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Burst Distribution by Asymptotic
Expansion in the Equal Load Sharing
Fiber Bundle Model
Jonas T. Kjellstadli*

PoreLab, Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway

We derive an asymptotic series expansion for the burst size distribution in the equal load

sharing fiber bundle model, a predominant model for breakdown in disordered media.

Earlier calculations give expressions with correct asymptotic behavior for large bursts,

but low accuracy for small bursts, up to an order of magnitude off. The approximations

from the expansion we present here give relative errors of at most several percent when

compared with exact results or simulation results for large systems. We also solve the

burst size distribution exactly for the Weibull threshold distributions.
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1. INTRODUCTION

The fiber bundle model [1–4] is a prime example of what Bouchaud calls a metaphorical model [5];
that is, a model which reveals mechanisms that lie hidden beneath layers of complexity in realistic
models and are completely lost in phenomenological models. Even in its simplest form, the equal
load sharing (ELS) model, the number of papers written on the fiber bundle model may now be
counted in the thousands. This is evidence of great richness.

The distribution of bursts, or avalanches, is important in the study of fiber bundle models. Its
behavior can signal how close the bundle is to catastrophic failure, even in single samples [6]. There
are many variations of the fiber bundle model, but we will only study the ELS model here. We
will also limit ourselves to continuous (i.e., infinitesimal) load increase; finite load increases gives a
different distribution of bursts [7, 8].

For the ELS model with continuous load increase, Hemmer and Hansen [9] demonstrated that
bursts follow a power law with an exponent 5/2 for a wide class of disorder distributions. Sornette
[10] derived this power law behavior separately with a different approach. This work was followed
up Pradhan et al. [6, 11], who showed that the power law exponent changes to 3/2 as the bundle is
approaching catastrophic failure. Raischel et al. [12] showed that this kind of crossover is present
also in the γ -model [13], which has a variable range of interaction with the equal and local load
sharing model as its two limits.

By following the development of the crossover burst size—that is, the burst size that constitutes
the watershed between bursts following the 5/2 law and the bursts following the 3/2 law—it is
possible to quantitatively measure of how far the bundle is from collapse. However, this approach
has the problem that it requires knowledge of large (and hence rare) bursts, which have poor
statistics. It would be better to predict failure from the smallest bursts, which happen often and
can be measured with higher accuracy. This makes it important to have access to accurate analytic
estimates of these values to compare with. Hence, we provide in this article a method to analytically
calculate the burst distribution accurately for small bursts.
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2. THE EQUAL LOAD SHARING FIBER
BUNDLE MODEL

Consider an equal load sharing fiber bundle model with N fibers
[1, 2]. The externally applied force (or load) F is distributed
identically on all intact fibers, and a fiber acts as Hookean spring
until its elongation reaches a certain threshold, where it breaks.
Due to the equal load sharing, fibers will always fail in order from
smallest to largest threshold as the load increases.

The thresholds are drawn independently from a probability
density p(t), with a corresponding cumulative distribution P(t) =
∫ t
−∞ p(u)du. Let {tk} be the ordered sequence of thresholds, such
that t1 ≤ t2 ≤ · · · ≤ tN . Then the force Fk required to break the
kth fiber is

Fk =
(

N + 1− k
)

tk. (1)

Equation (1) shows that Fk consists of two factors: the decreasing
number of intact fibers N + 1 − k, and the increasing threshold
tk of the kth fiber. Due to the irregularities of {tk}, Fk doesn’t
increase or decrease smoothly. Instead, it fluctuates up and down
around a general increasing trend. Or decreasing, depending on
where in the fracture process we are.

If the force F is the control parameter during the breaking
process, this causes bursts (or avalanches) of several fibers that
break under the same load. There is a burst of size 1 beginning
with the failure of the kth fiber if Fk > Fj for j < k, Fk+j ≤ Fk for
j < 1, and Fk+1 > Fk. This simply means that when the force
reaches Fk, 1 fibers break under that load with no further load
increase required, and the burst stops at the 1 + 1th fiber, which
is strong enough to withstand the load.

The average of Equation (1) over samples is the load curve [4]

σ (x) = x
[

1− P(x)
]

, (2)

which is also the limit of equation (1) asN → ∞. Here σ = F/N
is the applied force per fiber in the bundle, both broken and
intact, and x is the elongation of the fiber bundle. For most
threshold distributions σ has a single parabolic maximum at
elongation xc, where 1− P(xc) = xcp(xc).

The burst distribution is usually defined asD(1): the expected
number of bursts of size 1 during the breaking of a single fiber
bundle [3, 4, 9]. This definition makes D(1) ∝ N for large
systems, and hence it diverges as N → ∞. We will instead use
the notation D̄(1) = D(1)/N, with the physical interpretation
that 1D̄(1) is the fraction of fibers broken in bursts of size 1 —
which converges to a finite number as N → ∞.

Hemmer and Hansen [9] showed that for continuous load
increase, the burst distribution to first order in N has the
asymptotic behavior (as 1 → ∞)

D̄(1) ∼ C1−5/2, (3)

where C = (2π)−1/2 xcp(xc)
2
[

2p(xc)+ xcp
′(xc)

]−1
. This result is

universal for threshold distributions where the load curve has a
single parabolic maximum.

Pradhan et al. [6, 11] generalized this asymptotic behavior to
threshold distributions starting from a lower limit t0 ≥ 0, and
found that there is a crossover

D̄(1) ∼ C1−5/2
(

1− e−1/1c
)

∝

{

1−3/2 for 1 ≪ 1c

1−5/2 for 1 ≫ 1c,

(4)

with 1c = 4πC2p(xc)
−2 (t0 − xc)

−2 and C as in Equation (3).
This crossover to a different exponent as t0 increases has been
proposed as a method to detect imminent failure [3, 6, 11].

Equation (4) is also an asymptotic behavior in the limit 1 →
∞, and hence it also requires information about large bursts
(which are rare events) to predict failure. Our goal is to find a
way to calculate the burst distribution accurately for small bursts,
which the asymptotic expressions in Equations (3, 4) cannot do.
To this end, we use a threshold distribution with a lower limit
t0 ≥ 0. The burst distribution is then, to first order in N [4],

D̄(1) =
11−1

1!

∫ xc

t0

[

a(t)e−a(t)
]1

a(t)−1

×
[

1− a(t)
]

p(t)dt

(5)

for t0 < xc, where

a(t) =
tp(t)

1− P(t)
. (6)

At xc, the critical elongation of Equation (2), this function
satisfies a(xc) = 1.

3. EXACT BURST DISTRIBUTION

Is it possible to solve the burst distribution exactly? The deciding
factor is the function a(t). Instead of first choosing a threshold
distribution and then checking whether Equation (5) is solvable,
we can instead do it in the opposite order: choose a function a(t)
for which the integral can be solved, and then use Equation (6) to
find the corresponding threshold distribution.

3.1. Constant a(t)
The simplest expression would be a constant a(t), which implies
a(t) = 1 because a(xc) = 1. This gives D̄(1) = 0 when inserted
into Equation (5). To see why, set a(t) = 1 in Equation (6), which
gives the differential equation

p′(t)

p(t)
= −

2

t
, (7)

with the normalized solution P(t) = 1− t0/t for t ∈ [t0,∞). This
makes the load curve in Equation (2) constant: σ (x) = t0, i.e.,
xc = t0. Thus, there is no burst distribution and D̄(1) = 0.

3.2. Power Law a(t)
Other than a(t) = 1, the most intuitive choice for a solvable
integral is a power law a(t) = C(k)tk with k > 0. Inserting this
into Equation (6) gives the first-order differential equation

p(t)+ C(k)tk−1P(t) = C(k)tk−1 (8)
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for P(t). It can be solved with the integrating factor method:

multiplying the equation with µ(t) = exp
(

∫ t
t0
dτ C(k)τ k−1

)

=

exp
[

C(k)
(

tk − tk0

)

/k
]

and integrating from t0 to t gives the

solution

P(t) =
C(k)

k

[

1− e
C(k)
k

(

tk0−tk
)]

. (9)

Normalization on the interval [t0,∞), i.e., P(t = ∞) = 1, yields
C(k)/k = 1. Thus,

P(t) = 1− et
k
0−tk , (10)

which is a Weibull distribution with shape parameter k and a
lower limit t0. The lower limit corresponds to breaking all fibers

with thresholds t < t0 from a fiber bundle with P(t) = 1 − e−tk .
Hence the lower limit is equivalent to studying a bundle with

P(t) = 1−e−tk that has already sustained a damage d = 1−e−tk0 .
The Weibull distribution in Equation (10) has a critical

extension xc = k−1/k, which gives a(xc) = 1, as required for
consistency. We can now solve the burst distribution exactly
for the Weibull distribution. Inserting a(t) = ktk and p(t) =
ktk−1et

k
0−tk into Equation (5) gives

D̄(1) =
11−1

1!

∫ k−1/k

t0

(

ktke−ktk
)1 (

ktk
)−1

×
(

1− ktk
)

ktk−1et
k
0−tkdt.

(11)

Use the substitution z = tk to get

D̄(1) =
(

k1
)1−1

1!
et

k
0

[

∫ 1/k

tk0

z1−1e−z(k1+1)dz

−k

∫ 1/k

tk0

z1e−z(k1+1)dz

]

.

(12)

Combining integration by parts and induction yields

∫ 1/k

tk0

dz zne−αz =
n!

αn+1






e−αtk0

n
∑

i=0

(

αtk0

)i

i!

−e−α/k
n

∑

i=0

(

α/k
)i

i!

]

,

(13)

which gives the exact burst distribution

D̄(1) =
11−1et

k
0

1!(k1 + 1)

[

e−(1+1/k)

−
(

ktk0

)1

e−tk0(k1+1)

]

+
(

k1
)1−1

e−k1tk0

1(k1 + 1)1+1

1−1
∑

i=0

[

(k1 + 1)tk0

]i

i!

−
(

k1
)1−1

et
k
0−(1+1/k)

1(k1 + 1)1+1

1−1
∑

i=0

(k1 + 1)i

i!ki
.

(14)

FIGURE 1 | Burst distribution D̄(1) for a Weibull threshold distribution with

k = 2 and t0 = 0. The exact result (black) is Equation (14) and the asymptotic

result (red) is Equation (4). The simulation results (turquoise) were found by

averaging D̄(1) over 106 sample systems with N = 10242.

This expression can easily be evaluated for small bursts, which is
what we are interested in. Equation (14) for k = 2 and t0 = 0
is shown in Figure 1 together with the asymptotic result from
Equation (4) and simulation results. The agreement between the
exact and simulation results is excellent, particularly for small 1
where finite size effects from the simulations are negligible. The
asymptotic result from Equation (4) is inaccurate for small 1—
it is 35% smaller than the exact result for 1 = 1—but becomes
more and more accurate as 1 increases, which is consistent with
the fact that Equation (4) is asymptotically correct in the limit
1 → ∞.

For the special case 1 = 1, Equation (14) becomes

D̄(1 = 1) =
et

k
0

(k+ 1)2

[

ke−(1+1/k)

+
(

1− (k+ 1)ktk0

)

e−(k+1)tk0

]

.

(15)

For large bursts Equation (14) is impractical to use, but for
1 ≫ 1c the first term is dominant. The equation then simplifies
to

D̄(1) ≃
11−1e−1

1!(k1 + 1)
et

k
0−1/k ≃

et
k
0−1/k

√
2πk

1−5/2, (16)

via Stirling’s approximation, 1! ≃
√
2π111e−1. This is the

expected asymptotic power law fromEquation (3) for theWeibull
distribution from Equation (10).

4. ASYMPTOTIC SERIES EXPANSION

The simplicity of the Weibull threshold distribution is an
exception, and for other threshold distributions we cannot expect
to find an exact result for the burst distribution. We therefore
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return to Equation (5) to make an asymptotic series expansion,
and note that the equation has the form of a Laplace integral [14]

I(1) =
∫ xc

t0

f (t)e1φ(t)dt, (17)

with

f (t) = p(t)
1− a(t)

a(t)
(18)

φ(t) = −a(t)+ ln(a(t)). (19)

For large 1 the integral is dominated by a small interval around
the maximum of φ(t) in the interval [t0, xc]. In our case φ has its
maximum at a(t) = 1, i.e., at the critical extension xc, the upper
limit of integration. Hence the asymptotic behavior of Equation
(17) as 1 → ∞ is

I(1) ∼
∫ xc

xc−ǫ

f (t)e1φ(t)dt (20)

where ǫ is a small number. In the small interval [xc − ǫ, xc] we
can Taylor expand f (t) and φ(t) around xc,

f (t) = f1(t − xc)+ f2(t − xc)
2

+ f3(t − xc)
3 + · · ·

φ(t) = φ0 + φ2(t − xc)
2 + φ3(t − xc)

3

+ φ4(t − xc)
4 + · · ·

(21)

Note that fn and φn are not identical to the nth derivatives of
f (t) and φ(t) evaluated at xc, only proportional to them. The
exact expressions for these coefficients in terms of a(t) are shown
in Equations (34, 36). Also note that the vanishing terms f0 =
f (xc) = 0 and φ1 ∝ φ′(xc) = 0 (φ has its maximum at xc) are not
included here.

In the limit 1 → ∞, when the interval [xc − ǫ, xc] can be
chosen arbitrarily small, the two first terms in the expansion of
φ will dominate the others. We therefore separate these terms by
factorizing the exponential in the integrand of Equation (20) as

e1φ(t) = exp
(

1φ0 + 1φ2(t − xc)
2
)

× exp
(

1
[

φ3(t − xc)
3 + φ4(t − xc)

4 + · · ·
])

,
(22)

and then Taylor expand the second factor

exp
(

1
[

φ3(t − xc)
3 + φ4(t − xc)

4 + · · ·
])

= 1

+ 1
[

ξ1,3(t − xc)
3 + ξ1,4(t − xc)

4 + · · ·
]

+ 12
[

ξ2,6(t − xc)
6 + ξ2,7(t − xc)

7 + · · ·
]

+ · · · ,

(23)

which defines ξn,m. Inserting these expansions into Equation (20)
and extending the lower integration limit back down to t0 gives

I(1) ∼ e1φ0

∫ xc

t0

e1φ2(t−xc)
2

×
[

f1(t − xc)+ f2(t − xc)
2 + · · ·

]

×
{

1+ 1
[

ξ1,3(t − xc)
3 + · · ·

]

+12
[

ξ2,6(t − xc)
6 + · · ·

]

+ · · ·
}

dt.

(24)

The standard approach is to extend the lower limit of integration
to−∞ because the integral over [−∞, xc − ǫ] is subdominant to
the integral over [xc − ǫ, xc] in the limit 1 → ∞ [14]. But our
goal is to use the asymptotic series to calculate an approximation
for D̄(1) for small 1, and we know that the lower limit t0 is
important for small bursts [6].

To solve this integral, multiply the Taylor expansions and
separate terms with even and odd powers of t − xc into Ieven(1)
and Iodd(1), respectively. The odd terms are

Iodd(1) = e1φ0

∫ xc

t0

e1φ2(t−xc)
2

×
{[

f1(t − xc)+ f3(t − xc)
3 + · · ·

]

+ 1
[

ω1,5(t − xc)
5 + ω1,7(t − xc)

7 + · · ·
]

+ 12
[

ω2,7(t − xc)
5 + ω2,9(t − xc)

9 + · · ·
]

+ · · · } dt,

(25)

whereωn,m is defined in Equation (38). Then choose u = 1φ2(t−
xc)

2, which yields

Iodd(1) =
e1φ0

21φ2

∫ 0

1φ2(t0−xc)2
eu

×

{

[

f1 + f3
u

1φ2
+ · · ·

]

+ 1

[

ω1,5

(

u

1φ2

)2

+ ω1,7

(

u

1φ2

)3

+ · · ·

]

+ 12

[

ω2,7

(

u

1φ2

)3

+ ω2,9

(

u

1φ2

)4

+ · · ·

]

+ · · ·

}

du,

(26)

We can now group these terms by the integrands’ dependence on
1:

Iodd(1) =
e1φ0

21φ2

(

�0(1)+ �1(1)1−1

+�2(1)1−2 + · · ·
)

,

(27)

where �n—see Equation (40)—-depends on 1 due to the lower
limit of integration.
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The even terms in t − xc are

Ieven(1) = e1φ0

∫ xc

t0

e1φ2(t−xc)
2

×
{[

f2(t − xc)
2 + f4(t − xc)

4 + · · ·
]

+ 1
[

ω1,4(t − xc)
4 + ω1,6(t − xc)

6 + · · ·
]

+ 12
[

ω2,8(t − xc)
8 + ω2,10(t − xc)

10 + · · ·
]

+ · · · } dt.

(28)

Since φ2 < 0, choose u =
√
−1φ2(t − xc). Then

Ieven(1) =
e1φ0

√
−1φ2

∫ 0

√
−1φ2(t0−xc)

e−u2

×

{[

f2

(

u
√
−1φ2

)2

+ f4

(

u
√
−1φ2

)4

+ · · ·

]

+ 1

[

ω1,4

(

u
√
−1φ2

)4

+ ω1,6

(

u
√
−1φ2

)6

+ · · ·

]

+ 12

[

ω2,8

(

u
√
−1φ2

)8

+ ω2,10

(

u
√
−1φ2

)10

+ · · ·

]

+ · · ·

}

du.

(29)
Grouping these terms by the integrands’ dependence on 1 yields

Ieven(1) =
e1φ0

√
−1φ2

(

21(1)1−1 + 22(1)1−2

+23(1)1−3 + · · ·
)

,

(30)

with 2n as shown in Equation (39).
Combining Equations (27, 30) with φ0 = −1 (from Equation

36) and Equation (5) gives the full asymptotic series for the burst
size distribution as

D̄(1) ∼
11−1e−1

1!

[

1

21φ2

(

�0(1)+ �1(1)1−1 + · · ·
)

+
1

√
−1φ2

(

21(1)1−1 + 22(1)1−2 + · · ·
)

]

=
11−2e−1

1!

(

C1(1)+ C2(1)1−1/2

+C3(1)1−1 + C4(1)1−3/2 + · · ·
)

.
(31)

Unfortunately, the “coefficients” Cn depend on 1, and the terms
in the asymptotic series must therefore be evaluated separately
for each value of 1. To do this evaluation, the relations between
the various coefficients that have been introduced in the series
expansions are needed.

4.1. Coefficient Expressions
To define the coefficients from the asymptotic series expansion,
use

An(1, t0) ≡
∫ 0

1φ2(t0−xc)2
du euun

Bn(1, t0) ≡
∫ 0

√
−1φ2(t0−xc)

du e−u2u2n
(32)

for the integrals that will show up in the expressions.

4.1.1. Definition of f

To determine the coefficients fn, expand Equation (18) around
a = 1:

f (t) = p(t)
[

(1− a)+ (1− a)2 + (1− a)3 + · · ·
]

. (33)

Then Taylor expand a(t) and p(t) around xc as a(t) = 1+ a1(t −
xc)+a2(t−xc)

2/2+· · · and p(t) = p0+p1(t−xc)+p2(t−xc)
2/2+

· · · , where an ≡ a(n)(xc) and pn ≡ p(n)(xc) are the nth derivatives
of a(t) and p(t) evaluated at xc. Comparison with Equation (21)
gives the relation

fn =
n−1
∑

m=0

pm

m!

n−m
∑

l=1

(−1)ll!

×
∑

∑∞
i=1 ki=l

∑∞
i=1 iki=n−m

n−m−l+1
∏

i=1

1

ki!

(ai

i!

)ki
,

(34)

where n ≥ 1 since f0 = 0, and ki ∈ N.

4.1.2. Definition of φ

To determine φn, expand Equation (19) around a = 1:

φ(t) = −1−
(1− a)2

2
−

(1− a)3

3
−

(1− a)5

4
− · · · . (35)

Then expand a(t) = 1+ a1(t − xc)+ a2(t − xc)
2/2+ · · · in the

above equation. Comparison with Equation (21) gives

φ0 = −1

φ1 = 0

φn = −
n

∑

m=2

(−1)m

m

∑

∑∞
i=1 ki=m

∑∞
i=1 iki=n

m!

×
n−m+1
∏

i=1

1

ki!

(a(i)

i!

)ki
,

(36)

where n ≥ 2 and ki ∈ N.

4.1.3. Definition of ξ

From Equation (23) we get

ξn,m =
∑

∑∞
i=3 ki=n

∑∞
i=3 iki=m

m−3n+3
∏

i=3

φ
ki
i

ki!
, (37)
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where n ≥ 1,m ≥ 3n, and ki ∈ N.

4.1.4. Definition of ω

Comparing Equation (24) with Equations (25, 28) yields

ωn,m =
m−1
∑

i=3n

fm−iξn,i, (38)

where n ≥ 1 andm ≥ 3n+ 1.

4.1.5. Definitions of 2 and �

By examining the expressions in Equations (29, 30) we see that
the coefficients 2n(1) are

2n(1) =
f2nBn(1, t0)

(−φ2)n

+
2n−1
∑

i=1

Bn+i(1, t0)

(−φ2)n+i
ωi,2(n+i),

(39)

with n ≥ 1 and Bn from Equation (32). Similarly, from Equations
(26, 27) we get

�n(1) =
f2n+1An(1, t0)

φn
2

+
2n
∑

i=1

An+i(1, t0)

φn+i
2

ωi,2(n+i)+1,

(40)

with n ≥ 0 and An from Equation (32).

4.1.6. Definition of C

From Equation (31), we get

C2n−1(1) =
�n−1(1)

2φ2

C2n(1) =
2n(1)
√
−φ2

,

(41)

where n ≥ 1.

4.2. Crossover
We know from Equation (4) that around 1c, the burst
distribution contains a crossover from 1−3/2 to 1−5/2 behavior.
Does Equation (31) reproduce this? The first term in the series is

C1(1)
11−2e−1

1!
≈

�0(1)

2
√
2πφ2

1−5/2

=
f1A0(1, t0)

2
√
2πφ2

1−5/2.

(42)

Using the Stirling approximation 1! ≈
√
2π11+1/2e−1 and

inserting for f1, A0(1, t0), and φ2 from Equations (32, 34,
36) gives

C1(1)
11−2e−1

1!
≈

−p0a1

2
√
2πφ2

1−5/2

∫ 0

1φ2(t0−xc)2
eudu

= C1−5/2
(

1− exp [−1/1c]
)

,

(43)

whereC = (2π)−1/2xcp0(2p0+xcp1)
−1 is the same as in Equation

(3) and 1c = 2a−2
1 (xc − t0)

−2 = 4πC2p20(xc − t0)
−2 is the same

as in Equation (4).
The first term of the asymptotic series is exactly Equation

(4), and the asymptotic series therefore reproduces the known
crossover behavior in the limit 1 → ∞.

5. APPROXIMATION FOR SMALL BURSTS

The asymptotic expansion in Equation (31) is done in the limit of
infinitely large bursts, and one should not expect the series to give
a perfect approximation of D̄(1) when 1 is finite. In general, the
infinite series might not converge for finite 1. However, one can
still use the asymptotic series to find an approximation for D̄(1)
for small bursts.

5.1. Optimal Approximation for Finite Burst
Size
For a finite 1 we use the general procedure outlined by Bender
and Orzag [14]:

First choose a fixed value of 1. Then locate the smallest
term (in absolute value) of the asymptotic series in Equation
(31):Cm(1)11−2−(m−1)/2e−1/1!. When summing the series up
to (but not including) a certain term, then that term gives a
measure of the error from the exact result [14]. Hence, we sum
the asymptotic series up to (but not including) the smallest term,
so that we get the smallest possible error estimate. If term number
m is the smallest one, the optimal approximation is

D̄(1) ≈
m−1
∑

i=1

Ci(1)
11−2−(i−1)/2e−1

1!
. (44)

Note that this method is applicable even when the infinite
asymptotic series does not converge. The caveat is that it has
to be done separately for each value of 1 where we wish to
approximate the burst distribution.

There is a practical limit to how many terms from Equation
(31) one can calculate. The smallest term m must be chosen
among the terms that are calculated. Hence we cannot guarantee
that the smallest term we find is the smallest one in the entire
infinite series. If it is not, then the accuracy of the approximation
will be reduced.

Truncating the series at the smallest term does not necessarily
give the best approximation. For certain values of 1 there
will exist better choices of truncation. However, Equation (44)
provides the method with the best guaranteed error without a
priori knowledge of the burst distribution.

5.2. Comparison With Exact Result
To test the accuracy of Equation (44) we compare it with the
exact result from Equation (14) for theWeibull distribution. This
is easier than relying on simulations, as both expressions are
derived in the limit N → ∞ where there are no finite size effects.

We have calculated the first 13 terms of Equation (31) for small
to intermediate burst sizes. With this limitation of 13 terms, we
use Equation (44) to calculate the optimal approximation. For a

Frontiers in Physics | www.frontiersin.org 6 November 2019 | Volume 7 | Article 201

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Kjellstadli Burst Distribution by Asymptotic Expansion

FIGURE 2 | Optimal approximation from Equation (44) with 13 available terms

(turquoise) and exact result (black) for the burst distribution. The first term of

the asymptotic series (red), which is Equation (4), is shown for comparison.

The threshold distribution is a Weibull distribution with k = 1 and t0 = 0.

FIGURE 3 | Relative errors for the burst distribution with respect to the exact

result from Equation (14): for the optimal approximation from Equation (44)

with 13 available terms (black) and for the first term of the asymptotic series

(red), which is Equation (4). The threshold distribution is a Weibull distribution

with k = 1 and t0 = 0.

Weibull distribution with k = 1 and t0 = 0, Figure 2 shows
this approximation, the exact result from Equation (14), and
Equation (4). The corresponding relative errors with respect to
the exact solution, calculated as

∣

∣D̄exact − D̄approximation

∣

∣ /D̄exact,
are shown in Figure 3.

Both approximations converge to the exact solution as 1 →
∞, but the optimal approximation converges much faster and is
consistently a better estimate of the exact result. From Figure 3,
we see that the ratio between the two relative errors is at
its smallest for small bursts, but the difference is still big, as

FIGURE 4 | Optimal approximation from Equation (44) with 13 available terms

(turquoise) and exact result (black) for the burst distribution. The first term of

the asymptotic series (red), which is Equation (4), is shown for comparison.

The threshold distribution is a Weibull distribution with k = 1 and t0 = 0.8.

evident from Figure 2. For the smallest bursts, the optimal
approximation gives an estimate of the exact result withmoderate
accuracy (relative errors of order 10%), whereas Equation (4) is
unusable as an estimate (relative errors of order 50%− 80%).

The errors in the optimal approximation seem to stem from
the fact that 13 terms is insufficient to find the smallest term
in the asymptotic series for small 1. With 13 available terms,
we can achieve higher accuracy with other parameters for the
threshold distribution. For aWeibull distribution with k = 1 and
t0 = 0.8, we show the exact solution, optimal approximation, and
Equation (4) in Figure 4, with the corresponding relative error of
the optimal approximation in Figure 5.

In this case, with t0 = 0.8 much closer to xc = 1, 13
terms seem to be sufficient to locate the smallest term in the
asymptotic series even for small 1. Hence the errors of the
optimal approximation (of order 10−9 for the smallest bursts) are
negligible, as seen from Figure 5. In the figure we have not shown
the errors of Equation (4), since they are on a completely different
scale from the errors of the optimal approximation, roughly 24%
for the smallest bursts.

5.3. Comparison With Simulations
To test the general applicability of the asymptotic expansion, we
also use Equation (44) with the uniform threshold distribution
on [t0, 1] (which has xc = 1/2), a widely used probability
distribution in the study of fiber bundles [3, 4]. Since the exact
solution is valid only for Weibull distributions, we compare the
asymptotic series results with simulation results for large systems
(N = 10242) where finite size effects for small 1 are small.
As with the Weibull distributions, we again calculate the first
13 terms of Equation (31), and then use them to calculate the
optimal approximation via Equation (44).

Figure 6 shows a comparison of the optimal approximation,
simulation results, and Equation (4) for the uniform threshold
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FIGURE 5 | Relative error for the burst distribution with respect to the exact

result from Equation (14) for the optimal approximation from Equation (44) (with

13 available terms). The threshold distribution is a Weibull distribution with

k = 1 and t0 = 0.8.

FIGURE 6 | Optimal approximation from Equation (44) with 13 available terms

(turquoise) and simulation results (black, N = 10242, 106 samples) for the burst

distribution. The first term of the asymptotic series (red), which is Equation (4),

is shown for comparison. The threshold distribution is uniform on [0, 1].

distribution with t0 = 0. The corresponding relative
errors with respect to the simulation results, calculated as
∣

∣D̄simulation − D̄approximation

∣

∣ /D̄simulation, is shown in Figure 7.
The optimal approximation is accurate to within a few percent
for small bursts, and the relative error decreases rapidly as 1

increases, as in Figures 3, 5. However, the error quickly begins
to increase again, presumably due to finite size effects from the
simulations. Equation (31) is derived from Equation (5), which
is only exact in the limit N → ∞. Equation (4) becomes more
accurate as 1 increases, but is consistently less accurate than the
optimal approximation.

FIGURE 7 | Relative errors for the burst distribution with respect to simulation

results that are averaged over 106 sample systems of size N = 10242: for the

optimal approximation from Equation (44) with 13 available terms (black) and

for the first term of the asymptotic series (red), which is Equation (4). The

threshold distribution is uniform on [0, 1].

FIGURE 8 | Optimal approximation from Equation (44) with 13 available terms

(turquoise) and simulation results (black, N = 10242, 106 samples) for the burst

distribution. The first term of the asymptotic series (red), which is Equation (4),

is shown for comparison. The threshold distribution is uniform on [0.45, 1].

Figure 8 shows a comparison of the optimal approximation,
simulation results, and Equation (4) for the uniform threshold
distribution with t0 = 0.45, with corresponding relative
errors in Figure 9. In this case neither approximation
becomes more accurate as the burst size increases, but
Equation (4) is much more accurate than for t0 = 0.
However, the optimal approximation is still more accurate
than Equation (4), with relative errors roughly an order of
magnitude smaller.
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FIGURE 9 | Relative errors for the burst distribution with respect to simulation

results that are averaged over 106 sample systems of size N = 10242: for the

optimal approximation from Equation (44) with 13 available terms (black) and

for the first term of the asymptotic series (red), which is Equation (4). The

threshold distribution is uniform on [0.45, 1].

6. DISCUSSION AND CONCLUSION

In the equal load sharing fiber bundle model, we have
found an analytic solution of the burst size distribution
for Weibull threshold distributions: Equation (14). This is a
significant improvement over previous results, which describe
the asymptotic behavior as the burst size diverges.

The exact result is impractical to use for large burst sizes1, but
can easily be evaluated for small 1. In this sense it complements
the existing asymptotic result; Equation (14) can be used for small
1, and for sufficiently large 1 we can use Equation (4) instead.
Together, these results provide a highly accurate way to calculate
the burst size distribution for Weibull threshold distributions.

For other threshold distributions where the burst distribution
cannot be solved exactly, another method is needed to calculate
the burst distribution for small 1. We have therefore derived the
full asymptotic series expansion for the burst size distribution,
Equation (31). Even if the full infinite series is valid only in the
limit 1 → ∞, it can still be used to find approximations for
small 1 through Equation (44).

Our results indicate that, with a fixed number of available
terms, this optimal approximation is more accurate the smaller
xc − t0 is. This seems to stem, at least partially, from the fact that
more terms are needed in the asymptotic series expansion to find
the smallest term.

The accuracy of the optimal asymptotic approximation
depends on the threshold distribution and the number of

calculated terms.With 13 terms, the relative error for the smallest
bursts ranges from several percent to ∼ 10−9 for the Weibull
and uniform threshold distributions we have investigated. This
is consistently more accurate than Equation (4).

Neither Equation (44) nor Equation (4) take finite size effects
into account, since they are derived in the limit of infinitely big
systems. The optimal approximation provides decent estimates
of simulation results from large systems, when finite size
effects are small, but the accuracy should be expected to be
much smaller when comparing with results from small system
sizes. It might be possible to use a similar approach that also
incorporates finite size effects, but then one would first need to
derive an expression like Equation (5) that contains the finite
size effects.

Estimating the burst distribution via Equation (44) is much
more computationally efficient than relying on simulations of
very large systems. However, simulations can in theory give
more accurate estimates, provided that the simulation results
converge to the thermodynamic limit quickly enough when the
system size increases. Then one can use results for different
system sizes to extrapolate to N → ∞. Simulations should
still be preferred when studying finite size effects, especially for
small systems where simulations are not time-consuming. The
optimal asymptotic approximation gives decent estimates for
simulations results from large systems, as shown in Figures 7,
9, but we expect the accuracy to be smaller for smaller
system sizes.
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