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We study the topological full group of ample groupoids over locally compact spaces. We
extend Matui’s definition of the topological full group from the compact to the locally
compact case. We provide two general classes of étale groupoids for which the topological
full group, as an abstract group, is a complete isomorphism invariant, hereby extending
Matui’s Isomorphism Theorem. As an application, we study graph groupoids and their

topological full groups, and obtain sharper results for this class. The machinery devel-
oped in this process is used to prove an embedding theorem for ample groupoids, akin to
Kirchberg’s Embedding Theorem for C∗-algebras. Consequences for graph C∗-algebras
and Leavitt path algebras are also spelled out. In particular, we improve on a recent
embedding theorem of Brownlowe and Sørensen for Leavitt path algebras.
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1. Introduction

Background

The study of (topological) full groups in the setting of topological dynamics was

initiated by Giordano, Putnam and Skau [27]. This was inspired by the work of

Dye [23] in the measurable setting, and by Krieger’s study of so-called ample groups
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on the Cantor space [32]. For Cantor minimal systems, Giordano, Putnam and Skau

showed that certain distinguished subgroups of the full group determine completely

the orbit equivalence class, the strong orbit equivalence class, and the flip conjugacy

class, respectively, of the system. The full group of a Cantor system (i.e. a Z-action
on a Cantor space) consists of all homeomorphisms of the Cantor space which leave

the orbits invariant. Roughly speaking, the topological full group is the subgroup

of the full group consisting of those homeomorphisms which additionally preserve

the orbits in a continuous manner. Giordano, Putnam and Skau also connected

the dynamics with the theory of C∗-algebras, via the crossed product construction

and its K-theory [26]. Thus, they exhibited a strong relationship between these,

a priori, quite different mathematical structures.

This is but one example of the rich interplay between dynamical systems

and C∗-algebras. (This interplay essentially goes all the way back to the incep-

tion of the field by Murray and von Neumann [53].) Another prominent example

of this interplay is the connection between shifts of finite type and Cuntz–Krieger

algebras; discovered by Cuntz and Krieger in the early eighties [17]. In the setting

of irreducible one-sided shifts of finite type, Matsumoto defined the topological full

group of such a dynamical system and proved that this group determines the shift

up to continuous orbit equivalence, and also the associated Cuntz–Krieger algebra

up to diagonal preserving isomorphism [42, 43]. This paralleled Giordano, Put-

nam and Skau’s results, although the dynamical systems were quite different. For

instance, the former has no periodic points whereas the latter has a dense set of

periodic points.

Using topological groupoids to model dynamical systems has unified many of

these seemingly different connections between dynamics and C∗-algebras. Whenever

one has a dynamical system of some sort, one may typically associate to it a topo-

logical groupoid, and from the groupoid one can construct its groupoid C∗-algebra.
In many cases, isomorphism of such groupoids correspond to some suitable notion

of continuous orbit equivalence of the dynamical systems, and also to diagonal pre-

serving isomorphism of the groupoid C∗-algebras [10, 40, 41, 44]. That groupoid

isomorphism corresponds to diagonal preserving isomorphism of the C∗-algebras
(in the topologically principal case) is due to the pioneering work of Renault [61].

This reconstruction result has recently been generalized in e.g. [15]; wherein it is

also shown that by adding more structure on the groupoids, such as gradings, one

can recover stronger types of equivalence of the dynamical systems.

In [48], Matui defined the topological full group of an étale groupoid with com-

pact unit space. His definition generalized virtually all the previously given defi-

nitions for different kinds of dynamical systems at one fell swoop. Matui realized

that homeomorphisms which preserve orbits in a continuous manner are always

given by full bisections from the associated groupoid. In the subsequent paper [49]

Matui proved (among other things) a remarkable isomorphism theorem. Suppress-

ing some assumptions, this theorem says that any two minimal étale groupoids
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over a Cantor space are isomorphic, as topological groupoids, if and only if their

topological full groupsa are isomorphic, as abstract groups. Matui’s Isomorphism

Theorem generalized the results of Giordano, Putnam and Skau, and Matsumoto,

and others.

The study of topological full groups has also found interesting applications

to group theory. Matui’s isomorphism theorem means that one can classify the

groupoids (and therefore any underlying dynamics, and the C∗-algebras) in terms

of the topological full group. However, by going the other direction, one can use

étale groupoids to distinguish certain discrete groups. Given two discrete groups,

say in terms of their generators and relations, it can be hard to tell whether they are

isomorphic or not. But if one can realize these groups as topological full groups (or

distinguished subgroups) of some groupoids, then one can use the groupoids (i.e.

the dynamics) to tell the groups apart — as one often has much dynamical informa-

tion about the groupoids. For instance, this was the strategy used by Brin to show

that Thompson’s group V is not isomorphic to its two-dimensional analog 2V [6]

(although he did not consider the groupoid explicitly). A more recent application of

this form is by Matte Bon [45] who showed that the higher-dimensional Thompson

groupb nV embeds into mV if and only if n ≤ m. Matte Bon’s paper also includes

a novel approach to Matui’s Isomorphism Theorem in terms of a certain dichotomy

for such groupoids. Another application is that topological full groups have pro-

vided new examples of groups with exotic properties. Most notably, topological

full groups (or more precisely, their commutator subgroups) of Cantor minimal

systems provided the first examples of finitely generated simple groups that are

amenable (and infinite) [29]. On another note, topological full groups arising from

non-amenable groups acting minimally and topologically free on the Cantor space

were recently shown to be C∗-simple [7].

Topological full groups have also found their way into Lawson’s program of

non-commutative Stone duality [38]. In [39], the topological full group of an étale

groupoid is shown to coincide with the group of units of the so-called Tarski monoid

to which the groupoid corresponds under non-commutative Stone duality.

Our results

The main motivation for the present paper was Matsumoto and Matui’s work on

irreducible one-sided shifts of finite type mentioned above. If we rephrase their work

in terms of (directed) graphs, then they showed that for two strongly connected

finite graphs E and F the following are equivalent:

(1) The shifts (E∞, σE) and (F∞, σF ) are continuously orbit equivalent.

(2) The graph groupoids GE and GF are isomorphic as topological groupoids.

aActually, the same is true for several distinguished subgroups of the topological full group as
well, such as its commutator subgroup. See [49, 54] for details.
bIt is known that the groups nV are all non-isomorphic [4].
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(3) There is an isomorphism of the graph C∗-algebras C∗(E) and C∗(F ) which

maps the diagonal D(E) onto D(F ).

(4) The topological full groups �GE� and �GF � are isomorphic as abstract groups.

The equivalence of (1), (2) and (3) above have since been generalized to more general

graphs which need neither be finite nor strongly connected [10, 12]. Our initial goal

was to study the topological full group �GE� of general graph groupoids GE and see

if we could also add statement (4) to said equivalence.

Matui’s Isomorphism Theorem [49, Theorem 3.10] gives the equivalence of (2)

and (4) above for the general class of ample effective Hausdorff minimal second

countable groupoids over (compact) Cantor spaces (see Sec. 2.3 for definitions).

This covers in particular graph groupoids of strongly connected finite graphs. In

light of this we attempted to extend Matui’s Isomorphism Theorem a little further

in order to cover graph groupoids of more general graphs. To do this it is necessary

to relax both the compactness assumption of the unit space (which corresponds

to the graph having finitely many vertices) and the minimality assumption (which

corresponds to strong connectedness of the graph).

As our main findings, we first describe two modest extensions of Matui’s Iso-

morphism Theorem that apply to general ample groupoids. Then, we describe two

(sharper) isomorphism theorems for the class of graph groupoids. Finally, we present

a novel embedding theorem for ample groupoids. First of all we have to extend the

definition of the topological full group to the locally compact setting. This is done in

Definition 3.2, where we stipulate that the homeomorphisms in the topological full

group should be compactly supported (in addition to being induced by bisections).

This seems a natural choice, as we then retain the “finitary” nature of the elements

in the topological full group, as well as the countability of the topological full group

(for second countable groupoids). Additionally, most of the arguments from [49]

still work with suitable modifications. For an ample groupoid G we denote its unit

space by G(0). The topological full group of G is denoted by �G�. And the commuta-

tor subgroup of �G� is denoted by D(�G�). The first of these isomorphism theorems

is a straightforward extension of Matui’s Isomorphism Theorem which relaxes the

compactness assumption on G(0) and the second countability assumption on G.

Theorem A (cf. Theorem 7.2, [49, Theorem 3.10]). Suppose G1 and G2 are

effective ample minimal Hausdorff groupoids whose unit spaces have no isolated

points. Then following are equivalent :

(1) G1
∼= G2 as topological groupoids.

(2) �G1� ∼= �G2� as abstract groups.

(3) D(�G1�) ∼= D(�G2�) as abstract groups.

We mention that when restricting to the class of graph groupoids we are also

able to relax the minimality assumption in Theorem A substantially (see Theorem C

below). The second isomorphism theorem replaces the minimality assumption with
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a significantly weaker “mixing property” that we call non-wandering (see Defini-

tion 7.8). However, the result does not apply to the commutator subgroups. And we

also require the unit spaces to be second countable. (By a locally compact Cantor

space we mean either the compact Cantor space or the locally compact non-compact

Cantor space (up to homeomorphism) cf. Sec. 2.1.)

Theorem B (cf. Theorem 7.10). Let G1 and G2 be effective ample Hausdorff

groupoids over locally compact Cantor spaces. If, for i = 1, 2, Gi is non-wandering

and each Gi-orbit has length at least three, then the following are equivalent :

(1) G1
∼= G2 as topological groupoids.

(2) �G1� ∼= �G2� as abstract groups.

Let us say a few words about the proofs. As the implications (1) ⇒ (2) ⇒ (3) in

Theorem A and (1) ⇒ (2) in Theorem B are trivial, there is only one direction to

prove. The proof strategy is similar in both cases and is summarized in the following

diagram,c where Γi is a subgroup of Homeo(G(0)
i ):

Γ1
∼= Γ2

��

(abstract isomorphism)

(Γ1,G(0)
1 ) ∼= (Γ2,G(0)

2 )

Functoriality

��

(spatial isomorphism)

Germ(Γ1,G(0)
1 ) ∼= Germ(Γ2,G(0)

2 )

Γi covers Gi

��
Germ(Γ1,G(0)

1 ) ∼= G1
∼= G2

∼= Germ(Γ2,G(0)
2 )

The first step is showing that for certain classes of homeomorphism groups, any

(abstract) group isomorphism is induced by a homeomorphism of the underlying

spaces. We call this a spatial realization result. In [49], Matui proves a spatial

realization result that applies to any Γ with D(�G�) ≤ Γ ≤ �G� (for G minimal). And

from a spatial isomorphism he directly constructs an isomorphism of the groupoids

and obtains his Isomorphism Theorem. In this paper, we have chosen to break this

direct step into two more parts in order to also study when the groupoid can be

recovered from the action of (subgroups of) the topological full group on the unit

space, as the groupoid of germs of this action. We find that such a groupoid of germs

always embed into the groupoid we started with, and that they are isomorphic if

and only if the subgroup in question is generated by enough bisections to cover the

cIf Γ ≤ Homeo(X) and Λ ≤ Homeo(Y ) are groups of homeomorphisms, then a spatial isomorphism
between them is a homeomorphism φ : X → Y such that γ �→ φ ◦ γ ◦ φ−1 for γ ∈ Γ is a group
isomorphism.
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groupoid (Proposition 4.10, Corollary 4.13). We also show that for a natural choice

of maps, the assignment of the groupoid of germs is functorial (Proposition 5.4).

Having this machinery in place, proving Theorem A is then just a matter of

checking that Matui’s spatial realization result also holds in the locally compact

setting (Theorem 6.6). Although this is but a small extension of Matui’s result

we have chosen to include it as a theorem since it is applicable to a larger class

of groupoids. Regarding our initial motivation, namely the graph groupoids, we

are able to characterize exactly when the aforementioned spatial realization result

applies, and it turns out that we can get away with much weaker mixing properties

than minimality when we restrict to graph groupoids — see Theorem C below.

For the proof of Theorem B, we employ a spatial realization result (Theo-

rem 6.19) based on Rubin’s work in [62] in the first step. We mention that Medynets

has previously obtained a similar spatial realization result [52, Remark 3] for (topo-

logical) full groups arising from group actions on the Cantor space, building on

Fremlins work in [25, Sec. 384]. After some modifications, Theorem B could also

be deduced from this result. However, Theorem 6.19 is more general as it can

potentially be applied to other groups than topological full groups, e.g. homeo-

morphism groups of zero-dimensional linearly ordered spaces. See Remark 6.20 for

a more detailed discussion on the differences and similarities of these approaches.

Although Theorems A and B can be deduced by employing arguments along the

lines of [49, 52], we believe that the way we trisect the proofs does add some new

insight. In particular, this was how we discovered the embedding result given below

in Theorem E.

Let us now describe the isomorphism theorem we obtain for graph groupoids,

when starting with the spatial reconstruction result à la Matui. As mentioned above,

it turns out that we can replace minimality (strong connectedness of the graphs)

with some weaker “exit and return”-conditions. Each of these three conditions (see

Definition 10.1) can be considered strengthenings of the three conditions that char-

acterize when the boundary path space ∂E has no isolated points (Proposition 8.1).

Condition (K) means that every cycle can be exited, and then returned to. Con-

dition (W ) means that every wandering path can be exited, and then returned

to. And Condition (∞) means that every singular vertex can be exited (i.e. is an

infinite emitter), and then returned to (along infinitely many of the emitted edges).

Theorem C (cf. Theorem 10.10). Let E and F be graphs with no sinks, and

suppose they both satisfy Condition (K), (W ) and (∞). Then the following are

equivalent :

(1) GE ∼= GF as topological groupoids.

(2) �GE� ∼= �GF � as abstract groups.

(3) D(�GE�) ∼= D(�GF �) as abstract groups.

By interpreting the assumptions in Theorem B for graph groupoids, we obtain

Theorem D below. Therein, Condition (L) is the well-known exit condition of
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Kumjian, Pask and Raeburn [35], namely, that every cycle should have an exit.

Condition (T) (see Definition 10.5) essentially means that the graph does not have

a component which is a tree. Finally, what we call degenerate vertices (see Def-

inition 10.6) are the ones giving GE-orbits of length one or two. This theorem

may be considered a generalization of Matsumoto’s result in the case of irreducible

one-sided shifts of finite type [43] (which correspond to finite strongly connected

graphs).

Theorem D (cf. Theorem 10.11). Let E and F be countable graphs satisfying

Condition (L) and (T ), and having no degenerate vertices. Then the following are

equivalent :

(1) GE ∼= GF as topological groupoids.

(2) �GE� ∼= �GF � as abstract groups.

Hence, we establish the equivalence of (1)–(4) mentioned in the beginning of this

subsection for graphs satisfying the assumptions of Theorem D. In Corollary 10.13,

we spell out this rigidity result for the associated graph algebras.

Our final main result is an embedding theorem for ample groupoids — inspired

by embedding theorems for C∗-algebras and Leavitt path algebras. The seminal

embedding theorem of Kirchberg [30] states that any separable exact (unital)

C∗-algebra embeds (unitally) into the Cuntz algebra O2. In particular, this means

that any graph C∗-algebra C∗(E), where E is a countable graph, embeds into O2.

The latter, being the universal C∗-algebra generated by two orthogonal isome-

tries, can be canonically identified with a graph C∗-algebra. Namely, the graph

C∗-algebra of the graph E2 which consists of a single vertex with two loops. In [11],

Brownlowe and Sørensen show that the Leavitt path algebra LR(E), where E is any

countable graph and R any commutative unital ring, embeds into LR(E2) — the

algebraic analog of O2. An inspection of their proof reveals that this embedding also

maps the canonical diagonal subalgebra DR(E) into DR(E2). As a consequence,

Kirchberg’s embedding for the graph C∗-algebras may then also be taken to be

diagonal preserving — with respect to the diagonald in O2 coming from its iden-

tification with C∗(E2). At this point, it starts smelling a bit like groupoids might

be lurking about. Indeed, using the properties of the Germ-functor (see Sec. 5), we

are able to prove that the underlying graph groupoid GE embeds into the Cuntz

groupoid GE2 (modulo topological obstructions in the sense of isolated points).

Thus, the known embeddings of the graph algebras actually occur at the level of

the underlying groupoid models. We were also able to extend this embedding result

to all groupoids which are groupoid equivalent (or stably isomorphic) to a graph

dTechnically, this is a Cartan subalgebra in the sense of Renault, not a C∗-diagonal in the sense
of Kumjian. But it’s common to refer to it as “the diagonal” in a graph C∗-algebra.
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groupoid. To the best of the authors’ knowledge, this is the first embedding result

of its kind for ample groupoids.

Theorem E (cf. Theorem 11.16). Let H be an effective ample second countable

Hausdorff groupoid with H(0) a locally compact Cantor space. If H is groupoid

equivalent to GE , for some countable graph E satisfying Condition (L) and having

no sinks nor semi-tails, then H embeds into GE2 . Moreover, if H(0) is compact, then

the embedding maps H(0) onto E∞
2 .

In particular, any graph groupoid GE , with E as above, embeds into GE2 , and

any AF-groupoid (with perfect unit space) embeds into GE2 .

The main ingredient in the proof is constructing an injective local homeo-

morphism φ : ∂E → E∞
2 which induces a spatial embedding of the associated

topological full groups. This construction is entirely explicit. As a consequence,

we also obtain explicit embeddings of any graph C∗-algebra C∗(E) (or Leavitt

path algebra LR(E)), in terms of their canonical generators, into O2 (or LR(E2)).

This embedding is diagonal preserving, and when C∗(E) is unital (i.e. E0 is finite)

this embedding is unital and maps the diagonal onto the diagonal. These embed-

dings are described in Corollary 11.5 and Remark 11.6. We also record a result on

diagonal embeddings of AF-algebras in Corollary 11.27.

Another consequence of Theorem E is that the topological full group �GE�, for

any graph E as above, embeds into Thompson’s group V — since V is isomorphic

to �GE2�. The Higman–Thompson groups Vn,r (where nV = Vn,1) can be realized

as topological full groups of graph groupoids of certain strongly connected finite

graphs (see Sec. 11.3). Hence, our embedding theorem may be considered a gener-

alization of the well-known embedding of Vn,r into V . The embedding entails that

the topological full groups �H�, of groupoids H as in Theorem E, has the Haagerup

property (but they are generally not amenable). In terms of groups, our embedding

also includes all the so-called LDA-groups (see Remark 11.24).

In [50], Matui introduced two conjectures for minimal ample groupoids over the

Cantor space. The HK-conjecture relates the groupoid homology to the K-theory of

the groupoid C∗-algebra. And the AH-conjecture relates the topological full group to

the groupoid homology. These conjectures have been verified in several cases [51],

in particular for (products of) graph groupoids arising from strongly connected

finite graphs. For the more general graph groupoids studied in the present paper,

the second named author will, together with Toke Meier Carlsen, attack these

conjectures in a forthcoming paper. (In the recent preprint [55], the second named

author verifies the HK-conjecture for a class of groupoids which includes the graph

groupoids of row-finite graphs.)

Précis

The structure of the paper is as follows. We recall some basic notions regarding

étale groupoids and (classical) Stone duality in Sec. 2. This section also serves the
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purpose of establishing notation and conventions. The rest of the paper is divided

into two parts. The first, Secs. 3–7, deals with ample groupoids in general, while

the second, Secs. 8–11, deals with graph groupoids.

In Sec. 3, we give the definition of the topological full group �G� of an ample

groupoid G with locally compact unit space G(0). We also prove some elemen-

tary results on the existence of elements in the topological full group with certain

properties. Then, we move on to study the groupoid of germs Germ(Γ,G(0)) asso-

ciated to a subgroup Γ ≤ �G� of the topological full group, in Sec. 4. We establish

that Germ(Γ,G(0)) always embeds into G, and that this embedding is an isomor-

phism as long as Γ contains “enough elements”. In Sec. 5, we introduce the two cat-

egories; SpatG and Gpoid. The former consists of pairs (Γ, X) where X is a space

and Γ is a subgroup of Homeo(X). The latter consists of certain ample groupoids.

By defining suitable morphisms in these categories and what the germ of a mor-

phism in SpatG should be, we establish that the assignment (Γ, X) �→ Germ(Γ, X)

is functorial. We also show that monomorphisms in SpatG induce étale embeddings

of the associated groupoids of germs.

The spatial realization results needed to deduce that an abstract isomorphism

of two topological full groups always is spatially implement are provided in Sec. 6.

In Sec. 7, we prove the two general isomorphism theorems, Theorems A and B. This

is now mostly a matter of interpreting the spatial realization results from Sec. 6 in

terms of the groupoid and its topological full group, and then combine this with

the results of Secs. 4 and 5.

In Sec. 8, we begin our in-depth study of graph groupoids GE of general

graphs E. This section is devoted to a thorough introduction of graph terminology

and the dynamics that give rise to the graph groupoids. For several of the generic

properties a topological groupoid can have, we list their characterizations for graph

groupoids in terms of the graphs. We continue in Sec. 9 with describing explicitly

all elements in the topological full group �GE� of any graph groupoid. To do this we

need to specify a new (yet equivalent) basis for the topology on GE . We then pur-

sue specialized isomorphism theorems for the class of graph groupoids in Sec. 10.

This yields Theorems C and D. At the end of this section, we spell out the induced

rigidity result for the associated graph algebras.

In the final section of the paper, we employ the machinery from Secs. 4, 5 and 9

to obtain our groupoid embedding result; Theorem E. We also describe the explicit

diagonal embeddings of the graph algebras that follow from the embedding of the

groupoids. Examples of these embeddings for graph algebras are provided for several

infinite graphs. At the end of Sec. 11, we show that any AF-groupoid is groupoid

equivalent to a graph groupoid, going via Bratteli diagrams, hence GE2 -embeddable.

We then spell out consequences for diagonal embeddings of AF-algebras. Addition-

ally, we remark that transformation groupoids arising from locally compact (non-

compact) Cantor minimal systems are AF-groupoids, and hence GE2 -embeddable

as well.
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2. Preliminaries

We will now recall the basic notions needed throughout the paper, as well as estab-

lish notation and conventions. We denote the positive integers by N and the non-

negative integers by N0. If two sets A and B are disjoint we will denote their union

by A�B if we wish to emphasize that they are disjoint. When we write C = A�B,
we mean that C = A ∪B and that A and B are disjoint sets.

2.1. Topological notions

Following [33, 65], we say that a topological space is Boolean if it is Hausdorff

and has a basis of compact open sets. (This is also the terminology originally

used by Stone [66].) A Stone space is then a compact Boolean space. We say that

a topological space is perfect if it has no isolated points. By a locally compact

Cantor space we mean a (non-empty) second countable perfect Boolean space. Up

to homeomorphism there are two such spaces; one compact (the Cantor set) and

one non-compact (the Cantor set with a point removed). The latter may also be

realized as any non-closed open subset of the Cantor set, or as the product of the

Cantor set and a countably infinite discrete space.

For a topological space X , we denote the group of self-homeomorphisms of X

by Homeo(X). We will occasionally denote idX simply by 1 for brevity. By an

involution we mean a homeomorphism (or more generally, a group element) φ

with φ2 = 1. For a homeomorphism φ ∈ Homeo(X), we define the support of φ

to be the (regular) closed set {x ∈ X |φ(x) 
= x}, and denote it by supp(φ). We

also define

Homeoc(X) := {φ ∈ Homeo(X) | supp(φ) compact open}.

When Γ is a subgroup of a group Γ′ we write Γ ≤ Γ′. Beware that we will abuse

this notation when we write Γ ≤ Homeoc(X) to mean that Γ is a subgroup of

Homeo(X) and that Γ ⊆ Homeoc(X). (It is not clear whether Homeoc(X) itself is

a group.)

2.2. Stone duality

We will now briefly recall the basics of (classical) Stone duality needed in Sec. 6.

For more details the reader may consult [31], [25, Chap. 31] (or even the fountain-

head [20, 66]). By a Boolean algebra we mean a complemented distributive lattice

with a top and bottom element. And by a generalized Boolean algebra we mean

a relatively complemented distributive lattice with a bottom element. For a topo-

logical space X , we denote the set of clopen subsets of X by CO(X). The set of

compact open subsets of X are denoted by CK(X). Finally, the set of regular open

subsets of X are denoted by R(X).
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Example 2.1. Let X be a topological space.

(1) CO(X) is a Boolean algebra under the operations of set-theoretic union, inter-

section and complement by X .

(2) CK(X) is a generalized Boolean algebra in the same way as CO(X), except for

admitting only relative (set-theoretic) complements.

(3) R(X) is a Boolean algebra with the following operations. Let A,B ∈ R(X).

The join of A and B is (A ∪B)◦, where ◦ denotes the interior. The meet of A

and B is A ∩B. And the complement of A is ∼ A := (X\A)◦.

A crude way of stating Stone duality is to say that every Boolean algebra arises

as CO(X) for some Stone space X , and that every generalized Boolean algebra

arises as CK(Y ) for some Boolean space Y . Hence, Stone spaces correspond to

Boolean algebras and Boolean spaces correspond to generalized Boolean algebras.

More precisely, it is a duality in the following sense. A continuous map

f : X → Y between topological spaces X and Y is proper if f−1(K) is compact

in X whenever K is a compact subset of Y . A map ψ : A → B between generalized

Boolean algebras A and B is a Boolean homomorphism if it preserves joins, meets

and relative complements. We say that ψ is proper if for each b ∈ B, there exists

a ∈ A such that ψ(a) ≥ b. Boolean spaces with proper continuous maps form a cat-

egory. So does generalized Boolean algebras with proper Boolean homomorphisms.

For a proper continuous map f : X → Y , let CK(f)(A) := f−1(A) for A ∈ CK(Y ).

This makes CK(−) a contravariant functor from the category of Boolean spaces to

the category of generalized Boolean algebras (with maps as above).

For a generalized Boolean algebra A, let S(A) denote the set of ultrafilters in A.

For each a ∈ A, let S(a) := {α ∈ S(A) | a ∈ α}. Equipping S(A) with the topology

generated by the (compact open) cylinder sets S(a) turns it into a Boolean space.

For a proper Boolean homomorphism ψ : A → B and an ultrafilter β ∈ S(B),
let S(ψ)(β) := {ψ−1(b) | b ∈ β}. This makes S(−) a contravariant functor in the

other direction, and we refer to it as the Stone functor. Stone duality asserts that

the contravariant functors CK(−) and S(−) implement a dual equivalence. In other

words, the category of Boolean spaces is dually equivalent to the category of gen-

eralized Boolean algebras. It is more common to state Stone duality in terms of

Stone spaces and Boolean algebras. This is just the restriction of the duality above

to the aforementioned sub-categories.

For a generalized Boolean algebra A, we let Aut(A) denote the group of Boolean

isomorphisms from A to A.

2.3. Étale groupoids

The standard references for étale groupoids (and their C∗-algebras) are Renault’s

thesis [59] and Paterson’s book [56]. See also the excellent lecture notes by

Sims [64]. A groupoid is a small category of isomorphisms, that is, a set G (the
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morphisms, or arrows in the category) equipped with a partially defined multipli-

cation (g1, g2) �→ g1 · g2 for a distinguished subset G(2) ⊆ G × G, and everywhere

defined involution g �→ g−1 satisfying the following axioms:

(1) If g1g2 and (g1g2)g3 are defined, then g2g3 and g1(g2g3) are defined and

(g1g2)g3 = g1(g2g3),

(2) The products gg−1 and g−1g are always defined. If g1g2 is defined, then g1 =

g1g2g
−1
2 and g2 = g−1

1 g1g2.

A topological groupoid is a groupoid equipped with a topology making the opera-

tions of multiplication and taking inverse continuous. The elements of the form gg−1

are called units. We denote the set of units of a groupoid G by G(0), and refer to

this as the unit space. We think of the unit space as a topological space equipped

with the relative topology from G. The source and range maps are

s(g) := g−1g and r(g) := gg−1

for g ∈ G. These maps are necessarily continuous when G is a topological groupoid.

We implicitly assume that all unit spaces appearing are of infinite cardinality (in

order to avoid some degenerate cases). An étale groupoid is a topological groupoid

where the range map (and necessarily also the source map) is a local homeomor-

phism (as a map from G to G). The unit space G(0) of an étale groupoid is always

an open subset of G. An ample groupoid is an étale groupoid whose unit space is a

Boolean space.

It is quite common for operator algebraists to restrict to Hausdorff groupoids.

One reason for this is that a topological groupoid is Hausdorff if and only if the

unit space is a closed subset of the groupoid. In the end our main results will only

apply to groupoids that are Hausdorff, but some of the theory applies when G is

merely ample (and effective). For as long as the unit space G(0) is Hausdorff the

groupoid will be locally Hausdorff. We shall therefore clearly indicate whenever we

actually need the groupoid to be Hausdorff for some result to hold.

Two units x, y ∈ G(0) belong to the same G-orbit if there exists g ∈ G such

that s(g) = x and r(g) = y. We denote by OrbG(x) the G-orbit of x. When

every G-orbit is dense in G(0), G is called minimal. In the special case that

there is just one orbit, we call G transitive. A subset A ⊆ G(0) is called G-full
if r(s−1(A)) = G(0), in other words if A meets every G-orbit. For an open sub-

set A ⊆ G(0) the subgroupoid G|A := {g ∈ G | s(g), r(g) ∈ A} is called the restriction

of G to A. When G is étale, the restriction G|A is an open étale subgroupoid. The

isotropy group of a unit x ∈ G(0) is the group Gxx := {g ∈ G | s(g) = r(g) = x}, and
the isotropy bundle is

G′ := {g ∈ G | s(g) = r(g)} =
⊔

x∈G(0)

Gxx .

A groupoid G is said to be principal if G′ = G(0), i.e. if all isotropy groups are trivial.

Any principal groupoid can be identified with an equivalence relation on its unit
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space G(0), but the topology need not be the relative topology from G(0) × G(0).

We say that G is effective if the interior of G′ equals G(0). We call G topologically

principal if the set of points in G(0) with trivial isotropy group are dense in G(0).

Remark 2.2. We should point out that the condition we are calling effective often

goes under the name essentially principal (or even topologically principal) elsewhere

in the literature. In general, topologically principal implies effective. However, for

most groupoids considered by operator algebraists the two notions are in fact equiv-

alent (see [61, Proposition 3.1]), so often these names all mean the same thing. In

particular, this is the case for second countable locally compact Hausdorff étale

groupoids.

Definition 2.3. Let G be an étale groupoid. A bisection is an open subset U ⊆ G
such that s and r are both injective when restricted to U . A bisection U is called

full if we have s(U) = r(U) = G(0).

When U is a bisection in G, then s|U : U → s(U) is a homeomorphism, and

similarly for the range map. An étale groupoid can thus be characterized by admit-

ting a topological basis consisting of bisections, and an ample groupoid as one with

a basis of compact bisections. In particular, ample groupoids are locally compact,

and if G is Hausdorff and ample, then G is also a Boolean space. One of the most

basic class of examples of étale groupoids are the following, which arise from group

actions.

Example 2.4. Let Γ be a discrete group acting by homeomorphisms on a topo-

logical space X . The associated transformation groupoid is

Γ�X := Γ×X

with product according to (τ, γ(x)) · (γ, x) = (τγ, x) (and undefined otherwise),

and inverse (γ, x)−1 = (γ−1, γ(x)). Identifying the unit space (Γ�X)(0) = {1}×X
with X in the obvious way we have s((γ, x)) = x and r((γ, x)) = γ(x). Equip-

ping Γ�X with the product topology makes it an étale groupoid (essentially

because Γ is discrete), and a basis of bisections is given by the cylinder sets

Z(γ, U) := {(γ, x) |x ∈ U}

indexed over γ ∈ Γ and open subsets U ⊆ X . The identification of X with the unit

space as above is compatible with this topology. In particular Γ �X is Hausdorff

and ample exactly when X is Boolean, and second countable when Γ is countable

and X is second countable. The transformation groupoid is effective if and only if

every nontrivial group element has support equal to X . In the second countable

setting, this coincides with the action being topologically principal (meaning that

the set of points that are fixed only by the identity element of the group form a
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dense subset of X). The groupoid orbit OrbΓ�X(x) of a point x ∈ X coincide with

the orbit under the action, i.e. OrbΓ�X(x) = {γ(x) | γ ∈ Γ} = OrbΓ�X(x).

A groupoid homomorphism between two groupoids G and H is a

map Φ : G → H such that (Φ(g),Φ(g′))∈H(2) whenever (g, g′) ∈ G(2), and more-

over Φ(g) · Φ(g′) = Φ(g · g′). It follows that Φ(g−1) = Φ(g)−1 for all g ∈ G, Φ

commutes with the source and range maps and Φ(G(0)) ⊆ H(0). If Φ is a bijection,

then Φ−1 is a groupoid homomorphism and we call Φ an algebraic isomorphism.

For étale groupoids G and H an étale homomorphism is a groupoid homomor-

phism Φ : G → H which is also a local homeomorphism. It is a fact that a groupoid

homomorphism Φ : G → H between étale groupoids is a local homeomorphism if

and only if the restriction Φ(0) : G(0) → H(0) to the unit spaces is a local homeomor-

phism. By an isomorphism of topological (or étale) groupoids we mean an algebraic

isomorphism which is also a homeomorphism. So a bijective étale homomorphism

is an isomorphism of étale groupoids. Note that if Φ : G → H is an étale homomor-

phism, then the image Φ(G) is an open étale subgroupoid of H.

3. The Topological Full Group

In this section, we will expand Matui’s definition of the topological full group of an

ample groupoid from the compact to the locally compact case, and establish some

elementary properties. To each bisection U ⊆ G in an étale groupoid, we associate

a homeomorphism

πU : s(U) → r(U)

given by r|U ◦ (s|U )−1. This means that for each g ∈ U, πU maps s(g) to r(g).

Whenever U is a full bisection, πU is a homeomorphism of G(0). We now show that

the (partial) homeomorphism πU determines the bisection U , when the groupoid is

effective and Hausdorff.

Lemma 3.1. Let G be an effective ample Hausdorff groupoid and let U, V ⊆ G be

bisections with s(U) = s(V ) and r(U) = r(V ). If πU = πV , then U = V .

Proof. That πU = πV means that for each x ∈ s(U), the unique elements g ∈ U

and h ∈ V with s(g) = x = s(h) also satisfies r(g) = r(h). This implies

that V −1U ⊆ G′. As G is Hausdorff, G(0) is closed, and therefore V −1U ∩ (G\G(0))

is an open subset of G′\G(0). But since G is effective this set must be empty. This

entails that V −1U ⊆ G(0), and hence U = V .

Definition 3.2. Let G be an effective ample groupoid. The topological full group

of G, denoted �G�, is the subgroup of Homeo(G(0)) consisting of all homeomorphisms

of the form πU , where U is a full bisection in G such that supp(πU ) is compact. We

will denote by D(�G�) its commutator subgroup.
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In the topological full group, composition and inversion of the homeomorphisms

correspond to multiplication and inversion of the bisections, viz.:

• πG(0) = idG(0) = 1,

• πU ◦ πV = πUV ,

• (πU )
−1 = πU−1 .

Remark 3.3. It is clear that when the unit space is compact, this definition coin-

cides with Matui’s [48, Definition 2.3] — which again generalizes the definitions

given in [27, 42], for Cantor dynamical systems and one-sided shifts of finite type,

respectively, to étale groupoids. Moreover, in [46] Matui defined six different full

groups associated with a minimal homeomorphism φ of a locally compact Cantor

space. The smallest one of these, denoted τ [φ]c in [46], equals the topological full

group (as in Definition 3.2) of the associated transformation groupoid.

Remark 3.4. After the completion of this work, we were made aware of Matte

Bon’s preprint [45] where he defines the topological full group of an arbitrary étale

groupoid G as the group of all full bisections U ⊆ G such that U\G(0) is com-

pact. For effective groupoids, this agrees with Definition 3.2, modulo identifying

a full bisection with its associated homeomorphism. For not necessarily effective

groupoids it is arguably better to define the topological full group in terms of the

bisections themselves, for then one does not “lose” the information contained in

the (nontrivial) isotropy (but also to separate the group from its canonical — no

longer faithful — action on the unit space). This is done in e.g. [7, 54] as well.

However, the approach taken in this paper — in particular in Sec. 6 — is based

on working with subgroups of the homeomorphism group of a space (i.e. faithful

group actions), which is why we have defined �G� in terms of homeomorphisms.

Remark 3.5. We emphasize that the topological full group �G� is viewed as a

discrete group. The term topological is historical, and refers to the fact that the

homeomorphisms in the topological full group preserves orbits in a “continuous

way”, as opposed to the full groups, which appeared first (in the measurable setting)

cf. [27, p. 2].

For descriptions of the topological full group in certain classes of examples, see

Proposition 9.4, Remarks 11.22 and 11.28. See also [51] for a survey on topological

full groups of étale groupoids with compact unit space.

By virtue of the groupoid being effective, the support of a homeomorphism in

the topological full group is in fact open as well. Matui’s proof of this fact for

compact unit spaces carries over verbatim to our setting.

Lemma 3.6 (cf. [49, Lemma 2.2]). Let G be an effective ample Hausdorff

groupoid. Then supp(πU ) = s(U\G(0)) for each πU ∈ �G�. In particular, supp(πU )

is a compact open subset of G(0).
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We now present a few basic results on the existence of elements in the topo-

logical full group. They will be used in later sections to construct elements in the

topological full group with localized support.

Lemma 3.7. Let G be an effective ample groupoid, and let πU ∈ �G�. Then, we

have a decomposition

U = U⊥ � (G(0)\supp(πU )),

where U⊥ is a compact bisection with s(U⊥) = r(U⊥) = supp(πU ).

Conversely, any compact bisection V ⊆ G with s(V ) = r(V ) defines an ele-

ment πṼ ∈ �G� with supp(πṼ ) ⊆ s(V ) by setting Ṽ = V � (G(0)\s(V )).

Proof. It is clear that supp(πU ) is invariant under πU . Therefore, we may simply

put U⊥ = s−1
|U (supp(πU )). The second statement is obvious.

Lemma 3.8. Let G be an effective ample groupoid. Any compact bisection V ⊆ G
which satisfies s(V ) ∩ r(V ) = ∅ defines an involution πV̂ ∈ �G� by setting V̂ equal

to V � V −1 � (G(0)\(s(V ) ∪ r(V ))). Moreover, supp(πV̂ ) ⊆ s(V ) ∪ r(V ).

Proof. Immediate.

Lemma 3.9. Let G be an effective ample groupoid. If g ∈ G\G′, that is s(g) 
= r(g),

then there is a (nontrivial) bisection U ⊆ G containing g with πU ∈ �G�.

Furthermore, for any open set A ⊆ G(0) containing both s(g) and r(g), U can

be chosen so that supp(πU ) ⊆ A. We may also choose πU to be an involution.

Proof. As G is ample there is a compact bisection W containing g. Let B1, B2

be disjoint open neighborhoods of s(g), r(g), respectively, in G(0). By intersecting

we may take B1 ⊆ s(W ) ∩ A and B2 ⊆ r(W ) ∩ A. By continuity of s and r there

are compact open sets W1,W2 ⊆ W , both containing g, such that s(W1) ⊆ B1

and r(W2) ⊆ B2. And then V = W1 ∩ W2 is a compact bisection containing g

with s(V ) ∩ r(V ) = ∅ and s(V )∪ r(V ) ⊆ A. Hence U = V̂ (as in Lemma 3.8) is the

desired full bisection.

Remark 3.10. In the non-compact case, we may view the topological full group as

a direct limit of topological full groups of groupoids over compact spaces as follows.

Consider CK(G(0)) as a directed set (ordered by inclusion). Given A,B ∈ CK(G(0))

with A ⊆ B we define the group homomorphism ιA,B : �GA� → �GB� by πU �→ πŨ
where we set Ũ = U � (B\A). Then, we have that

�G� ∼= lim−→(�GA�, ι).
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4. The Groupoid of Germs

We are now going to adapt the notions of [61, Sec. 3] to the (special) case of

groups, rather than inverse semigroups, to fit the framework of the topological full

group and its subgroups, rather than the pseudogroup studied in [61]. Our goal is

to reconstruct an ample groupoid G from subgroups of the topological full group

�G� as a so-called groupoid of germs — which is a quotient of a transformation

groupoid.

Remark 4.1. In the following three sections, we will be working with subgroups

of Homeo(X), where X is a topological space. Thus, we are essentially studying

faithful actions by discrete groups on X . In the end we will have X = G(0) for

some ample groupoid G, and we will be looking at subgroups of �G�. Yet it will

be convenient to state most results for general subgroups Γ ≤ Homeo(X) without

reference to groupoids. Also, beware that the term faithful will be used differently

in Sec. 6 (cf. Definition 6.1).

Recall that two homeomorphisms γ, τ : X → X have the same germ at the

point x ∈ X if there is a neighborhood U of x such that γ|U = τ|U .

Definition 4.2. Let X be a locally compact Hausdorff space and let Γ be a sub-

group of Homeo(X). The groupoid of germs of (Γ, X) is

Germ(Γ, X) := (Γ�X)/ ∼,
where (γ, x) ∼ (τ, y) if and only if x = y and γ, τ have the same germ at x.

Denote the equivalence class of (γ, x) ∈ Γ�X under ∼ by [γ, x]. It is straight-

forward to check that the groupoid operations of the transformation groupoid are

well-defined on representatives of the equivalence classes in the groupoid of germs

(and that they are continuous). The bisections

Z[γ,A] := {[γ, x] |x ∈ A},
for γ ∈ Γ and A ⊆ X open, form a basis for the quotient topology. The unit space

of Germ(Γ, X) is also identified with X in the obvious way. Hence Germ(Γ, X) is

étale (and ample when X is Boolean), and it is furthermore always effective (as

any group element acting identically on an open set is identified with the identity

at each point of this open set). Hausdorffness of the groupoid however, is no longer

guaranteed, but it can be characterized as follows.

Lemma 4.3. Let X be a locally compact Hausdorff space and let Γ ≤ Homeo(X).

Then the groupoid of germs Germ(Γ, X) is Hausdorff if and only if supp(γ) is clopen

in X for every γ ∈ Γ.

Proof. Since X is Hausdorff, any two groupoid elements [γ, x], [τ, y] ∈ Germ(Γ, X)

with distinct sources (i.e. x 
= y) can always be separated by open sets. We only

have to worry about separating elements in the same isotropy group, and it suffices
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to be able to separate the unit from any other element. Also note that [γ, x] 
= [1, x]

if and only if x ∈ supp(γ).

First, assume that all the supports are clopen. If [γ, x] 
= [1, x], then by the

observation above, Z[γ, supp(γ)] and Z[1, supp(γ)] are disjoint open neighborhoods

of these elements. To separate [γ, x] from [τ, x] (when these are distinct), we

first note that [γ, x][τ, x]−1 = [γτ−1, τ(x)] 
= [1, τ(x)]. Hence τ(x) ∈ supp(γτ−1),

so by the argument above Z[γτ−1, A] and Z[1, A], with A = supp(γτ−1), sep-

arates [γτ−1, τ(x)] from [1, τ(x)]. It follows that Z[γ, τ−1(A)] and Z[τ, τ−1(A)]

separates [γ, x] and [τ, x].

Conversely, suppose there is a γ ∈ Γ such that supp(γ) is not open. Let x be

any point on the boundary of supp(γ). Then γ(x) = x, but [γ, x] 
= [1, x], and these

two groupoid elements cannot be separated by open sets. To see this take any two

basic neighborhoods Z[γ,A], Z[1, B] where A,B are open neighborhoods of x in X .

They both contain the basic set Z[1, C] where C = (A ∩B)\supp(γ), since γ acts

identically on C.

In the sequel we shall restrict our attention to groups of homeomorphisms which

have open, as well as compact, support. Topological full groups are determined by

the “local behavior” of its elements. This is made precise in the following definition.

Definition 4.4. Let X be a locally compact Hausdorff space and let Γ be a

subgroup of Homeoc(X). We say that a homeomorphism ϕ ∈ Homeoc(X) locally

belongs to Γ if for every x ∈ X , there exists an open neighborhood U of x and γ ∈ Γ

such that ϕ|U = γ|U . The group Γ is called locally closed if whenever ϕ ∈ Homeoc(X)

locally belongs to Γ, then ϕ ∈ Γ.

Proposition 4.5. Let G be an effective ample Hausdorff groupoid. Then the topo-

logical full group �G� ≤ Homeoc(G(0)) is locally closed.

Proof. Let ϕ ∈ Homeoc(G(0)) locally belong to �G�. Then, since supp(ϕ) is

compact open, we can find finitely many open sets Ai ⊆ supp(ϕ), cover-

ing supp(ϕ), such that ϕ|Ai
= (πUi)|Ai

, where πUi ∈ �G�. Since G(0) is Boolean

we may assume that the Ai’s are clopen and disjoint. We then have a clopen

partition supp(ϕ) = A1 � A2 � · · · � An, and ϕ restricts to a self-homeomorphism

of supp(ϕ) which on each region Ai equals πUi . It follows that the set V =
⋃n
i=1 Vi,

where Vi = (s|Ui
)−1(Ai), is a compact bisection in G with s(V ) = supp(ϕ) = r(V ).

And then ϕ = πṼ ∈ �G�, where Ṽ is as in Lemma 3.7.

Given a group Γ ≤ Homeoc(X) we denote by 〈Γ〉 the set of ϕ ∈ Homeoc(X)

which locally belong to Γ. Clearly 〈Γ〉 is a locally closed group in Homeoc(X)

and Γ ≤ 〈Γ〉. As the groupoid of germs is defined in the same local terms as the

local closure we have a canonical isomorphism Germ(〈Γ〉, X) ∼= Germ(Γ, X). From
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this we obtain the analog of [61, Proposition 3.2], namely that the topological full

group of a groupoid of germs equals the local closure of the group we started with.

Proposition 4.6. Let X be a Boolean space and let Γ ≤ Homeoc(X). Then, we

have that �Germ(Γ, X)� ∼= 〈Γ〉.

Proof. Since Germ(Γ, X) is canonically isomorphic to Germ(〈Γ〉, X), it suffices to

show that �Germ(〈Γ〉, X)� = 〈Γ〉. For each ϕ ∈ 〈Γ〉 the full bisection Z[ϕ,X ] = Uϕ
in Germ(〈Γ〉, X) satisfies πUϕ = ϕ. And since ϕ has compact support it belongs

to �Germ(〈Γ〉, X)�.

For the reverse inclusion, take any πU ∈ �Germ(〈Γ〉, X)�. Recall that the sup-

port of πU is open, as well as compact, since any groupoid of germs is effective

(cf. Lemma 3.6). To see that πU locally belongs to Γ take any x ∈ X , and let [ϕ, x]

be the unique element in U whose source is x. Since U is open there is a basic

set Z[ϕ,A] ⊆ U , where A is an open neighborhood of x in X . As ϕ ∈ 〈Γ〉 there is

an open neighborhood B of x and an element γ ∈ Γ with ϕ|B = γ|B. By intersecting

with A we may assume that B ⊆ A. Now observe that (πU )|B = ϕ|B = γ|B, and we

are done.

As topological full groups are locally closed (Proposition 4.5), we obtain the

following immediate corollary.

Corollary 4.7. Let G be an effective ample Hausdorff groupoid. Then, we have

that �Germ(�G�,G(0))� ∼= �G�.

The preceding results show that a locally closed group Γ ≤ Homeoc(X) can be

reconstructed from its associated groupoid of germs Germ(Γ,G(0)), namely as the

topological full group of this groupoid. We now turn to the question of how an

ample groupoid G relates to the groupoid of germs, Germ(�G�,G(0)), determined

by its topological full group. We will see that these will also be isomorphic under

some mild condition on the groupoid — namely that the groupoid can be covered

by bisections as in the following definition.

Definition 4.8. Let G be an effective ample groupoid. We say that a sub-

group Γ ≤ �G� covers G if there for each g ∈ G exists a πU ∈ Γ such that g ∈ U .

Note that if Γ ≤ �G� covers G, then so does any group Γ′ lying in between them,

i.e. Γ ≤ Γ′ ≤ �G�, and in particular �G� itself covers G. Sufficient conditions on the

orbits of G for �G�, or the commutator D(�G�), to cover G is given by the following

result (which is the analog of [49, Lemma 3.7]).

Lemma 4.9. Let G be an effective ample groupoid.

(1) If |OrbG(x)| ≥ 2 for every x ∈ G(0), then �G� covers G.
(2) If |OrbG(x)| ≥ 3 for every x ∈ G(0), then D(�G�) covers G.
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Proof. (1) First consider g ∈ G\G′. Then Lemma 3.9 immediately gives an ele-

ment πU ∈ �G� with g ∈ U . Next, suppose s(g) = r(g) = x. By assumption there

is a point y different from x in OrbG(x). This means that there is some h ∈ G
with s(h) = x 
= y = r(h). And then h−1 is composable with g and gh−1 ∈ G\G′.
Applying Lemma 3.9 to both gh−1 and h we get πU1 , πU2 ∈ �G� with gh−1 ∈ U1

and h ∈ U2. Since πU1U2 ∈ �G� and g ∈ U1U2 we see that �G� covers G.
(2) As in the previous part we first consider the case g ∈ G\G′. By assumption

there is a third (distinct) point y in the same orbit as s(g) and r(g). Therefore

there is an element h ∈ G with s(h) = y and r(h) = s(g). Lemma 3.9 gives

involutions πU , πV ∈ �G� such that g ∈ U and h ∈ V . We may also arrange so

that y /∈ supp(πU ) by the second part of Lemma 3.9. Then

[πU , πV ] = πUπV (πU )
−1(πV )

−1 = π(UV )2 ∈ D(�G�),

and we claim that g belongs to the associated full bisection (UV )2. To see that this is

the case, note that y ∈ U since y /∈ supp(πU ). Thus we have g = g·h·y·h−1 ∈ UV UV

as s(h) = y.

Finally, for the case s(g) = r(g) we proceed similar as in part (1). We take h ∈ G
with s(h) = s(g) and r(h) 
= s(g) and apply the above part to gh−1 and h, which

both belong to G\G′. Multiplying the bisections we get gives the desired bisection

containing g.

The conditions in Lemma 4.9 are not necessary (cf. Example 9.6), but they are

typically easy to check in specific examples. Note that for minimal groupoids all

orbits are in particular infinite, so the covering as above is automatic. We are now

ready to give the main result on how a groupoid G can be reconstructed from the

germs of �G�. It is the analog of [61, Proposition 3.2].

Proposition 4.10. Let G be an effective ample Hausdorff groupoid and let Γ ≤ �G�.

Then there is an injective étale homomorphism

ι : Germ(Γ,G(0)) ↪→ G
given by ι([πU , x]) = (s|U )−1(x) for [πU , x] ∈ Germ(Γ,G(0)). Furthermore, ι is

surjective, and hence an isomorphism, if and only if Γ covers G.

Proof. We first have to verify that ι is well-defined. Let x ∈ G(0) and suppose that

the homeomorphisms πU , πV ∈ Γ have the same germ over x. Let A be an open

neighborhood of x on which πU and πV agree. Then

πUA = (πU )|A = (πV )|A = πV A,

so by Lemma 3.1 we have UA = V A. This means that the unique groupoid elements

in U and V that have source equal to x coincide, so ι is well-defined.

To see that ι is a groupoid homomorphism recall that ([πV , y], [πU , x]) is a

composable pair if and only if πU (x) = y. Suppose this is the case and let
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g ∈ U be the element with s(g) = x, and let h ∈ V be the element with s(h) = y.

As r(g) = πU (x) = y = s(h) we have (h, g) ∈ G(2) and

ι([πV , y] · [πU , x]) = ι([πV U , x]) = hg,

since hg ∈ V U and s(hg) = x.

Now note that ι(x) = x for x ∈ G(0) (under the identification of the unit space

of the groupoid of germs). So ι(0) = idG(0) is a (local) homeomorphism, hence ι is

an étale homomorphism.

To see that ι is injective note first that ι([πU , x]) 
= ι([πV , y]) if x 
= y since ι(0)

is the identity. Suppose now that ι([πU , x]) = ι([πV , x]) for some πU , πV ∈ Γ. This

means that there is a groupoid element g ∈ U∩V with s(g) = x. Thus B = s(U∩V )

is an open neighborhood of x in G(0) and clearly (πU )|B = (πV )|B, which means

that [πU , x] = [πV , x].

Finally, that ι is surjective is easily seen to be the same as Γ covering G.

Remark 4.11. When the map ι in the previous proposition is an isomorphism the

inverse is given by ι−1(g) = [πU , s(g)], where U is any full bisection such that πU ∈ Γ

and g ∈ U .

Remark 4.12. Let G be an effective ample Hausdorff groupoid. Combining Propo-

sitions 4.10 and 4.6 we see that for each locally closed subgroup Γ ≤ �G�, there is an

open étale subgroupoid HΓ ⊆ G such that �HΓ� ∼= Γ, namely HΓ = Germ(Γ,G(0)).

Since we are really interested in knowing when G is isomorphic to Germ(Γ,G(0))

(particularly for the case Γ = �G�) it is natural to ask whether they could

be isomorphic even if the canonical map ι fails to be an isomorphism. We will

see shortly that this is not possible. For Γ ≤ Homeoc(X) with X Boolean we

have seen that Γ ≤ 〈Γ〉 ∼= �Germ(Γ, X)�. Identifying the latter two we see that Γ

covers Germ(Γ, X) since we have [γ, x] ∈ Z[γ,X ] and πZ[γ,X] = γ ∈ Γ for

each [γ, x] ∈ Germ(Γ, X).

Corollary 4.13. Let G be an effective ample Hausdorff groupoid. Then G is

isomorphic to Germ(�G�,G(0)) if and only if �G� covers G.

Proof. Suppose Φ : G → Germ(�G�,G(0)) is an isomorphism. Then Φ induces

an isomorphism between the topological full groups by πU �→ πΦ(U) for πU ∈
�G�. Let g ∈ G be given. As �G� covers Germ

(
�G�,G(0)

)
there is a full bisection V

containing Φ(g) such that πV ∈ �Germ(�G�,G(0))� = �G�. And then Φ−1(V ) is a

full bisection in G containing g with πΦ−1(V ) ∈ �G�. Hence �G� covers G.

5. The Category of Spatial Groups

In this section, we will study the groupoid of germs from a categorical point of

view. We will see that the assignment (Γ, X) �→ Germ(Γ, X) is functorial — after
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introducing suitable categories. We will also see that certain equivariant maps

between the spaces induce embeddings of the groupoids of germs.

Definition 5.1. The category of spatial groups, denoted by SpatG, consists of

pairs (Γ, X), where X is a Boolean space and Γ ≤ Homeoc(X). A morphism

in SpatG from (Γ1, X1) to (Γ2, X2) is a local homeomorphism φ : X1 → X2

satisfying φ ◦ Γ1 ⊆ Γ2 ◦ φ.
We shall sometimes refer to a pair (Γ, X) as a space-group pair. Observe

that an isomorphism in the category SpatG is a homeomorphism φ such

that φ ◦ Γ1 ◦ φ−1 = Γ2. We call such an isomorphism a spatial isomorphism (as

it is a group isomorphism implemented by a homeomorphism).

Definition 5.2. The category Gpoid consists of ample effective Hausdorff

groupoids, and the morphisms are étale homomorphisms.

Remark 5.3. The choice of morphisms in SpatG is done so that they induce

étale homomorphisms between the groupoid of germs in a natural way. As for the

morphisms in Gpoid, there are several reasons for stipulating that they should be

étale homomorphisms (rather than merely continuous groupoid homomorphisms).

First of all, since all the structure maps in an étale groupoid are local homeomor-

phisms, it is reasonable to prescribe that maps between étale groupoids should be

as well. Moreover, the image under an étale homomorphism is always an open étale

subgroupoid in the codomain. An important consequence of this is that an injec-

tive étale homomorphism induce (diagonal preserving) injective ∗-homomorphisms

between both the full and reduced groupoid C∗-algebras, respectively (and also

between the Steinberg algebras), cf. [9, p. 113] and [57, Proposition 1.9]. Whereas

the groupoid C∗-algebra construction is not functorial in general.

It is straightforward to check that SpatG and Gpoid indeed are categories. We

will now define a functor from SpatG to Gpoid, which on objects is the groupoid

of germs. Let φ be a spatial morphism between two space-group pairs (Γ1, X1)

and (Γ2, X2) in SpatG. Given [γ, x] ∈ Germ(Γ1, X1), there is an element γ′ ∈ Γ2

with φ ◦ γ = γ′ ◦ φ. We then propose to define an étale homomorphism Germ(φ)

from Germ(Γ1, X1) to Germ(Γ2, X2) by setting Germ(φ)([γ, x]) = [γ′, φ(x)].

Proposition 5.4. The mapping Germ(φ) described above is a well-defined étale

homomorphism, and Germ(−) : SpatG → Gpoid is a (covariant) functor.

Proof. Let φ : (Γ1, X1) → (Γ2, X2) be a spatial morphism. We first verify that

the map Germ(φ) is well-defined. Given [γ, x] ∈ Germ(Γ1, X1), suppose γ
′, γ′′ ∈ Γ2

satisfy

φ ◦ γ = γ′ ◦ φ = γ′′ ◦ φ.
Then γ′ and γ′′ agree on φ(X1), which is an open neighborhood of φ(x), hence we

have [γ′, φ(x)] = [γ′′, φ(x)]. So the choice of γ′ doesn’t matter. As for the choice
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of γ, suppose τ ∈ Γ1 has the same germ over x as γ, i.e. γ|A = τ|A for some open

neighborhood A of x in X1. Let τ
′ ∈ Γ2 satisfy φ ◦ τ = τ ′ ◦ φ. Then

γ′ ◦ φ|A = φ ◦ γ|A = φ ◦ τ|A = τ ′ ◦ φ|A.
This means that γ′|φ(A) = τ ′|φ(A), hence [γ′, φ(x)] = [τ ′, φ(x)]. So Germ(φ) is well-

defined.

Observe that the restriction to the unit spaces is just

Germ(φ)(0) = φ : X1 → X2.

From this we obtain

s(Germ(φ)([γ, x])) = φ(x) = Germ(φ)(s([γ, x])),

and

r(Germ(φ)([γ, x])) = γ′ ◦ φ(x) = φ ◦ γ(x) = Germ(φ)(r([γ, x])).

This means that Germ(φ) takes composable pairs to composable pairs. As for pre-

serving the product itself, we verify that

Germ(φ)([τ, γ(x)]) ·Germ(φ)([γ, x]) = [τ ′, φγ(x)] · [γ′, φ(x)] = [τ ′γ′, φ(x)]

= Germ(φ)([τγ, x]), since φτγ = φτ ′γ′.

As Germ(φ)(0) = φ is a local homeomorphism, it follows that Germ(φ) is an étale

homomorphism. Similar computations as above shows that Germ(−) sends identity

morphisms to identity morphisms and preserves composition of morphisms.

We record some consequences of this functoriality.

Corollary 5.5. Let φ : (X1,Γ1) → (X2,Γ2) be a spatial morphism in SpatG.

(1) If φ is a spatial isomorphism, then Germ(φ) : Germ(Γ1, X1) → Germ(Γ2, X2)

is an isomorphism of étale groupoids.

(2) Germ(φ)(0) = φ, in particular Germ(φ) maps X1 onto X2 if and only if φ is

surjective.

(3) If φ : X1 → X2 is injective, then Germ(φ) : Germ(Γ1, X1) → Germ(Γ2, X2) is

also injective.

(4) If φ : X1 → X2 is surjective and φ ◦ Γ1 = Γ2 ◦ φ, then Germ(φ) : Germ(Γ1,

X1) → Germ(Γ2, X2) is also surjective.

Proof. Statement (1) follows immediately from functoriality, and statement (2)

was observed in the proof of Proposition 5.4.

(3) Assume that φ : X1 → X2 is injective. Then clearly Germ(φ) maps elements

with distinct sources to distinct elements. So suppose

[γ′, φ(x)] = Germ(φ)([γ, x]) = Germ(φ)([τ, x]) = [τ ′, φ(x)].

Then γ′|A = τ ′|A for some open neighborhood A of φ(x) in X2. As φ ◦ γ = γ′ ◦ φ
and φ ◦ τ = τ ′ ◦ φ we have that φ ◦ γ and φ ◦ τ agree on φ−1(A). The injectivity
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of φ now implies that γ and τ agree on φ−1(A), which is an open neighborhood

of x, hence [γ, x] = [τ, x] and Germ(φ) is injective.

(4) Suppose φ : X1 → X2 is surjective and that φ ◦ Γ1 = Γ2 ◦ φ. Given [τ, y] in

Germ(Γ2, X2), pick any x ∈ X1 with φ(x) = y. By assumption there is some γ ∈ Γ1

such that φ ◦ γ = τ ◦ φ, and then Germ(φ)([γ, x]) = [τ, y].

Remark 5.6. It is natural to ask whether a spatial morphism φ from (X1,Γ1)

to (X2,Γ2) induces a (algebraic) group homomorphism from Γ1 to Γ2. This is not

so clear. But at least if φ : X1 → X2 is injective and Γ2 is locally closed, then

one can define an injective group homomorphism fφ : Γ1 → Γ2 in the following

way. First observe that given γ ∈ Γ1, there is a γ2 ∈ Γ2 with φ ◦ γ = γ2 ◦ φ, and
then γ2(φ(X1)) = φ(X1) and supp((γ2)|φ(X1)) = φ(supp(γ)). Given another γ3 ∈ Γ2

with φ ◦ γ = γ3 ◦ φ we have

(γ2)|φ(X1) = (γ3)|φ(X1) ∈ Homeoc(φ(X1)).

So we can define fφ(γ) = γ′ to be the homeomorphism γ′ on X2 given by

(γ′)|φ(X1) = (γ2)|φ(X1) and (γ′)|X2\φ(X1) = idX2\φ(X1).

The homeomorphism γ′ belongs to Γ2 because Γ2 is locally closed. It is straight-

forward to check that fφ is an injective group homomorphism, and also that

supp(fφ(γ)) = φ(supp(γ)) for every γ ∈ Γ1. If φ is a spatial isomorphism, then fφ
is a group isomorphism and fφ satisfies fφ(γ) = φ ◦ γ ◦ φ−1 for each γ ∈ Γ1.

Remark 5.7. Viewing the functor Germ as a “free” functor turning a space-group

pair into an effective ample Hausdorff groupoid (in the “most efficient” way), one

could ask for a “forgetful” functor in the opposite direction. Proposition 4.6 suggests

that this functor should be

�−� : Gpoid → SpatG assigning G �→ (�G�,G(0)).

The natural choice for the morphisms is for an étale homomorphism Φ : G → H
to let

�Φ� := Φ(0) : (�G�,G(0)) → (�H�,H(0)),

i.e. restriction to the unit space. Unfortunately, this fails to be a morphism

in SpatG in general. For injective étale homomorphisms though, the restriction

to the unit spaces does yield an injective spatial morphism.

6. Spatial Realization Theorems

In this section, we shall study reconstruction of topological spaces from subgroups

of their homeomorphism group in the sense of the following definition.

Definition 6.1. A class K of space-group pairs is called faithful if every group

isomorphism Φ : Γ1 → Γ2, where (Γ1, X1), (Γ2, X2) ∈ K, is spatially implemented,
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that is, there is a homeomorphism φ : X1 → X2 such that Φ(γ) = φ ◦ γ ◦ φ−1 for

every γ ∈ Γ1.

We stress the fact that the isomorphisms Φ considered in the preceding definition

are, a priori, abstract group isomorphisms. They only “see” the algebraic structure

of the Γi’s, not the actions on the underlying spaces. We may rephrase faithfulness

to saying that “every group isomorphism is a spatial isomorphism”. In relation to

the previous section, we obtain the following from Corollary 5.5.

Proposition 6.2. Suppose K is a faithful class of space-group pairs from SpatG.

If (Γ1, X1) and (Γ2, X2) belong to K and Γ1 is isomorphic to Γ2 as abstract groups,

then the groupoids of germs Germ(Γ1, X1) and Germ(Γ2, X2) are isomorphic as

topological groupoids.

In conjunction with Proposition 4.10 this will allow us to deduce that in many

cases, the topological full group of an ample groupoid, considered as an abstract

group, is a complete invariant for the isomorphism class of the groupoid. This will

be done in the next section. The rest of this section will be devoted to proving two

faithfulness results. The first one is a straightforward extension of Matui’s spatial

realization result [49, Theorem 3.5] to our locally compact setting (Theorem 6.6).

This result will not only apply to the topological full group, but also to any subgroup

containing the commutator. The second result we present (Theorem 6.19) has more

relaxed assumptions on the “mixing properties” of the action, but we were not able

to apply it to the commutator subgroup of the topological full group.

6.1. The class KF

We now present the main definition from [49, Sec. 3], adapted to our setting.

Definition 6.3. We define the class KF to consist of all space-group pairs (Γ, X)

in SpatG which satisfy the following conditions:

(F1) For any x ∈ X and any clopen neighborhood A ⊂ X of x, there exists an

involution α ∈ Γ such that x ∈ supp(α) and supp(α) ⊆ A.

(F2) For any involution α ∈ Γ\{1}, and any non-empty clopen set A ⊆ supp(α),

there exists a β ∈ Γ\{1} such that supp(β) ⊆ A ∪ α(A) and α(x) = β(x) for

every x ∈ supp(β).

(F3) For any non-empty clopen set A ⊆ X , there exists an α ∈ Γ such

that supp(α) ⊆ A and α2 
= 1.

Remark 6.4. In [49, Definition 3.1] there is also a condition (F0), stipulating that

the support of any involution should be clopen. This is already implicit in the

definition above, since all supports of elements in Γ are assumed to be compact

and open. We also remark that Definition 6.3 does not impose any countability

restrictions on the space X . However, condition (F1) (and also (F3)) implies that X

cannot have isolated points.
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Remark 6.5. The notation KF to denote a class of space-group pairs is in the

same style as Rubin uses in his paper [62]. Elsewhere in the literature, in particular

[27, 49], groups Γ with (Γ, X) ∈ KF are called groups of class F (and X is assumed

to be a (compact) Cantor space).

We now state a simple extension of Matui’s Spatial Realization Theorem.

Theorem 6.6 (cf. [49, Theorem 3.5]). The class KF is faithful.

Proof. By closely inspecting the proof of [49, Theorem 3.5] and the three lemmas

preceding it, one finds that the compactness of the spaces is not needed until the

proof of [49, Theorem 3.5] itself. The lemmas preceding it are completely algebraic.

Furthermore, the compactness is used only to guarantee that a certain intersection

of supports become non-empty — by appealing to the finite intersection property.

However, since all supports in our setting are already compact (by assumption) the

conclusion that the intersection is non-empty still holds. The second countability is

never needed. Therefore, Matui’s proof remains valid.

Remark 6.7. We remark that Matui’s proof of [49, Theorem 3.5] is similar to the

approach used by Bezuglyi and Medynets in [3, Sec. 5], wherein the authors prove

a precursor of Matui’s Isomorphism Theorem for Cantor minimal systems. Both of

these build on Fremlin’s book [25, Sec. 384].

6.2. The class KLCC

We now turn to obtaining the second spatial realization result, by providing another

faithful class of space group-pairs. In comparison with KF , we’ll impose more

restrictions on the spaces (second countability — resulting in locally compact Can-

tor spaces), but the conditions on the actions will be less “localized” in some sense.

We will of course still need the groups Γ to be very “rich” in order to recover the

action on the space X , but we do not focus solely on involutive group elements, as

was the case for KF .

Some of the (many) results from Rubins remarkable paper [62] will form the

backbone of this spatial realization result. In that paper, Rubin exhibits the faith-

fulness of several general classes of space-group pairs. However, many of the classes

considered there required quite different proofs. Arguably, the most commonly cited

result from [62] in our context is [62, Corollary 3.5], but this spatial realization

result is not strong enough to prove Theorem B. We essentially end up reproving

Rubin’s result on zero-dimensional spaces, but we obtain a slightly different state-

ment. Also, our proof is a bit more straightforward (since we aim for a less general

setting; namely perfect unit spaces of ample groupoids).

6.2.1. Reconstructing the Boolean algebra R(X)

The main theorem from Sec. 2 of Rubin’s paper (given below in Theo-

rem 6.11) gives general conditions for when the abstract isomorphism class of
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a group Γ ≤ Homeo(X) determines the Boolean algebra R(X), and the induced

action by Γ on it. We may view Γ as a subgroup of Aut(R(X)) by taking images of

regular open sets in R(X) under the homeomorphisms in Γ. In [62, Sec. 3], Rubin

defines several classes of space-group pairs and proves, in a case-by-case manner,

that the space X and the action by Γ on it, can be recovered from the induced

action of Γ on R(X). Let us begin with some terminology (adapted from [62]).

Definition 6.8. Let (Γ, X) be a space-group pair.

(1) We say that (Γ, X) is locally moving if for every non-empty open subset A ⊆ X

there exists γ ∈ Γ\{1} with supp(γ) ⊆ A.

(2) An open set B ⊆ X is called flexible if for every pair of open subsets C1, C2 ⊆ B,

if there exists γ ∈ Γ such that γ(C1) ∩ C2 
= ∅, then there exists τ ∈ Γ such

that τ(C1) ∩C2 
= ∅ and supp(τ) ⊆ B.

(3) We say that (Γ, X) is locally flexible if every non-empty open subset A contains

a non-empty open flexible subset B ⊆ A.

Remark 6.9. Note that if (Γ, X) is locally moving, then the space X has no

isolated points.

Remark 6.10. In [62], “locally moving” goes by the name “regionally disrigid”,

whilst the former terminology is from a later paper of Rubin [63].

We now state a special case of the main result from [62, Sec. 2].

Theorem 6.11 (cf. [62, Theorem 0.2, Theorem 2.14(a)]). Let (Γ1, X1)

and (Γ2, X2) be in SpatG, and assume they are both locally moving and locally flexi-

ble. If Φ : Γ1 → Γ2 is an isomorphism of groups, then there exists a Boolean isomor-

phism ψ : R(X1) → R(X2) such that ψ(g(A)) = Φ(g)(ψ(A)) for each A ∈ R(X1)

and g ∈ Γ1.

If we think of g and Φ(g) as elements in Aut(R(X1)) and Aut(R(X2)), respec-

tively, then we can rewrite the conclusion in the preceding theorem as

Φ(g) = ψ ◦ g ◦ ψ−1.

Thus, Theorem 6.11 says that any group isomorphism between Γ1 and Γ2 is actually

induced by an isomorphism of the Boolean algebras of regular open sets of the

underlying spaces.

Remark 6.12. We remark that what Rubin proves in [62, Theorem 2.14(a)] is a

somewhat stronger statement than the one we gave above. First of all, the spaces

need really only be Hausdorff (and perfect). Rubin shows that if (Γ, X) is locally

moving and locally flexible, then starting with Γ alone, one can canonically recon-

struct the Boolean algebra R(X) (up to isomorphism) using only group theoretic

constructions. Moreover, one obtains a natural action by Γ on this Boolean algebra

which is conjugate to the action by Γ onR(X). The strategy of the proof is to model

a regular set A ∈ R(X) by its rigid stabilizer Q(A) := {γ ∈ Γ | supp(γ) ⊆ A}, and
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then to describe the Boolean operations in R(X) in group theoretic terms, in terms

of the subgroups Q(A). Finally, one shows that there are enough regular sets A for

which subgroups of the form Q(A) can be detected inside Γ in order to generate

the whole of R(X).

6.2.2. Reconstructing the space X

We now turn to reconstructing X (and the original action by Γ) from its Boolean

algebra of regular sets. The strategy is to first impose conditions making it possible

to detect clopenness. And then characterize the compact open sets among the clopen

sets, which in turn allow us to recover X from Stone duality.

Definition 6.13. Let (Γ, X) be a space-group pair. A clopen set A ⊆ X is said to

be recognizable by Γ if it satisfies:

(1) For every γ ∈ Γ with γ(A) = A the homeomorphism τ given by

τ(x) =

{
γ(x), x ∈ A,

x, otherwise,

belongs to Γ.

(2) For every γ ∈ Γ with γ(A) ∩ A = ∅ the involution α given by

α(x) =



γ(x), x ∈ A,

γ−1(x), x ∈ γ(A),

x, otherwise,

belongs to Γ.

We shall see later that in our setting of topological full groups, all clopen subsets

of the unit space are recognizable. And whenever this is the case, it is possible to

characterize when a regular set is closed (i.e. clopen) using the following Boolean

algebra notion.

Definition 6.14. Let (Γ, X) be a space-group pair, and let A ∈ R(X) be a regular

open set. We say that A is weakly clopen if for every group element γ ∈ Γ which

satisfies γ(A ∩ γ(A)) = A ∩ γ(A), there exists an element ρ ∈ Γ such that

(1) ρ(B) = γ(B) for each B ∈ R(X) with B ⊆ A ∩ γ(A),
(2) ρ(B) = B for each B ∈ R(X) with B ⊆ ∼(A ∩ γ(A)).

Note that the notion of being weakly clopen is formulated solely in terms of the

action by Γ on the Boolean algebra R(X). And as the next result shows — under

suitable hypotheses — being weakly clopen is the same as being clopen.

Lemma 6.15. Let (Γ, X) ∈ SpatG. Assume that every clopen subset of X is

recognizable by Γ, and that the Γ-orbit of each point contains at least three points.
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Then a regular open set A ∈ R(X) is clopen if and only if both A and ∼A are

weakly clopen.

Proof. This is a special case of [62, Lemma 3.45], where the dense subset R is

taken to be all of R(X). Assumptions 3.V.1(a)–(c) and 3.V.2(a), (b) preceding [62,

Lemma 3.45] follow from those above. In particular, what Rubin calls “recognizably

clopen” coincides with (2) in Definition 6.13, and “strongly recognizably clopen” is

slightly weaker than (1) in Definition 6.13 (together with (2)).

In order to invoke Stone duality for Boolean spaces we need to recover the

generalized Boolean algebra of compact open sets. The previous lemma gives us

the clopen sets, and from these we obtain the compact open ones as follows.

Lemma 6.16. Let X be a second countable Boolean space. Then X is compact if

and only if CO(X) is countable.

Proof. If X is compact, then CO(X) = CK(X), and any second countable space

has countably many compact open subsets.

Suppose X is non-compact. Let {Kn}∞n=1 be a countable basis for X consisting

of compact open sets. Now form the compact open sets Ck =
⋃k
n=1Kn. As X is not

compact, we must have Ck 
= X for each k. Also, Ck ⊆ Ck+1 and they cover X . By

passing to a subsequence, if necessary, we may assume that Ck � Ck+1 for each k.

Finally, let Dk = Ck+1\Ck. Then the Dk’s are pairwise disjoint non-empty compact

open sets. We claim that for each subset S of the natural numbers, the set
⋃
k∈S Dk

is clopen. And then we have produced uncountably many distinct clopen sets. The

claim follows from the fact that for each Cm, the intersection Cm ∩ (⋃k∈S Dk

)
is

a finite intersection, hence closed, and that the Cm’s cover X .

Corollary 6.17. Let X be a second countable Boolean space, and let A ∈ CO(X)

be a clopen set. Then A is compact if and only if the set {B ∈ CO(X) |B ⊆ A} is

countable.

Proof. The set {B ∈ CO(X) |B ⊆ A} coincides with CO(A) when viewing A as a

subspace of X . The result now follows from Lemma 6.16.

This shows that in the generalized Boolean algebra CO(X) compactness is char-

acterized by having only countably many elements below. We are now ready to

define the class KLCC and give the second spatial realization result of this section.

Definition 6.18. We define the class KLCC to consist of all space-group pairs

(Γ, X) in SpatG which satisfy the following conditions:

(K1) X is a locally compact Cantor space.

(K2) (Γ, X) is locally moving.

(K3) (Γ, X) is locally flexible.
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(K4) Every clopen subset of X is recognizable by Γ.

(K5) The Γ-orbit of each point contains at least three points.

Theorem 6.19 (cf. [62, Theorem 3.50(a)]). The class KLCC is faithful.

Proof. Suppose we have two space-group pairs (Γ1, X1), (Γ2, X2) ∈ KLCC and

a group isomorphism Φ : Γ1 → Γ2. Invoking Theorem 6.11 yields an isomor-

phism of Boolean algebras ψ : R(X1) → R(X2) such that ψ(g(A)) = Φ(g)(ψ(U))

for each A ∈ R(X1) and g ∈ Γ1. We first argue that ψ(CO(X1)) = CO(X2), and

then that ψ(CK(X1)) = CK(X2).

First of all, note that both CO(Xi) and CK(Xi) are invariant under Γi (i = 1, 2).

Lemma 6.15 characterizes clopenness of regular sets in Xi solely in terms of the

(induced) actions by Γi on R(Xi). Since ψ is an equivariant Boolean algebra iso-

morphism, it follows that ψ(CO(X1)) = CO(X2). Next, Corollary 6.17 characterizes

compactness of a clopen set in terms of a countability condition in the generalized

Boolean algebra CO(Xi). Clearly, this is then also preserved by ψ. Consequently, ψ

restricts to an equivariant isomorphism of the generalized Boolean algebras CK(X1)

and CK(X2).

By applying the Stone functor to the generalized Boolean algebra isomorphism

ψ : CK(X1) → CK(X2)

we obtain a homeomorphism

S(ψ) : S(CK(X2)) → S(CK(X1))

of the spaces of ultrafilters. The induced actions by the groups Γi on S(CK(Xi))

is given by g · α = {g(K) |K ∈ α} for an ultrafilter α ∈ S(CK(Xi)). Finally,

let φ : X1 → X2 be the homeomorphism given by the composition

X1
ΩX1−−−−→ S(CK(X1))

S(ψ)−1

−−−−→ S(CK(X2))
Ω−1

X2−−−−→ X2,

where ΩXi is the canonical homeomorphism mapping a point to its compact open

neighborhood ultrafilter. It is now easy to check that the original group isomorphism

Φ is spatially implemented by φ, i.e. that Φ(g) = φ ◦ g ◦ φ−1 for each g ∈ Γ1. This

completes the proof.

Remark 6.20. As mentioned in Sec. 1, Medynets has obtained a spatial realiza-

tion result for full groups of group actions on the Cantor space [52]. The argu-

ments therein also apply to the topological full group, and could be adapted to the

topological full group of the ample groupoids over locally compact Cantor spaces

considered here. And then in turned be used to prove Theorem B instead of using

Theorem 6.19. Medynets’ starting point is a Boolean algebra reconstruction result

of Fremlin [25, Theorem 384D]. This result is very similar to Rubin’s Boolean alge-

bra reconstruction result; Theorem 6.11. Rubin requires the space-group pair to be

locally moving and locally flexible, whereas Fremlin requires it to be locally moving
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in terms of involutions. Yet they both apply to the topological full group, since it

is both (globally) flexible and has enough involutions to witness locally moving.

Medynets then goes on to characterize the clopen sets among the regular open sets

in an algebraic way and use this to show that the Boolean algebra isomorphism must

preserve the Boolean subalgebra of clopen subsets and in turn give rise to a spatial

isomorphism via Stone duality. This is exactly the same approach as we use here,

via Rubin, but Medynets’ characterization of the clopens [52, Lemma 2.5] looks (at

least on the surface) a bit different from the one we give here in Lemma 6.15. Finally,

we remark that Medynets’ arguments does not seem to apply to the commutator

subgroup either (cf. Remark 7.11).

7. Isomorphism Theorems for Ample Groupoids

In this section, we shall apply the spatial realization results of the previous section

to (subgroups of) the topological full group. As corollaries we are able to reconstruct

certain ample groupoids from their topological full group. The two faithful classes

considered in the previous section allows us to lift an abstract group isomorphism

of (subgroups of) the topological full groups to a spatial one. This in turn yields an

isomorphism of the associated groupoids of germs (cf. Corollary 5.5). In order to

conclude that the groupoids themselves are isomorphic we need, by Proposition 4.10

and Corollary 4.13, to assume that the subgroups in question cover the groupoids.

As we saw in Lemma 4.9, if every G-orbit has length at least two, or respectively,

three, then �G�, or respectively, any Γ with D(�G�) ≤ Γ ≤ �G�, covers G.
We first extract an isomorphism theorem from the faithfulness of the class KF .

For a general ample groupoid the only general condition, we know to imply

that (�G�,G(0)) belong to KF is minimality. So for general groupoids, we obtain

only a straightforward minor extension of [49, Theorem 3.9 and 3.10] in Theo-

rem 7.2 below. However, for the class of graph groupoids we will see in Sec. 10

that we can weaken minimality quite a lot and still have the topological full group

(and its commutator) in KF , and thereby obtain a significantly more general result

within the class of graph groupoids. It would therefore be interesting to find general

conditions on a general ample groupoid G, weaker than minimality, ensuring that

(�G�,G(0)) and (D(�G�),G(0)) belong to KF .

Proposition 7.1 (cf. [49, Proposition 3.6]). Let G be an effective ample Haus-

dorff groupoid whose unit space has no isolated points. If G is minimal and Γ is any

subgroup of �G� containing D(�G�), then (Γ,G(0)) ∈ KF .

Proof. The proof of [49, Proposition 3.6] goes through verbatim in this slightly

more general setting. The proof makes heavy use of the minimality of G and combine

this with Lemma 3.8 to find the desired elements in D(�G�).

Theorem 7.2. Let G1,G2 be effective ample minimal Hausdorff groupoids whose

unit spaces have no isolated points. Suppose Γ1,Γ2 are subgroups such that
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D(�Gi�) ≤ Γi ≤ �Gi�. If Γ1
∼= Γ2 as abstract groups, then G1

∼= G2 as topologi-

cal groupoids. In particular, the following are equivalent:

(1) G1
∼= G2 as topological groupoids.

(2) �G1� ∼= �G2� as abstract groups.

(3) D(�G1�) ∼= D(�G2�) as abstract groups.

Proof. Clearly every Gi-orbit is infinite, for i = 1, 2. Thus the result follows from

combining Proposition 7.1, Theorem 6.6, Proposition 6.2, Lemma 4.9 and Proposi-

tion 4.10.

Remark 7.3. For transformation groupoids arising from minimal Z-actions on

locally compact Cantor spaces, a variant of this result appears in [46, Theo-

rem 4.13(vi)]. See also Remark 3.3.

Remark 7.4. In [49, Theorem 3.10] the kernel of the so-called index map also

appears (as �G�0). We could equally well have included it in Theorem 7.2 since it

is a distinguished subgroup lying between �G� and D(�G�).

Our next goal is to analyze the conditions in the definition of the class KLCC,

when the space-group pair under consideration is the topological full group and the

unit space of an ample groupoid. Unfortunately, the commutator subgroup D(�G�)

does not seem to belong to KLCC, which is why we only consider �G� itself (see

Remark 7.11 below). We begin by showing that the groupoid-orbits coincide with

the orbits of the action by the topological full group on the unit space.

Lemma 7.5. Let G be an effective ample groupoid and let x ∈ G(0). Then

OrbG(x) = Orb�G��G(0)(x).

Proof. The inclusion Orb�G��G(0)(x) ⊆ OrbG(x) is immediate from the definition

of the topological full group. For the reverse inclusion, suppose y ∈ OrbG(x) is

distinct from x, and let γ ∈ G be an arrow from x to y. Applying Lemma 3.9 to γ

we obtain an element πU ∈ �G� with πU (x) = y. Thus y ∈ Orb�G��G(0)(x).

In other words, when the space group pair is (�G�,G(0)) condition (K5) of Def-

inition 6.18 is equivalent to saying that every G-orbit has length at least three

(which, incidentally, implies that �G� covers G). Next, we show that conditions

(K3) and (K4) of Definition 6.18 are always satisfied for topological full groups. In

fact, (�G�,G(0)) is even “globally flexible”.

Lemma 7.6. Let G be an effective ample groupoid. Then every open subset of

G(0) is flexible with respect to �G�. In particular,
(
�G�,G(0)

)
is locally flexible.

Proof. Let A be a non-empty open subset of G(0), and let B1, B2 be two open

subsets of A. We may assume that these are disjoint, for otherwise the identity
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homeomorphism trivially witnesses flexibility. Suppose πU ∈ �G� satisfies

πU (B1) ∩B2 
= ∅. Then there is a g ∈ U with s(g) ∈ B1 and r(g) ∈ B2.

Lemma 3.9 applied to g and B1 � B2 produces an element πV ∈ �G� satisfy-

ing supp(πV ) ⊆ B1 �B2 ⊆ A and πV (B1) ∩B2 
= ∅. Hence A is flexible.

Lemma 7.7. Let G be an effective ample groupoid. Then every clopen subset of

G(0) is recognizable by �G�.

Proof. Let A ⊆ G(0) be clopen.

(1) Suppose πU ∈ �G� satisfies πU (A) = A. Then V = s−1
|U (A) ⊆ U is a clopen

bisection with s(V ) = r(V ) = A. Then Ṽ as in Lemma 3.7 is a full bisection

with supp(πṼ ) ⊆ supp(πU ), hence πṼ ∈ �G�. The homeomorphism πṼ is the

one from condition (1) of Definition 6.13.

(2) Suppose now that πU ∈ �G� satisfies πU (A) ∩ A = ∅. Once more we set

V = s−1
|U (A). Then s(V ) ∩ r(V ) = A ∩ πU (A) = ∅. The full bisection V̂ as

in Lemma 3.8 also has compact support since supp(πV̂ ) ⊆ supp(πU ), and so

πV̂ ∈ �G�. The involution πV̂ is the one from condition (2) of Definition 6.13.

It remains to consider condition (K2) of Definition 6.18. Inspired by [52, Propo-

sition 2.2], we introduce the notion of a non-wandering groupoid, in order to char-

acterize when (�G�,G(0)) is locally moving in terms of the groupoid G.

Definition 7.8. Let G be an ample groupoid. A subset A ⊆ G(0) is called wandering

if |A ∩ OrbG(x)| = 1 for all x ∈ A. We say that G is non-wandering if G(0) has no

non-empty clopen wandering subsets.

In words, a non-wandering groupoid is one in which every clopen subset of the

unit space meets some orbit at least twice. This may be viewed as a “mixing con-

dition” which is far weaker than minimality. For if G is minimal, then in particular

the set A ∩OrbG(x) is infinite (being dense) for each clopen neighborhood A of x.

Proposition 7.9. Let G be an effective ample Hausdorff groupoid. Then the fol-

lowing are equivalent :

(1) The space-group pair (�G�,G(0)) is locally moving.

(2) The groupoid G is non-wandering.

Proof. Let A be a non-empty clopen subset of G(0). We will prove that A meets

some G-orbit twice (i.e. A is not wandering) if and only if there is some element

πU ∈ �G�\{1} with supp(πU ) ⊆ A. If ∅ 
= supp(πU ) ⊆ A, then, since both sets are

clopen, there is an x ∈ A with x 
= πU (x) ∈ A. In other words, |A ∩OrbG(x)| ≥ 2.

Conversely, if |A ∩ OrbG(x)| ≥ 2 holds for some x ∈ A, then there is a g ∈ G\G′

such that s(g) and r(g) both belong to A. Now Lemma 3.9 gives us a nontrivial
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group element in �G� supported on A. As the clopens form a base for the topology

on G(0) we are done.

Putting it all together, we arrive at the second main result of this section.

Theorem 7.10. Let G1,G2 be effective ample Hausdorff groupoids over locally com-

pact Cantor spaces. Suppose that, for i = 1, 2, Gi is non-wandering and that each

Gi-orbit has length at least three. Then any isomorphism between �G1� and �G2� is

spatial. In particular, the following are equivalent :

(1) G1
∼= G2 as topological groupoids.

(2) �G1� ∼= �G2� as abstract groups.

Remark 7.11. It would be desirable to also obtain a spatial realization result for

the commutator subgroup D(�G�) in terms of the class KLCC. Unfortunately, we

were not able to show that D(�G�) satisfies condition (K4). This is also the reason

why the arguments of [52] do not apply to the commutator subgroup either. How-

ever, it might be that Theorem 7.10 holds for the commutator subgroups as well.

As mentioned above, non-wandering is a much weaker “mixing property” than

minimality. Below we include two other “mixing properties” that lie between non-

wandering and minimality.

Definition 7.12 (cf. [54, p. 8]). An ample groupoid G is called locally minimal

if there exists a basis for G(0) consisting of clopen sets A such that G|A is minimal.

Definition 7.13. An ample groupoid G is called densely minimal if for every non-

empty open subset A of G(0) there exists a non-empty clopen subset B ⊆ A such

that G|B is minimal.

We clearly have the following implications for an ample groupoid:

minimal ⇒ locally minimal ⇒ densely minimal ⇒ non-wandering.

We will give examples of densely minimal groupoids which are not minimal in the

next section (Examples 9.6 and 9.7), as well as non-wandering groupoids which are

not densely minimal (Remark 10.8).

8. Graph Groupoids

The rest of the paper will be focused on graph groupoids. This section recalls the

relevant terminology for graphs and their associated groupoids (as they appear in

the literature on graph algebras). We also record the characterizations of many

properties of a graph groupoid in terms of the graph. This is fairly standard and

may also be found in many other papers, e.g. [10, 36].
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8.1. Graph terminology

By a graph we shall always mean a directed graph, which is a quadru-

ple E = (E0, E1, r, s), where E0, E1 are (non-empty) sets and r, s : E1 → E0 are

maps. The elements in E0 and E1 are called vertices and edges, respectively, while

the maps r and s are called the rangee and source map, respectively. We say that E

is finite if E0 and E1 both are finite sets, and similarly that E is countable if E0

and E1 are countable.

A path in a graph E is a sequence of edges µ = e1e2 . . . en which satisfies

r(ei) = s(ei+1) for 1 ≤ i ≤ n − 1. The length of µ is |µ| := n. The set of paths

of length n is denoted En. The vertices, E0, are considered trivial paths of length

zero. The set of all finite paths is E∗ :=
⋃∞
n=0E

n. The range and source maps

extend naturally to E∗ by setting r(µ) := r(en) and s(µ) := s(e1). For v ∈ E0, we

set s(v) = r(v) = v. Given another path λ = f1 . . . fm with s(λ) = r(µ) we denote

the concatenated path e1 . . . enf1 . . . fm by µλ. In particular, we set s(µ)µ = µ =

µr(µ) for each µ ∈ E∗. Given two paths µ, µ′ ∈ E∗ we write µ < µ′ if there exists

a path λ with |λ| ≥ 1 such that µ′ = µλ. Writing µ ≤ µ′ allows for µ = µ′. We

say that µ and µ′ are disjoint if µ � µ′ and µ′ � µ, i.e. neither is a subpath of the

other.

A cycle is a nontrivial path µ (i.e. |µ| ≥ 1) with r(µ) = s(µ), and we say

that µ is based at s(µ). We also say that the vertex s(µ) supports the cycle µ.

By a loop we mean a cycle of length one. Beware that some authors use the term

loop to denote what we here call cycles. When µ is a cycle and k ∈ N, µk denotes

the cycle µµ . . . µ, where µ is repeated k times. A cycle µ = e1 . . . en is called a

return path if r(ei) 
= r(µ) for all i < n. This simply means that µ does not pass

through s(µ) multiple times. An exit for a path µ = e1 . . . en is an edge e such

that s(e) = s(ei) and e 
= ei for some 1 ≤ i ≤ n.

For v, w ∈ E0 we set vEn := {µ ∈ En | s(µ) = v}, Enw := {µ ∈ En | r(µ) = w}
and vEnw := vEn ∩Enw. A vertex v ∈ E0 is called a sink if vE1 = ∅, and a source

if E1v = ∅. Further, v is called an infinite emitter if vE1 is an infinite set. The

set of regular vertices is E0
reg := {v ∈ E0 | 0 < |vE1| <∞}, and the set of singular

vertices is E0
sing := E0\E0

reg. In other words, sinks and infinite emitters are singular

vertices, while all other vertices are regular. We equip the vertex set E0 with a

preorder ≥ by defining v ≥ w if and only if vE∗w 
= ∅, i.e. there is a path from v

to w. The graph E is called strongly connected if for each pair of vertices v, w ∈ E0

we have v ≥ w.

To close this subsection, we describe three exit conditions on graphs that appear

frequently in the graph algebra literature. They will play a central role in what

follows. A graph E is said to satisfy Condition (L) if every cycle in E has an exit.

The graph E satisfies Condition (K) if for every vertex v ∈ E0, either there is

eAlthough the notation collides with the range and source maps in a groupoid, both conventions
are well established. In the sequel it will always be clear from context whether we mean the
source/range of an edge in a graph or of an element in a groupoid.
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no return path based at v or there are at least two distinct return paths based

at v. We say that E satisfies Condition (I) if for every vertex v ∈ E0, there exists

a vertex w ∈ E0 supporting at least two distinct return paths and v ≥ w. These

conditions first appeared in [17, 35, 36], respectively. In general, Condition (K)

and (I) both imply (L), while (K) and (I) are not comparable. For graphs with

finitely many vertices and no sinks, Condition (I) is equivalent to Condition (L).

8.2. The boundary path space

An infinite path in a graph E is an infinite sequence of edges x = e1e2e3 . . . such

that r(ei) = s(ei+1) for all i ∈ N. We define s(x) := s(e1) and |x| := ∞. The

set of all infinite paths in E is denoted E∞. Given a finite path µ = f1 . . . fn
and an infinite path x = e1e2e3 . . . ∈ E∞ such that r(µ) = s(x) we denote

the infinite path f1 . . . fne1e2e3 . . . by µx. For natural numbers m < n, we set

x[m,n] := emem+1 . . . en, and we denote the infinite path emem+1em+2 . . . by x[m,∞).

Given a cycle λ ∈ E∗ we denote the infinite path λλλ . . . by λ∞. An infinite path

of the form µλ∞, where λ is a cycle with s(λ) = r(µ), is called eventually periodic.

An infinite path e1e2 . . . ∈ E∞ is wandering if the set {i ∈ N | s(ei) = v} is finite

for each v ∈ E0. Note that there are no wandering infinite paths in a graph with

finitely many vertices. We call a wandering infinite path e1e2 . . . ∈ E∞ a semi-tail f

if s(ei)E
1 = {ei} for each i ∈ N. The graph E is called cofinal if for every vertex

v ∈ E0 and for every infinite path e1e2 . . . ∈ E∞, there exists n ∈ N such that

v ≥ s(en).

The boundary path space of E is

∂E := E∞ ∪ {µ ∈ E∗ | r(µ) ∈ E0
sing},

whose topology will be specified shortly. Note that if v ∈ E0 is a singular vertex,

then v belongs to ∂E. For any vertex v ∈ E0 we define v∂E := {x ∈ ∂E | s(x) = v}
and similarly vE∞ := {x ∈ E∞ | s(x) = v}. The cylinder set of a finite path

µ ∈ E∗ is Z(µ) := {µx |x ∈ r(µ)∂E}. Given a finite subset F ⊆ r(µ)E1, we define

the “punctured” cylinder set Z(µ\F ) := Z(µ)\(⋃e∈F Z(µe)). Note that two finite

paths are disjoint if and only if their cylinder sets are disjoint sets. A basis for the

topology on the boundary path space ∂E is given by

{Z(µ\F ) |µ ∈ E∗, F ⊆finite r(µ)E
1},

cf. [69]. Each basic set Z(µ\F ) is compact open and these separate points,

so ∂E is a Boolean space. Moreover, each open set in ∂E is a disjoint union

of basic sets Z(µ\F ) ([10, Lemma 2.1]). The boundary path space ∂E is sec-

ond countable exactly when E is countable, and it is compact if and only if

E0 is finite. When it comes to (topologically) isolated points, these are classified

as follows.

fBy comparison, a tail is a wandering path with s(ei)E1 = {ei} = E1r(ei) for all i, cf. [2].
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Proposition 8.1 ([16, Proposition 3.1]). Let E be a graph.

(1) If v ∈ E0 is a sink, then any finite path µ ∈ E∗ with r(µ) = v is an isolated

point in ∂E.

(2) If x = µλ∞ ∈ E∞ is eventually periodic, then x is an isolated point if and only

if the cycle λ has no exit.

(3) If x = e1e2 . . . ∈ E∞ is wandering, then x is an isolated point if and only if for

some n ∈ N, enen+1 . . . is a semi-tail.

These are the only isolated points in ∂E.

We define ∂E≥n := {x ∈ ∂E | |x| ≥ n} and ∂En := {x ∈ ∂E | |x| = n}
for n a natural number. Each of the sets ∂E≥n is an open subset of ∂E. The

shift map on E is the map σE : ∂E≥1 → ∂E given by σE(e1e2e3 . . .) = e2e3e4 . . .

for e1e2e3 . . . ∈ ∂E≥2 and σE(e) = r(e) for e ∈ ∂E1. In other words, σE(x) = x[2,∞).

We have that

σE(∂E
≥1) = {x ∈ ∂E |E1s(x) 
= ∅} = ∂E

∖
 ⋃
E1v �=∅

Z(v)


,

which is an open set, and we see that σE is surjective if and only if E has no

sources. We let σnE : ∂E≥n → ∂E be the n-fold composition of σE with itself, and

we set σ0
E = id∂E . Each σ

n
E is then a local homeomorphism between open subsets

of ∂E. Note that an infinite path x ∈ E∞ is eventually periodic if and only if there

are distinct numbers m,n ∈ N0 such that σmE (x) = σnE(x).

8.3. Graph groupoids and their properties

The graph groupoid of a graph E is the (generalized) Renault–Deaconu groupoid

[19, 60] of the dynamical system (∂E, σE), that is

GE := {(x,m− n, y) |m,n ∈ N0, x ∈ ∂E≥m, y ∈ ∂E≥n, σmE (x) = σnE(y)}
as a set. The groupoid structure is given by (x, k, y) · (y, l, z) := (x, k + l, z) (and

undefined otherwise), (x, k, y)−1 := (y,−k, x). Thus G(0)
E = {(x, 0, x) |x ∈ ∂E},

which we will identify with ∂E via (x, 0, x) ↔ x. Then s(x, k, y) = y and

r(x, k, y) = x. We equip GE with the topology generated by the basic sets

Z(U,m, n, V ) := {(x,m− n, y) |x ∈ U, y ∈ V, σmE (x) = σnE(y)},
where U ⊆ ∂E≥m and V ⊆ ∂E≥n are open sets such that (σmE )|U and (σnE)|V
are injective, and σmE (U) = σnE(V ). This makes GE an étale groupoid, and the

identification of the unit space with ∂E is compatible with the topology on ∂E.

Note however, that this topology on GE is finer than the relative topology induced

from ∂E × Z× ∂E. According to [10, p. 394] the family

{Z(U, |µ|, |λ|, V ) |σ|µ|
E (U) = σ

|λ|
E (V )}, (8.1)

parametrized over all µ, λ ∈ E∗ with r(µ) = r(λ), U ⊆ Z(µ) and V ⊆ Z(λ) compact

open, is also a basis for the same topology. Each set Z(U, |µ|, |λ|, V ) is a compact
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open bisection, and they separate the elements of GE , so GE is an ample Hausdorff

groupoid. The family in (8.1) is countable precisely when E is countable, and so

the graph groupoid GE is second countable exactly when E is countable.

For a boundary path x ∈ ∂E, the isotropy group of (x, 0, x) ∈ G(0)
E is nontrivial if

and only if x is eventually periodic (and infinite). For graph groupoids, effectiveness

coincides with topological principality (even without assuming second countability),

which in turn is well-known to coincide with the graph satisfying Condition (L).

Proposition 8.2 (cf. [10, Proposition 2.3]). Let E be a graph. The following

are equivalent :

(1) The groupoid GE is effective.

(2) The groupoid GE is topologically principal.

(3) The set of boundary paths which are not eventually periodic form a dense subset

of the boundary path space ∂E.

(4) The graph E satisfies Condition (L).

Proof. The equivalence of (2)–(4) is proved (for countable graphs) in [10, Propo-

sition 2.3]. The proof does not rely on the countability of the graph. As it is always

the case that (2) implies (1) (cf. Remark 2.2), we only have to verify that (1)

implies (4). To that end, assume that E does not satisfy Condition (L). Then there

is a cycle λ ∈ E∗ with no exit, and λ∞ is an isolated point in ∂E. But then the

bisection

Z(Z(λ2), |λ|2, |λ|, Z(λ)) = {(λ∞, |λ|, λ∞)}

is an open subset of GE\G(0)
E , and hence GE is not effective.

We end this subsection by giving a characterization of minimality for graph

groupoids. Let E be a graph. Two infinite paths x, y ∈ E∞ are called tail equivalent

if there are natural numbers k, l such that x[k,∞) = y[l,∞). Similarly, two finite

paths µ, λ ∈ E∗ are tail equivalent if r(µ) = r(λ). From the definition of GE one

sees that two boundary paths belong to the same GE -orbit if and only if they are

tail equivalent. By combining [8, Theorem 5.1] with [22, Corollary 2.15], we arrive

at the following result — of which we provide a self-contained proof.

Proposition 8.3. Let E be a graph. Then the following are equivalent :

(1) The groupoid GE is minimal.

(2) The graph E is cofinal, and for each v ∈ E0 and w ∈ E0
sing, we have v ≥ w.

Proof. If E has a sink w ∈ E0
sing, then one immediately deduces from both state-

ments that E cannot have any other singular vertices, nor any infinite paths.
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Consequently

∂E = OrbGE (w) = {µ ∈ E∗ | r(µ) = w},
and this entails that GE is a discrete transitive groupoid. Now, (1) and (2) are

clearly equivalent in this case.

For the remainder of the proof, we assume that E has no sinks. Assume that (2)

holds. Let x ∈ E∞ and let λ ∈ E∗. By cofinality, there is a path λ′ from r(λ)

to s(xn) for some n ∈ N. The infinite path λλ′xnxn+1 . . . then belongs to both Z(λ)

and OrbGE (x). Hence the latter is dense in ∂E (since every open set contains

a cylinder set when there are no sinks). Next, suppose µ ∈ ∂E ∩ E∗ with r(µ)

an infinite emitter. By assumption there is a path λ′′ from r(λ) to r(µ), and

then λλ′′ ∈ Z(λ) ∩OrbGE (µ). This shows that GE is minimal.

Assume now that GE is minimal. To see that E is cofinal, let x ∈ E∞ and v ∈ E0

be given. By minimality there is a y ∈ E∞ tail equivalent to x such that y ∈ Z(v).

This implies that v can reach x. As for the second part of (2), let v ∈ E0

and w ∈ E0
sing be given. Again by minimality there is a λ ∈ E∗∩Z(v) tail equivalent

to w, but this is just a path from v to w, so v ≥ w.

Remark 8.4. The notion of cofinality is slightly weaker than strong connectedness.

But for finite graphs with no sinks and no sources, cofinality coincides with strong

connectedness. In fact, this is also true for infinite graphs which additionally have

no semi-heads (the direction-reversed notion of a semi-tail). We also remark that

for cofinal graphs, Condition (L) is equivalent to Condition (K).

9. Topological Full Groups of Graph Groupoids

We are now going to describe the elements in the topological full group of a graph

groupoid. Some examples will be given at the end of the section. We begin by

specifying yet another (equivalent) basis for GE , which in turn will allow us to

describe bisections combinatorially in terms of the graph.

For two finite paths µ, λ ∈ E∗ with r(µ) = r(λ) = v we define

Z(µ, λ) := Z(Z(µ), |µ|, |λ|, Z(λ)).
More generally, given a finite subset F ⊆ vE1 as well, we define

Z(µ, F, λ) := Z(Z(µ\F ), |µ|, |λ|, Z(λ\F )).
Each Z(µ, F, λ) is a compact open bisection in GE , and we will see shortly that they

also form a basis. Observe that if v ∈ E0
reg, then Z(µ, F, λ) =

⊔
e∈vE1\F Z(µe, λe),

and that this is a finite union.

Lemma 9.1. Let E be a graph. Let µ, µ′, λ, λ′ ∈ E∗ be finite paths such that

r(µ) = r(λ) = v, r(µ′) = r(λ′) = v′ and let F ⊆finite vE
1, F ′ ⊆finite v

′E1. Then

Z(µ, F, λ) ∩ Z(µ′, F ′, λ′) equals either

(1) ∅, or
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(2) Z(µ, F, λ), or

(3) Z(µ′, F ′, λ′), or
(4) Z(µ, F ∪ F ′, λ), in which case µ = µ′, λ = λ′ and

Z(µ, F, λ) ∪ Z(µ′, F ′, λ′) = Z(µ, F ∩ F ′, λ).

Proof. Suppose that Z(µ, F, λ) ∩ Z(µ′, F ′, λ′) is non-empty. Then, we must have

that |µ| − |λ| = |µ′| − |λ′|, Z(µ\F ) ∩ Z(µ′\F ′) 
= ∅ and Z(λ\F ) ∩ Z(λ′\F ′) 
= ∅.
Since

Z(µ\F ) ∩ Z(µ′\F ′) =




Z(µ\(F ∪ F ′)) if µ = µ′,

Z(µ\F ) if µ′ < µ and µ|µ′|+1 /∈ F ′,

Z(µ′\F ′) if µ < µ′ and µ′
|µ|+1 /∈ F,

∅ otherwise,

we may suppose without loss of generality, that µ ≤ µ′. The equality of |µ| − |λ|
and |µ′| − |λ′| then forces λ ≤ λ′ as well. If µ = µ′, then we must also have λ = λ′

and it is easy to see that (4) holds in this case.

Next, suppose µ < µ′, which forces λ < λ′. As the intersections above are non-

empty we have Z(µ′\F ′) ⊆ Z(µ\F ) and Z(λ′\F ′) ⊆ Z(λ\F ). It follows from this

that Z(µ′, F ′, λ′) ⊆ Z(µ, F, λ), and we are done.

Lemma 9.2. The family

{Z(µ, F, λ) |µ, λ ∈ E∗, r(µ) = r(λ), F ⊆finite r(µ)E
1}

forms a basis for the topology on GE.

Proof. It suffices to write each basic set Z(U, |µ|, |λ|, V ), where µ, λ ∈ E∗ are finite

paths with r(µ) = r(λ), U ⊆ Z(µ) compact open, V ⊆ Z(λ) compact open and

σ
|µ|
E (U) = σ

|λ|
E (V ), as a union of Z(µ′, F ′, λ′)’s. Given such a basic set, we can

write

σ
|µ|
E (U) = σ

|λ|
E (V ) =

k⊔
i=1

Z(ηi\Fi),

for some ηi ∈ E∗, Fi ⊆finite r(ηi)E
1, since the former two are compact open subsets

of ∂E. It follows that

U =

k⊔
i=1

Z(µηi\Fi) and V =

k⊔
i=1

Z(ληi\Fi).

Hence

Z(U, |µ|, |λ|, V ) =

k⊔
i=1

Z(µηi, Fi, ληi).
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Using the basis above, we may concretely describe bisections in GE as follows.

Lemma 9.3. Let E be graph, and let U ⊆ GE be a compact open bisection such

that s(U) = r(U). Then U is of the form

U =

k⊔
i=1

Z(µi, Fi, λi),

where µi, λi ∈ E∗ with r(µi) = r(λi), Fi ⊆finite r(µi)E
1 and

s(U) =

k⊔
i=1

Z(λi\Fi) =
k⊔
i=1

Z(µi\Fi).

Proof. Since U is a compact open subset of GE we may, by the preceding

two lemmas, write U as a finite disjoint union of basic sets Z(µ, F, λ)’s, say

U =
⊔k
i=1 Z(µi, Fi, λi). As r and s are injective on U they preserve disjoint unions,

so we have

s(U) = s

(
k⊔
i=1

Z(µi, Fi, λi)

)
=

k⊔
i=1

s (Z(µi, Fi, λi)) =

k⊔
i=1

Z(λi\Fi)

= r(U) = r

(
k⊔
i=1

Z(µi, Fi, λi)

)
=

k⊔
i=1

r (Z(µi, Fi, λi)) =

k⊔
i=1

Z(µi\Fi).

In conjunction with Lemma 3.7, we get that the elements in �GE� for an effective

graph groupoid (i.e. the graph E satisfying Condition (L)) may be described as

follows, in terms of E.

Proposition 9.4. Let E be a graph satisfying Condition (L). If πU ∈ �GE�, then

the full bisection U can be written as

U =

(
k⊔
i=1

Z(µi, Fi, λi)

)
� (∂E\supp(πU )),

where µi, λi ∈ E∗ with r(µi) = r(λi), Fi �finite r(µi)E
1 and

supp(πU ) =

k⊔
i=1

Z(λi\Fi) =
k⊔
i=1

Z(µi\Fi).

Moreover, µ1, . . . µk are pairwise disjoint, λ1, . . . , λk are pairwise disjoint, and µi, λi
are distinct for each 1 ≤ i ≤ k. The homeomorphism πU : ∂E → ∂E is given

by x = λiz �→ µiz for x ∈ Z(λi\Fi) and x �→ x otherwise.

Remark 9.5. The elements in �GE� may alternatively be described in more

dynamical terms via the orbits by the shift map. From [10, Proposition 3.3] one

deduces that a homeomorphism α ∈ Homeo(∂E) belongs to �GE� if and only if
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there are compactly supported continuous functions m,n : ∂E → N0 such that

σ
m(x)
E (α(x)) = σ

n(x)
E (x). This parallels Matui’s definition for locally compact Can-

tor minimal systems mentioned in Remark 3.3, and Matsumoto’s definition for

one-sided shifts of finite type in [42].

Having completely described the topological full group of a graph groupoid, we

provide an example to show that the assumption on the orbits in Lemma 4.9 is not

a necessary condition. On the other hand, we also give an example to show that the

statement is generally false without said assumption. These examples also provide

examples of densely minimal groupoids which are not minimal.

Example 9.6. Consider the following graph:

E
v

we
f

g2

g1

The graph E satisfies condition (L), but is not cofinal, so GE is effective, but not

minimal. We claim that GE is densely minimal. To see this, note that any non-

empty open subset of E∞ must contain a cylinder set Z(µ) where r(µ) = w. And

the restriction of GE to Z(µ) is minimal. As for covering, observe that the orbit

of e∞ ∈ ∂E has length one, i.e. OrbGE (e
∞) = {e∞}. However, the topological full

group �GE� still covers GE . For instance, the isotropy element (e∞, 1, e∞) belongs

to the full bisection

U = Z(e2, e) � Z(ef, g1g2) � Z(g1, g1g1) � Z(f, f) � Z(g2, g2).
Similar full bisections can be found for (e∞, k, e∞) where k is any integer.

Example 9.7. Consider the following graph:

F
v

w
ue

f

g2

g1

i

h

As in the previous example, e∞ ∈ ∂F has a singleton orbit. However, in contrast to

the previous example, �GF � does not cover GF . For there is no full bisection contain-

ing the element (e∞, 1, e∞). If U is a bisection containing (e∞, 1, e∞), then U must

contain a bisection of the form Z(ek+1, ek). But since Z(ek) = Z(ek+1) � Z(ekf),
it will be impossible to enlarge U to a full bisection. By adding disjoint Z(µ, λ)’s

in order to write U as in Proposition 9.4 one will always have one more µ ending

in w than λ’s. See also [7, Example 3.5] for the same phenomenon in a restricted

transformation groupoid.
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10. Isomorphism Theorems for Graph Groupoids

In this section, we will pursue specialized isomorphism theorems for graph

groupoids. We will determine exactly when the topological full group of a graph

groupoid belongs to KF , and the conditions for this turn out to be weaker than

minimality. We will also determine, in terms of the graph, exactly when it belongs

to KLCC. From this we obtain two isomorphism theorems for graph groupoids.

10.1. The class KF

We are now going to give necessary and sufficient conditions for when (Γ, ∂E)

belongs to KF — for a graph E, and a subgroup Γ ≤ �GE� containing D(�GE�). Of

the three conditions (F1), (F2) and (F3) in Definition 6.3, (F1) is the “hardest” one

to satisfy. This is essentially because we need to produce elements in the topological

full group with support containing a given point x ∈ ∂E, but also contained in a

given neighborhood of x. In the other two conditions, we can get away with simply

choosing a “small enough” support. As both conditions (F1) and (F3) fails in the

presence of isolated points, we will only consider graphs that have no sinks, no semi-

tails, and satisfy Condition (L). We will see that Condition (K) will be necessary

for (F1) to hold for periodicg points. The two conditions in Definition 10.1 below

are needed to ensure that (F1) holds for wandering infinite paths, and for finite

boundary paths, respectively. For notational convenience we make the following

ad-hoc definitions.

Definition 10.1. Let E be a graph.

(1) We say that E satisfies Condition (W ) if for every wandering infinite path

x ∈ E∞, we have |s(x)E∗r(xn)| ≥ 2 for some n ∈ N.
(2) We say that E satisfies Condition (∞) if for every infinite emitter v ∈ E0, the

set {e ∈ vE1 | r(e) ≥ v} is infinite.

The three conditions (K), (W ) and (∞) can be thought of as strengthenings of

each of the three criteria for the boundary path space ∂E being perfect (Proposi-

tion 8.1). The latter three criteria can informally be described as “can exit”, whereas

the former three can be described as “can exit and return”. More specifically, Con-

dition (L) means that one can exit every cycle, whereas Condition (K) means that

one can also return back to the same cycle. That E has no semi-tails means that

every wandering infinite path has an exit, and Condition (W ) means that one can

return to the same infinite path again. That E has no sinks can be reformulated as

saying that every singular vertex has an exit (and hence infinitely many), whereas

Condition (∞) says that one can also return to the same vertex (from infinitely

many of these exits). Note that Condition (∞) holds in particular if every infinite

emitter supports infinitely many loops. Also note that if |s(x)E∗r(xn)| ≥ 2 for

gThat is, x = λ∞ for some cycle λ ∈ E∗.
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some n ∈ N, then the same is true for each m ≥ n. We now make two elementary

observations needed in the proof of the next proposition.

Lemma 10.2. Let E be a graph.

(1) If µ ∈ E∗ is a cycle and E satisfies Condition (K), then there are infinitely

many cycles λ1, λ2, . . . based at s(µ) such that µ, λ1, λ2, . . . are mutually

disjoint.

(2) If x = x1x2 . . . ∈ E∞ is a wandering infinite path and E satisfies Condi-

tion (W ), then for each N ∈ N there is an n ∈ N and paths µ1, . . . , µN from s(x)

to r(xn) such that x[1,n], µ1, . . . , µN are mutually disjoint.

Proof. For the first part, let τ1 and τ2 be two distinct return paths based at s(µ).

As distinct return paths are disjoint we must have that µ is disjoint from one of

them, say τ1. And then the cycles µ, τ1µ, τ
2
1µ, τ

3
1µ, . . . are all disjoint.

We argue inductively for the second part. Let n1 be a natural number

with |s(x)E∗r(xn1 )| ≥ 2, and put v = r(xn1 ). Since x is wandering we can

let m1 ≥ n1 be the largest index such that r(xm1 ) = v. So that x never returns

to v after the m1’th edge. Let µ be a path in s(x)E∗r(xm1 ) distinct from x[1,m1].

If x[1,m1] and µ are disjoint, then we are done with the base case. If not, then

either x[1,m1] < µ or x[1,m1] > µ. In the former case we have that µ = x[1,m1]ρ,

where ρ is a cycle based at v. As x does not return to v again we must have

that x[m1+1,m1+|ρ|] 
= ρ, and then x[1,m1+|ρ|] is disjoint from the path

µ1 := µx[m1+1,m1+|ρ|] = x[1,m1]ρx[m1+1,m1+|ρ|].

If the latter is the case, then µ = x[1,k] for some k < m1 and x[k+1,m1] is a cycle.

And then the previous argument applied to x[1,m1] and µ
′ = x[1,k]x[k+1,m1]x[k+1,m1]

shows that the statement holds for N = 1.

Applying the above to the tail x[m1+1,∞), which is again a wandering infinite

path, we get an index m2 > m1 and a path µ2 from r(xm1 ) to r(xm2 ) disjoint

from x[m1+1,m2]. By concatenating x[1,m1] and µ1 with x[m1+1,m2] and µ2, we obtain

three paths from s(x) to r(xm2 ) that are mutually disjoint, as well as disjoint

from x[1,m2]. By continuing in this manner one sees that the result is true for

all N ∈ N.

Proposition 10.3. Let E be a graph with no sinks and let Γ ≤ �GE� be a sub-

group containing D(�GE�). Then (Γ, ∂E) belongs to KF if and only if E satisfies

Condition (K), (W ) and (∞).

Proof. This proof is inspired by Matui’s proof of [49, Proposition 3.6]. We employ

similar tricks in this more concrete, yet non-minimal context. We will first show

that (F2) and (F3) holds when E satisfies Condition (K) and (W ). And then we

will show, in turn, that all three conditions are necessary and sufficient for (F1) to

hold at certain boundary paths.
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Suppose E satisfies Condition (K) and (W ) (in addition to having no sinks).

We verify (F3) first. Let A be any non-empty clopen subset of ∂E. There is then

a path η such that Z(η) ⊆ A. Now there are two possibilities. Either r(η) con-

nects to a cycle, or r(η)E∞ consists only of wandering paths. In the first case,

we may assume, by extending η, that r(η) supports a cycle. By Lemma 10.2, we

can find three disjoint cycles λ1, λ2, λ3 based at r(η). Define V = Z(ηλ1, ηλ2),

W = Z(ηλ2, ηλ3) and α = [πV̂ , πŴ ] (as in Lemma 3.8). Then α ∈ Γ\{1} has order

three and supp(α) ⊆ Z(η) ⊆ A. In the case that r(η)E∞ consists only of wandering

paths we may find, again by Lemma 10.2, three disjoint paths λ1, λ2, λ3 starting

at r(η), and such that r(λ1) = r(λ2) = r(λ3). Defining α as above shows that (F3)

holds in this case as well.

Next, we verify (F2). To that end, let α be a nontrivial involution in Γ and let A

be a non-empty clopen subset of supp(α). We have α = πU with

U =

(
k⊔
i=1

Z(µi, Fi, λi)

)
� (G(0)

E \supp(πU ))

as in Proposition 9.4. Arguing as above, we can find a finite path η and an

index 1 ≤ j ≤ k such that Z(η) ⊆ A ∩ Z(λj\Fj), as well as two disjoint paths τ1, τ2
satisfying s(τ1) = s(τ2) = r(η) and r(τ1) = r(τ2). As λj ≤ η we can write η = λjρ

for some path ρ whose first edge does not belong to Fj . Define the bisections

V = Z(λjρτ1, λjρτ2) � Z(µjρτ1, µjρτ2)
and

W = Z(µjρτ1, λjρτ1).

Put β = [πV̂ , πŴ ]. As α is an involution we must have that α(λjz) = µjz

for λjz ∈ Z(λj\Fj) and vice versa. Now observe that β ∈ Γ,

supp(β) = Z(λjρτ1) � Z(λjρτ2) � Z(µjρτ1) � Z(µjρτ2)
⊆ Z(η) ∪ α(Z(η)) ⊆ A ∪ α(A),

and that α and β agree on supp(β) (as they both swap the initial paths λj and µj).

Assume now that E merely has no sinks, no semi-tails and satisfies Condi-

tion (L). We will show that (F1) holds if and only if E satisfies Condition (K),

(W ) and (∞). Let x ∈ ∂E and A a clopen neighborhood of x be given. We further

divide this part into three cases, each one yielding the necessity of one of the three

conditions.

Condition (K): Assume E satisfies Condition (K), and suppose x = x1x2 . . . is

an infinite non-wandering path. By choosing m ∈ N large enough, we can ensure

that Z(x[1,m]) ⊆ A. And since x contains infinitely many cycles we can, by possibly

choosing m larger, assume that x[m+1,n] is a return path at r(xm) for some n > m.

Using Lemma 10.2, we can find three mutually disjoint cycles λ1, λ2, λ3 all based
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at r(xm) which are also disjoint from x[m+1,n]. Let µi = x[1,m]λi for i = 1, 2, 3 and

let µ4 = x[1,n]. Define

V = Z(µ1, µ2) � Z(µ3, µ4)

and

W = Z(µ1, µ3).

Then α = [πV̂ , πŴ ] ∈ Γ satisfies supp(α) =
⊔4
i=1 Z(µi) ⊆ Z(x[1,m]) ⊆ A, α2 = 1

and x ∈ Z(µ4) ⊆ supp(α) as desired.

To see that Condition (K) is necessary, suppose that E does not satisfy it.

Then there is a vertex v ∈ E0 supporting a unique return path, say τ . We may

assume that τ has an exit f with s(f) = v. Consider x = τ∞ and its neigh-

borhood A = Z(τ). We claim that (F1) fails for this pair. To see this, sup-

pose πU ∈ �GE� satisfies τ∞ ∈ supp(πU ) ⊆ Z(τ). By Proposition 9.4, we can

find Z(µ, λ) ⊆ U with r(µ) = r(λ), µ 
= λ and τ∞ ∈ Z(λ), which means that λ ≤ τk

for some k ≥ 1. By possibly extending µ and λ we may assume that λ = τk. We

also have Z(µ) ⊆ Z(τ), i.e. τ ≤ µ, and r(µ) = r(λ) = v. But since τ is the

only return path based at v we must have µ = τ l for some l 
= k as µ 
= λ. Let

z ∈ r(f)∂E. Then (πU )
2(τ2kfz) = τ2lfz 
= τ2kfz, hence πU is not an involution,

and therefore (Γ, ∂E) does not satisfy (F1).

Condition (W ): Assume E satisfies Condition (W ), and suppose x = x1x2 . . .

is an infinite wandering path. Choose m large enough so that Z(x[1,m]) ⊆ A. By

Lemma 10.2 there is an n ≥ m and three paths λ1, λ2, λ3 from s(x) to r(xn) such

that λ1, λ2, λ3, x[1,n] are mutually disjoint. Setting µi = x[1,m]λi for i = 1, 2, 3

and µ4 = x[1,n], and defining α in the same way as in the case of Condition (K)

above gives the desired element in Γ.

To see that Condition (W ) is necessary, suppose there is an infinite wandering

path x = x1x2 . . . such that |s(x)E∗s(xn)| = 1 for all n ∈ N. We claim that (F1)

fails for A = Z(x1). Indeed, suppose πU ∈ �GE� satisfies x ∈ supp(πU ) ⊆ Z(x1).

By Proposition 9.4, we can find Z(µ, λ) ⊆ U with r(µ) = r(λ), µ 
= λ

and x ∈ Z(λ), which implies that λ = x[1,m] for some m ≥ 1. But as Z(µ) ⊆ Z(x1)

we have that s(µ) = s(x) and r(µ) = r(xm). It now follows that µ = λ

since |s(x)E∗s(xm)| = 1. This contradiction shows that there is not even an ele-

ment πU ∈ �GE� such that x ∈ supp(πU ) ⊆ Z(x1).

Condition (∞): Assume E satisfies Condition (∞), and suppose x = x1 . . . xm is

a finite boundary path. Then for some F ⊆finite r(x)E
1 we have Z(x\F ) ⊆ A. By

Condition (∞) we can find three distinct edges e1, e2, e3 ∈ r(x)E1\F , and three

(necessarily disjoint) cycles τ1, τ2, τ3 based at r(x) such that ei ≤ τi for i = 1, 2, 3.

Let F ′ = F � {e1, e2, e3}. Now define

V = Z(xτ1, F
′, x) � Z(xτ2, F ′, xτ3)
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and

W = Z(xτ1, F
′, xτ2).

Then α = [πV̂ , πŴ ] satisfies supp(α) = Z(x\F ′)
⊔3
i=1 Z(xτi\F ′) ⊆ Z(x\F ) ⊆ A,

α2 = 1 and x ∈ Z(x\F ′) ⊆ supp(α).

Finally, if E does not satisfy Condition (∞), then there is an infinite emit-

ter v ∈ E0 such that the set F = {e ∈ vE1 | r(e) ≥ v} is finite. And then (F1) fails

for x = v and A = Z(v\F ) as there is no element πU ∈ �GE� whose support is

contained in Z(v\F ) and contains v. The argument for this is essentially the same

as in the necessity of Condition (W ) above.

Remark 10.4. From Proposition 10.3, we see that for a graph groupoid GE ,
the topological full group �GE� (on the boundary path space ∂E) belongs to the

class KF if and only if its commutator subgroup D(�GE�) does. This is not some-

thing one would expect in general from the definition of KF . It is clear that (F1)

and (F3) in Definition 6.3 passes to supergroups, but (F2) need not do so. It is

even more peculiar that the properties (F1)–(F3) pass down to the commutator

from �GE�. This phenomenon might be an artifact of the combinatorial nature of

the topological full group of a graph groupoid, and so it might also hold for other

concrete classes of groupoids.

10.2. The class KLCC

Our next objective is to perform a similar analysis of when the space-group

pair (�GE�, ∂E) for a graph E belongs to KLCC. In this case the “mixing con-

ditions” will be weaker than for KF (cf. Proposition 10.3), but we are only able

to prove membership for the topological full group itself — no proper subgroups.

As in the case of KF we need to stipulate that the boundary path space ∂E has

no isolated points (cf. condition (K1) in Definition 6.18), but also that the graphs

are countable (this also for condition (K1)). By the results in Sec. 7, we only have

to determine when GE is non-wandering, and when all orbits have length at least

three. We shall soon see that the former property is characterized by excluding cer-

tain “tree-like” components in the graph E, which we make precise in the following

definition.

Definition 10.5. We say that a graph E satisfies Condition (T ) if for every ver-

tex v ∈ E0, there exists a vertex w ∈ E0 such that |vE∗w| ≥ 2.

Note that Condition (T ) implies that there are no sinks and no semi-tails. It

does not, however, imply Condition (L) as one can traverse a cycle twice to get two

different paths. As long as there are no sinks, Condition (W ) implies Condition (T ).

Condition (T ) is a fairly weak condition; it is in fact satisfied by all graphs that

have finitely many vertices and no sinks, and more generally by any graph in which

every vertex connects to a cycle. The archetypical example of graphs not satisfying

Condition (T ) are trees, or more generally graphs containing such components.
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As for when GE can have orbits of length one or two one finds, by merely

exhausting all possibilities, that this happens exactly if one or more of the following

kinds of vertices are present in the graph E.

Definition 10.6. Let E be a graph. We say that a vertex v ∈ E0 is degenerate if

it is one of the following types:

(1) “1-loop-source”: E1v = {e} where e is a loop.

(2) “1 source to 1-loop-source”: E1v = {e, f} where e is a loop and s(f) is a

source.

(3) “2-loop-source”: There is another vertex w ∈ E0 distinct from v such that

E1v = {e} = wE1v and E1w = {f} = vE1w.

(4) “Infinite source”: vE1 is infinite and E1v is empty.

(5) “1 source to singular”: v is singular and E1v = {f} where s(f) is a source.

(6) “Stranded”: vE1 and E1v are both empty.

Proposition 10.7. Let E be a graph.

(1) GE is non-wandering if and only if E satisfies Condition (L) and (T ).

(2) |OrbGE (x)| ≥ 3 for all x ∈ ∂E if and only if E has no degenerate vertices.

Proof. We prove part (1) first. We may assume that E has no sinks, as this is

implied by both of the statements in (1). Suppose E satisfies Condition (L) and (T ).

Let A be a non-empty clopen subset of ∂E. Then there is a path µ ∈ E∗ such

that Z(µ) ⊆ A. Suppose first that r(µ) connects to a cycle. Let λ be such a cycle

and let ρ be a path from r(µ) to s(λ). We may assume that λ has an exit f

with s(f) = s(λ). Let x ∈ r(f)E∞. Then µρfx and µρλfx are two distinct tail-

equivalent boundary paths in A. If, on the other hand, r(µ) does not connect to a

cycle, then r(µ)E∞ consists only of wandering paths that visit each vertex at most

once. Let w ∈ E0 be a vertex such that there are two distinct paths ρ1, ρ2 from r(µ)

to w. Again letting x ∈ wE∞ be arbitrary we have that µρ1x and µρ2x are two

distinct tail-equivalent boundary paths in A. Hence A is not wandering.

To see that Condition (L) and (T ) are both necessary, note first that if E does

not satisfy Condition (L), then ∂E has an isolated point, and a clopen singleton

is surely wandering. Assume instead that E fails to satisfy Condition (T ), and

let v ∈ E0 be a vertex such that there is either no path or a unique path from v to

any other vertex in E. We claim that the cylinder set Z(v) is wandering. We first

consider a finite boundary path µ beginning in v (if such a path exists). Then r(µ)

is a singular vertex and

OrbGE (µ) ∩ Z(v) = {λ ∈ E∗ | s(λ) = v, r(λ) = r(µ)} = vE∗r(µ) = {µ},
as desired. Similarly, if x ∈ vE∞ and y ∈ OrbGE (x) ∩ Z(v), then there are k, l ∈ N
such that x[k,∞) = y[l,∞). In particular x[1,k−1] and y[1,l−1] are finite paths from v

to s(xk) = s(yl), hence these are equal and it follows then that x = y. There-

fore OrbGE (x) ∩ Z(v) = {x}. This proves the first part of the proposition.
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For part (2), simply note that an orbit of length one can only occur if there are

degenerate vertices of type (1), (4) or (6) as in Definition 10.6 (the corresponding

orbits of length one being {e∞}, {v}, {v}, respectively). And that an orbit of

length two can only occur if there are degenerate vertices of type (2), (3) or (5)

(the corresponding orbits of length two being {e∞, fe∞}, {(ef)∞, (fe)∞}, {v, f},
respectively).

Remark 10.8. By an argument as in Example 9.6 one deduces that if a graph E

satisfies Condition (I), then the graph groupoid GE is densely minimal. However,

statement (1) in Proposition 10.7 is strictly weaker than GE being densely minimal.

It is easy to cook up examples of infinite graphs satisfying Condition (L) and (T ),

but whose graph groupoids are not densely minimal. One such example is

E · · ·· · ·

10.3. Isomorphism theorems

Recall that all orbits having length at least three is sufficient for the commutator

subgroup of the topological full group to cover the groupoid (Lemma 4.9). This

in turn means that the groupoid can be recovered as the groupoid of germs of

any subgroup between the topological full group and its commutator. Combined

with Propositions 10.3 and 10.7, we will obtain the two isomorphism results for

graph groupoids. We begin by first observing that the conditions on the graph for

membership in KF actually implies that all orbits are infinite.

Lemma 10.9. Let E be a graph with no sinks and suppose E satisfies Condi-

tion (K) and (∞). Then OrbGE (x) is infinite for each x ∈ ∂E. In particular, E has

no degenerate vertices.

Proof. We first consider the GE -orbits of finite boundary paths. Suppose v ∈ E0

is an infinite emitter. Condition (∞) implies that there are infinitely many distinct

return paths at v, hence OrbGE (µ) is infinite for each µ ∈ ∂E ∩E∗.
Next, let x ∈ E∞ be an infinite path. If x is eventually periodic, then x = µλ∞

for some finite path µ and some cycle λ. Lemma 10.2 gives a sequence of mutually

disjoint cycles τ1, τ2, . . . based at s(λ). And then {τ1λ∞, τ2λ∞, . . .} is an infinite

subset of OrbGE (x). If x is not eventually periodic, then {x, x[2,∞], x[3,∞], . . .} is an

infinite subset of OrbGE (x).

In terms of the class KF , we obtain the following isomorphism result, which

relaxes the assumptions in Theorem 7.2 considerably for graph groupoids.

Theorem 10.10. Let E and F be graphs with no sinks, and suppose they both

satisfy Condition (K), (W ) and (∞). Suppose Γ ≤ �GE� and Λ ≤ �GF � are sub-

groups containing D(�GE�) and D(�GF �), respectively. If Γ ∼= Λ as abstract groups,
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then GE ∼= GF as topological groupoids. In particular, the following are equivalent :

(1) GE ∼= GF as topological groupoids.

(2) �GE� ∼= �GF � as abstract groups.

(3) D(�GE�) ∼= D(�GF �) as abstract groups.

Proof. Combine Proposition 10.3, Theorem 6.6, Proposition 6.2, Lemma 10.9,

Lemma 4.9 and Proposition 4.10.

The preceding result covers — in particular — all finite graphs that have no

sinks and satisfy Condition (K). As for an isomorphism result in terms of KLCC,

we combine Proposition 10.7 with Theorem 7.10 to get the following result.

Theorem 10.11. Let E and F be countable graphs satisfying Condition (L)

and (T ), and having no degenerate vertices. Then the following are equivalent :

(1) GE ∼= GF as topological groupoids.

(2) �GE� ∼= �GF � as abstract groups.

This result covers — in particular — all finite graphs that have no degenerate

vertices nor sinks and which satisfy Condition (L).

Remark 10.12. In [43], Matsumoto established a version of Theorem 10.11 for

finite graphs which are strongly connected (and satisfy Condition (L), or equiva-

lently (K)). At about the same time, Matui announced [49], and his Isomorphism

Theorem therein applies to the enlarged class of graphs which have finitely many

vertices, countably many edges, no sinks, are cofinal, satisfy Condition (L) and for

which every vertex can reach every infinite emitter.

Combining Theorem 10.11 with [10, Theorem 5.1] and [13, Corollary 4.2], we

obtain the rigidity result in Corollary 10.13 below, which ties in many of the

mathematical structures associated to (directed) graphs. For background on graph

C∗-algebras, see [58],h and for Leavitt path algebras, see [1].

Corollary 10.13. Let E and F be countable graphs satisfying Condition (L)

and (T ), and having no degenerate vertices. Let R be an integral domain. Then

the following are equivalent :

(1) The graph groupoids GE and GF are isomorphic as topological groupoids.

(2) There is an isomorphism of the graph C∗-algebras C∗(E) and C∗(F ) which

maps the diagonal D(E) onto D(F ).

(3) There is an isomorphism of the Leavitt path algebras LR(E) and LR(F ) which

maps the diagonal DR(E) onto DR(F ).

hBeware that the convention for paths in graphs in Raeburn’s book is opposite of the one used in
this paper.
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(4) The pseudogroups PE and PF are spatially isomorphic.

(5) The graphs E and F are (continuously) orbit equivalent.

(6) The topological full groups �GE� and �GF � are isomorphic as abstract groups.

Remark 10.14. Statement (5) in Corollary 10.13 coincides with Li’s notion of

continuous orbit equivalence for the partial dynamical systems associated to the

graphs, cf. [40].

Remark 10.15. We remark that in Corollary 10.13 statements (1), (2) and (3)

are always equivalent, statements (4) and (5) are always equivalent and they are

implied by (1), (2) and (3). Furthermore, if the graphs satisfy Condition (L), then

statements (1)–(5) are equivalent. Additionally, the equivalence of (1) and (2) has

recently been shown in greater generality by Carlsen, Ruiz, Sims and Tomforde

[15]. The same is true for (1) and (3) by recent work of Steinberg [65], even with

weaker assumptions on the coefficient ring R.

11. Embedding Theorems

In this final section, we will show that several classes of groupoids embed into a

certain fixed graph groupoid — namely the groupoid of the graph that consists

of a single vertex and two edges. These classes include graph groupoids and AF-

groupoids. We will also discuss the induced embeddings of the associated graph

algebras and the topological full groups.

11.1. Embedding graph groupoids

Let E2 denote the graph with a single vertex v, and two edges a and b:

E2

v
a b

In [11], Brownlowe and Sørensen proved an algebraic analog of Kirchberg’s

Embedding Theorem (see [30]) for Leavitt path algebras. They showed that for

any countable graph E, and for any commutative unital ring R, the Leavitt path

algebra LR(E) embeds (unitally, whenever it makes sense) into LR(E2). By inspect-

ing their proof one finds that this embedding is also diagonal-preserving, i.e. that

the canonical diagonal DR(E) is mapped into DR(E2). A special case of Kirch-

berg’s Embedding Theorem is that any graph C∗-algebra, C∗(E), embeds into the

Cuntz algebra O2, which is canonically isomorphic to the graph C∗-algebra C∗(E2)

(and the groupoid C∗-algebra C∗
r (GE2)). We denote the canonical diagonal sub-

algebra in O2 by D2. A priori, Kirchberg’s embedding is of an analytic nature,

but Brownlowe and Sørensen’s results shows that in the case of graph C∗-algebras,
algebraic embeddings exist. Both graph C∗-algebras and Leavitt path algebras have
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the same underlying groupoid models (being canonically isomorphic to the groupoid

C∗-algebra, and the Steinberg R-algebra (AR(GE)) of GE , respectively). Generally,

isomorphisms of the graph groupoids correspond to diagonal preserving isomor-

phisms of the algebras. Thus, one could wonder whether there is an embedding of

the underlying graph groupoids. We will show that this is indeed the case, modulo

topological obstructions. Our proof is inspired by [11, Proposition 5.1] (and the

examples following it).

Lemma 11.1. Let E be a countable graph with no sinks, no semi-tails, and sup-

pose E satisfies Condition (L). Then there exists an injective local homeomorphism

φ : ∂E → E∞
2 such that

φ ◦ �GE� ⊆ �GE2� ◦ φ.
If E0 is finite, then φ is surjective (hence a homeomorphism), and if E0 is infinite,

then φ(∂E) = E∞
2 \{a∞}. In particular, there exists an injective étale homomor-

phism

Φ : Germ(�GE�, ∂E) → GE2 .

Proof. For transparency we first treat the case when E0 is finite. The infinite

case requires only a minor tweak. Let n = |E0|. Label the vertices and edges of E

(arbitrarily) as

E0 = {w1, w2, . . . , wn} and wiE
1 = {ei,j | 1 ≤ j ≤ k(i)} for each 1 ≤ i ≤ n,

where k(i) = |s−1(wi)|. When wi is an infinite emitter, k(i) = ∞, and we let j

range over N. For each pair j, i with j ∈ N, i ∈ N ∪ {∞} and j ≤ i we define a

finite path αj,i ∈ E∗
2 as follows: α1,1 := v and for j ≥ 2

αj,i :=



b if j = 1,

aj−1b if 1 < j < i,

aj−1 if j = i.

Observe that for each fixed i ∈ N, the set {Z(αj,i) | 1 ≤ j ≤ i} forms a partition

of E∞
2 . And for i = ∞, {Z(αj,i) | 1 ≤ j <∞} forms a partition of E∞

2 \{a∞}.
We now define the map φ : ∂E → E∞

2 as follows. For an infinite path

x = ei1,j1ei2,j2 . . . in E we set

φ(x) = αi1,nαj1,k(i1)αj2,k(i2) . . . .

If wi ∈ E0 is an infinite emitter, then

φ(wi) = αi,na
∞.

For notational convenience, we define

φ∗(µ) := αi1,nαj1,k(i1)αj2,k(i2) . . . αjm,k(im) ∈ E∗
2
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for each finite path µ = ei1,j1ei2,j2 . . . eim,jm ∈ E∗. Finally, if µ is a finite boundary

path, then

φ(µ) = φ∗(µ)a∞.

Recall that vα = α = αv for each α ∈ E∗
2 . A priori, φ(x) could be a finite

path in E2. We argue that this is not the case. For a finite path µ ∈ E∗, φ(µ) is

clearly infinite. For an infinite path x = ei1,j1ei2,j2 . . . , φ(x) is finite if and only if

for some M ∈ N, αjm,k(im) = v for all m > M , that is k(im) = 1 and jm = 1. This

means that eiM+1,jM+1eiM+2,jM+2 . . . is either a semi-tail, or an eventually periodic

point whose cycle has no exit. But there are by assumption no such paths in E. So

we conclude that φ is well-defined.

Using the fact that {Z(αj,i)} for fixed i forms a partition of E∞
2 , or

E∞
2 \{a∞}, one easily sees that φ is a bijection. As for continuity, we define the

finite subset Fi,l := {ei,1, ei,2, . . . , ei,l} ⊆ wiE
1 for 1 ≤ l < k(wi) + 1. Let

µ = ei1,j1ei2,j2 . . . eim,jm ∈ E∗ and suppose r(µ) = wi. Observe that

φ(Z(µ)) = Z(φ∗(µ))

and

φ(Z(µ\Fi,l)) = Z(φ∗(µ)al).

For arbitrary F = {ei,j1 , . . . , ei,jm}, we have

Z(µ\F ) = Z(µ\Fi,jm+1) �
⊔
j∈JF

Z(µei,j), (11.1)

where JF is the set of j’s with 1 ≤ j ≤ jm and ei,j /∈ F . Thus φ is an open map.

Conversely, we have that for β ∈ E∗
2

φ−1(Z(β)) =


 ⋃
β≤φ∗(µ)

Z(µ)


 ∪


∞⋃
l=1

⋃
β≤φ∗(λ)al

Z(λ\Fr(λ),l)

,

(and these unions may actually be taken to be finite). Hence φ is a homeomorphism.

To see that φ ◦ �GE� ◦ φ−1 ⊆ �GE2�, let µ, λ ∈ E∗ with r(µ) = r(λ) = wi be

given, and let 1 ≤ l < k(wi) + 1. Observe that

φ ◦ πZ(µ,λ) ◦ φ−1 = πZ(φ∗(µ),φ∗(λ)) : Z(φ
∗(λ) → Z(φ∗(µ)),

and

φ ◦ πZ(µ,Fl,λ) ◦ φ−1 = πZ(φ∗(µ)al,φ∗(λ)al) : Z(φ
∗(λ)al → Z(φ∗(µ)al),

as partial homeomorphisms. Utilizing a similar decomposition as in Eq. (11.1) for

the basic set Z(µ, F, λ) for arbitrary F , together with the description of elements

in �GE� from Proposition 9.4, we see that for each πU ∈ �GE�, the homeomor-

phism φ ◦ πU ◦ φ−1 belongs to �GE2�.

In the case that E0 is infinite, all the arguments above still go through, with

the minor adjustment that the first word in φ(x) is αi1,∞. This word always ends

with b, so we see that φ becomes a homeomorphism from ∂E onto E∞
2 \{a∞}.
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The final statement follows from Corollary 5.5 and Proposition 4.10 (�GE2�

covers GE2 since GE2 is minimal).

Remark 11.2. The local homeomorphism φ constructed in the preceding proof

depends on the choice of labeling of the graph. And there are of course many ways

to label a graph, but each one gives a local homeomorphism φ with the desired

properties.

In order to conclude that GE embeds into GE2 it seems like we have to assume

that �GE� covers GE (as this is not always the case). However, in the proof of

Lemma 11.1, we are really showing that φ ◦ Pc(GE) ⊆ Pc(GE2) ◦ φ, where Pc(G)
denotes the inverse semigroup of partial homeomorphisms πU : s(U) → r(U) com-

ing from compact bisections U ⊆ G. It is a sub-inverse semigroup of Renault’s

pseudogroup as in [10, 61] (when G is effective). The constructions in Secs. 4 and 5

apply more or less verbatim to Pc(G) as well. The crucial difference is that Pc(G)
always covers G, when G is ample. Thus, the analogs of Corollary 5.5 and Propo-

sition 4.10 for Pc(GE) applied to φ induces the desired embedding of the graph

groupoids — which we record in the following theorem.

Theorem 11.3. Let E be a countable graph satisfying Condition (L) and having no

sinks nor semi-tails. Then there is an embedding of étale groupoids Φ : GE ↪→ GE2 .

If E0 is finite, then Φ maps ∂E onto E∞
2 .

Remark 11.4. Theorem 11.3 is optimal in the sense there is no embedding if

one relaxes the assumptions on E. For if ∂E has isolated points, then there is no

local homeomorphism from ∂E to E∞
2 , as the latter has no isolated points. And

if E is uncountable, then there is no embedding either, for then ∂E is not second

countable, while E∞
2 is. Similarly, ∂E cannot map onto E∞

2 if E0 is infinite, for

then the former is not compact.

11.2. Diagonal embeddings of graph algebras

From Theorem 11.3, we recover Brownlowe and Sørensen’s embedding theorem for

Leavitt path algebras (albeit for the slightly smaller class of graphs E with ∂E

having no isolated points). However, we get the additional conclusion that when

E0 is finite (i.e. the algebras are unital), the embedding can be chosen to not only

be unital, but also to map the diagonal onto the diagonal.

Corollary 11.5. Let E be a countable graph with no sinks, no semi-tails, and

satisfying Condition (L).

(1) There is a diagonal preserving injective ∗-homomorphism ψ : C∗(E) → O2,

that is ψ(D(E)) ⊆ D2. If E
0 is finite, then ψ is unital and ψ(D(E)) = D2.

(2) For any commutative unital ring R, there is an injective ∗-algebra homomor-

phism ρ : LR(E) → LR(E2) such that ρ(DR(E)) ⊆ DR(E2). If E
0 is finite,

then ρ is unital and ρ(DR(E)) = DR(E2).
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Remark 11.6. For each labeling of a graph E as in the proof of Lemma 11.1,

one obtains explicit embeddings of both the graph C∗-algebras and the Leavitt

path algebras into O2 and LR(E2), respectively, in terms of their canonical genera-

tors. This is done by expanding the scheme in [11, Proposition 5.1]. The canonical

isomorphism between both C∗(E) and C∗(GE), and LR(E) and AR(GE) is given

by pv ↔ 1Z(v) for v ∈ E0 (vertex projections) and se ↔ 1Z(e,r(e)) for e ∈ E1

(edge partial isometries). Denote the generators in O2 and LR(E2) by sa and sb.

Given a labeling E0 = {w1, w2, w3, . . .} and E1 = {ei,j | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)},
the embedding of the algebras induced by φ as in Lemma 11.1 is given on the

generators by

pwi �→ sφ∗(wi)(sφ∗(wi))
∗, sei,j �→ sφ∗(ei,j)(sφ∗(r(ei,j)))

∗,

where φ∗(µ) ∈ {a, b}∗ is as in the proof of Lemma 11.1 (recall that for a finite

path µ = e1, . . . , en ∈ E∗, one defines sµ := se1 · · · se2).

Remark 11.7. In the case that E has infinitely many vertices, the image of the

diagonals in Corollary 11.5 can be described as follows:

ψ(D(E)) = span{sαs∗α |α ∈ E∗
2\{a, a2, a3, . . .}},

and

ρ(DR(E)) = spanR{sαs∗α |α ∈ E∗
2\{a, a2, a3, . . .}}.

For examples of explicit embeddings for finite graphs satisfying Condition (L)

(possibly even having sinks), see [11, Sec. 5]. As for infinite graphs, we provide a

few examples below.

Example 11.8. Consider the following graph, whose graph C∗-algebra is the Cuntz
algebra O∞:

E∞
w

ej

The double arrow indicates infinitely many edges, i.e. E1 = {e1, e2, e3, . . .}. For
simplicity, we denote the edge isometries by sj for j ∈ N. We use the labeling w = w1

and ej = e1,j. Following the recipe in Remark 11.6, we obtain a unital embedding

of O∞ into O2 (and similarly of LR(E∞) into LR(E2)) which maps the diagonal

onto the diagonal, in terms of generators as follows:

pw = 1O∞ �→ 1O2 = pv, sj �→ saj−1b.
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Example 11.9. Next, consider the following graph:

E
w1 w2

ej

h

fj

By labeling the edges as h = e1,1, ej = e1,j+1, fj = e2,j we get the following unital

diagonal preserving embedding of C∗(E) into O2:

pw1 �→ sbs
∗
b , pw2 �→ sas

∗
a,

sh �→ sbbs
∗
a, sej �→ sbajbs

∗
b , sfj �→ sbajbs

∗
a.

Example 11.10. Finally, let us look at a graph with infinitely many vertices:

F
w1 w2 w3 w4 w5

· · ·

f1

e1 e2 e3

f3

e4 e5

f5

We label the edges as ej = ej,1 for j ∈ N, and fj = ej,2 for j odd. The induced

diagonal preserving embedding of C∗(F ) into O2 is then given on the generators as

follows:

pwi �→ sai−1b(sai−1b)
∗, sfj �→ saj−1ba(saj−1b)

∗ (j odd),

sej �→
{
saj−1b(sajb)

∗ j even,

saj−1b2(sajb)
∗ j odd.

11.3. Analytic properties of �GE�

Before generalizing the groupoid embedding theorem to a larger class of groupoids

in the next subsection we take brief pause to discuss some analytic properties of

the topological full groups �GE� for graphs E as in Lemma 11.1. First of all, �GE�

is generally not amenable, as it often contains free products [49, Proposition 4.10].

Let En for n ≥ 2 denote the graph consisting of a single vertex and n edges.

And more generally, for r ∈ N, let En,r be the graph with r vertices w1, w2, . . . , wr
and n+ r − 1 edges e1, . . . , en, f1, . . . , fr−1 such that s(ei) = w1, r(ei) = wr for

each 1 ≤ i ≤ n and s(fi) = wi+1, r(fi) = wi for each 1 ≤ i ≤ r − 1. According to [49,

Sec. 6], the topological full group �GEn,r � is isomorphic to the Higman–Thompson

group Vn,r. In particular, �GE2�
∼= V2,1 = V (Thompson’s group V ). As Lemma 11.1

in particular induces an algebraic embedding of the topological full groups, we have

that �GE� embeds into V for each graph E as in Lemma 11.1. Thus, Lemma 11.1

may be considered a generalization of the well-known embedding of Vn,r into V .

As V has the Haagerup property [24], we deduce that �GE� does as well.
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Corollary 11.11. Let E be a countable graph with no sinks, no semi-tails, and

suppose E satisfies Condition (L). Then the topological full group �GE� has the

Haagerup property.

Remark 11.12. For finite, strongly connected graphs, this was proved directly,

using so-called zipper actions, by Matui in [49]. Later, in [50], Matui proved that

for any finite, strongly connected graph E, �GE� embeds into �GE2�. In fact, he

proved even more, namely that GE2 could be replaced by any groupoid with similar

properties (see [50, Proposition 5.14] for the details). By our results, one may relax

the conditions on E considerably in Matui’s embedding result.

11.4. Embedding equivalent groupoids

We are now going to expand on the embedding theorem for graph groupoids to

include all groupoids that are merely groupoid equivalent to a graph groupoid.

To accomplish this we will make us of the fundamental results by Carlsen, Ruiz

and Sims in [14]. Following their notation, let R denote the countably infinite

discrete full equivalence relation, that is R = N × N equipped with the discrete

topology, whose product and inverse are given by (k,m) · (m,n) := (k, n) and

(m,n)−1 := (n,m). We refer to the product groupoid G × R as the stabilization

of the groupoid G. For a graph E, let SE denote the graph obtained from E by

adding a head at every vertex — see the example below (see also [68]). It is shown

in [14] that GE ×R ∼= GSE as topological groupoids for any graph E.

Example 11.13. The stabilized graph of E2 is the following graph:

SE2

w2 w1
v· · · c3 c2

a

b

c1

Let us first just say a few words on necessary conditions for an étale groupoid H
to be embeddable into GE2 . First of all, it is clearly necessary that H is ample,

Hausdorff and second countable, since GE2 is. As we observed for the graph

groupoids, it is also necessary that H(0) has no isolated points, and hence that

H(0) is a locally compact Cantor space. Furthermore, since subgroupoids of effec-

tive groupoids are effective, it is also necessary that H be effective. As a final

observation in this regard, any embedding Φ : H ↪→ GE2 induces an embedding of

the isotropy bundles H′ ↪→ (GE2)
′, meaning that Φ restricts to an embedding of the

isotropy group Hy
y into (GE2)

Φ(y)
Φ(y) for each y ∈ H(0). Now recall that for any graph
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groupoid GE the isotropy groups are

(GE)xx ∼=
{
Z if x is eventually periodic,

0 otherwise.

Thus, a final necessary condition for embeddability is that the isotropy bundle

of H consists only of the trivial group and Z. This rules out for instance (most)

products of graph groupoids, since they typically have isotropy groups that are

free abelian of rank up to the number of factors in the product. Note however,

that taking the product with a principal groupoid does no harm in this regard. As

we’ll see imminently, taking the product with R (i.e. stabilizing) does not affect

embeddability into GE2 .

Proposition 11.14. Let H be an effective ample second countable Hausdorff

groupoid with H(0) a locally compact Cantor space. Then H embeds into GE2 if

and only if the stabilized groupoid H×R embeds into GE2 .

Proof. The “if statement” is trivial as a groupoid always embeds into its sta-

bilization. Suppose Φ : H → GE2 is an injective étale homomorphism. Then

φ× id : H×R → GE2 ×R is an injective étale homomorphism as well. By [14,

Lemma 4.1] we have GE2 × R ∼= GSE2 , and SE2 is a countable graph satisfying

Condition (L) with no sinks nor semi-tails. So by Theorem 11.3, GSE2 embeds into

GE2 . Thus H×R embeds into GE2 .

The next lemma shows that any étale embedding of a groupoid H, with compact

unit space, into GE2 can be “twisted” into an embedding that hits the whole unit

space of GE2 .

Lemma 11.15. Let H be an effective ample second countable Hausdorff groupoid

with H(0) a compact Cantor space. If H embeds into GE2 , then there exists an

embedding Φ : H ↪→ GE2 such that Φ(H(0)) = E∞
2 .

Proof. Let Ψ : H → GE2 be an injective étale homomorphism and let Y = Ψ(H(0)).

Then Y is a compact open (hence clopen) subset of E∞
2 . We claim that there exists

a compact open bisection U ⊆ GE2 such that s(U) = Y and r(U) = E∞
2 . The

claim follows from [49, Theorem 6.4] and [51, Example 3.3(3)] by identifying GE2

with the SFT-groupoid of the 1 × 1 matrix A = [2] (see [51, Example 2.5]). Now

define Φ(h) = U ·Ψ(h) ·U−1 for h ∈ H. Then Φ is an injective étale homomorphism

and

Φ(H(0)) = UYU−1 = UU−1 = r(U) = E∞
2 .

We now state the most general version of our embedding theorem.

Theorem 11.16. Let H be an effective ample second countable Hausdorff groupoid

whose unit space H(0) is a locally compact Cantor space. If H is groupoid equivalent
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to GE , for some countable graph E satisfying Condition (L) and having no sinks

nor semi-tails, then H embeds into GE2 . Moreover, if H(0) is compact, then the

embedding maps H(0) onto E∞
2 .

Proof. Suppose H is groupoid equivalent to GE as above. Then by [14, Theo-

rem 3.2] we have H × R ∼= GE × R. By Theorem 11.3 and Proposition 11.14,

GE × R embeds into GE2 , hence so does H × R and H. The second statement

follows from Lemma 11.15.

Remark 11.17. We note that for any groupoid H as in the above theorem, its

topological full group �H� also has the Haagerup property.

11.5. Embedding AF-groupoids

A well studied class of groupoids satisfying the hypothesis of Theorem 11.16, yet

conceptually different from graph groupoids, are the AF-groupoids. See [28] (wherein

they are dubbed AF-equivalence relations). Let G be an ample Hausdorff second

countable groupoid with G(0) a locally compact Cantor space. Then G is called an

AF-groupoid if there exists an increasing sequence K1 ⊆ K2 ⊆ · · · ⊆ G of clopen

subgroupoids such that

• Kn is principal for each n ∈ N.
• K(0)

n = G(0) for each n ∈ N.
• Kn\G(0) is compact for each n ∈ N.
• ⋃∞

n=1 Kn = G.
This entails that G is principal.

Remark 11.18. The terminology AF-groupoid is due to Renault [59], and is also

used by Matui in [48, 51]. Note however, that Matui only considered the case of a

compact unit space therein.

In the following example, we explain how Bratteli diagrams give rise to AF-

groupoids.

Example 11.19 (cf. [28, Example 2.7(ii)]). A Bratteli diagram B is a directed

graph whose vertex set V and edge set E can be written as countable disjoint unions

of non-empty finite sets

V = V0 � V1 � V2 � · · · and E = E1 � E2 � E3 � · · · (11.2)

such that the source and range maps satisfy s(En) = Vn−1 and r(En) ⊆ Vn.
i In

particular, there are no sinks in B. Let SB ⊆ V denote the set of sources in B.

iThis notation is inconsistent with what we have been using for directed graphs so far. But
since Bratteli diagrams are very special kinds of graphs we have chosen to use the well-established
notation from the literature. In this way we can, albeit somewhat artificially, distinguish a Bratteli
diagram from its underlying graph.
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Then V0 ⊆ SB. We call B a standard Bratteli diagram if there is only one source

in B, i.e. SB = {v0} = V0. We say that B is simple if for every vertex v ∈ Vn, there

is anm > n such that there is a path from v to every vertex in Vm. The partitions of

the vertices and edges (into levels as in Eq. (11.2)) is considered part of the data of

the Bratteli diagram B. We let EB denote the underlying graph where we “forget”

about the partitions.

For a source v ∈ SB ∩ Vn on level n we let Xv denote the set of infinite paths

starting in v, that is

Xv := {en+1en+2en+3 . . . | s(en+1) = v, en+k ∈ En+k, s(en+k) = r(en+k−1), k > 1}.
The path space of B is

XB :=
⊔
v∈SB

Xv

whose topology is given by the basis of cylinder sets

C(µ) := {en+1en+2 . . . ∈ Xs(µ) | en+1 . . . en+|µ| = µ},
where µ is a finite path such that s(µ) = v for some source v ∈ SB ∩ Vn. The path

spaceXB is Boolean, and it is compact if and only if SB is finite. Further,XB is per-

fect if and only if EB has no semi-tails. Two infinite paths in XB are tail-equivalent

if they agree from some level on. With this equivalence relation as the starting

point, let for each N ∈ N

PN := {(x, y) ∈ XB ×XB | s(x) ∈ Vm, s(y) ∈ Vn,m, n ≤ N, xk = yk for all k > N}.
That is, PN consists of all pairs of infinite paths which start before the Nth level and

agrees from the Nth level and onwards. Equipping PN with the relative topology

from XB × XB makes PN a compact principal ample Hausdorff groupoid whose

unit space is identified with
⊔N
n=1

⊔
v∈SB∩Vn

Z(v).

We define the groupoid of the Bratteli diagram B as the increasing union

GB :=

∞⋃
N=1

PN

equipped with the inductive limit topology. For two finite paths µ, λ with s(µ), s(λ)

in SB and r(µ) = r(λ) we define

C(µ, λ) := {(x, y) ∈ C(µ)× C(λ) |x[|µ|+1,∞) = y[|λ|+1,∞)}.
A straightforward computation shows that the family of C(µ, λ)’s form a compact

open basis for the inductive limit topology on GB. We identify G(0)
B with XB. By

setting Kn = Pn ∪ G(0)
B one sees that GB is an AF-groupoid. The groupoid GB is

minimal if and only if B is a simple Bratteli diagram.

Remark 11.20. Although the AF-groupoid GB is defined in terms of a very special

graph, namely the Bratteli diagram B, it is generally not isomorphic to a graph

groupoid. To see this, recall that GB is always principal, while a graph groupoid GE
1950018-60
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is principal if and only if the graph E has no cycles. If XB is compact, perfect and

infinite (this is essentially stipulating that the Bratteli diagram is standard and

“non-degenerate”), then GB cannot be isomorphic to any graph groupoid. For any

such GE would have a compact unit space, i.e. E has finitely many vertices, and E

would have no cycles and no sinks. But that is impossible.

Giordano, Putnam and Skau showed that, just as with AF-algebras [5], every

AF-groupoid can be realized by a Bratteli diagram as in Example 11.19.

Theorem 11.21 ([28, Theorem 3.9]). Let H be an AF-groupoid. Then there

exists a Bratteli diagram B such that H ∼= GB. If H(0) is compact, then B can be

chosen to be standard.

Remark 11.22. As another example of a concrete description of the topological

full group of an ample groupoid, we remark that Matui described the topological

full group of an AF-groupoid with compact unit space in terms of a defining Brat-

teli diagram in [47, Proposition 3.3]. The topological full group �GB�, where B

is a Bratteli diagram, is the direct limit of the finite groups ΓN for N ∈ N,
where ΓN ≤ Homeo(XB) consists of all permutations of the finite set of paths from

level V0 to VN such that the permutation preserves the range of these paths (and

the action on XB is by permuting the initial segment of an infinite path). We should

also mention that these groups were originally studied by Krieger in [32], without

emphasis on the underlying groupoids.

By the preceding remark it is clear that the topological full group of any AF-

groupoid is a locally finite group. And actually, this characterizes the AF-groupoids.

This is somewhat of a folklore result, but a proof is published by Matui in the

compact case, and it is not hard to see that his proof extends to locally compact

unit spaces as well.

Proposition 11.23 (cf. [47, Proposition 3.2]). Let G be an ample principal

Hausdorff second countable groupoid with G(0) a locally compact Cantor space. Then

the topological full group �G� is locally finite if and only if G is an AF-groupoid.

Remark 11.24. The commutator subgroups D(G) ≤ �G� for AF-groupoids G are

quite interesting in their own right. In fact, these exhaustj the class of so-called

strongly diagonal limits of products of alternating groups (also called LDA-groups,

see [37] where these are classified using the dimension groups of their Bratteli dia-

grams). These form a subclass of the locally finite simple groups. By Corollary 11.26

below, all the LDA-groups embed into Thompson’s group V .

We now demonstrate that every AF-groupoid is groupoid equivalent to a graph

groupoid. This is essentially just a reformulation of the main theorem from [21],

wherein it is shown that any AF-algebra can be recovered as a certain pointed

jWith the single exception of the infinite finitary alternating group.
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graph C∗-algebra of a defining Bratteli diagram. In contrast, in Proposition 11.25

below we emphasize the groupoids, rather than their C∗-algebras. Also, since we

use “unlabeled” Bratteli diagrams here, as opposed to labeled Bratteli diagrams

(cf. [21, Sec. 2]), the computations are easier.

Proposition 11.25. Let B be a Bratteli diagram. Then the AF-groupoid GB is iso-

morphic to the restriction of the graph groupoid GEB to the open subset
⊔
v∈SB

Z(v)

of E∞
B . In particular, every AF-groupoid is groupoid equivalent to a graph groupoid.

Proof. Let A =
⊔
v∈SB

Z(v). Then

(GEB )|A = {(x, k, y) | s(x), s(y) ∈ SB , σEB (x)
m = σEB (y)

n, k = m− n}.
Due to the special structure of the graph EB, the lag k in (x, k, y) ∈ (GEB )|A is

uniquely determined by x and y. In fact, k is determined by the levels on which x

and y start in the Bratteli diagram. Indeed, let m,n ∈ N be such that s(x) ∈ Vm
and s(y) ∈ Vn, then k = n−m. This means that the map Φ : (GEB )|A → GB defined

by Φ((x, k, y)) = (x, y) is a bijection. It is easy to see that Φ is also a groupoid

homomorphism. Finally, to see that Φ is a homeomorphism simply note that the

family of Z(µ, λ)’s where µ, λ are finite paths with s(µ), s(λ) ∈ SB and r(µ) = r(λ)

form a basis for (GEB )|A, and that Φ(Z(µ, λ)) = C(µ, λ). Thus (GEB )|A ∼= GB as

étale groupoids.

We claim that A is a GEB -full subset of E∞
B , and then the second statement

follows from [14, Theorem 3.2]. To see this, let z ∈ E∞
B be an infinite path starting

anywhere in the Bratteli diagram and simply note that by following s(z) upwards in

the Bratteli diagram, one eventually reaches a source v ∈ SB such that v connects

to s(z). Letting µ be any path from v to s(z) we have that z belongs to the GEB -orbit

of µz ∈ A.

As a special case of Theorem 11.16, we obtain the following corollary.

Corollary 11.26. Let G be an AF-groupoid with G(0) perfect. Then there exists

an embedding of étale groupoids G ↪→ GE2 . If G(0) is compact, then G(0) maps

onto E∞
2 .

From this we obtain an analogue of Corollary 11.5 for AF-algebras and their

diagonals. Let A be an AF-algebra. By an AF Cartan subalgebra D ⊆ A we

mean a Cartan subalgebra arising from the diagonalization method of Strătilă

and Voiculescu [67]. See [21, Sec. 4] for a description of these diagonals for

non-unital AF-algebras. Note that they are also C∗-diagonals in the sense of

Kumjian [34]. According to [61, Sec. 6.2] these are precisely the Cartain pairs arising

as (C∗
r (GB), C0(XB)) for a Bratteli diagram B.

Corollary 11.27. Let A be an infinite-dimensional AF-algebra and let D ⊆ A be

any AF Cartan subalgebra in A whose spectrum is perfect. Then there is an injective
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∗-homomorphism ψ : A ↪→ O2 such that ψ(D) ⊆ D2. If A is unital, then so is ψ,

and ψ(D) = D2.

Remark 11.28. As a final remark, we note that certain transformation groupoids

(by virtue of actually being AF-groupoids) also embed into GE2 . Let X be a non-

compact locally compact Cantor space and let T be a minimal homeomorphism

on X . It follows from [28, Theorem 4.3] that the transformation groupoid Z �T X
is an AF-groupoid, and consequently Z �T X embeds into GE2 .

An indirect way of seeing that Z�T X is an AF-groupoid is via Proposi-

tion 11.23. By realizing the dynamical system (X,T ) as a so-called Bratteli–Vershik

system on a (standard) almost simple ordered Bratteli diagram B = (V,E,≥)

cf. [18], one easily observes (as Matui did in [46]) that �Z �T X� is locally finite.

This is because each element of �Z�T X� only depends on the initial edges down to

level N for some fixed N (determined by the group element), for each infinite path

in XB. This actually allows one to describe the topological full group �Z �T X�

explicitly in terms of a conjugate Bratteli–Vershik system.

A third way of demonstrating that Z �T X is an AF-groupoid is that one

can go from a conjugate Bratteli–Vershik system on an ordered Bratteli dia-

gram B = (V,E,≥) to an “unordered” Bratteli diagram B′ such that Z�TX ∼= GB′

as étale groupoids. Indeed, let e1e2e3 . . . ∈ XB denote the unique maximal and min-

imal path in XB (cf. [18]). By “forgetting” the ordering and removing each of the

edges en for all n ∈ N, and thereby introducing a source at each of the vertices s(en),

one obtains the modified Bratteli diagram B′, and it is not hard to see that the

AF-groupoid GB′ is isomorphic to Z �T X .
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