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Abstract
Tumors develop an abnormal microenvironment during growth, and similar to the metastatic phenotype, the
metabolic phenotype of cancer cells is tightly linked to characteristics of the tumor microenvironment (TME). In
this study, we explored relationships between metabolic profile, metastatic propensity, and hypoxia in
experimental tumors in an attempt to identify metastasis-associated metabolic profiles. Two human melanoma
xenograft lines (A-07, R-18) showing different TMEs were used as cancer models. Metabolic profile was assessed
by proton high resolution magic angle spinning magnetic resonance spectroscopy (1H-HR-MAS-MRS). Tumor
hypoxia was detected in immunostained histological preparations by using pimonidazole as a hypoxia marker.
Twenty-four samples from 10 A-07 tumors and 28 samples from 10 R-18 tumors were analyzed. Metastasis was
associated with hypoxia in both A-07 and R-18 tumors, and 1H-HR-MAS-MRS discriminated between tissue
samples with and tissue samples without hypoxic regions in both models, primarily because hypoxia was
associated with high lactate resonance peaks in A-07 tumors and with low lactate resonance peaks in R-18
tumors. Similarly, metastatic and non-metastatic R-18 tumors showed significantly different metabolic profiles, but
not metastatic and non-metastatic A-07 tumors, probably because some samples from the metastatic A-07 tumors
were derived from tumor regions without hypoxic tissue. This study suggests that 1H-HR-MAS-MRS may be a
valuable tool for evaluating the role of hypoxia and lactate in tumor metastasis as well as for identification of
metastasis-associated metabolic profiles.
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Introduction
Solid tumors are composed of cancer cells and a supporting stroma.
The stroma consists of a variety of components, including an
extracellular matrix, cancer-associated fibroblasts, immune cells,
and blood vessels lined by endothelial cells and a basement
membrane [1]. The vascular network of most tumors shows severe
morphological and architectural anomalies, resulting in heteroge-
neous and inadequate blood supply and tissue regions having aberrant
physiological conditions characterized by high interstitial fluid
pressure (IFP), nutrient deprivation, acidity, and hypoxia [2].
Interactions between the cancer cells, the fibrous and cellular
components of the stroma, and the physiological conditions of the
tissue result in a tumor microenvironment (TME) that serves as a
niche for malignant growth [3].
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The physiological conditions of the TME deteriorate continuously as
tumors evolve, and concurrently, some cancer cells acquire phenotypic
traits favoring malignant progression, invasive growth, and metastatic
spread [4]. A plethora of genetic determinants of cancer metastasis have
been identified, indicating that metastatic cancer cells are genetically
equipped to overcome physical barriers, escape from the primary tumor,
and survive and grow at secondary sites [5]. Furthermore, it is
increasingly recognized that the metastatic process is tightly linked to
the oxygenation and acidity of the TME [6]. Hypoxia may facilitate
metastasis by inducing genomic instability, by selecting for aggressive
cell phenotypes, and by up-regulating the expression of metastasis-pro-
moting genes [7]. Several transcription factors are activated by hypoxia
including hypoxia-inducible factor-1 (HIF-1), and targets of HIF-1
play critical roles in many steps of the metastatic process, including cell
viability/apoptosis, cell proliferation/growth arrest, tissue remodeling/
invasion, and angiogenesis [8]. Low extracellular pH (pHe) and elevated
lactate levels may promote metastasis by both hypoxia-dependent and
hypoxia-independent mechanisms [9]. The hypoxia-independent
mechanisms include activation of signaling pathways that promote
angiogenesis, cell migration, and invasive growth as well as lactate-
induced stabilization of HIF-1α under normoxic conditions [10].

Moreover, cancer cells also develop an abnormal metabolic
phenotype during tumor evolution, reflecting an increasing need
for energy and building blocks for synthesis of macromolecules [11].
In addition, they show metabolic plasticity allowing them to adapt to
and thrive under variable and hostile conditions [12,13]. The
metabolic abnormalities are directly linked to the genetic drivers of
cancer [14]; however, the TME is involved in regulating the
metabolism [15]. Similar to the metastatic phenotype, the metabolic
phenotype is tightly linked to the oxygenation and acidity of the
TME. Hypoxia induces adaptive changes in the metabolism of cancer
cells by reprogramming metabolic pathways, an effect that is
mediated by HIF-1 [16]. Aerobic and anaerobic glycolysis leads to
decreased pHe and accumulation of lactate, and the metabolic
program of cancer cells is altered under acidosis, lactosis, and lactic
acidosis [17,18].

Biomarkers for personalized cancer treatment based on the
metastatic propensity of the primary tumor are needed. The dynamic
nature of cancer cells and the TME makes the identification of such
biomarkers highly challenging. However, because of the similarities of
the metastatic and metabolic cell phenotypes and their interactions
with the TME, we hypothesized that biomarkers of the metastatic
propensity of tumors can be detected by metabolic profiling.
Metabolic profiles of tumors provide a snap-shot of their metabolic
status at biopsy, reflecting the overall activity of both the cancer and
stromal cells [19].

In this study, we searched for relationships betweenmetabolic profile
and metastatic propensity in two melanoma xenograft models (A-07,
R-18). Approximately 50% of the tumors of these models give rise to
lymph node (A-07, R-18) and/or pulmonary (A-07)metastases [20,21].
Metabolic profiles of the primary tumors of mice with andmice without
metastases were obtained by proton high resolution magic angle
spinning magnetic resonance spectroscopy (1H-HR-MAS-MRS).
Hypoxic regions within the tumors and tissue samples analyzed by
1H-HR-MAS-MRS were detected by immunohistochemistry, using
pimonidazole as a hypoxia marker. The primary aim of the study was to
provide novel insight into associations between metabolism, metastatic
propensity, and hypoxia in tumors in an attempt to identify
metastasis-associated metabolic profiles.
Materials and Methods

Mice
Adult (8-10 weeks of age) female BALB/c nu/nu mice weighing 25

to 28 g were used as host animals for tumors. The mice were bred at
our institute and were maintained under specific pathogen-free
conditions at constant temperature (24-26°C), constant humidity
(30%-50%), and a 12-hour light/12-hour dark cycle. Sterilized food
and tap water were given ad libitum. The animal experiments were
approved by the institutional committee on research animal care and
were done according to the U.S. Public Health Service Policy on
Humane Care and Use of Laboratory Animals.

Tumor Models
The A-07 and R-18 human melanoma cell lines were established as

described earlier [22]. The cells used in the present experiments were
obtained from our frozen stock and were maintained in monolayer
culture in RPMI 1640 (25 mmol/l HEPES and L-glutamine)
supplemented with 13% bovine calf serum, 250 mg/l penicillin, and
50 mg/l streptomycin. Xenografted tumors were initiated by
inoculating aliquots of ~3.5 × 105 cells intradermally into the left
mouse flank. Tumor volume (V) was calculated as V = π/6 × a × b2,
where a is the longer and b is the shorter of two perpendicular tumor
diameters, measured with callipers [22]. Experiments were carried out
when the tumors had grown to a volume of 200–300 mm3. The
tumors were snap-frozen in liquid nitrogen immediately after
resection and stored at −80°C until analysis.

Tumor Hypoxia
Pimonidazole [1-[(2-hydroxy-3-piperidinyl)-propyl]-2-nitroimidazole]

was administered intraperitoneally in doses of 30 mg/kg and used as a
marker of tumor hypoxia [23]. Tumors were resected ~4 h after the
pimonidazole administration, and histological sections were prepared
by using standard procedures. Immunohistochemistry was performed
by using an avidin–biotin peroxidase-based staining method [24]. An
anti-pimonidazole rabbit polyclonal antibody (gift from Professor
Raleigh, Department of Radiation Oncology, University of North
Carolina School of Medicine, Chapel Hill, NC) was used as primary
antibody. Diaminobenzidine was used as chromogen, and hematoxylin
was used for counterstaining. Three or four sections were examined for
each tumor sample.

Metastases
Lymph node and pulmonary metastases were detected as described

elsewhere [25,26]. Briefly, after the mice had been euthanized and the
primary tumor and the lungs had been resected, the mouse bodies
were examined for external lymph node metastases in the inguinal,
axillary, interscapular, and submandibular regions and internal lymph
node metastases in the abdomen and mediastinum. The presence of
metastatic growth in enlarged lymph nodes was confirmed by
histological examination. Microscopic pulmonary metastases were
detected by histological analysis of the resected lungs. Histological
sections were cut at 100-μm intervals throughout the entire lobes and
stained with hematoxylin and eosin. Groups of five or more tumor
cells were scored as a metastasis.

1H-HR-MAS-MRS
1H-HR-MAS-MRS was carried out at the MR Core Facility at

NTNU, Trondheim, Norway, on a 14.1-T Bruker Avance DRX600
spectrometer equipped with a 1H/13C dual nuclei probe (Bruker
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BioSpin GmbH, Ettlingen, Germany). Frozen tumor tissue samples
were cut to an appropriate size (mean weight: 8.32 mg, weight range:
3.0–16.2 mg) and placed in 30-μl disposable rotor inserts filled with
3 μl of a cooled solution of 24.29-mM sodium formate (chemical
shift reference) in D2O. A dedicated work station bench cooled with
liquid nitrogen was used to keep the samples frozen [27]. Inserts with
frozen samples were transferred to the 4-mm diameter zirconium
rotors of the spectrometer, and spectra were acquired at a 5-kHz spin
rate and an instrument temperature of 5°C. Spin-echo spectra were
recorded by using a Carr-Purcell-Meiboom-Gill (CPMG) pulse
sequence (Bruker: cpmgprld) with 4-second water suppression prior
to a 90° excitation pulse. T2 filtering was obtained by using an
inter-echo spacing of 0.6 ms, resulting in an effective TE of 77 ms. A
total of 256 scans over a spectral region of 12 kHz were collected into
72 K points with an acquisition time of 3.06 s. A standard 0.4-mM
creatine reference solution was analyzed under identical experimental
conditions and used as an external calibration standard.

Preprocessing and Quantification of Metabolites
Preprocessing of CPMG spectra was performed by using TopSpin

3.1 (Bruker). The raw data were multiplied by a 0.30-Hz exponential
weighting function and Fourier transformed. The automatic phase
and baseline correction routine was applied to each spectrum. The
chemical shifts were calibrated to the lactate peak at 1.33 ppm, and
peak assignments were performed according to the human
metabolome database and previously published data [28]. The peak
areas of lactate (1.33 ppm), creatine (3.03 ppm), choline (3.19 ppm),
phosphocholine (PCho; 3.21 ppm), glycerophosphocholine (GPC;
3.22 ppm), taurine (3.42 ppm), and glycine (3.56 ppm) were
determined by fitting Voigt curves to the data by polynomial
regression (PeakFit v 4.12; Systat Software Inc, Chicago, IL, USA).
The correlation coefficients of the fits were ≥0.95 for all spectra. The
concentrations of the individual metabolites were calculated with
reference to the peak area of the standard creatine solution according
to the PULCON (pulse length based concentration determination)
principle [29] and normalized to the sample weight.

Multivariate Analysis
Multivariate analysis was carried out by using the spectral region

between 0.63 and 4.73 ppm, which contained the majority of the
metabolite information. The spectra were shift-referenced to
creatine, baseline corrected, and normalized to equal total areas.
Peak alignment was done by using the icoshift algorithm of
MATLAB 7.14.0.739 [30]. Partial least square discriminant analysis
(PLS-DA) was carried out to explore relationships between metabolic
profile, tumor hypoxia, and metastasis. Hence, the following
comparisons of metabolic profiles were made: A-07 tumors versus
R-18 tumors, hypoxic versus non-hypoxic tumors (A-07 and R-18),
metastatic versus non-metastatic tumors (lymph node metastases,
A-07 and R-18; pulmonary metastasis, A-07). The PLS-DA models
were validated by leave-one-out cross-validation, where all spectra
from one tumor were either kept in the training data or used to test
the model. The number of latent variables (LVs) giving first
minimum classification error was chosen. Validation of the
classification results was done by permutation testing (n = 1000,
significance for P b .05), where the class labels were shuffled to
resemble random classification. The multivariate analysis was carried
out in MATLAB R2012a using PLS_toolbox 6.2.1 (Eigenvector
Research, Inc., Wenatchee, WA).
Statistical Analysis of Metabolite Concentrations
An unpaired Student’s t-test was performed to detect significant

differences in metabolite concentrations between hypoxic and
non-hypoxic tissue samples and between metastatic and non-meta-
static tumors. The threshold for statistical significance was defined as
P ≤ .05.

Results

Hypoxia and Metastasis Characteristics of the Tumors Analyzed
by 1H-HR-MAS-MRS

Twenty-four samples from 10 A-07 tumors and 28 samples from
10 R-18 tumors (two or three samples from each tumor) were
subjected to 1H-HR-MAS-MRS. The hypoxia and metastasis data of
the tumors and samples are summarized in Table 1. Metastasis was
associated with hypoxia in both tumor models. For the A-07 model,
hypoxic tissue was detected in three of the five tumors that developed
lymph node metastases, in one of the five tumors that did not develop
lymph node metastases, in four of the four tumors that developed
pulmonary metastases, and in none of the six tumors that did not
develop pulmonary metastases. For the R-18 model, four of the four
metastatic tumors and two of the six non-metastatic tumors showed
regions with positive hypoxia staining.

The A-07 and R-18 Tumor Models Showed Distinctly
Different Metabolic Profiles

1H-HR-MAS-MRS revealed that the metabolic profiles of the
A-07 and R-18 models were significantly different. Visual inspection
of the mean spectra suggested lower PCho, GPC, glycine, and
creatine levels and higher lactate levels in the A-07 tumors than in the
R-18 tumors (Figure 1A). PLS-DA, taking into account the entire
metabolic profiles (i.e., all detectable metabolites including taurine,
alanine, glutamate, glutamine, glycerol, and glucose), discriminated
clearly between the two tumor models (Table 2). The score plot
showed that the A-07 samples were clustered on the right side of the
plot with high LV1 scores, while the R-18 samples were clustered on
the left side with low LV1 scores (Figure 1B). Consistent with the
mean spectra, the loading profile showed that the A-07 samples were
characterized by high levels of lactate and low levels of PCho, GPC,
glycine, and creatine compared with the R-18 samples (Figure 1C).
These observations were in agreement with the quantification data
(Supplementary Table S1), with the exception that the lactate levels
were not significantly different in univariate analysis. The other
metabolites generally showed low intensity in the loading profile,
suggesting that their contribution to the discrimination was low.

1H-HR-MAS-MRSofA-07TumorsRevealedMetabolicDifferences
between Hypoxic and Non-Hypoxic Tissue Samples, but not
between Metastatic and Non-Metastatic Tumors

For the A-07 model, PLS-DA revealed significant differences
between the metabolic profiles of the samples with and the samples
without hypoxic tissue (Table 2). The two groups of samples were
clearly separated in the 3D score plot (Figure 2A), primarily because
the lactate levels were higher and the GPC levels were lower in the
hypoxic samples than in the non-hypoxic samples, as shown in the
3D loading plot (Figure 2B). Even though the tumors that developed
pulmonary metastases were the same as those that showed positive
hypoxia staining, PLS-DA did not discriminate between the tumors
that metastasized to the lungs and those that did not (Table 2), most
likely because three of the 11 samples from the metastasis-positive



Table 1. Characteristics of the Tumor Tissue Analyzed by 1H-HR-MAS-MRS

A-07 Tumors (n = 10) A-07 Samples (n = 24) R-18 Tumors (n = 10) R-18 Samples (n = 28)

Positive (n) Negative (n) Positive (n) Negative (n) Positive (n) Negative (n) Positive (n) Negative (n)

Hypoxia 4 6 8 16 6 4 14 14
Lymph node metastasis 5 5 13 11 4 6 12 16
Lung metastasis 4 6 11 13 - - - -

n, number of replicates = the number used for multivariate analysis and quantification of metabolites.
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tumors did not show positive staining for hypoxia and thus did
not contain detectable hypoxic regions (Table 1). The 3D score
plot and 3D loading plot are shown in Figure 2, C and D.
Significant differences between the metabolic profiles of the tumors in
lymph node positive and lymph node negative mice were not detected
either (Table 2; Figure 2, E and F ), probably because five of the 13
samples from the metastatic tumors did not have detectable regions
Figure 1. Metabolic profiles of A-07 and R-18 tumors. Mean 1H-HR-M
tissue samples from A-07 and R-18 tumors. The samples from the A-0
The A-07 tumors showed higher levels of lactate and lower levels o
classification accuracy: 100%.
with hypoxic tissue (Table 1). Moreover, univariate analyses of
metabolite concentrations did not reveal significant differences
between the hypoxic and non-hypoxic samples or between the
metastatic and non-metastatic tumors, with the only exception that
the creatine concentration was lower in the tumors that developed
pulmonary metastases than in those that did not (P = .03,
Supplementary Table S1).
AS-MR spectra (A), PLS-DA score plot (B), and loading plot (C) of
7 tumors were clearly separated from those from the R-18 tumors.
f PCho, GPC, glycine, and creatine than the R-18 tumors. PLS-DA



Table 2. PLS-DA Classification of the A-07 and R-18 Tumor Models Based on Metabolic Profile,
Tissue Hypoxia, and Metastasis

Input LVs Classification
accuracy (%)

Sensitivity
(%)

Specificity
(%)

P

A-07 vs R-18 2 100 100 100 b .001
A-07 (hypoxic vs non-hypoxic) 3 71 62.5 81.3 .033
A-07 (lung metastasis positive vs lung

metastasis negative)
3 57.3 45.5 69.2 .282

A-07 (lymph node metastasis positive vs
lymph node metastasis negative)

3 50 54.5 46.2 .403

R-18 (hypoxic vs non-hypoxic) 3 85.7 78.6 92.9 .001
R-18 (lymph node metastasis positive vs

lymph node metastasis negative)
3 92.7 91.7 93.8 b .001

Classification accuracy, sensitivity, and specificity were determined by leave-one-out cross--
validation. P values were based on 1000 permutations.
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1H-HR-MAS-MRS of R-18 Tumors Revealed Metabolic
Differences between Hypoxic and Non-Hypoxic Tissue Samples
as well as between Metastatic and Non-Metastatic Tumors

For the R-18 model, PLS-DA differentiated significantly
between the metabolic profiles of the samples with and the samples
without hypoxic regions as well as between the tumors of mice with
and the tumors of mice without lymph node metastases (Table 2).
The 3D score plot clearly separated the hypoxic samples from the
non-hypoxic samples (Figure 3A), and the 3D loading plot revealed
that the separation arose mainly because the hypoxic samples showed
higher levels of PCho and creatine and lower levels of lactate than the
non-hypoxic samples (Figure 3B). Similarly, the metastatic tumors
were clearly separated from the non-metastatic ones (Figure 3C),
primarily because the metastatic tumors showed higher levels of
PCho, creatine, and glycine and lower levels of lactate than the
non-metastatic tumors (Figure 3D). The quantitative metabolite
analyses showed that the concentration of lactate was higher in the
non-hypoxic samples than in the hypoxic samples (P = .05) and
higher in the non-metastatic tumors than in the metastatic tumors
(P = .03), whereas the concentration of the other metabolites did not
differ significantly between the hypoxic and non-hypoxic samples or
between the metastatic and non-metastatic tumors (Supplementary
Table S1).

Discussion
The metastatic spread of malignant cells from the primary tumor to
distant organ sites such as lymph nodes, lungs, and brain is a major
cause of death in cancer patients. Hypoxia, low pHe, and elevated
lactate concentration in the TME have been shown to promote
metastatic dissemination by several mechanisms [6–10,17,31]. In the
present investigation, we searched for relationships between the
metabolic profile of tumors as assessed by 1H-HR-MAS-MRS, their
hypoxia status, and their metastatic propensity. A-07 and R-18
melanoma xenografts with volumes of 200–300 mm3 were used as
preclinical models of human cancer. These models show highly
different TMEs, and approximately 50% of the tumors of both
models have developed hypoxic regions and/or distant metastases at
this size [20–22]. Furthermore, 200–300-mm3 A-07 and R-18
tumors do not have necrotic regions [22], and consequently, they
should be excellent models for providing novel information on the
questions addressed in the study reported herein.
Previous studies have shown that A-07 tumors differ from R-18

tumors in several cellular and microenvironmental properties,
including growth rate, metastatic pattern, angiogenic potential,
microvascular density (MVD), fraction of hypoxic tissue, IFP, cell
density, and extravascular extracellular volume fraction [20–23,32–34].
This study showed that A-07 tumors differ markedly fromR-18 tumors
also in metabolic profile. The metabolic quantification data revealed
that the difference was mainly a consequence of lower levels of PCho,
GPC, glycine, and creatine in the A-07 tumors than in the R-18 tumors.
Several studies have provided evidence that themetabolism of choline in
cancer cells is regulated by aberrantly activated oncogenic signaling
pathways [35,36]. High levels of choline-containing compounds have
been linked to malignant transformation and high rates of cell
proliferation [35–38]. A-07 tumors show significantly higher rates of
cell proliferation and volumetric growth than R-18 tumors [22],
suggesting that high levels of choline-containing compounds are not
associated with high tumor growth rate. The higher levels of PCho,
GPC, glycine, and creatine in R-18 tumors than in A-07 tumors may
reflect the difference in cell density, since R-18 tumors have
approximately two-fold higher cell density and correspondingly lower
extravascular extracellular volume fraction than A-07 tumors [33].

A-07 tumors may metastasize to the lungs as well as to external
and/or internal lymph nodes of the host mice [20]. Previous studies
have revealed that metastatic spread in A-07 tumors is associated with
several features of the TME, including high IFP in the tumor center,
high MVD in the tumor periphery, and high fraction of hypoxic
tissue [20,24,39–41]. Hypoxia in central tumor regions has been
identified as the principal driver of the metastatic process in this
tumor model, and it has been shown that acute fluctuating hypoxia
promotes metastasis to a greater extent than chronic hypoxia
[24,39,40]. By exposing tumor-bearing mice to acute fluctuating
hypoxia in vivo, we have shown that hypoxia promotes metastasis in
A-07 tumors primarily by up-regulating the expression of vascular
endothelial growth factor-A [41]. The present study confirmed that
lung and lymph node metastasis is associated with hypoxia in A-07
tumors. Moreover, it showed that the metabolic profile differed
between tumor samples that contained hypoxic tissue and tumor
samples that did not stain positive for hypoxia. PLS-DA revealed that
the GPC levels were lower and the lactate levels were higher in the
hypoxic samples than in the non-hypoxic samples. On the other
hand, PLS-DA did not discriminate between the samples from the
metastatic and non-metastatic tumors, even though the tumors that
gave rise to lung metastases were the same as those that contained
hypoxic tissue. The fraction of hypoxic tissue in 200–300-mm3 A-07
tumors is low, usually less than 10% [23], and consequently, some
samples from the metastatic tumors did not stain positive for
pimonidazole. The inability of 1H-HR-MAS-MRS to discriminate
between metastatic and non-metastatic A-07 tumors most likely
resulted from the fact that some samples from the metastatic tumors
were derived from non-hypoxic tumor regions.

R-18 tumors may develop lymph node metastases, but do not
metastasize to the lungs [21]. Previous studies have revealed that
tumor hypoxia is the principal driver of metastasis also in this model
[21,24,40,42,43]. Moreover, we have provided significant evidence
that hypoxia promotes metastasis in R-18 tumors by up-regulating
the urokinase-type plasminogen activator receptor [21,42].
Consistent with our previous studies, lymph node metastasis was
associated with hypoxia in the primary tumor also in this study.
1H-HR-MAS-MRS discriminated between metastatic and non-
metastatic tumors as well as between hypoxic and non-hypoxic
samples, and the score and loading plots for metastatic status were
similar to those for hypoxia status. A common feature of the



Figure 2. Metabolic profiles of A-07 tissue samples. 3D PLS-DA score plot (A) and corresponding loading plot (B) of samples with and
samples without hypoxic regions, 3D PLS-DA score plot (C) and corresponding loading plot (D) of samples from tumors that did and
samples from tumors that did not develop lung metastases, and 3D PLS-DA score plot (E) and corresponding loading plot (F) of samples
from tumors that did and samples from tumors that did not develop lymph node metastases. The loadings are colored according to their
Variable Importance in Projection (VIP) scores. The samples containing hypoxic tissue were clearly separated from the non-hypoxic
samples [PLS-DA classification accuracy: 71% (sensitivity: 62.5%; specificity: 81.3%)], whereas the samples from the tumors that
developed lungmetastases were not separated from the samples from the tumors that did not develop lungmetastases, and the samples
from the tumors that developed lymph node metastases were not separated from the samples from the tumors that did not develop
lymph node metastases.
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Figure 3. Metabolic profiles of R-18 tissue samples. 3D PLS-DA score plot (A) and corresponding loading plot (B) of samples with and
samples without hypoxic regions, and 3D PLS-DA score plot (C) and corresponding loading plot (D) of samples from metastatic and
samples from non-metastatic tumors. The loadings are colored according to their VIP scores. The samples containing hypoxic tissuewere
clearly separated from the non-hypoxic samples [PLS-DA classification accuracy: 85.7% (sensitivity: 78.6%; specificity: 92.9%)] and the
samples from the metastatic tumors were clearly separated from those from the non-metastatic tumors [PLS-DA classification accuracy:
92.7% (sensitivity: 91.7%; specificity: 93.8%)].
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metastatic tumors and the hypoxic samples was that they had higher
levels of PCho and creatine and lower levels of lactate than their
non-metastatic and non-hypoxic counterparts, as revealed by the
PLS-DA. Choline kinase, the enzyme converting choline to PCho, is
up-regulated under hypoxic conditions, and this up-regulation is
considered to be an adaptive response contributing to cell survival in a
hypoxic TME [44]. Our findings are also consistent with a recent study
of the B16F10 murine melanoma line, which suggested that alterations
in creatine and choline metabolism are associated with invasive growth
and the development of lung and liver metastases [45].
The present study provides increased insight into the relationship

between metastasis, hypoxia, and lactate concentration in tumors.
Pulmonary and lymph node metastasis was associated with hypoxia in
A-07 tumors, and lymph node metastasis was associated with hypoxia
in R-18 tumors. The 1H-HR-MAS-MRS analysis showed that
hypoxia was associated with high lactate level in A-07 tumors and that
both hypoxia and lymph node metastasis were associated with low
lactate level in R-18 tumors. Clinical studies involving carcinoma of
the uterine cervix, head and neck carcinoma, and rectal adenocar-
cinoma have suggested that poor survival rates and high incidence of
metastases are associated with high hypoxic fraction [46–48] as well as
high lactate concentration [49–51]. The A-07 data reported herein
are consistent with these clinical observations, but not the R-18 data.

Tumor cells produce lactate from glucose by aerobic as well as
anaerobic glycolysis, and they generally show increased glucose
consumption under hypoxic conditions [2,17]. However, there is
some evidence that the lactate level in tumors is not merely a
reflection of the extent of hypoxia [10]. Several preclinical studies
have searched for associations between lactate concentration and
hypoxia by comparing different tumor lines, individual tumors of the
same line, and subregions of single tumors, and some studies showed
significant associations whereas others did not [52–56]. Generally,
the lactate level was found to be unrelated to the extent of hypoxia in
tumors showing increased glycolytic flux [9,10].

The concentration of lactate in tumors is determined by the rate of
glycolysis and the rate of clearance by the microvasculature [2,9]. Studies
of cells in culture have shown that the rate of aerobic glycolysis is lower in
R-18 cells than in A-07 cells, and in contrast to A-07 cells, R-18 cells do
not show increased rates of glucose uptake and lactate release under
hypoxia [Rofstad, unpublished data]. Even though R-18 tumors have

image of Figure�3
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high fractions of hypoxic tissue, the microvasculature of the tumors may
remove lactate efficiently from hypoxic tissue regions. The majority of
the hypoxic cells in R-18 tumors are acutely hypoxic caused by
high-frequency fluctuations in blood flow, and furthermore, the hypoxic
regions in R-18 tumors show high density of plasma channels and
extremely narrow vessels devoid of red blood cells [57].

Although there is strong evidence from clinical studies that
metastasis is associated with high lactate concentration in the primary
tumor [10], a recent review questioned the suggestion that this is a
universal feature of malignant diseases in humans [58]. Moreover,
some preclinical studies of breast cancer have concluded that the
lactate level in tumors does not appear to be correlated with tumor
metastatic potential [59,60]. Interestingly, the R-18 data reported
herein are similar to those of Xu et al. [60], who used hyperpolarized
13C-pyruvate MRS to study the metabolism of breast carcinoma
xenografts and found that the less metastatic tumors produced more
lactate than the highly metastatic ones.

In summary, A-07 and R-18 tumors show highly different cellular
and microenvironmental properties, and 1H-HR-MAS-MRS dis-
criminated between tumor samples with and without hypoxic tissue
in both tumor models. In many hypoxic A-07 samples, the hypoxic
regions constituted less than 10% of the samples, suggesting that
1H-HR-MAS-MRS has high power to discriminate between hypoxic
and non-hypoxic tumors. However, the discrimination power may be
limited to tumors showing significant associations between hypoxia
and the concentration of lactate and/or choline-containing com-
pounds. Moreover, TME-associated metastasis is driven by hypoxia
in both A-07 and R-18 tumors [21,24,39,40,42,43], and
1H-HR-MAS-MRS discriminated between the R-18 tumors that
gave rise to lymph node metastases and those that did not at a high
classification accuracy. On the other hand, 1H-HR-MAS-MRS did
not discriminate between metastatic and non-metastatic A-07
tumors, most likely because some of the samples from the metastatic
tumors were derived from non-hypoxic tumor regions. This reflects a
weakness of the 1H-HR-MAS-MRS method that it shares with other
biopsy-based methods for characterizing heterogeneous malignant
tumors. Taken together, our observations support the notion that
metastasis-associated metabolic profiles may be identified by
1H-HR-MAS-MRS and suggest that 1H-HR-MAS-MRS-assessed
metabolic profiles may be useful for evaluating the role of hypoxia and
lactate in tumor metastasis. Further studies of the association between
TME-induced metastasis and metabolic profile may provide new
insights into metastatic mechanisms and lead to identification of
prognostic biomarkers for use in clinical risk assessment.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neo.2015.10.001.
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