary connections in the heart to reach the arterial circulation. The Foramen 

Ovale is functionally closed in the majority of the population, but it has been shown to be 

patent after foetal life in approximately 30% of humans [20]. The lung can also become 

overinflated during a rapid ascent, and in this case gas may escape directly into the pulmonary 

veins after alveolar rupture [21]. Arterial gas bubbles have been detected in divers after 

excursions [10], during decompression from saturation dives [22] and at autopsy after fatal 

accidents [23]. Arterial gas bubbles have also been observed in large animals during and after 

decompression [19] [24], and arterial shunting has been shown during exercise [25].  

 

 9



The pathophysiology of gas bubbles 

 

The sympthomatology of DCS is heterogeneous and not entirely explained by a mechanically 

mechanism. Distal symptoms are frequently seen, but several central organ systems, including 

the central nervous system (CNS) and the respiratory system, may be affected as well. It is 

quite possible that the pathogenesis of DCS, at least in part, may be of an inflammatory origin 

as there is a great  interindividual susceptibility to decompression trauma and furthermore, 

repetitive dives have resulted in greater tolerance to  DCS due to acclimatization [26] [27] 

[28] [29]. Bubbles may further evoke a tissue response with activation of platelets, the 

coagulation cascade [30] [31] [32], and complement [27].  

 

The pathological effects of bubbles may cause a mechanical disruption of the tissue 

concerned, for example the endothelium [33], with compression of non-compliant tissue or 

blood vessels and lymphatics, or from simply obstructing blood vessels.  

Signs and symptoms of DCS differ with the pressure profile and the breathing gas. 

Neurological symptoms are most common after short deep dives or altitude exposures with 

little or no preoxygenation. It is generally assumed that localized gas bubbles are responsible 

for all DCS incidents in the CNS. However, Wilmshurst and Bryson [34] showed that a large 

PFO can be found in about 50% of divers having central nervous symptoms. They have also 

observed that large shunts correlate well with spinal cord DCS. Wilmshurst [35] demonstrated 

further that there is a relationship between right-to-left shunts and cutaneous DCS, which 

often is associated with more serious DCS involving the CNS and the lung [36] [37]. Gas 

bubbles can cause changes in barrier permeability even in the absence of clinical 

manifestations of DCS. Breakdown of the blood-brain-barrier (BBB) and blood-lung-barrier 

(BLB) may allow proteins and leukocytes to move into the extra vascular brain tissue, with 

subsequent formation of oedema [38] [39] [40]. Leukocytes have been implicated in the 

progressive fall in cerebral blood flow and decreased cerebral function in animal models of 

gas embolism [41] [42]. Various plasma proteins including the coagulation system, 

complement and kinins are also activated by bubbles [43] [44].  

 

While bubbles in the venous system can explain pulmonary symptoms of DCS, there are other 

manifestations of DCS that can only be explained by bubble formation within the tissue 

themselves [45]. Extravascular bubbles may form in tissue that is aqueous or lipid, and except 

for extreme decompression, bubbles are seldom observed in heart, liver and skeletal muscle 
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[46]. Daniels [47] reported that the earliest bubbles detected were intravascular, but that 

substantial accumulation of stationary bubbles would occur before any signs of DCS. In the 

periphery of the body, small intravascular bubbles may grow into sufficient size to occlude 

small vessels and as such give rise to stationary intravascular bubbles. Blocking of the 

microcirculation causes not only tissue ischemia but also retards the elimination of dissolved 

gas and so produces local areas with gas tensions higher than the surrounding tissue [48]. 

Once formed, extravascular bubbles persist for long periods of time. Evidence of persistent 

gas bubbles up to two days after the original decompression has been shown [48].  

 

Endothelium 

 

The endothelium plays a key role in the short- and long-term regulation of the cardiovascular 

system and is the source of many factors that influence blood flow, blood coagulation as well 

as angiogenesis [49]. The vascular endothelium consists of a monolayer of cells lining the 

luminal surface of all blood vessels in the body (figure 1). The endothelium functions by 

sensing various physiologic stimuli and triggering release of multiple vasoactive substances, 

including nitric oxide (NO). Such physiologic stimuli can be both substances present in the 

blood or the shear stress associated with the blood flow. A large number of vasoactive 

substances are produced and secreted from endothelial cells to act on the underlying vascular 

smooth muscle cells. The balance between dilating and contracting factors is critical for 

maintaining vascular homeostasis [50].  
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Figure 1. The structure of the blood vessel wall with the three layers intima, media and adventitia. The figure is 

reproduced in agreement to conditions given by Stijn A. I. Ghesquiere, http://creativecommons.org/licenses/by-

sa/2.5/.  

 

The essential role of the endothelium in vasodilatation was found by coincidence by 

Furchgott and Zawadzki [51]. They discovered when rubbing the intimal surface of a rabbit 

aorta the vasodilating effect of Acetylcholine (ACh) decreased compared to unrubbed strips 

of aorta. But, the rubbing had no effect on the vasoconstricting agents, and rubbing of the 

adventitial surface of the strip had no effect on the response to ACh, suggesting the response 

observed was selectively endotheliumderived involving vasodilation of vascular smooth 

muscle cells.  

 

During resting conditions, the endothelial cells lining the blood vessels is a relatively inert 

surface that regulates and secures unhindered flow of cellular elements through the capillary 

beds. In response to an inflammatory signal initiated by bubbles, endothelial cells may be 

converted from an inactivated to an activated state resulting in cellular functional changes. 

These changes may in turn “un-stabilise” pre-existing nuclei and make them grow into 

bubbles. Activation of the endothelium generates endothelial microparticles (EMP), which are 
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fragments of activated endothelial cells. These may in turn reduce the endothelial function, 

possibly by increasing expression of the endothelial adhesion molecules such as vascular cell 

adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1) and E-selectin, 

and by influencing NO production [52] [53]. Following a decompression, this activation could 

be caused by endothelial damage from gas bubbles. The pathway is not exclusive for 

decompression-related bubbles, as endothelial activation has been observed in a number of 

cardiovascular diseases and from using heart-lung-machines [54]. In endothelial dysfunction, 

ACh fails to induce normal relaxation, and may in fact induce a paradoxical vasoconstriction 

by binding of cholinergic receptors on the smooth muscle cell surface. Thus, endothelial 

function is linked to cardiovascular health.  

 

Nitric oxide 

 

When stimulated by substances present in the blood, or by shear stress associated with blood-

flow, endothelial cells can release both constricting and dilating substances. NO is the most 

important vasodilator released by endothelial cells [55]. The function of the endothelium has 

been a major research area in the modern understanding of the circulatory system ever since 

the identification of endothelium-derived relaxing factor, which is a key mediator of 

vasodilation, was identified as NO. NO is a small uncharged radical compound produced by 

oxidation of the terminal guanidino nitrogen of the amino acid L-arginine (figure 2).  The 

process is catalyzed by the constitutive endothelial isoform of NO synthase (eNOS), after 

stimulation by ACh binding to muscarinic receptors. Then, NO enters the smooth muscle cells 

and initiates the signal cascade that ultimately decreases Ca2+ and induces vasorelaxation. 

Besides ACh, shear stress, bradykinin (BK), adenosine tri-phosphate (ATP), ischemia and a 

large number of extra-and intracellular factors may also mediate NO production [56]. 

Inorganic nitrates, such as sodium nitroprusside (SNP), can activate the same effector 

pathway by providing an inorganic source of NO. Their activity is thus not dependent on the 

functional integrity of the vascular endothelium.  
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Figure 2. The nitric oxide signalling pathway. BH4 = tetrahydrobiopterin; Ca++ = calcium ion; cGMP = cyclic 

guanosine monophosphate; eNOS = endothelial nitric oxide synthase; GC = guanylate cyclise; GTP = guanosine 

triphosphate; NADPH = reduced nicotinamide-adenine dinucleotide phosphate; NO = nitric oxide. Figure 

modified from [57].  

 

Once released from the endothelium, NO diffuses through the vascular wall and into the 

smooth muscle cells, where it activates the cytosolic enzyme guanyl cyclase. This enzyme 

activation increases levels of cellular cyclic GMP, which causes relaxation of the vessel wall. 

NO is quite reactive and is broken down within few seconds; thus it has a strictly local effect. 

Higher levels of NO in the smooth muscle cell induce relaxation and are an important cause 

of improved endothelial function after exercise training [58]. Decreased bioavailability of NO 

is characteristic for endothelial dysfunction, and contribute to hypertension, atherogenesis, 

and the progression of cardiovascular disease.  
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Prevention of decompression injury 

 

To protect the diver from a critical level of supersaturation, different decompression tables 

have been evolved. The first decompression table was developed by Haldane in 1908, and all 

common decompression schedules in use since have been based on the model that the body 

could tolerate a two-to-one reduction in ambient pressure without symptoms [59]. In animals, 

a fast decompression rate has been demonstrated to be a determining factor for DCS [60] [61]. 

 

Other methods to prevent injury to the diver, besides the development of decompression 

tables, have involved O2 before exposure [62], exercise before exposure [63] [64] [65] [66], 

medication in fluid balance and surface tension [67] [68] and use of drugs before exposure 

[69] [70]. After a single bout of high-intensity aerobic exercise 20 h before a dive bubble 

formation was suppressed preventing death in rats. The beneficial effect was explained by the 

possibility that there was an increase in vascular endothelial NO bioavailability after the 

exercise. However, it has been shown that bubble production is increased by NO blockage in 

sedentary but not in exercised rats, indicating that the exercise effect may be mediated by 

other factors than NO [69]. Our laboratory have previously shown that even low bubble loads 

lead to endothelial dysfunction [14], and have shown the relationship between exercise and 

endothelial function [58]. Exercise is also one of the treatments recommended for chronic 

endothelial dysfunction, which indicates further the importance of physically fitness in diving. 

As younger, slimmer, or aerobically fitter divers has been shown to produce less bubbles 

compared with older, fatter, or poorly physically fit divers [71], the idea of personalization of 

decompression tables and computers has evolved. As Moon et al.[72] wrote: “the probabilistic 

models on which tables and computers are based should reflect the individual reality of the 

divers, to enable them to conduct their dives in accordance with their individual 

characteristics”.  

 

Heat shock proteins (HSP) is present in most cells, and play a key role in normal cellular 

homeostasis and cell protection from damage in response to stress-stimuli. Endurance 

exercise is an example of a stressor which increases the expression of HSP70 [73]. Increased 

expression of HSP70 and following protection of rats from air embolism-induced lung injury 

has been found with heat shock pre-treatment before diving [74]. Thus, exercise-induced 

HSP70 production seems to affect the bubble formation after diving with a different 

mechanism than the NO pathway [63].  
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Biochemical agents are also of interest with regards to reactive oxygen and nitrogen species 

(ROS and NOS). Oxidative stress in the vessel wall is associated with the generation of 

ROS/NOS by several oxidases. ROS reduces the local NO by hyperoxic vasoconstriction and 

impairment of NO dependent vasodilatation [75]. A variety of antioxidants have proved to be 

protective on the pulmonary endothelial function after a cardiopulmonary bypass [76] and on 

acute endothelial dysfunction after diving [77] .   

 

Another attractive candidate has been the use of fluorocarbons. These compounds are  

characterized by a high gas dissolving capacity (O2, CO2, inert gas), low viscosity and 

chemical and biological inertness [78]. The O2 solubility of fluorocarbons is 20 to 25 times 

greater than that of blood plasma [79]. Thus, intravenous administration of these agents may 

increase tissue O2 delivery. Also, because of higher diffusion gradients, the effect of the 

fluorocarbons upon bubbles would be a reduction in bubble size. Reduced mortality in gas 

embolism [80] reduced brain infarct size [81] and improved cardiovascular function after air 

embolization [82] have been found in animals, but the efficiency of perfluorocarbons in 

humans is still to be proved [83].  

 

Treatment of DCS in remote areas 

 

The first described treatment of decompression sickness was by Pol and Wattelle in 1841. 

They observed that caisson workers were relieved by symptoms if they were re-enterd into the 

high-pressure environment. But it was not until 1924 in the US Navy Diving Manual that 

recompression treatment was recommended for divers [83]. Several years later the use of O2 

under pressure became recognized. Today, there are different treatment tables depending on 

the severity of the decompression accident, ranging from tables to use when one 

suspects/diagnose arterial gas embolism, to treatment-tables for saturation accidents. All these 

treatments require a hyperbaric chamber. But, in situations where several hours will elapse 

before the diver(s) can be brought to a recompression facility, treatment of DCS still remains 

a significant problem. A large number of the divers treated have significant sequelae with 

signs and symptoms from the CNS [84] [45]. 

 

Today much recreational diving takes place at remote locations where transportation of an 

injured diver to a recompression chamber might take several hours. Although there are 

arguments whether the time to treatment is of importance or not [85] [86] [87] [88], it appears 
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that with longer delays (6 h or more), further delay does not affect the outcome of the 

treatment significantly [86]. Thus, to achieve the best possible outcome the diver should be 

treated promptly, and longer delay than a few hours should in any case not be allowed. In 

view of this development there has been renewed interest regarding in-water recompression 

treatments.  
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METHODS 
 

Animal research guidelines 

 

All experimental procedures conformed to the European Convention for the Protection of 

Vertebrate Animals Used for Experimental and other Scientific Purposes, and all protocols 

were approved by the Norwegian Council for Animal Research.  

 

The animals 

 

In the present studies, pigs (Sus scrofa) were used as experimental animals. The choice of 

animal model was based on the experimental expertise in the Baromedical and Environmetal 

Physiology group, which have established and used this model in several previous studies 

[89], [33], [61], [19], [90], [91].   

 

In paper II male pigs of the strain Norwegian Landrace (Sus scrofa domestica) were used. In 

paper I and III both sexes of a more common bred pig called hybrid were the choice of 

experimental animal. All pigs weighed between 18 and 22 kg when arriving at the housing 

facilities at St Olavs Hospital in Trondheim, and were 8–12 weeks old. The pigs were 

acclimatized for one week before start of any of the experiments and were under the 

supervision of a veterinarian. They received a pellet diet once a day and had free access to 

water.  

 

Surgery 

 

Before the experiments in all of the three papers, the animals were fasted for 16 h with free 

access to water. On the day of the experiment, they received premedication with 10 ml 

Stresnil (Azaperon, Janssen-Cilag Pharma, Wien) and 2 ml Stesolid (Diazepam 5 mg · kg-1, 

Dumex-Alpharma AS, Copenhagen) i.m. After 20 min, atropinesulfate (Atropin, 1 mg i.v.; 

Nycomed Pharma) was given via an ear vein. Anaesthesia was induced by thiopental sodium 

(5 mg · kg-1 Pentothal Natrium, Abbott Scandinavia) and ketamine (20 mg · kg-1 Ketalar; 

Pfizer). The anaesthesia was maintained by a continuous i.v. infusion of ketamine in 0.9% 

NaCl (30 mg · kg-1 · h-1) together with bolus doses of α-chloralose in 0.9% NaCl (10-15 mg · 
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kg-1 injected i.v.; 0.25% solution). A tracheotomy was performed to allow the pigs to breathe 

spontaneously through an endotracheal tube. Throughout the experiments, the pigs were in a 

supine position. The depth of anaesthesia was maintained at an even level, as judged by 

clinical observation and the various measured physiological variables as outlined in each of 

the papers.  

 

In all three papers, polyethylene catheters were introduced both in the left jugular vein and in 

the abdominal aorta through the right femoral artery for obtaining blood samples and blood 

gas measurements. One of the catheters in the abdominal aorta was dedicated for arterial 

blood pressure measurements. Catheters were also positioned in the right atrium via the right 

jugular vein for measurements of central venous pressure (all three papers) and administration 

of NO or saline (paper II) 

 

Deep body temperature was measured continuously throughout the experiments by a rectal 

thermometer in all three papers, and was adjusted through regulation of the chamber 

temperature by a coil of circulating warm water. Body temperature was kept between 38 and 

39 oC.   

 

The animals were then treated as thoroughly outlined in each of the papers.  

 

Hyperbaric chamber 

 

A dry hyperbaric chamber was used in each of the three studies to simulate the different dives 

and decompressions being performed. The hyperbaric chamber and its instrumentation is 

shown in figure 3. The chamber has a volume of 300 L, and is pressurized with air. Inside the 

chamber the pig breaths spontaneously using a closed system isolated from the air used to 

increase the pressure. The different pressure profiles and breathing gases are described in 

more detail in the papers.  

 19



 
Figure 3. Schematic figure of the pressure chamber and its subsystems. TEE-probe, transesophaegal 

echocardiographic probe.  

 

Bubble detection 

 

A 5.0 MHz transesophageal echocardiographic transducer was inserted in the esophagus and 

positioned to obtain a simultaneous two-dimensional view of the pulmonary artery and the 

aorta. The transducer was connected to an ultrasonic scanner (CFM 750; Vingmed Sound, 

Horten, Norway), and data was continuously transferred to a Macintosh computer which 

analysed the amount of bubbles detected in the pulmonary artery. From the images, the 

amount of bubbles in the right ventricular outflow tract is given as number of bubbles per 

square centimetre (bubbles · cm-2) as described by Eftedal & Brubakk [92]. Simultaneous to 

the automatic counting system by the computer, the amount of bubbles seen in the pulmonary 

artery was graded on a scale between 0 and 5 according to a grading scale given the following 

definition: 0 = no bubbles; 1 = an occational bubble; 2 = at least one bubble every 4th 

heartcycle; 3 = at least 1 bubble in each heart cycle; 4 = continous bubbling, at least one 

bubble/cm2 in all frames; 5 = bubbles causing frequent distortion of image (“white-out”) [93].   
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Blood gas measurements 

 

Both arterial and venous blood was sampled during each experiment. In paper I and II the 

blood samples were analyzed on an ABL 330 blood gas analyzer (Radiometer, Copenhagen, 

Denmark). In paper III the blood samples were analysed on an ABL 700 blood gas analyzer 

(Bergman Diagnostika, Lillestrøm, Norway).  

 

Endothelial tension measurements 

 

An isolated organ bath model was used to study the local pharmacological mechanisms and 

signalling pathways in isolated vessels and allows the exclusion of any influence from higher 

regulatory systems. The equipment for the tension measurements were identical to the system 

previously developed and described [94]. Two Vessel Tension Measuring Instruments, each 

containing four channels with four separate buffer containers, were connected in series. A 

total of eight vessel segments could therefore be tested at the same time.  

 

The pulmonary artery from the right lung and the right carotid artery were carefully dissected 

and stored in oxygenated (5% CO2; 95% O2) sodium-Krebs buffer solution for a maximum of 

24 h. The vessels were cut into cylindrical segments and mounted in the isolated organ bath. 

The contractile capacity of each vessel segment was examined by exposure to a potassium-

rich K-krebs buffer solution.  

 

Norepinephrine in cumulative doses was used to precontract the segments until they had 

reached a stable level. The relaxation response was tested with cumulative doses of ACh (10-9 

– 10-4M) and BK (10-11- 10-6 M) and the response was depending on the degree of damage to 

the endothelial layer. The relaxation response IMAX is defined as the maximal dilatory 

response induced by an agonist expressed as a percentage of the precontraction induced by a 

precontracting agent. TMAX is defined as the maximum level of stabilised relaxation response. 

In addition, -pED50 is defined as the concentration of the agonist that leads to 50% of the 

relaxation response (IMAX or TMAX). The functionality of the vascular smooth muscle cells was 

tested with SNP, which are endothelial independent. The vessels that did not respond had a 

functional failure in the vascular smooth muscle cells, and these segments were rejected.  

 

Tension measurements were performed in paper III, and are described in further detail there.  
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Statistics 

 

All statistical analyses were performed using SPSS 13.0.  In paper I, II and III a student t-test 

for independent samples was used to compare the number of bubbles during the observation 

period. In paper II Mann-Whitney U test was used to evaluate differences in the blood-gases, 

and in paper III the Mann-Whitney U test was used to evaluate the tension data. The choice of 

a non-parametric test was based on the low number of experimental animals.  

 

All data in the three papers have been presented as mean with standard deviation as outlined 

in each of the three papers. The level of significance was set to P<0.05.  
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 SUMMARY OF PAPERS 
 

Paper I 

 

Møllerløkken A, Gutvik C, Berge VJ, Jørgensen A, Løset A, Brubakk AO. Recompression 

during decompression and effects on bubble formation in the pig. Aviat Space Environ Med 

78(6): 557-560, 2007. 

 

A modified USN standard air dive profile and a dive profile which had a 5 min recompression 

of 50 kPa at the end of each of the three last decompression stops before ascending to the next 

stop depth was compared with regard to bubble formation during and after decompression. 

Bubbles were detected with an ultrasonic transducer, and counted by an automated 

programme. All animals which underwent the modified USN standard air dive profile 

developed bubbles, whereas only one animal in the recompressed group had detectable 

bubbles. The results can not be explained by any traditional supersaturation based model of 

decompression, since they would have predicted the opposite result. In stead, we suggest that 

a gas-phase model of decompression would be more suitable for describing our findings.  

 

Paper II 

 

Møllerløkken A, Berge VJ, Jørgensen A, Wisløff U and Brubakk AO. Effect of a short-acting 

NO donor on bubble formation from a saturation dive in pigs. J Appl Physiol 101: 1541-1545, 

2006.  

 

Our laboratory has previously shown that NO is involved in the protection against vascular 

gas bubble formation. In this paper we investigated the effect of a short acting NO donor 

given immediately before start of decompression from saturation on vascular gas bubble 

formation in pigs. This study was the first to use large animals to demonstrate the protective 

effects of nitrates with regard to decompression effects. The bubbles were detected by the 

means of ultrasound, and counted continuously by an automated computer programme. 

Significant decrease in the amount of vascular gas bubbles were found in the pigs receiving 

NO immediately before decompression started compared with a control group. No significant 

differences were found in blood pressure, although a higher heart rate was observed in the 

 23



experimental group. The study clearly demonstrates that NO is exceptionally effective in 

reducing bubble formation also from saturation. 

 

Paper III 

 

Møllerløkken A, Nossum V, Hovin W, Gennser M, Brubakk AO. Recompression with 

oxygen to160 kPa eliminates vascular gas bubbles, but does not prevent endothelial damage. 

Europ J Underwater Hyperbaric Med 8(1&2): 11–16, 2007. 

 

The effect on bubble formation of recompression to 160 kPa with oxygen 60 min after a 

strenuous dive was investigated in this study. The study was initiated in order to use our 

knowledge of bubble-detection and investigate the possibilities for remote diving sites to 

perform simple first aid if the proper treatment facilities are too far away, and to do so with as 

little risk for oxygen seizures as possible.  60 min after the dive, the experimental group were 

recompressed to 160 kPa breathing oxygen for additional 60 min, while the control group 

remained at the surface breathing air. The recompression did remove the vascular gas bubbles, 

but did not prevent an impaired endothelial response. We speculate that the 60 min before 

initiating treatment is too long to avoid bubble induced damage to the endothelium.  
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RESULTS AND DISCUSSION 
 

Reduction of vascular bubbles was achieved by short recompressions at the end of the 

standard decompression stops from an air dive in pigs, indicating that a gas phase model 

describes most accurately the decompression process (Paper I). Further, injection of a short 

acting NO donor 30 min before start of decompression from a sub-saturation dive was found 

to give a significant reduction of vascular gas bubbles detected in the right ventricular outflow 

tract in pigs (Paper II). In paper III the effectiveness of a simulated in-water recompression to 

160 kPa with oxygen showed rapid removal of vascular gas bubbles detected after the dive, 

but did not prevent an impaired endothelial response.  

 

Gas bubbles and validation of decompression procedures 

 

One of the main problems related to the development of new and improved decompression 

procedures and the validation of decompression profiles, is the large variability between 

individuals, both in DCS incidence and bubble formation. Even in animal experiments, where 

physiological variables are tightly controlled, there is a considerable and significant difference 

in response between individuals. The same dive can produce few or many bubbles, and the 

response to bubbles differ as well. Further, studies have shown that numerous professional 

divers have suffered DCS in spite of using accepted procedures. These studies concluded that 

there probably is a considerable underreporting of clinical symptoms related to 

decompression [95] [96]. 

 

A workshop in 1989 at Undersea and Hyperbaric Medicine Society (UHMS)[97] addressed 

the validation of decompression procedures. They concluded that procedures should be 

validated primarily by extensive, dedicated laboratory testing before putting into the field for 

“operational evaluation”. Based on the assumption that procedures that give no symptoms of 

DCS will have no effect upon the health of the individual, and that if mild DCS can be 

prevented, than more serious changes will not be found [93].  The endpoint for testing has 

been the occurrence of DCS or not.  

 

Modern decompression procedures have a low incidence of clinical DCS; around 0,3-1%. 

Proving the safety of the dives using DCS as an endpoint with a reasonable degree of 
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confidence will require many more dives than are normally feasible. With the binominal 

distribution more than 300 exposures on the same procedure with no incidents are needed to 

confirm a DCS risk below 1% with a 95% confidence interval. For recreational diving, the 

incidence should be considerably lower than this, requiring even more testing before the 

procedure can be put into practical use. Also, the diagnosis of DCS can be quite subjective. 

Using circulating gas bubbles as an indicator for the safety of the dive provides more 

information than DCS itself in assisting the severity of a dive profile. Hence, the main reason 

for detecting vascular gas bubbles is to obtain comparative information, post-dive, to assist in 

determining whether or not a table or profile is safe or hazardous by determining the quantity 

and duration of bubbles resulting from that profile [6]. Recent work by Eftedal et al.[98] 

combines the information obtained from the detection of vascular gas bubbles with previous 

knowledge and assumptions, and points the way for validating decompression procedures by 

using smaller sample sizes then one have been obliged to do historically.  

 

The influence of gas bubbles on decompression models 

 

Different decompression models all seek to give the best control of bubble growth, but 

present decompression theory appears seriously deficient in its treatment of gas exchange and 

bubble growth. Hence, decompression models that incorporate even the most advanced of 

these treatments remain incomplete. When used to prescribe decompression procedures, they 

all allow some degree of bubble formation in order to reach an acceptable balance between 

productive bottom time, decompression obligation and risk of DCS. But they inevitably focus 

on the control of gas supersaturation and bubble formation per se, and fail to consider the 

effect of bubbles after they have diminished or resolved.  

 

Haldane put up a ratio of supersaturation which could be tolerated without bubble formation 

after ascent to the surface or the next decompression stop, and divided the body into five 

different tissues with distinct properties for gas elimination [2]. Being multi-tissue-models, 

Haldane models rely on inert gas remaining dissolved in the blood and the body tissues during 

decompression. The typical staged decompression profile produced by a Haldanian model 

utilizes relatively shallow stops in order to maximize the off-gassing gradient for the 

presumably dissolved inert gas, and do not take into account any free phase of gas; that is, do 

not account for the effect of bubbles. It has been shown that elimination of nitrogen from a 

bubble is slower than the elimination of nitrogen dissolved in the tissue [99] [2].  
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Bubble models are designed to cater for free-phase gas as well as dissolved gas. In stead of 

maximum tensions that Haldanian models use, bubble models use critical gradients to 

minimize the bubble growth by keeping the tension of inert gas within the bubbles equal to, or 

higher than, the tissue tension. In this way, inert gas will diffuse out from, rather than into, the 

bubbles. The bubble size will hence be reduced. The most efficient elimination of free-phase 

gas is at greater ambient pressures as this is where the internal pressures of the bubbles are 

highest and, hence, the driving force of gas from the bubble is greatest. By utilizing slow 

ascent rates and deeper decompression stops, bubble models aim to eliminate or minimize any 

differences in ambient pressure and total tissue tension (supersaturation) and thereby control 

the volume of free-phase gas within the body.  

 

There are two mechanisms which affects the exchange of inert and metabolic gas between 

tissue and blood, and that is perfusion and diffusion. Perfusion denotes the blood flow rate in 

simplest terms, while diffusion refers to the gas penetration rate in tissue, or across tissue-

blood boundaries. Each mechanism has a characteristic rate constant for the process. The 

smallest rate constant limits the gas exchange process. In the past, model distinction was 

made on the basis of perfusion or diffusion limited gas exchange. Supersaturation is usually 

regarded as the driving force leading to gas leaving solution and forming bubbles [4], and the 

rate of growth of these bubbles will be influenced by their initial size. According to the 

LaPlace equation, the gas tension inside a bubble is inversely proportional to bubble size. 

That is, if the gas tensions in the fluid (e.g. blood) exceed the gas tension inside the bubble, 

the bubble will grow. Thus, the larger the bubble, the larger the gradient for bubble growth 

and consequently the smaller the gradient for bubble decay. Paper I shows that having a 

model taking both bubble size reduction and surface tension into account might explain how a 

recompression phase during the decompression would decrease the number of detectable 

vascular gas bubbles. During a recompression, the bubble size will be reduced, and inert gas 

tension starts to increase with the consequence that gas will diffuse out of the bubble. Gas 

diffusing out of the bubble will increase gas tension in the tissue, which again reduces the 

uptake of gas. Furthermore, as gas tension in the tissues is low because of the effect of 

bubbles [100], an increase in gas tension will increase the elimination of gas. Hence, even if 

bubbles increase in size on subsequent ascent, they will do so at a slower rate and from a 

smaller size than before. 
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Decompression is a trade-off between dissolved gas build-up and free phase growth, and the 

goal of decompression theory is to prevent or control the incidence of DCS, keeping 

incidence and severity within acceptable limits. One has to incorporate both in order to have a 

decompression theory which can reflect the many processes taking place in the organism 

when experiencing changes in the ambient pressure.  

 

Vascular gas bubbles, NO and endothelial function 

 

NO is produced by endothelial cells as a response to an increase in shear stress caused by 

increased blood flow [101], and is the most important vasodilator released by endothelial cells 

[55]. Once released from the endothelium, NO diffuses through the vascular wall and into the 

smooth muscle cells, where it activates the cytosolic enzyme guanyl cyclase. This enzyme 

activation increases levels of cellular cyclic GMP, which causes relaxation of the vessel wall. 

In a previous study in rats, our laboratory demonstrated that NO given immediately before a 

45 min air dive effectively reduced bubble formation [70]. Due to the fact that NO reduces 

venous tone through a reduction of the preload and hence reduces cardiac output [102] [103], 

part of the effect on bubble formation could have been caused by a reduction in gas uptake. In 

paper II we found a similar positive effect on bubble reduction by NO in a saturation dive, 

which makes the hypothesis of reduced bubble formation by reduced gas uptake less likely.  

 

It is well established that an increase in venous blood flow caused by muscle contraction 

decrease the number of bubbles observed in the venous outflow tract after a dive [104] [105] 

[64].  During diving, tissues will equilibrate with the breathing gas. With an increased blood 

flow, this balance will be achieved more rapidly. A more rapid change in the relationship 

between the breathing gas and the dissolved gas pressure due to an increased blood flow in 

the tissues during decompression could minimize the possible gas bubble formation [105]. An 

alternative explanation on the effect of NO is hence that inert gas washout can be facilitated 

by an increase in venous blood flow. The effect of NO and exercise on vascular gas bubbles 

has also been observed in humans [106] [64]. 

 

The inhibitory effect of NO on bubble formation is not a new finding. Previous animal 

experimental work has been conducted with smaller rodents and explosion-like 

decompressions. Paper II showed two new, unreported findings, the positive effect on larger 

animals, and that NO reduced the amount of vascular gas bubbles in saturation 
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decompression. It is not possible to determine from paper II if an increase in blood flow 

leading to an improved wash-out of nitrogen or changes in endothelial properties that remove 

bubble nuclei are responsible for the reduction in bubble formation; both effects may be of 

importance. Regardless of mechanism, NO seems to be exceptionally efficient in reducing 

bubble formation.  

 

Bubbles are extremely stable on hydrophobic surfaces [107]. Thus, lipid rich micro-domains 

on the surface of the endothelium may have a particular propensity for formation and/or stable 

attachment of bubble nuclei. Invaginations in the vascular wall have been suggested to 

represent such a stabilizing mechanism for bubbles [108]. Brubakk [109] has postulated that 

hydrophobic sites can exist on the surface of the endothelium in the form of caveolae. This 

indicates that the caveolae are attractive sites for the formation of bubble nuclei, since 

reduction in surface tension of hydrophobic membranes have been shown to increase the 

number of stable nuclei [110]. Caveolae are also the location for NO production, further 

supporting the attractiveness of this specific location for bubble formation. It has been 

speculated that NO can reduce the hydrophobicity of the endothelial wall, thus reducing the 

number of nuclei adhering to the surface.  

 

Gas bubbles generated by decompression or directly infused into the venous circulation are 

trapped in the pulmonary capillaries [111] [112], and the pulmonary vascular endothelium is 

one primary site of injury with air embolization [113] [114]. Later studies have confirmed 

these findings [33] [14]. Activation of endothelium in the venous circulation produces EMP 

that can initiate endothelial dysfunction at remote sites [53]. These microparticles have a size 

of a few micrometers and could possibly pass through the lung filter and enter the arterial 

system. Therefore, changes in arterial endothelial function can occur without direct contact 

with the bubbles. The effect of vascular gas bubbles on the endothelium was studied in paper 

III were an impaired endothelial response to ACh, but not to BK, was found in the pulmonary 

artery. The endothelial measurements of the carotid artery did not show any significant 

differences between the groups in our study, although the response to ACh was low here as 

well. The endothelium independent response to SNP seems unaffected by the dive, the 

vascular bubbles and the treatment with recompression and oxygen. This confirms that the 

change in vasoactive response is only related to endothelial function and not to function in the 

vascular smooth muscle layer.  
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Endothelial dysfunction is an early feature of many vascular diseases, resulting in loss of 

normal homoeostatic pathways that act to inhibit disease processes such as inflammation, 

thrombosis and oxidative stress [115] [116]. The positive effect of NO with regards to 

reduction of detectable vascular gas bubbles supports the hypothesis that the endothelium is 

of importance for generation of bubbles, as one critical aspect of normal endothelial function 

is the production of NO by eNOS. Studies have shown that bubbles will reduce the function 

of the endothelium in a dose-dependent manner [33] [14], and circulating endothelial cells 

have been detected in blood in proportion to the severity of DCS [117]. Further, it has been 

shown in vitro that the surface of bubbles can act as a foreign substance and is capable of 

activating the alternative complement pathway [27] [43].  

 

The finding of impaired endothelial response to ACh but not to BK indicates that the 

endothelial response to ACh is affected by different mechanisms. BK is also a potent 

vasodilator that acts by increasing the production of endothelial hyperpolarizing factor 

(EDHF), which again acts on the smooth muscles of the vessels by an NO-independent 

mechanism [118]. In normal endothelium, NO is the main vasodilator, but when the 

endothelium is injured, EDHF production is increased. But, some studies have shown that 

EDHF may have anti-inflammatory properties which reduces the adhesiveness of the 

endothelium similar to the effect of NO [119] which again indicates that the response to 

endothelial injury is quite complex [120].  

 

The treatment used in the experiment (Paper III) did not prevent endothelial damage despite 

removal of the vascular bubbles. This may indicate that the response to ACh was affected by 

breathing 100% O2 under pressure. It is tempting to speculate whether the same response 

would occur if 100% O2 at 100 kPa in the treatment regime was used instead of 160 kPa. A 

previous study at our laboratory showed that recompression to neither 100 kPa breathing 100 

% O2 nor 200 kPa breathing air after a dive to 500 kPa , did not impair the endothelial 

function [89].  In a study by Obad et al. [77], reduction in endothelial function was prevented 

by giving antioxidants, Vitamin E and C, before a dive, indicating that oxygen radicals may 

be involved in developing the endothelial damage seen after a dive. 

 

 

 

 

 30



In-water recompression as treatment of DCS 

 

The prevention of DCS through development of decompression tables has been a great 

success, but the disease has not been eliminated. Today, around 50% of those being treated 

are “undeserved hits”, that is people who claim to have followed a specific dive table or 

computer but still ending up for treatment.  The techniques required for treatment of DCS are 

therefore as relevant as ever [87]. In all treatment regimes for DCS the underlying idea is that 

if bubble volume can be reduced quickly after onset of symptoms, it is possible that their 

associated secondary effects can be attenuated [121]. In paper III we used a modified 

emergency procedure for DCS (in-water recompression (IWR)) which consisted of breathing 

100% O2 at a pressure of 160 kPa for 60 min.  

 

The USNavy started development of low pressure oxygen tables in the early 1960´s. The 

initial compression depth was 200 kPa with the diver breathing 100% O2. Depending on the 

patient, the treatment depth was either kept at 200 kPa if the symptoms relieved within 10 

min, otherwise the chamber was pressurized to 280 kPa. Using the 200 kPa table led to a high 

recurrence rate, and the treatment was abandoned, and developing new treatment tables, 

which required an initial recompression to 280 kPa, were started. The most common 

treatment table being used today is the USN Treatment table 6 which recompresses to 280 

kPa [83]. Traditional recompression treatments are conducted in a recompression chamber, 

where the possibilities of nursing the patient are present. 

 

The need for IWR procedures has arisen as a consequence of the increasing diving activity in 

remote areas around the world, as IWR offers the potential of providing treatment when a 

chamber is not available. The nearest treatment facility can be several hours or perhaps days 

away, hence, the in-water procedure might be the only opportunity for adequate treatment 

(Gennsser, personal communication, 2006). Stipp [88] investigated the relationship between 

time to treatment on the outcome of neurological DCS in divers, and showed that after 6-12 h 

there is no further effect of the time till treatment. But the time-window before 6-12 h is 

significant.  

 

The advantages of using oxygen in treatment tables are obvious and include increased 

nitrogen elimination gradients, avoidance of extra nitrogen loads, increasing oxygenation to 

tissues, decreasing treatment depths and exposure time. Recompressions also have the 
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advantage of immediate reduction of the bubble size [122]. In paper III we chose a low 

pressure level of oxygen in order to minimize the hazardous effects of oxygen under pressure. 

The use of oxygen does not only establish an increased partial pressure gradient for inert gas 

from inside to outside a bubble, but also prevents additional uptake of inert gas during the 

recompression phase. The highest ambient pressure at which 100% O2 administration is 

practical is at 300 kPa. Above this pressure, convulsions are likely to occur due to CNS 

oxygen toxicity [87].  The tolerance for CNS oxygen toxicity is dependent on both exercise 

and immersion [123] [124], and as such, the IWR treatment depth should be as shallow as 

possible. Breathing 100% O2 underwater has the potential to be a highly effective means of 

preventing emergence of DCS after a significant omitted decompression. But the strategy 

requires proper training and equipment, and is most often invoked by technical divers for 

emergency in-water oxygen recompression of a diver who has actually developed DCS. The 

major risk is oxygen toxicity manifest as a seizure. Unless the diver is wearing a full-face 

mask when this occurs, the very likely result is drowning [125]. The suggested initial 

compression depth is 190 kPa, but even at this pressure there is some risk of oxygen toxicity. 

Hence, reducing the treatment pressure will reduce the risk of getting oxygen seizures and 

thus increase the safety of the diver. Paper III shows that vascular gas bubbles can be 

eliminated with low pressure recompression, but the optimal time interval between a 

decompression accident and start of treatment remains to be investigated.  
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METHODOLOGICAL CONSIDERATIONS 
 

Experimental procedure 

 

The pig was used as experimental animal throughout this thesis, since such a model for 

decompression studies was already established at our research group. The pig is generally 

considered a good model for human physiology, but our model does have improvement 

potential. The anaesthetics being used is the main drawback of our model. Since we work 

with spontaneously breathing pigs, the choice of anaesthesia has been ketamine, with bolus 

injection of the muscle relaxant alpha-chloralose.  Ketamine is difficult to work with, since 

the pig’s response to the drug is very variable. Some experimental animals fall asleep at once, 

but others can tolerate large amounts of ketamine before any surgery can be performed. The 

supine position of the experimental animal is also a source of variability in our experiments. 

Observations of both hyperventilation and that some of the lungs show congestion, indicate 

that in some situations, the ventilation of the lungs may be inadequate. However, the fact that 

animals have been kept alive on this anaesthesia for over 16 hours with no ill effect 

(unpublished observations) and that our research group have published a number of papers 

where this specific animal model have been used [19]  [90] [91] [61] [33], indicate that this 

might be a minor problem.  

 

Detection of gas bubbles by ultrasound 

 

The use of ultrasound to detect intravascular gas bubbles is based on the combination of the 

non-invasive and real-time nature of ultrasonic systems combined with the acoustic properties 

of gas bubbles in blood. The most common detection method is the use of ultrasonic Doppler 

equipment which transforms reflections from moving gas bubbles into audible sound. The 

audible signal is then estimated by means of a non-linear grading system, and the Spencer and 

the Kisman-Masurel codes are the most commonly used [93]. 

  

In resent years, ultrasonic imaging systems have become more available and have been shown 

to be well suited for detection of intravascular gas bubbles [126]. As the ultrasonic Doppler 

method requires extensive training both with regards to the monitoring itself and to the 

interpretation of the Doppler signals [93], the use of ultrasound imaging techniques requires 

 33



far less training, even by persons with little previous experience [126]. It has been shown that 

the bubble grades from the different detection methods can be directly compared at rest [127].  

 

The venous blood is the easiest place to detect bubbles. The pulmonary artery or the right 

ventricle of the heart are the most commonly used locations for detection of intravascular gas 

bubbles both with Doppler (precordical detection) and with imaging systems (both 

precordical and transesophageal echocardiographic measurements). All the venous blood is 

transported through this area before it is pumped through the lungs. Experiments suggest that 

gas nuclei are not present in the blood stream and that bubbles observed with ultrasonic 

techniques can originate from tissues and/or microcapillaries and migrate into the circulation 

[128]. Gas nuclei have been found in the outermost layer of the skin that did cavitate when 

they where irradiated by ultrasound [129]. The only other tissues in which bubbles are 

routinely observed are the joints, including the spinal cord. These are the structures most 

frequently affected by DCS. Tissues in which bubbles do not form at physiologic 

supersaturations would be expected to be affected only by vascular bubbles that originate at 

other sites, i.e., lungs, brain [130].  

 

Ultrasonic bubble detection has its limitations as a predictive tool for bubble-induced illness. 

Present technology is only practical for bubble detection in flowing blood; bubbles are usually 

only detected on the venous side of the circulation, from which most are removed by the 

pulmonary capillaries. Nevertheless the appearance of many venous bubbles can overwhelm 

the filtration abilities of the pulmonary capillary network and have been shown to correlate 

with clinical DCS in humans [130] [131]. A method utilizing high resolution imaging was 

developed by Daniels et al [132] which enabled detection of both stationary and moving 

bubbles. Unfortunately, the system has not been developed further, and today there are no 

available ultrasonic detection methods for stationary bubbles. Since there seems to be no clear 

relationship between vascular gas bubbles and DCS, the detection of bubbles by ultrasound 

can not be used as diagnostic criteria for DCS. However, there is evidence today that 

intravascular bubbles cause subclinical damage that may have long-term effects; thus 

quantification of bubbles in the venous system can offer a graded measure of decompression 

safety [93] [98] [131].   

 

The use of a Transesophageal Echocardiographic (TEE) probe was the main detection method 

used during the whole study, and this method has been used extensively in our research 
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group. The probe gives a good view of both the right pulmonary artery and the aorta and is 

more or less perfect for the studies we have performed. Most of the time it was easy to 

position the probe, but in some pigs echoes from the lungs disturbed the image and made it 

more difficult to interpret. Although ultrasonic images seem to have a lower threshold for 

detection of gas bubbles than the Doppler method [93], only a two-dimensional slice of the 

pulmonary artery or the aorta is available for detection and quantification of gas bubbles. In 

addition, it is not verified exactly how small the gas bubbles can be, and still be detected. The 

threshold is both dependent on the frequency of the transducer and the depth from the probe at 

which bubbles are to be detected [133]. The sensitivity of our detection method is high, but 

the specificity is low. For our research on decompression and vascular bubbles, this is one of 

the main areas where future ultrasonic probes with higher frequencies can bring about more 

insights and knowledge.  

 

CONCLUSION AND FUTURE PERSPECTIVES 
 

The present work has demonstrated that the amount of vascular gas bubbles detected during 

and after decompression can be affected by changing the decompression profile in a way that 

can not be explained by traditional decompression models, and we suggest that a gas phase 

model is needed to describe the decompression.  Further, we reduced the amount of vascular 

gas bubbles by injecting a short acting NO donor before start of decompression from 

saturation, showing for the first time that nitrates have a protective effect in larger animals. 

And finally we showed that the time gap between a decompression incident and a chosen 

treatment for 60 min was too long to avoid impaired endothelial function despite removal of 

gas bubbles in the circulation, indicating that treatment should be initiated as fast as possible.  

 

The incidence of DCS has been reduced over the last 40 years, but the relative number of 

incidents of DCS involving the CNS has increased. While supersaturation has been a major 

focus in nearly all research within this field, the future research will focus more on 

biochemical pathways to uncover the secrets of the bubbles, both in their generation and their 

pathophysiological effect.  

 

The use of biochemical agents to modify decompression and to reduce the risk of bubble 

formation is important, despites the very fact that the preventive use of drugs in commercial 
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diving is forbidden by international labour laws. But in situations where one is forced to 

decompress more quickly than an established decompression table would allow, such a 

preventive drug could be useful. An example of such a scenario is with a disabled submarine. 

Two specific points have been made to the ameliorative effect of nitrates on bubble formation 

which needs to be investigated. One is the fact that nitrates inhibit platelet aggregation and 

leukocyte adhesion, which has been suggested as sites for bubble formation [134]. The other 

point is that it remains to be investigated whether the effect of nitrates is just a haemodynamic 

effect or not.  

 

Bubbles need something to grow from; de novo formation is considered unrealistic in any 

human decompression situation. In blood vessels, nuclei are probably attached to the blood 

vessels endothelium where they grow into bubbles that are dislodged into the blood stream. 

Thus, any process that influences the surface properties of the endothelium may affect bubble 

formation in the vascular system. In the endothelial cells, there are specific structures which 

need future attention, and that are the caveolae. Caveolae normally function to facilitate the 

uptake of fluid by the cell. In the process of pinocytosis, the caveolae close and pinch off to 

form pinosomes, little fluid-filled bubbles within the cell. Endothelial NO synthase (eNOS) 

has been localized to caveolae, and Linder et al. [135] have shown that molecules in the NO-

signaling pathway such as soluble guanylyl cyclase, cAMP-dependent protein kinase and 

cGMP-dependent protein kinase are also co-localized in caveolae. Because exogenous NO 

reduces bubble formation, it is possible that bubble nuclei are also co-localized in the 

caveolae with eNOS and NO-related molecules. Using eNOS knock-out mice should be 

investigated for such relationships in the future.  

 

With the development in ultrasonic imaging computers, it will be possible to look for, in vivo, 

attractive sites for both generation of and growth of bubbles as well as determining the size of 

the bubbles. With the aid of contrast agents and new detection methods with ultrasound, 

stationary gas bubbles will probably become detectable again.   

 

Further studies on emergency treatment-situations (recompression treatments) should also be 

conducted. Based on our findings in paper III, it is obvious that by waiting 60 min before 

initiating treatment, the endothelium is damaged despites the following removal of vascular 

bubbles by recompression and oxygen. Today the recommended treatment is 190 kPa 

breathing oxygen, and it would be too early to make any recommendations to change that 
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procedure based on our study presented here. Future studies with IWR should investigate the 

immediate effect of a recompression, both to 190 kPa and to 160 kPa, keeping the effects of 

oxygen toxicity in their mind.  

 

There is evidence that the occurrence of at least some forms of DCS is not entirely consistent 

with purely physical processes. As an arguable result, inability to predict or control DCS 

severity is perhaps the most glaring deficiency of modern DCS prevention algorithms [9]. 

This is largely due to the relatively mild nature of the DCS cases that are in the data available 

for model calibration. Because purposeful experimentation to severe outcomes is impossible 

with humans, expansion of model capability to cover more severe cases will require an 

improved understanding of how changes in bubble location, size and profusion translate into 

changes in DCS severity. Then we will have an ability to quantitatively scale results from 

animal experiments to humans. 
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