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1. INTRODUCTION

An increasingly competitive global market, together with
stricter environmental and safety regulations make it nec-
essary for chemical process plants to operate close to its
optimum. As a result, there has been a growing interest in
online optimization methods, e.g., model predictive con-
trol (MPC), real-time optimization (RTO), and economic
MPC (EMPC). However, implementing such techniques
remains challenging, mainly due to the computational
complexity and lack of accurate dynamic models.

Another approach is to use simple control structures that
keep specific controlled variables (CVs) at a constant
value, also known as self-optimizing control (Skogestad,
2000). The central idea of self-optimizing control is to
select CVs such that in the presence of disturbances, the
loss is minimized by holding them at constant set-points.

Besides using single measurements, selecting linear combi-
nations of measurements as CVs will further improve the
self-optimizing control performance. Two methods that
achieve this are the exact local method (Halvorsen et al.,
2003) and the null-space method (Alstad and Skogestad,
2007). The null-space method makes the assumption that
no implementation errors (e.g., no measurement noise) are
present, which can be seen as unrealistic in practice. The
exact local method, on the other hand, doesn’t require
any such assumptions, as it handles both implementation
errors and disturbances.

Using all measurements available will, in theory, result in
the best self-optimizing control performance, but increases
the risk of getting sensor failures and makes implementing

the control structure more difficult. However, finding the
optimal subset of measurements can be computational
demanding as it is a combinatorial optimization problem
and, every possible alternative needs to be evaluated.
Additionally, when using decentralized control, it is of-
ten desirable to impose some structural constraints on
the CVs. E.g., by only combining manipulated variables
(MVs) with CVs associated with certain units or parts of
the process. Unfortunately, when including structural con-
straints on the measurement selection problem, it becomes
non-convex. Therefore, finding the optimal measurement
subset with structural constraints is still an open problem.

For the first part of the problem, a branch and bound
method were derived in (Kariwala and Cao, 2009) to find
the best measurement subset. A mixed integer quadratic
programming (MIQP) approach was used by Yelchuru and
Skogestad (2012). The MIQP formulation was expanded
on in (Yelchuru and Skogestad, 2011) to handle the second
part of the problem (incorporating structural constraint)
by using a convex approximation. A generalized singular
value decomposition (GSVD) method was proposed in
(Heldt, 2010) for dealing with the structural constraints.

In this paper, the focus lies on the second part of the
problem. An alternating direction method of multipliers
(ADMM) algorithm is proposed for incorporating struc-
tural constraints in the CVs, assuming the measurement
set has been given. The proposed ADMM algorithm is
evaluated by obtaining structural CVs on a binary distil-
lation column model, and an evaporator model, showing
an improvement in the self-optimizing control performance
compared to the other existing methods.
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2. SELF-OPTIMIZING CONTROL

Self-optimizing control is achieved when an acceptable
loss is obtained with constant set-points without the
need to reoptimize when (changes in) disturbances occur
(Skogestad, 2000). More precisely, the aim is to select CVs
rather than determining optimal set-points.

For specified disturbances (d), the problem for achieving
optimal steady-state operation can be formulated as,

min
x,u

J
(
x, u, d

)
(1)

s.t. f(x, u, d) = 0 (2)

g(x, u, d) ≤ 0 (3)

y = fy(x, u, d) (4)

where x ∈ Rnx , u ∈ Rnu , and d ∈ Rnd are the states,
inputs, and disturbances respectively. The equality con-
straints are represented by f(·) and contain the steady-
state model equations; the inequality constraints in g(·)
define the constraints on the operation, and the available
measurements are given by y. The solution to the opti-
mization problem usually results in some of the constraints
being active, i.e., gi(x, u, d) = 0. To achieve optimal op-
eration at steady-state, the variables related to the ac-
tive constraints should be controlled and kept as close as
possible to their optimal set-points. Stabilizing the plant
and controlling the active constraints, therefore, requires a
corresponding number of degrees of freedom. This results
in a reduced space optimization problem:

min
u

J∗
(
u, d

)
. (5)

Here, the model equations and active constraints, are
implicitly included in J∗. What remains is to determine
which of the unconstrained variables should be kept con-
stant by using the remaining inputs to minimize loss.

The loss L is defined as the difference between the actual
value of a given cost function and the truly optimal value
(accounting for the correct value of the disturbance), i.e.,

L(u, d) = J(u, d)− Jopt(d), (6)

where the truly optimal operation is achieved when L = 0.
In general, L ≥ 0 and thus smaller value for the loss, L
implies that the plant is operating closer to its optimum.

To quantify the loss resulting from keeping the selected
controlled variables at constant values, methods for calcu-
lating the worst case and average local loss were derived
by Halvorsen et al. (2003), and Kariwala et al. (2008)
respectively. The authors of (Kariwala et al., 2008) proved
that selecting the controlled variables that minimize the
average loss is super-optimal and hence, it also minimizes
the worst case loss. The average loss is given by

Lavg =
1

2

∥∥∥J1/2
uu (HGy)−1HY

∥∥∥
2

F
. (7)

Here, Y := [FWd Wn], with Wd and Wn representing the
expected magnitudes of the disturbances and implemen-

tation errors respectively. F = ∂yopt

∂d is the sensitivity
matrix for the optimal deviations in the measurements
(∂yopt) with respect to changes in the disturbances (∂d);

Juu = ∂2J
∂u2 denotes the second derivative of the cost

function in (5); and Gy = ∂y
∂u , represents the gain from

the inputs to the available measurements. The matrix

H ∈ Rnu×ny contains the measurements for the controlled
variable c = Hy that will be kept at a constant set-point.

2.1 Optimal Measurement Combination

Rather than selecting single measurements for the uncon-
strained optimization problem in (5), a further reduction
in loss can be obtained by selecting the control variables as
optimal linear measurements (with H being a full matrix).

The optimal linear combination can then be obtained by
selecting H such that the loss in (7) gets minimized, i.e.,
the optimization problem can be formulated as

min
H

1

2

∥∥∥J1/2
uu (HGy)−1HY

∥∥∥
2

F
. (8)

At first glance, this seems like a non-linear optimization
problem. However, an important property was discovered
by Alstad et al. (2009), who found that (8) can be recast
as a convex optimization problem.

Theorem 1. If H is a full matrix (with no structural
constraints) then (8) can be formulated as a convex
constrained optimization problem (Alstad et al., 2009):

min
H

1

2

∥∥∥HY
∥∥∥
2

F
(9)

s.t. HGy = J1/2
uu (10)

Proof. From the original problem in (8), it can be shown
that the solution for H is non-unique and for any non-
singular matrix Q ∈ Rnu×nu , there exists Ĥ ∈ Rnu×ny :

Ĥ = Q−1H (11)

that gives the same loss. The non-uniqueness of H is used
to add the constraint in (10), forcing the first part in (8)

to become J
1/2
uu (HGy)−1 = I. Hence, the nonlinear opti-

mization in (8) can be recast as the convex optimization
problem in (9) and (10). For a more detailed proof see e.g.,
(Jäschke et al., 2017), and (Alstad et al., 2009).

2.2 Measurement combinations with structural constraints

The lowest steady-state loss can be achieved when the
measurement combination H is a full matrix. However, in
many practical cases, it may be preferable to impose cer-
tain structural constraints on the measurement combina-
tions. These structural constraints may be needed to avoid
pairing MVs to CVs that are located far apart causing long
time delay and thus, reducing the dynamic controllability.
Furthermore, combining measurements that are of similar
type (e.g., combining several temperature measurements)
may be preferred by the operators as it has a more intuitive
physical meaning.

These structural constraints on H the should be included
in (8), such that the optimization problem becomes:

min
H

1

2

∥∥∥J1/2
uu (HGy)−1HY

∥∥∥
2

F
(12)

s.t. H ∈ S (13)

where S denotes the structural constraints that are im-
posed onH. Unfortunately, it is not possible to reformulate
(12) and (13) such that they become a convex problem as
in (9) and (10). This is due to there not being enough

degrees of freedom to make HGy = J
1/2
uu when H is forced

to have a certain structure.
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2. SELF-OPTIMIZING CONTROL

Self-optimizing control is achieved when an acceptable
loss is obtained with constant set-points without the
need to reoptimize when (changes in) disturbances occur
(Skogestad, 2000). More precisely, the aim is to select CVs
rather than determining optimal set-points.

For specified disturbances (d), the problem for achieving
optimal steady-state operation can be formulated as,

min
x,u

J
(
x, u, d

)
(1)

s.t. f(x, u, d) = 0 (2)

g(x, u, d) ≤ 0 (3)

y = fy(x, u, d) (4)

where x ∈ Rnx , u ∈ Rnu , and d ∈ Rnd are the states,
inputs, and disturbances respectively. The equality con-
straints are represented by f(·) and contain the steady-
state model equations; the inequality constraints in g(·)
define the constraints on the operation, and the available
measurements are given by y. The solution to the opti-
mization problem usually results in some of the constraints
being active, i.e., gi(x, u, d) = 0. To achieve optimal op-
eration at steady-state, the variables related to the ac-
tive constraints should be controlled and kept as close as
possible to their optimal set-points. Stabilizing the plant
and controlling the active constraints, therefore, requires a
corresponding number of degrees of freedom. This results
in a reduced space optimization problem:

min
u

J∗
(
u, d

)
. (5)

Here, the model equations and active constraints, are
implicitly included in J∗. What remains is to determine
which of the unconstrained variables should be kept con-
stant by using the remaining inputs to minimize loss.

The loss L is defined as the difference between the actual
value of a given cost function and the truly optimal value
(accounting for the correct value of the disturbance), i.e.,

L(u, d) = J(u, d)− Jopt(d), (6)

where the truly optimal operation is achieved when L = 0.
In general, L ≥ 0 and thus smaller value for the loss, L
implies that the plant is operating closer to its optimum.

To quantify the loss resulting from keeping the selected
controlled variables at constant values, methods for calcu-
lating the worst case and average local loss were derived
by Halvorsen et al. (2003), and Kariwala et al. (2008)
respectively. The authors of (Kariwala et al., 2008) proved
that selecting the controlled variables that minimize the
average loss is super-optimal and hence, it also minimizes
the worst case loss. The average loss is given by

Lavg =
1

2

∥∥∥J1/2
uu (HGy)−1HY

∥∥∥
2

F
. (7)

Here, Y := [FWd Wn], with Wd and Wn representing the
expected magnitudes of the disturbances and implemen-

tation errors respectively. F = ∂yopt

∂d is the sensitivity
matrix for the optimal deviations in the measurements
(∂yopt) with respect to changes in the disturbances (∂d);

Juu = ∂2J
∂u2 denotes the second derivative of the cost

function in (5); and Gy = ∂y
∂u , represents the gain from

the inputs to the available measurements. The matrix

H ∈ Rnu×ny contains the measurements for the controlled
variable c = Hy that will be kept at a constant set-point.

2.1 Optimal Measurement Combination

Rather than selecting single measurements for the uncon-
strained optimization problem in (5), a further reduction
in loss can be obtained by selecting the control variables as
optimal linear measurements (with H being a full matrix).

The optimal linear combination can then be obtained by
selecting H such that the loss in (7) gets minimized, i.e.,
the optimization problem can be formulated as

min
H

1

2

∥∥∥J1/2
uu (HGy)−1HY

∥∥∥
2

F
. (8)

At first glance, this seems like a non-linear optimization
problem. However, an important property was discovered
by Alstad et al. (2009), who found that (8) can be recast
as a convex optimization problem.

Theorem 1. If H is a full matrix (with no structural
constraints) then (8) can be formulated as a convex
constrained optimization problem (Alstad et al., 2009):

min
H

1

2

∥∥∥HY
∥∥∥
2

F
(9)

s.t. HGy = J1/2
uu (10)

Proof. From the original problem in (8), it can be shown
that the solution for H is non-unique and for any non-
singular matrix Q ∈ Rnu×nu , there exists Ĥ ∈ Rnu×ny :

Ĥ = Q−1H (11)

that gives the same loss. The non-uniqueness of H is used
to add the constraint in (10), forcing the first part in (8)

to become J
1/2
uu (HGy)−1 = I. Hence, the nonlinear opti-

mization in (8) can be recast as the convex optimization
problem in (9) and (10). For a more detailed proof see e.g.,
(Jäschke et al., 2017), and (Alstad et al., 2009).

2.2 Measurement combinations with structural constraints

The lowest steady-state loss can be achieved when the
measurement combination H is a full matrix. However, in
many practical cases, it may be preferable to impose cer-
tain structural constraints on the measurement combina-
tions. These structural constraints may be needed to avoid
pairing MVs to CVs that are located far apart causing long
time delay and thus, reducing the dynamic controllability.
Furthermore, combining measurements that are of similar
type (e.g., combining several temperature measurements)
may be preferred by the operators as it has a more intuitive
physical meaning.

These structural constraints on H the should be included
in (8), such that the optimization problem becomes:

min
H

1

2

∥∥∥J1/2
uu (HGy)−1HY

∥∥∥
2

F
(12)

s.t. H ∈ S (13)

where S denotes the structural constraints that are im-
posed onH. Unfortunately, it is not possible to reformulate
(12) and (13) such that they become a convex problem as
in (9) and (10). This is due to there not being enough

degrees of freedom to make HGy = J
1/2
uu when H is forced

to have a certain structure.
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To address this problem an iterative method was proposed
by Heldt (2010) whereas in (Yelchuru and Skogestad,
2011), and (Yelchuru, 2012) two convex relaxation meth-
ods for solving (12) and (13) were suggested. However,
these methods can’t guarantee a global optimum, but
rather an upper bound for the loss when using structural
constraints. Therefore, in this paper, an alternative ap-
proach is suggested. The aim is to further reduce the loss
for measurement combinations with structural constraints,
by solving the following optimization problem:

min
H,Q,Ĥ

1

2

∥∥∥HY
∥∥∥
2

F
(14)

s.t. HGy = J1/2
uu (15)

H = QĤ (16)

Ĥ ∈ S (17)

where Ĥ ∈ Rnu×ny contains the optimal measurement
combination with the structural constraints S. This, gives
H enough degrees of freedom to satisfy the constraint in
(15), while Q ∈ Rnu×nu can be computed such that Q−1H

(and Ĥ) has the desired structure. Unfortunately, this
is a non-convex problem and can, therefore, be difficult
to solve. However, numerical experience indicates that
this problem translates well to using alternating direction
method of multipliers (ADMM).

3. ALTERNATING DIRECTION METHOD OF
MULTIPLIERS

The alternating direction method of multipliers (ADMM)
has extensively been studied since the 1970s and has shown
to be a simple, yet a robust algorithm that is well suited for
distributed convex optimization in large-scale problems.
However, it can also be extended to non-convex problems,
see Boyd et al. (2011) for a survey of ADMM and its
different applications. Recently, there has also been an
increasing interest in using ADMM for sparsity promoting
functions (Lin et al., 2012), (Dhingra et al. (2014)).

Let’s again consider the non-convex optimization in (14)
− (17). The augmented Lagrangian associated with (14)
and the constraint (16) can be formulated as

L(H,Q, Ĥ,Λ) =
1

2

∥∥∥HY
∥∥∥
2

F
+ trace(ΛT (H −QĤ))

+
ρ

2

∥∥∥H −QĤ
∥∥∥
2

F
(18)

where Λ is the dual variable (Lagrange multiplier) and ρ is
a positive scalar. The augmented Lagrangian in (18) can
be expressed more conveniently by combining the linear
and quadratic terms (Boyd et al., 2011):

L(H,Q, Ĥ,Λ) =
1

2

∥∥∥HY
∥∥∥
2

F
+

ρ

2

∥∥∥H −QĤ +
1

ρ
Λ
∥∥∥
2

F
. (19)

The ADMM algorithm solves the problem in (14) − (17),
by iteratively solving,

H, Ĥk+1 := argmin
H,Ĥ

L(H,Qk, Ĥ,Λk), (20)

s.t. (15), and (17)

H,Qk+1 := argmin
H,Q

L(H,Q, Ĥk+1,Λk), (21)

s.t. (15)

Λk+1 := Λk + ρ(H −Qk+1Ĥk+1) (22)

until ‖H − QĤ‖F ≤ ε. Thus, the optimal Ĥ, H, and
Q are solved in an alternating fashion, hence the name
alternating direction.

There are two major benefits for using ADMM on (14) -
(17). First, it temporarily relaxes the equality constraints
in (16), thus, allows for more flexibility when searching for

the optimal solution. Secondly, by separating Ĥ from Q,
both the step in (20) and the step in (21) become convex
quadratic optimization problems with equality constraints.
Therefore, there exist analytical solutions to both these
steps for improved computational efficiency.

3.1 Analytical solution to the (21) subproblem

After dropping superscripts for notational simplicity, the
H, Q minimization step in (21) becomes

min
H,Q

L(H,Q, Ĥ,Λ) (23)

s.t. HGy = J1/2
uu (24)

Theorem 2. Under the assumption that Y Y T is full rank
and Ĥ is of full row rank, then an analytical solution to
(23) can be obtained for H and Q:

HT = (Φ−1 − Φ−1Gy(GyT

Φ−1Gy)−1GyT

Φ−1)Ω (25)

+ (Φ−1Gy(GyT

Φ−1Gy)−1)J1/2
uu

QT = (ĤĤT )−1Ĥ(
1

ρ
ΛT +HT ) (26)

where

Φ := Y Y T + ρI − ρĤT (ĤĤT )−1Ĥ

Ω := ĤT (ĤĤT )−1ĤΛT − ΛT

Proof. Solving (23) with respect to Q is an unconstrained
quadratic optimization problem and the optimal solution
can be obtained from:

∂L
∂Q

= (ĤĤT )TQT − 1

ρ
ĤΛT − ĤHT = 0

for which the solution for QT is equivalent to (26). To
find a solution for (23) and (24) w.r.t. H, the problem
must satisfy the following KKT-conditions (Nocedal and
Wright, 1999):[

Y Y T + ρI −Gy

GyT

0

] [
HT

λT

]
=

[
ρĤTQT − ΛT

J
1/2
uu

]
(27)

where λ is the Lagrange multiplier for the constraint in
(24). Replacing Q with the solution from (26), the KKT
conditions in (27) can be rewritten to:[

Φ −Gy

GyT

0

] [
HT

λT

]
=

[
Ω

J
1/2
uu

]
(28)

The optimal HT can then be found by inverting the KKT-
matrix using the Schur complement for the inverse of block
partitioned matrices (see e.g., Lu and Shiou (2002)).

3.2 Analytical solution to the (20) subproblem

The solution to (20) is identical to solving

min
H,Ĥ

L(H,Q, Ĥ,Λ) (29)

s.t. HGy = J1/2
uu (30)

Γ vec(ĤT ) = 0 (31)
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Table 1. CVs and their respective loss for the distillation column when using a triangular and
a block diagonal structure. In Method 1 and Method 2 (Method 1, 2 is used if the results were
almost identical) CVs were obtained using the methods in (Yelchuru, 2012). In ADMM , the

CVs are computed using the proposed ADMM algorithm.

Controlled variables (CVs) Loss (Full H)

T
ri
a
n
g
u
la
r

S
tr
u
ct
u
re

S1 :

{
Method 1, 2 : c =

[
T30 + 0.9887T31; T11 + 0.7365T30 + 0.7812T31

]
ADMM : c =

[
T30 + 1.0239T31; T11 − 0.1300T30 − 0.1060T31

]

S2 :

{
Method 1, 2 : c =

[
0.63T30 + 0.6229T31; −0.3463T10 − 0.3484T11 − 0.2390T30 − 0.2680T31

]
ADMM : c =

[
0.63T30 + 0.6456T31; −0.3463T10 − 0.3720T11 + 0.0003T30 − 0.0237T31

]

S3 :





Method 1 : c =
[
f(T21 · · ·T41); f(T1 · · ·T41)

]
Method 2 : c =

[
f(T21 · · ·T41); f(T1 · · ·T41)

]
ADMM : c =

[
f(T21 · · ·T41); f(T1 · · ·T41)

]

0.4640

0.4638
(0.4638)

0.3529

0.3526
(0.3525)

0.1410

0.0940

0.0881

(0.0813)

B
lo
ck

d
ia
g
o
n
a
l

S
tr
u
ct
u
re

S1 :

{
Method 1, 2 : c =

[
0.63T30 + 0.6229T31; 0.9675T12

]
ADMM : c =

[
0.63T30 + 0.6282T31; 0.9675T12

]

S2 :

{
Method 1, 2 : c =

[
0.63T30 + 0.6229T31; −0.5151T11 − 0.5110T12

]
ADMM : c =

[
0.63T30 + 0.6272T31; −0.5151T11 − 0.5140T12

]

S3 :




Method 1 : c =
[
f(T21 · · ·T41); f(T1 · · ·T20)

]
Method 2 : c =

[
f(T21 · · ·T41); f(T1 · · ·T20)

]
ADMM : c =

[
f(T21 · · ·T41); f(T1 · · ·T20)

]

0.4427

0.4427
(0.4425)

0.3441

0.3441
(0.3437)

0.1270

0.1050

0.1039

(0.0813)

with vec(ĤT ) being the vectorization of ĤT . Γ is a matrix
consisting of only ones and zeros that is the orthogo-
nal complement to the structural constraints imposed on
vec(ĤT ). E.g., if the structural constraints for Ĥ are:

Ĥ ∈ S :=

[
ĥ1,1 0 ĥ1,3

0 ĥ2,2 0

]
,

then Γ should be chosen such that Γvec(ĤT ) contains the
elements that should be set to zero, i.e.,

Γ vec(ĤT ) = 0 ≡
[
ĥ1,2 ĥ2,1 ĥ2,3

]T
= [0 0 0]

T
.

Theorem 3. Under the assumption of Q, and Y Y T being
full rank, then an analytical solution for (29) − (31) can

be obtained for Ĥ and H:

vec(ĤT ) = ζ vec(Ξ) (32)

HT = Υ(ρĤTQT − ΛT ) (33)

+ Ψ−1Gy(GyT

Ψ−1Gy)−1J1/2
uu

where Ξ, ζ, Ψ, and Υ are defined

Ξ := ΥΛTQ−Ψ−1Gy(GyT

Ψ−1Gy)−1J1/2
uu Q− 1

ρ
ΛTQ

(34)

ζ := α−1 − α−1ΓT (Γα−1ΓT )−1Γα−1 (35)

Υ := Ψ−1 −Ψ−1Gy(GyT

Ψ−1Gy)−1GyT

Ψ−1 (36)

Ψ := Y Y T + ρI (37)

and α is

α = QTQ⊗ (ρΥ− I), (38)

with ⊗ being the Kronecker product.

Proof. The proof for (32), and (33) follows a similar
procedure as in the proof for Theorem 2, where the KKT
conditions are first formulated to solve (29) − (31) w.r.t.

H, and vec(ĤT ). The resulting KKT matrices w.r.t H

is equivalent to the one in (27). Solving (27) for H and

replacing the results in the KKT conditions for vec(ĤT )
gives, [

α ΓT

−Γ 0

] [
vec(ĤT )

λ

]
=

[
vec(Ξ)

0

]
(39)

from which the results in (32) can be obtained.

3.3 The proposed ADMM algorithm

The resulting ADMM algorithm can be seen in Algorithm
1, where first an initial value for Q (e.g., Q = I) needs to
be set, together with a positive scalar for the parameter ρ.

Algorithm 1 ADMM for structural constraints

Initialize: For k = 1, select, Qk = I, and choose a
positive scalar ρ.

1: Calculate Ĥk+1 using (32).
2: Calculate Hk+1, and Qk+1 using (25) and (26).
3: Update Λk+1 using (22).

4: If ‖Hk+1 − Qk+1Ĥk+1‖F ≤ ε or k ≥ MaxIter stop,
else set k to k + 1 and repeat step 1 to 4.

It is important to note that for non-convex problems
the ADMM algorithm may not converge to the globally
optimal solution, in fact, it may not converge at all.
Thus, it should only be considered as a local optimization
method. Whereas global convergence of ADMM can be
guaranteed for convex problems, this is not the case when
dealing with non-convex problems. However, the ADMM
algorithm seems to be able to converge in most cases as
long as the value of ρ is chosen to be sufficiently large.
Furthermore, even when it converges, the final result can
depend on how the initial values Qk and ρ were chosen.
However, since all the steps can be solved analytically, and
a solution can be obtained relatively fast, it should be easy
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Table 1. CVs and their respective loss for the distillation column when using a triangular and
a block diagonal structure. In Method 1 and Method 2 (Method 1, 2 is used if the results were
almost identical) CVs were obtained using the methods in (Yelchuru, 2012). In ADMM , the

CVs are computed using the proposed ADMM algorithm.

Controlled variables (CVs) Loss (Full H)

T
ri
a
n
g
u
la
r

S
tr
u
ct
u
re

S1 :

{
Method 1, 2 : c =

[
T30 + 0.9887T31; T11 + 0.7365T30 + 0.7812T31

]
ADMM : c =

[
T30 + 1.0239T31; T11 − 0.1300T30 − 0.1060T31

]

S2 :

{
Method 1, 2 : c =

[
0.63T30 + 0.6229T31; −0.3463T10 − 0.3484T11 − 0.2390T30 − 0.2680T31

]
ADMM : c =

[
0.63T30 + 0.6456T31; −0.3463T10 − 0.3720T11 + 0.0003T30 − 0.0237T31

]

S3 :





Method 1 : c =
[
f(T21 · · ·T41); f(T1 · · ·T41)

]
Method 2 : c =

[
f(T21 · · ·T41); f(T1 · · ·T41)

]
ADMM : c =

[
f(T21 · · ·T41); f(T1 · · ·T41)

]

0.4640

0.4638
(0.4638)

0.3529

0.3526
(0.3525)

0.1410

0.0940

0.0881

(0.0813)

B
lo
ck

d
ia
g
o
n
a
l

S
tr
u
ct
u
re

S1 :

{
Method 1, 2 : c =

[
0.63T30 + 0.6229T31; 0.9675T12

]
ADMM : c =

[
0.63T30 + 0.6282T31; 0.9675T12

]

S2 :

{
Method 1, 2 : c =

[
0.63T30 + 0.6229T31; −0.5151T11 − 0.5110T12

]
ADMM : c =

[
0.63T30 + 0.6272T31; −0.5151T11 − 0.5140T12

]

S3 :




Method 1 : c =
[
f(T21 · · ·T41); f(T1 · · ·T20)

]
Method 2 : c =

[
f(T21 · · ·T41); f(T1 · · ·T20)

]
ADMM : c =

[
f(T21 · · ·T41); f(T1 · · ·T20)

]

0.4427

0.4427
(0.4425)

0.3441

0.3441
(0.3437)

0.1270

0.1050

0.1039

(0.0813)

with vec(ĤT ) being the vectorization of ĤT . Γ is a matrix
consisting of only ones and zeros that is the orthogo-
nal complement to the structural constraints imposed on
vec(ĤT ). E.g., if the structural constraints for Ĥ are:

Ĥ ∈ S :=

[
ĥ1,1 0 ĥ1,3

0 ĥ2,2 0

]
,

then Γ should be chosen such that Γvec(ĤT ) contains the
elements that should be set to zero, i.e.,

Γ vec(ĤT ) = 0 ≡
[
ĥ1,2 ĥ2,1 ĥ2,3

]T
= [0 0 0]

T
.

Theorem 3. Under the assumption of Q, and Y Y T being
full rank, then an analytical solution for (29) − (31) can

be obtained for Ĥ and H:

vec(ĤT ) = ζ vec(Ξ) (32)

HT = Υ(ρĤTQT − ΛT ) (33)

+ Ψ−1Gy(GyT

Ψ−1Gy)−1J1/2
uu

where Ξ, ζ, Ψ, and Υ are defined

Ξ := ΥΛTQ−Ψ−1Gy(GyT

Ψ−1Gy)−1J1/2
uu Q− 1

ρ
ΛTQ

(34)

ζ := α−1 − α−1ΓT (Γα−1ΓT )−1Γα−1 (35)

Υ := Ψ−1 −Ψ−1Gy(GyT

Ψ−1Gy)−1GyT

Ψ−1 (36)

Ψ := Y Y T + ρI (37)

and α is

α = QTQ⊗ (ρΥ− I), (38)

with ⊗ being the Kronecker product.

Proof. The proof for (32), and (33) follows a similar
procedure as in the proof for Theorem 2, where the KKT
conditions are first formulated to solve (29) − (31) w.r.t.

H, and vec(ĤT ). The resulting KKT matrices w.r.t H

is equivalent to the one in (27). Solving (27) for H and

replacing the results in the KKT conditions for vec(ĤT )
gives, [

α ΓT

−Γ 0

] [
vec(ĤT )

λ

]
=

[
vec(Ξ)

0

]
(39)

from which the results in (32) can be obtained.

3.3 The proposed ADMM algorithm

The resulting ADMM algorithm can be seen in Algorithm
1, where first an initial value for Q (e.g., Q = I) needs to
be set, together with a positive scalar for the parameter ρ.

Algorithm 1 ADMM for structural constraints

Initialize: For k = 1, select, Qk = I, and choose a
positive scalar ρ.

1: Calculate Ĥk+1 using (32).
2: Calculate Hk+1, and Qk+1 using (25) and (26).
3: Update Λk+1 using (22).

4: If ‖Hk+1 − Qk+1Ĥk+1‖F ≤ ε or k ≥ MaxIter stop,
else set k to k + 1 and repeat step 1 to 4.

It is important to note that for non-convex problems
the ADMM algorithm may not converge to the globally
optimal solution, in fact, it may not converge at all.
Thus, it should only be considered as a local optimization
method. Whereas global convergence of ADMM can be
guaranteed for convex problems, this is not the case when
dealing with non-convex problems. However, the ADMM
algorithm seems to be able to converge in most cases as
long as the value of ρ is chosen to be sufficiently large.
Furthermore, even when it converges, the final result can
depend on how the initial values Qk and ρ were chosen.
However, since all the steps can be solved analytically, and
a solution can be obtained relatively fast, it should be easy
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Table 2. CVs for the Evaporator and their respective loss. In Method 1, 2 the CVs have been
obtained using the methods in (Yelchuru, 2012), in GSV D the results from (Heldt, 2010) is
used as CVs, and in ADMM the CVs are computed using the proposed ADMM algorithm.

Controlled variables (CVs) Loss (Full H)

S1 :





GSV D : c =
[
−6.27F2 + F100; F200 − 23.3F1

]
Method 1, 2 : c =

[
−6.259F2 + F100; F200 − 21.723F1

]
ADMM : c =

[
−6.238F2 + F100; F200 − 21.530F1

]

S2 :

{
Method 1, 2 : c =

[
T2; F5 − 0.038F200

]
ADMM : c =

[
T2; F5 − 0.080F200

]

S3 :

{
Method 1, 2 : c =

[
−6.259F2 + F100; F5 − 0.039F200

]
ADMM : c =

[
−6.2375F2 + F100; F5 − 0.0391F200

]

S4 :

{
Method 1, 2 : c =

[
P2 + 117.795F5 − 4.945F200; F2 − 0.032F3

]
ADMM : c =

[
P2 − 6.7287F5 − 0.0998F200; F2 − 0.0321F3

]

S5 :

{
Method 1, 2 : c =

[
f(T2, F2, F100, F3.F1); f(P2, T3.T201, F5, F200)

]
ADMM : c =

[
f(T2, F2, F100, F3.F1); f(P2, T3.T201, F5, F200)

]

11.9070

11.8640

11.8473

(10.679)

58.6848

58.2074
(56.788)

11.9307

11.9160
(9.9538)

31.7480

20.3317
(9.2494)

9.2450

8.8847
(7.5499)

to try different initial values until a suitable solution has
been found. Therefore, the hope is that it may be able to
provide better results than other methods when obtaining
structured measurement combinations.

4. CASE STUDIES

4.1 Distillation column case study

The proposed method for obtaining measurement combi-
nations with specified structures was evaluated on a binary
distillation column model (Skogestad, 1997). The column
consists of 41 stages (with a temperature measurement on
each stage) and uses an LV-configuration, where the reflux
flow rate (L) and the vapor boilup rate (V ) are the two
remaining degrees of freedom. Thus, the available inputs
(u) and measurements (y) are:

u = [L V ]
T

(40)

y = [T1 · · · T41]
T
. (41)

The main disturbances (d) are changes in feed flow rate
(F ), feed composition (zF ), and feed liquid fraction (qF ):

d = [F zF qF ]
T
. (42)

The objective is to get a top product with 99% light
component (1% heavy) and a bottom product with 1%
light component, i.e., the cost function is,

J =

(
xtop
H − xtop,s

H

xtop,s
H

)2

+

(
xbtm
L − xbtm,s

L

xbtm,s
L

)2

(43)

where the specifications for the top and bottom products
are denoted with the superscript, s.

In (Yelchuru, 2012) a MIQP formulation was used to
acquire CVs with specified structures, that consisted of
either a triangular or a block diagonal structure. Besides
trying to find structural CVs, Yelchuru (2012) also tried
to find the best measurement subsets for these structures.
Using the same measurement sets with the same structural
constraints, the proposed ADMM algorithm is used with
the aim of finding CVs with a smaller loss compared to
the results in (Yelchuru, 2012).

The resulting CVs and their respective loss are shown in
Table 1. Three different measurement sets S1, S2, and S3

are considered, consisting of 3, 4, and 41 measurements re-
spectively when using both triangular and block diagonal
structural constraints. Based on the results, the proposed
ADMM algorithm is able to provide CVs with a loss that
is at least on par with the ones proposed in (Yelchuru,
2012), but with a better result for the triangular case and
when more measurements are used.

Evaporator

Condensate

F3

Feed
F1, x1, T1

Product
F2, x2, T2

Steam
F100

p100
T100

Separator
p2, L2

F4, T3

Condensate
F5

Condenser

Cooling
water

F200 T200

Fig. 1. The evaporator process flowsheet.

4.2 Evaporator case study

The next case study consists of the evaporation pro-
cess represented in Fig. 1. The evaporator was originally
treated by Newell and Lee (1989) and has been modified
in (Kariwala et al., 2008). The process uses 2 inputs u, 10
potential measurements y, with the 3 disturbances d being
changes in compositions and temperature of the inflows:

u = [F200 F1]
T

(44)

y = [p2 T2 T3 F2 F100 T201 F3 F5 F200 F1]
T

(45)

d = [x1 T1 T200]
T

(46)

The economic objective of the evaporator is to maximize
the operating profit [$/h] and has been formulated in
(Kariwala et al., 2008):

J = 600F100 + 0.6F200 + 1.009(F2 + F3) + 0.2F1 − 4800F2

(47)
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The CV selection containing structural constraints has
been studied in (Heldt, 2010), and (Yelchuru, 2012). These
results will be used as a benchmark to compare the perfor-
mance with the proposed ADMM algorithm. Five different
structures (S1 - S5) are investigated with the first structure
being proposed in (Heldt, 2010). The remaining struc-
tures (S2 - S5) that were considered have been obtained
by Yelchuru (2012), in which CVs had been designed to
separate the measurements associated with the condenser
(p2, T3, T201, F5, F200) and the measurements associated to
the evaporator (T2, F2, F100, F3, F1).

Using the proposed ADMM algorithm, CVs are found for
the same measurements and structural constraints. The
resulting CVs and their steady-state loss are shown in
Table 2. The CVs computed using the ADMM algorithm
are able to give a smaller loss, in particular for structures
S4, and S5 compared to the other CVs.

4.3 Initialization of the ADMM algorithm

As briefly mentioned in section 3.3, the convergence and
the final results for the ADMM algorithm depends on how
it is initialized (i.e., how Qk, and ρ are chosen). Thus,
different values of ρ together with randomly generated
initial values for Qk has been investigated. In Table 3,
the resulting losses (L) are displayed when using different
ρ and initial values Qk. As expected, if ρ is chosen to
be too small (ρ = 10), the ADMM algorithm isn’t able
to converge. However, interestingly, the lowest loss is
obtained when ρ is chosen to be between 102 and 106,
whereas the loss seems to increase as ρ chosen to large
(107). Furthermore, when ρ is chosen to be sufficiently
small (while still large enough for the ADMM algorithm
to converge), the initial values of Qk seems to have little
impact on the final result. This property has also been
identified for the other structures in both the distillation
and the evaporator case studies.

Table 3. Loss (L) for the Evaporator with
structure S5 using different initial values for

the ADMM algorithm.

Q ρ = 10 ρ = 102 ρ = 106 ρ = 107[
1 0; 0 1

]
- L = 8.8847 L = 8.8847 L = 42.237[

0.7 0.9; 2 0.1
]

- L = 8.8847 L = 8.8847 L = 8.8873[
−3 0.5; −1 6

]
- L = 8.8847 L = 8.8847 L = 46.231[

0.3 −2; 9 −4
]

- L = 8.8847 L = 8.8847 L = 8.9586

5. CONCLUSION

In this work, an ADMM algorithm for incorporating
structural constraints in self-optimizing control variables
has been investigated. It may thus, serve as an alternative
to the approaches in (Heldt, 2010) and (Yelchuru, 2012)
when trying to compute CVs with specified structures. A
major benefit with the referenced methods is that they can
also be used for finding the optimal measurement subset,
which is something the ADMM algorithm is not able to do.
However, it has been demonstrated on two different case
studies that for a given measurement set and CV structure,
the proposed method is able to obtain CVs with a smaller
steady-state loss than the other existing methods.
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Jäschke, J., Cao, Y., and Kariwala, V. (2017). Self-
optimizing control – A survey. Annual Reviews in
Control, 43, 199–223.

Kariwala, V. and Cao, Y. (2009). Bidirectional branch and
bound for controlled variable selection. part II: Exact
local method for self-optimizing control. Computers and
Chemical Engineering, 33(8), 1402–1414.

Kariwala, V., Cao, Y., and Janardhanan, S. (2008). Local
self-optimizing control with average loss minimization.
Industrial and Engineering Chemistry Research, 47(4),
1150–1158.

Lin, F., Fardad, M., and Jovanovic, M.R. (2012). Sparse
feedback synthesis via the alternating direction method
of multipliers. American Control Conference, 4765–
4770.

Lu, T.T. and Shiou, S.H. (2002). Inverses of 2 × 2 block
matrices. Computers and Mathematics with Applica-
tions, 43(1-2), 119–129.

Newell, R.B. and Lee, P. (1989). Applied process control:
A case study. Prentice-Hall of Australia, New York;
Sydney.

Nocedal, J. and Wright, S. (1999). Numerical optimiza-
tion. Springer.

Skogestad, S. (1997). Dynamics and control of distillation
columns: A tutorial introduction. Chemical Engineering
Research and Design, 75(6), 539–562.

Skogestad, S. (2000). Plantwide control: The search for
the self-optimizing control structure. Journal of Process
Control, 10(5), 487–507.

Yelchuru, R. (2012). Quantitative methods for controlled
variables selection. PhD thesis, NTNU.

Yelchuru, R. and Skogestad, S. (2011). Optimal con-
trolled variable selection with structural constraints us-
ing MIQP formulations. Proceedings of the 18th World
Congress The International Federation of Automatic
Control, 4977–4982.

Yelchuru, R. and Skogestad, S. (2012). Convex formula-
tions for optimal selection of controlled variables and
measurements using mixed integer quadratic program-
ming. Journal of Process Control, 12(6), 995–1007.

2019 IFAC DYCOPS
Florianópolis - SC, Brazil, April 23-26, 2019

69



 Jonatan Ralf Axel Klemets  et al. / IFAC PapersOnLine 52-1 (2019) 64–69 69

The CV selection containing structural constraints has
been studied in (Heldt, 2010), and (Yelchuru, 2012). These
results will be used as a benchmark to compare the perfor-
mance with the proposed ADMM algorithm. Five different
structures (S1 - S5) are investigated with the first structure
being proposed in (Heldt, 2010). The remaining struc-
tures (S2 - S5) that were considered have been obtained
by Yelchuru (2012), in which CVs had been designed to
separate the measurements associated with the condenser
(p2, T3, T201, F5, F200) and the measurements associated to
the evaporator (T2, F2, F100, F3, F1).

Using the proposed ADMM algorithm, CVs are found for
the same measurements and structural constraints. The
resulting CVs and their steady-state loss are shown in
Table 2. The CVs computed using the ADMM algorithm
are able to give a smaller loss, in particular for structures
S4, and S5 compared to the other CVs.

4.3 Initialization of the ADMM algorithm

As briefly mentioned in section 3.3, the convergence and
the final results for the ADMM algorithm depends on how
it is initialized (i.e., how Qk, and ρ are chosen). Thus,
different values of ρ together with randomly generated
initial values for Qk has been investigated. In Table 3,
the resulting losses (L) are displayed when using different
ρ and initial values Qk. As expected, if ρ is chosen to
be too small (ρ = 10), the ADMM algorithm isn’t able
to converge. However, interestingly, the lowest loss is
obtained when ρ is chosen to be between 102 and 106,
whereas the loss seems to increase as ρ chosen to large
(107). Furthermore, when ρ is chosen to be sufficiently
small (while still large enough for the ADMM algorithm
to converge), the initial values of Qk seems to have little
impact on the final result. This property has also been
identified for the other structures in both the distillation
and the evaporator case studies.

Table 3. Loss (L) for the Evaporator with
structure S5 using different initial values for

the ADMM algorithm.

Q ρ = 10 ρ = 102 ρ = 106 ρ = 107[
1 0; 0 1

]
- L = 8.8847 L = 8.8847 L = 42.237[

0.7 0.9; 2 0.1
]

- L = 8.8847 L = 8.8847 L = 8.8873[
−3 0.5; −1 6

]
- L = 8.8847 L = 8.8847 L = 46.231[

0.3 −2; 9 −4
]

- L = 8.8847 L = 8.8847 L = 8.9586

5. CONCLUSION

In this work, an ADMM algorithm for incorporating
structural constraints in self-optimizing control variables
has been investigated. It may thus, serve as an alternative
to the approaches in (Heldt, 2010) and (Yelchuru, 2012)
when trying to compute CVs with specified structures. A
major benefit with the referenced methods is that they can
also be used for finding the optimal measurement subset,
which is something the ADMM algorithm is not able to do.
However, it has been demonstrated on two different case
studies that for a given measurement set and CV structure,
the proposed method is able to obtain CVs with a smaller
steady-state loss than the other existing methods.
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