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Abstract
Loads from broken ice may be the design load for structures or operations in ice

covered waters. An accurate determination of the broken ice loads is important

in the design phases of such structures and operations. A more accurate load as-

sessment will lead to safer and more economical designs. In the past, loads from

broken ice have been mainly assessed by full-scale measurements and scale-model

tests. However, both methods have several downsides. For instance, full-scale

measurements are expensive and can only be performed on existing structures and

operations. It is uncertain to what extend the results from scale-model tests can

be directly scaled to full-scale equivalent conditions. Numerical modelling can be

a valuable additional tool to assess loads from broken ice. Numerical models can

help clarify the relevant interaction phenomena. In addition, numerical models

can be used to predict ice loads in conditions for which no scale-model tests or

full-scale measurements are available.

In this thesis, a novel implicit three dimensional discrete element method is de-

rived. The method can be classified as a non-smooth discrete element method

(NDEM). However, the method is able of handling both smooth as well as non-

smooth contacts. Ice-ice and ice-structure contact forces are implicitly calculated

in each time step by solving a mixed linear complementarity problem. The contact

restoring forces are calculated using the exact contact geometry and the material

properties of the interacting bodies. The newly derived discrete element method

(DEM) and contact models are combined with a hydrodynamic model based on

skin friction and form drag coefficients, and an ice failure model based on a semi-

analytical solution approach. The combined model is subsequently used to study

interaction phenomena in the interaction between structures and a broken ice field.

First, the model is applied to study the effect of floe shape on the load experienced

by vertical-sided structures interacting with a broken ice field. A sensitivity study

is performed in which the influence of other model parameters on the floe shape

effect is assessed. The results show that the floe shape is an important parameter

in the assessment of ice loads on vertical-sided structures in broken ice, in ice

concentrations ranging from 30% to 70%. Loads from a broken ice field with

square floes can be up to 88% higher than loads from an equivalent broken ice

field with more natural floe shapes.
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Secondly, the variability in ice-tank test results in broken ice tests is assessed. It is

found that important ice load properties such as the mean ice load, load standard

deviation and the maximum load are strongly influenced by changes in the initial

positions of ice floes. It is shown that the variability observed in the numerical

simulations can be linked to specific interaction events, such as the formation of

a force chain between the structure and the tank wall. The interaction events that

occur in the numerical simulations are also observed in the physical ice tank tests,

showing that the resulting load variability is not merely a numerical phenomenon.

The load variability can be partly accounted for by considering the change in ice

concentration during a test run. Based on this, it is recommended that ice tank tests

be equipped with a camera system capable of capturing the complete broken ice

field during a test, rather than only the ice in the direct vicinity of the structure.

Such system would enable the post-processing of the visual data, such that the ice

concentration change during the test can be calculated and taken into account.

The investigated phenomena of floe shape effects and test result variability demon-

strate that numerical modelling is a valuable tool, in addition to scale-model test-

ing and full-scale measurements, to study the interaction between structures and

broken ice.
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Chapter 1

Introduction
Structures that may encounter drifting ice must be designed to withstand ice loads.

Under certain conditions, loads from broken ice fields may be the governing design

load for a structure. The conditions under which loads from broken ice may be the

governing design load include: structures supported by ice management; structures

in rivers; and structures capable of evacuating the location when ice conditions be-

come too severe. A proper understanding of the ice loads that may result from sets

of field parameters can lead to a more accurate definition of the design require-

ments and abandonment criteria for such structures. This may contribute to safer

structures and operations in ice covered waters.

Model-scale tests and the analysis of full-scale data have historically been the two

main methods of assessing the loads from broken ice. Although model-scale test-

ing and full-scale data analysis remain valuable tools in assessing the loads from

broken ice, both methods also have various shortcomings:

full-scale measurements:

• What can be measured depends on the conditions that occur; there is no

control over the test conditions.

• Only existing full-scale structures in operation can be analysed; no data can

be acquired on novel structure geometries.

• Only some parameters that are of influence on the ice load can be measured;

there is no full overview of the loading conditions.

• There may be a high uncertainty in the measured loads, depending on the

measurement techniques used.

• It is expensive and time consuming to carry out the measurements, given the

remote locations of many structures loaded by ice, and the harsh environ-

ments at these locations.
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model-scale testing:

• It is often unclear if broken ice loads measured in model scale can be scaled

to full-scale. The scaling may affect the ice failure mode.

• Model-scale ice is often too strong compared to the full-scale-equivalent

conditions the test intends to model.

• The ice floe size in relation to the tank size, the ice floe shape, and floe

edge roughness may significantly influence the ice loading in an undesirable

manner.

• The interaction length is limited, and the ice conditions are often non-stationary,

leading to a questionable statistical significance of the test results.

• The tests have limited repeatability - uncontrollable conditions, such as the

initial positions of ice floes, may have a significant influence on the meas-

ured ice loads.

Numerical simulations can contribute to a more complete understanding of the

loads from broken ice. Once a numerical model has been created, none of the

shortcomings of full-scale measurements and model-scale testing apply, and the

numerical model can be used to test for a much wider range of environmental

parameters than would be possible in model-scale tests or full-scale measurements.

In this thesis, a numerical model is developed for the application case of interaction

between structures and broken ice. More specifically, the model’s primary area of

applicability are interaction scenarios in which:

• The inertia of individual intact ice floes significantly influences the ice loads

experienced by the structure.

• The interaction between the floes in the broken ice field influences the loads

experienced by the structure.

For such interaction scenarios, discrete models are the most logical model choice.

Continuum models, meaning, in this context, models that approximate the whole

broken ice field as a continuum, are not capable of capturing both the inertial

effects of individual ice floes as well as the influence of floe interactions.

In current engineering practice, a distinction is often made in the assessment of

ice loads between different load-limiting mechanisms; limit stress, limit force and

limit momentum. The developed model is intended for scenarios in which all three

2



limiting mechanisms should be considered. As an example, consider a moored

structure in a drifting broken ice field where the ice floes are roughly of the same

size as the structure. Such conditions often occur when ice is broken by environ-

mental forces such as gravity waves, wind and current stress, or by ice manage-

ment. When a single ice floe impacts the structure, the load is initially limited

by limit stress. Local crushing will occur, and the contact area between the ice

floe and the structure increases, as does the ice load. This process will continue

until the ice floe is stopped by the structure (limit momentum) or fails in another

manner, such as splitting. The ice floe in direct contact with the structure exper-

iences forces from wind and current drag, as well as forces from the interaction

with other ice floes (limit force). Since the structure is moored, both the peak ice

loads (for local damage) as well as the time-averaged ice loads (for loading on

the mooring system) are important. Therefore, all occurring interaction processes

must be taken into account in a numerical model for this scenario; the local crush-

ing failure, other failure modes like bending or splitting failure, the dynamics of

individual intact ice floes, and the interaction between ice floes in a broken ice

field.

Interaction between broken ice and structures is a complicated process. There

are many factors that may contribute to the load and resistance experienced by

a structure interacting with broken ice, and that pose challenges to the accurate

numerical representation of the occurring processes. For example:

• many simultaneously contacting ice bodies,

• complicated, and (seemingly) random body geometries,

• difficult to estimate and highly variable ice material properties,

• complicated hydrodynamic effects,

• complicated and continuous dynamic fractures and failures.

This combination of factors makes ice-structure interaction different from any

other engineering problem. A numerical model will need to simplify some or

all of the above-mentioned factors. To what extent the parameters can (and need

to) be simplified depends on the processes to be investigated and limiting factors

such as the available computing power and computation time, as well as the avail-

ability and accuracy of input parameters. The broad range of occurring processes

and the different requirements that may be put upon numerical models, has led to

a broad range of models and modelling types. The different modelling types ap-

3



plied in ice-structure interaction modelling, as well as state-of-the-art application

examples of discrete numerical modelling in studies on ice structure interaction,

are discussed in Chapter 2.

The numerical method developed in this thesis can be classified as a non-smooth

discrete element method (NDEM). The method is capable of accurately capturing

the contact restoring forces in accordance with the contact assumptions that are

made. A contact model is defined based on the exact contact geometry and the

material properties of the interacting bodies. The combination of NDEM with an

accurate contact model that uses both the contact geometry as well as the material

properties of the interacting bodies is novel in the field of ice structure interac-

tion. Hydrostatic and hydrodynamic forces are included in the model, as is ice

failure. The different components of the model are highlighted in Figure 1.1. The

numerical method is derived in Chapter 3.

Bending and
splitting failure

compliant ice-ice 
contacts

- ice-structure contacts
- hydrostatic and hydrodynamic forces

a

b

Figure 1.1: Overview sketch highlighting the components of the numerical model. Above-

water view (a) and underwater view (b).
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The model is applied to study the effect of floe shape in the interaction of vertical-

sided structures and broken ice, and to study the variability in ice tank test results to

changes in the initial positions of ice floes. Both phenomena are currently poorly

understood, and the numerical modelling results show that floe-shape effects and

result variability should be taken into account in the design and interpretation of ice

tank tests in broken ice. These applications of the numerical model are described

in Chapter 4.

Chapter 5 discusses important questions regarding the purpose, the development

process, the validation and the application of numerical models of ice-structure

interaction.

Finally, Chapter 6 summarizes the main results of the studies performed in this

thesis, and gives recommendations that follow from these results.
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Chapter 2

State of the art
Discrete numerical modelling has been applied in research on ice-structure inter-

action for over 30 years. This chapter gives an overview of the most important

and most recent contributions in numerical modelling of ice-structure interaction

and its applications. First, an overview of possible modelling techniques is given.

Then, this chapter presents an overview of studies on ice-structure interaction phe-

nomena in which discrete numerical modelling techniques are applied. Lastly, the

important topic of model parameter determination is discussed.

2.1 Numerical modelling approaches

Model: "A representation of some object, behavior, or system that one wants to
understand." (Koperski, 2019).

Models are an important scientific tool to understand the world and to extrapol-

ate upon direct observations. Modelling approaches can be subdivided in three

categories:

• empirical models,

• phenomenological models,

• physics-based models.

Empirical models are based on measurements and/or observations. A model is

constructed or fitted to the measurements, with little or no consideration of the un-

derlying physics. Phenomenological models aim to capture a specific phenomenon

by modelling the processes that are important for that specific phenomenon. All

other factors are simplified as much as possible. Physics-based models are con-

structed starting from the fundamental laws of physics. The aim is to better under-

stand an observed phenomenon by accurately capturing the underlying physics in

7



a model. The distinction between the modelling types is not rigid. Most models

are constructed using a combination of empirical, phenomenological and physics-

based components.

In the context of ice-structure interaction, the earliest models were of the empirical

kind. Early models consisted of formulas that were fitted to measured or observed

data. The first numerical models were used in the sixties. An example is Matlock’s

model (Matlock et al., 1969); a phenomenological model for the prediction of ice-

induced vibrations.

Physics-based models of ice-structure interaction often rely on a subdivision of

the calculation domain into parts. A distinction can be made between continuum

and discrete models, although there are also models that combine continuum and

discrete approaches. In addition, there are models that are not easily classified as

either continuum or discrete.

Continuum models apply a variant of the finite element method (FEM), whereas

discrete models use the discrete element method (DEM). Which modelling tech-

nique is most applicable depends on the phenomenon one wants to model. Mod-

elling approaches that are not easily classified as either continuum or discrete in-

clude the particle-in-cell (PIC) method, the Peridynamics method, smooth particle

hydrodynamics (SPH) and the cohesive element method (CEM). The method de-

veloped in this thesis can be classified as a discrete element method.

2.1.1 The discrete element method

Discrete element methods model physical phenomena by considering the motion

of many interacting bodies. DEM was introduced by Cundall and Strack (1979).

DEM’s can be divided in two types: smooth discrete element methods (SDEM) and

non-smooth methods (NDEM). In NDEM, the positions and velocities of bodies

are not required to be smooth functions. A major difference between smooth and

non-smooth methods is the solution procedures that are applied to find the contact

responses. Whereas smooth methods use explicit time integration procedures in

combination with penalty functions, non-smooth methods necessitate the use of

implicit time integration procedures.

Because of the implicit solution procedure, the stability in NDEM methods is in-

dependent from the time step size. This allows for time step sizes that are often

several orders of magnitude larger than the time step sizes used in SDEM. How-

ever, each time step is more computationally demanding in NDEM. Which method

is most efficient (for a comparable level of accuracy) depends on the modelled

scenario.
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The Non-smooth discrete element method

Two procedures can be used to resolve the contact responses in NDEM; contacts

can be resolved sequentially or the contact response can be solved simultaneously

(Erleben, 2005).

In sequential methods, the order in which the contact forces or impulses should

be applied is determined based on the velocities of the bodies and the contact

distances. The contact responses are sequentially applied to the bodies in the order

in which the contacts are predicted to occur. In each contact response, the effect

on the velocity of the contact forces or impulses occurring earlier is taken into

account. The time step in this method is governed by the frequency by which the

contacts occur; the solution method makes an estimate of the exact collision time

based on an extrapolation of the body positions and velocities. In this method,

resting contacts can pose a challenge, although solutions have been conceived to

deal with resting contacts as well. This method is described in, among others,

Mirtich (1996). In ice-structure interaction, this method is applied by Daley et al.

(2012); Alawneh et al. (2015).

The method developed in this thesis considers the contacts simultaneously. Sim-

ultaneous contact response methods extrapolate the body positions and velocities

to find all potential collisions within a pre-defined time step size. All collisions in

this time step are assumed to occur at the beginning of the time step. The impulse

response at each contact is calculated while taking into account the impulses that

occur at other contacts. A system of equations and inequalities is formulated which

takes into account the contact geometries, the inertia and velocity of the bodies,

and any external (non-contact) forces working on the system. The resulting sys-

tem of equations and inequalities can be formulated as a Linear Complementarity

Problem (LCP) or a Mixed Linear Complementarity Problem (MLCP). An MLCP

contains equations as well as inequalities.

The MLCP can be formulated in different ways. Lötstedt (1982) gave a formu-

lation in which the body accelerations and contact forces are the solution of the

formulated system, and showed that a solution always exists for zero-friction con-

tacts. Baraff (1989) also used an accelleration based formulation and included

friction. However, a solution cannot always be found using this formulation if

friction is included (Baraff, 1993). Anitescu and Potra (1997) showed that a solv-

able system with contact friction can be formulated if the LCP is formulated such

that the body velocity change and contact impulse are the unknowns. Such for-

mulations were constructed by Moreau (1988); Stewart and Trikle (1996). Most

early NDEM methods treat contacts as rigid. NDEM methods that deal with com-
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pliant as well as rigid contacts were formulated by Jean (1999); Moreau (1999);

Lacoursière (2007); Krabbenhoft et al. (2012); Tasora et al. (2013); Servin et al.

(2014).

The method derived in this thesis is also capable of handling both rigid (non-

smooth) and compliant (smooth) contacts. The difference between previously ap-

plied methods and the method described in this thesis is that the current method

assures energy conservation for continuous linear contacts. This property follows

from the use of the Newmark-Beta method (Newmark, 1959) in the derivation of

contact compliance parameters. The other methods are derived from an implicit

Euler or similar schemes, and therefore result in numerical damping. Because the

implicit time integration scheme is the defining feature of the method derived in

this thesis, rather than the smooth or non-smooth nature of the contacts that are

resolved, the method is described as an implicit DEM method, rather than as a

non-smooth method. This terminology was adapted earlier by Stewart and Trikle

(1996). Servin et al. (2014), on the other hand, describe their similar method as

semi-smooth DEM.

2.2 The modelling of interaction between structures and broken ice

One of the first applications of DEM to ice-structure interaction processes was

described in Hocking et al. (1985). In this study, the application of DEM to ice

ridge-cone interaction was described. Other notable early work was performed by

Mark Hopkins (Hopkins et al., 1991; Hopkins and Hibler III, 1991a,b,c; Hopkins,

1992) and Sveinung Løset (Løset, 1994a,b). Although the work by Hopkins does

not include a structure, the demonstrated modelling capabilities included all the

components needed for the modelling of ice-structure interaction.

Current developments and applications of DEM modelling in research on ice-

structure interaction can roughly be divided per country. A single modelling tech-

nique is predominantly applied in each country. This likely results from the fact

that DEM ice-structure modelling studies often originate from a single institution

or a single research group in each country.

In Canada, sequential NDEM is predominantly applied (Daley et al., 2012, 2014;

Alawneh et al., 2015). The focus in this method is mainly on computational effi-

ciency. An important feature of the method is that it uses the GPU, and can perform

simulations faster than real time. An SDEM model has been developed by C-Core

(Morgan, 2016; Yulmetov et al., 2017). The primary aim of this model is to study

ice ridge-structure interaction.
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The research from Finland applies SDEM (Ranta et al., 2017, 2018b,c,a; Polo-

järvi and Tuhkuri, 2009; Paavilainen et al., 2009; Polojärvi et al., 2015; Gong

et al., 2019). The SDEM model originating from Aalto University has been ap-

plied extensively in studying discrete ice-structure interaction phenomena. This is

one of the most well established models in the ice-structure interaction modelling

community. The model has been applied to study the statistics of ice loads res-

ulting from the ice failure process (Ranta et al., 2017, 2018b,c,a) and to study the

resistance and mechanical properties of ice rubble Polojärvi and Tuhkuri (2009);

Polojärvi et al. (2015); Gong et al. (2019). Models from China (Liu and Ji, 2018;

Ji et al., 2015) and Russia (Karulin and Karulina, 2017) also apply SDEM.

Recent Norwegian studies apply NDEM (Lubbad and Løset, 2011; Metrikin, 2014;

Yulmetov et al., 2016; Metrikin et al., 2015; Nicolas et al., 2019; Lubbad et al.,

2018a; Lu and Amdahl, 2019; Tsarau et al., 2018; Raza et al., 2019; Lubbad et al.,

2018b; van den Berg et al., 2018, 2019b,a; van den Berg, 2016; van den Berg

et al., 2015, 2017; Su et al., 2019). The method presented in this thesis can be

considered as part of this group of studies. The methods from Norway focus on the

3D modelling of ships and structures interacting with a broken ice field. Models

from France (Rabatel et al., 2015) and Japan (Konno and Mizuki, 2006; Konno

et al., 2011) also apply NDEM. Konno and Mizuki (2006); Konno et al. (2011)

study the resistance of a ship in a brash ice channel.

The PIC method is applied to study the interaction between a structure and a

broken ice field by Sayed and Kubat (2011); Sayed and Barker (2011); Islam et al.

(2019). The use of the peridynamics method is demonstrated by Liu et al. (2018).

The CEM method is applied by, among others, Lu, Lubbad and Løset (2014);

Zhang et al. (2019). Studies describing the applications of peridynamics and CEM

mainly focus on the method and validation of the method applicability. So far,

these methods are seldomly used to study the ice-structure interaction process it-

self.

A promising new numerical model is demonstrated by Janßen et al. (2017). Janßen

et al. (2017) combines DEM with Computational Fluid Dynamics (CFD). Existing

DEM models applied in ice-structure interaction often consider the fluid dynamics

in a greatly simplified manner. This weakness can potentially be resolved by the

combination of DEM with CFD.

2.3 Physical parameters in DEM models of ice structure interaction

Discrete numerical models of ice-structure interaction simplify parts of the phys-

ical processes because of constraints on calculation time and computer power.

What processes are simplified, and how the simplification is achieved, depends
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on the model demands. The simplification of physical processes introduces the

need for model input parameters. Some of these parameters, such as the gravi-

tational acceleration and the density of water, can be accurately estimated. Other

model parameters have a higher degree of uncertainty. In DEM models of broken

ice-structure interaction, simplifying representative coefficients are often specified

for:

• hydrodynamics,

• contact behaviour,

• ice mechanical properties.

For most coefficients, there is currently no agreement within the ice modelling

community on how representative values can be determined and what values should

be used. The following sections give an overview of methods and sources that can

be/are used to determine model input parameters.

2.3.1 Hydrodynamics

Existing DEM methods applied in ice-structure interaction often use simplifying

approximations to estimate the hydrodynamic forces because of the high computa-

tional load associated with more advanced hydrodynamics models. The simplified

approximation of hydrodynamic forces limits the model applicability to low inter-

action velocities (reducing the significance of hydrodynamic forces) or necessitates

the tuning of the hydrodynamic coefficients to specific interaction scenarios. Some

studies that apply DEM modelling in ice-structure interaction do not describe at

all how hydrodynamic forces are considered. This is a significant weakness, as hy-

drodynamic forces often give a significant contribution to the total ice resistance.

In the DEM model and its applications as described in this thesis, hydrodynamics

is considered by form drag and skin friction coefficients. This method is described

in Tsarau (2015). The applied drag coefficients are partly based on the values

determined by Tsarau et al. (2017). The values as determined by Tsarau et al.

(2017) are modified based on the modelled conditions.

2.3.2 Contact properties

A local contact model that considers the mechanical properties of sea ice is essen-

tial for DEM models that consider ice failure and for models aimed at predicting

load statistics. The contact behaviour in DEM models usually consists of a method

to define the force-penetration behaviour and a method that describes the frictional

contact properties. For some of the interaction scenarios studied in this thesis, the
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contact rafting behaviour is also important. This section describes the contact as-

sumptions made in existing DEM models in order to define contact properties for

the force-penetration behaviour, contact friction and the rafting behaviour.

Force-penetration behaviour

Most DEM models define a contact model based on the assumption that local

contact crushing is the mechanism governing the contact force. Models using

an assumption of local contact crushing define the contact properties based on

a crushing pressure or crushing specific energy (CSE). Although it is generally

recognized that these properties are geometry dependent, the geometry dependence

is neglected in most DEM models.

In codes and standards, the crushing pressure that should be used in design calcu-

lations is dependent on the contact area and aspect ratio (ISO 19906, 2018). This

assumption is also used in Nicolas et al. (2019). However, the crushing pressure

obtained by this method is the maximum global crushing pressure. It can be ques-

tioned if this is a proper way of calculating the contact forces in a time-domain

DEM simulation. Therefore, most methods instead define a constant crushing

pressure which is more representative of the average global crushing pressure.

For example, Hopkins (1992); Paavilainen et al. (2011); Keijdener and Metrikine

(2014); van den Berg et al. (2018) assume a constant crushing pressure (or plastic

limit stress) during indentation. Using a constant crushing pressure is supported by

Kim and Høyland (2014) and Kim and Gagnon (2016). Kim and Høyland (2014)

suggest that the crushing specific energy (CSE) of ice might be a scale-independent

parameter, at least for geometrically similar situations. Kinnunen et al. (2016) also

suggest that the CSE value remains stable during an impact event. Daley (1999),

on the other hand, assumes a crushing pressure that is dependent on the contact

geometry and area.

Friction coefficients

Contact friction results from a combination of material properties and geometrical

properties of the interacting bodies. All global models of ice-structure interaction

use a greatly simplified friction model, where the frictional contact behaviour is

often captured by a single or several coefficients. There is almost an order of mag-

nitude difference between the friction values used in models. Friction coefficients

used in discrete numerical modelling of ice-structure interaction range from 0.1

(Haase et al., 2010; Tsarau et al., 2017; Hocking, 1992) to 1.35 (Konno et al.,

2011) for ice-ice friction (lower values have been used in sensitivity studies). For

interaction between ice and non-ice (structure, tank wall, etc.), values range from

0.027 (Lu, Lubbad, Høyland and Løset, 2014) to 0.2 (Metrikin and Loset, 2013).
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All models use a Coulomb model of friction, and assume that the friction is iso-

tropic. Some models distinguish between wet, dry, static and dynamic friction,

while other models do not make this distinction. The used friction values are jus-

tified based on:

• direct friction measurements,

• tuning of the numerical results to measured values,

• reference to friction values used by others.

Some numerical studies do not offer a justification for the friction values used. The

differences between the used friction values can partly be explained by the envir-

onmental conditions that are modelled and the processes the friction coefficients

are supposed to simplify. For instance, the scale of the modelled ice conditions in

the analysed DEM studies ranges from model-scale broken ice to geospatial-scale

simulations of interacting ice floes. Temperature differences and surface proper-

ties of the non-ice bodies (rough concrete to smooth steel) also explain part of the

differences.

The friction coefficients used in discrete numerical models should often be seen

as effective friction coefficients, that also account for the simplification of body

geometries; edge asperities of ice floes are often smoothed in the numerical rep-

resentation of the floes. Following this logic, a numerical model that simulates

all ice floes as disk-shaped bodies should apply a higher friction coefficient than a

model that allows for more angular ice floes.

A wide range of friction values can be justified based on the modelled scenarios

and the other modelling assumptions that are made. However, the friction values

used in numerical models are often insufficiently linked to the physical phenomena

the value is supposed to capture. This is an area where improvement is possible.

The following improvements are proposed:

• Ice tank tests in broken ice should measure friction between ice floes as

part of the test campaign. The friction should be measured separately for

ice floe sides and for ice floe top and bottom surfaces, because of possible

differences in roughness.

• If numerical friction coefficients are determined by model tuning (i.e., match-

ing the model result, often the structure load, to a measured value), this

should be clearly stated. Tuning can be a valid approach, as long as the

tuned model is subsequently validated against other cases that were not used

for the tuning.
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• Because of the wide range of justifiable friction values, a justification should

always be provided for the friction values chosen.

Rafting

There is no generally accepted model or mechanism to describe the rafting beha-

viour of broken ice. A mechanical model of sea ice rafting behaviour was presen-

ted by Parmerter (1975). This model is based on the assumption that the sides of

the ice floes are non-vertical and that there is no friction between two interacting

ice sheets. However, data on the ‘non verticality’ of the sides of broken ice is not

known to the authors. Additionally, the zero-friction assumption is questionable.

Broken ice rafting experiments were done in the 1990’s, by Tuhkuri and Lensu

(1997); Tuhkuri (2002). Numerical modelling of these experiments is described

by Hopkins and Tuhkuri (1999). Hopkins and Tuhkuri (1999) modelled circular

ice floes with hemispherical edges. To match the rafting behaviour as observed

in the experiments, Hopkins and Tuhkuri (1999) introduced and tuned a ‘circular

edge friction coefficient’ that varied with the ice thickness. This method relies on

experimental data to determine appropriate values, and the values used in Hopkins

and Tuhkuri (1999) cannot be simply translated to appropriate values for other ice

floe sizes or thicknesses or to the appropriate full-scale values.

In the numerical model described in this thesis, rafting can occur as a result of

the contact assumptions, even if the edges of interacting ice floes are completely

vertical. The rafting mainly occurs as a numerical phenomenon, and does not

necessarily resembles the rafting mechanisms as occur in reality. However, the

rafting behaviour can be quantified well, and can be tuned to match observed raft-

ing behaviour by changing the ice-ice friction coefficient. The rafting mechanism

in the model described in this thesis is further explained in Section 3.3.2.

2.3.3 Ice material properties and ice failure

In most ice-structure interaction scenarios, ice failure cannot be neglected when

modelling the ice-structure interaction process. Ice material properties must be

specified for an accurate representation of ice failure. The most used source of sea

ice material properties in engineering applications is the literature review published

by Timco and Weeks (2010). This review provides full-scale engineering values

for most mechanical properties of sea ice.

The material properties of ice-tank ice are often measured as part of a test cam-

paign. However, the measured properties often do not include all properties needed

for the numerical reproduction of the tests. For instance, the ice-ice and ice-

structure friction coefficients and the fracture toughness of model-scale ice are

often not measured. Dempsey et al. (1986) gives fracture toughness values of
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model scale ice. However, this study is limited to the ice in a single ice tank. In

addition, it is unclear what the intended model ice properties were in this study.

The applied scaling factor is not reported.

The combination of numerical modelling and ice tank tests can offer far more in-

sight in the occurring processes than either tests or numerical modelling alone.

However, the accurate representation of ice tank test conditions in a numerical

model necessitates that the relevant ice mechanical properties are accurately meas-

ured. Therefore it is recommended that fracture toughness and friction measure-

ments are added to the measurements performed as part of an ice tank test cam-

paign.

2.3.4 Parameter values used in the studies included in this thesis

In the studies included in this thesis, the model input parameters are based on

measured values where possible. If measured values were not available, the in-

put parameters were determined based on values used by others, or by tuning the

model parameters to match the results to test data. The parameter values used are

listed where relevant.

In some of the earlier publications included in this thesis, the procedure used to

determine certain model input parameters is, in hindsight, insufficiently explained.

In accordance with the opinions expressed in this section, the author will aim to

provide a more clear explanation of input parameters in future publications.
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Chapter 3

Implicit discrete element modelling
of ice-structure interaction
In this chapter, a novel implicit discrete element time-stepping scheme is de-

rived starting from the Newmark-Beta method for differential equations (New-

mark, 1959). The new formulations are valid for compliant continuous and dis-

continuous contacts. The position and velocity update rules of the Newmark-Beta

method are rewritten, and limits are introduced in order to enable discontinuous

contact modelling. The derived scheme can be classified as a non-smooth discrete

element method (NDEM). Compared to previously applied NDEM methods in ice-

structure interaction modelling, where only an upper limit for the contact force was

defined based on the current contact area, this new method takes the current contact

area as well as the expected change in the contact area into account in determining

the contact response, leading to a higher accuracy of the predicted contact force

for the same time step size. The main properties of the NDEM method are main-

tained in the new method, i.e., a mixed linear complementarity problem (MLCP)

is solved in each time step, and large time steps can be used without affecting

the stability. In addition, the new method can handle compliant as well as rigid

contacts. Since the method can handle both rigid (non-smooth) as well as compli-

ant (smooth) contacts, the method is described as implicit DEM rather than as a

non-smooth method. The term implicit is a better description of the distinguishing

feature of the method than the term non-smooth.

Section 3.1 derives the implicit time stepping scheme. Section 3.2 provides some

background on how the MLCP resulting from the time-discetization method is

solved. The procedure used to derive the contact parameters of discontinuous ice-

ice and ice-structure contacts is described in Section 3.3. Section 3.5 describes

how ice failure is implemented in the model. Section 3.6 describes a random lat-

tice model that can be combined with the implicit time stepping scheme. It also

summarizes a partial verification of the lattice model. Finally, Section 3.7 sum-

marizes the key properties of the DEM model presented in this Chapter.
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3.1 An implicit DEM time-stepping scheme

The derivations in this section were published in van den Berg et al. (2018). This

publication is included in Appendix A. Figure 3.1 shows the 1-DOF example case

used for the derivations in this section. In this example case, a generalized Kelvin-

Voight unit is used as the contact model, in which the parallel spring and dashpot

element can be linear or nonlinear. The method can also be applied to other rheolo-

gical elements, such as a Maxwell unit, following a similar procedure as described

in this section. In Figure 3.1, m stands for the mass of the body, δ for the pen-

etration depth, δ̇ for the penetration velocity, Fcont(δ, δ̇) for the contact force as

a function of the penetration and the penetration velocity, and Fext stands for an

external (non-contact) force acting on the body during time step Δt = tn+1 − tn,

where tn is the current time and tn+1 is the time at the end of the time step. u, u̇
and ü are the body position, velocity and acceleration, respectively. For conveni-

ence, the axis system is chosen such that δ = u if δ ≥ 0. In the derivations in

this section, it is assumed that δ ≥ 0, and thus Fcont(δ, δ̇) = Fcont(u, u̇). This is

expanded to a case in which u ∈ R in Section 3.1.1.

Figure 3.1: General single DOF contact case.

The equation of motion of the example case is:

mü+ Fcont(u, u̇) = Fext (3.1)

Assuming constant average acceleration within each time step, the equation of

motion can be discretized, and body positions and velocities are updated according

to Equations 3.2 and 3.3, which are the time-stepping equations as used in the

constant average acceleration method:

un+1 = un + u̇nΔt+
1

2

(
Δu̇cont + Fextm

−1Δt
)
Δt (3.2)

u̇n+1 = u̇n +Δu̇cont + Fextm
−1Δt (3.3)
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Subscripts n indicate the body position and velocity at the beginning of the time

step, subscripts n+1 indicate the body position and velocity at the end of the time

step, Δt is the time step size and Δu̇cont is the change in body velocity due to the

contact force Fcont. The contact force at the beginning and end of the time step

can be written as:

Fn
cont = Fcont (un, u̇n) and Fn+1

cont = Fcont (un+1, u̇n+1) (3.4)

The partial derivatives of Fcont with respect to the penetration and the penetration

velocity at the beginning of the time step are used to estimate the change of the

contact force during a time step:

kn =
∂Fn

cont

∂u

∣∣∣∣
u=un

and cn =
∂Fn

cont

∂u̇

∣∣∣∣
u̇=u̇n

(3.5)

Using these partial derivatives and the body propagation Equations 3.2 and 3.3,

Fn+1
cont can be estimated as:

Fn+1
cont = Fn

cont + kn

(
u̇nΔt+

1

2

(
Δu̇cont + Fextm

−1Δt
)
Δt

)
+cn

(
Δu̇cont + Fextm

−1Δt
) (3.6)

This equation is rewritten and a system of equations is formulated in which the

contact impulse λcont and the velocity change Δu̇cont are the unknowns. The

contact impulse should be seen in this context as the integral of a finite force over

the time step with a non-zero duration, rather than as an instantaneous momentum

change. The contact impulse is equal to:

λcont = F av
cont ·Δt (3.7)

The average contact force over a time step F av
cont is defined as:

F av
cont =

Fn
cont + Fn+1

cont

2
(3.8)

Combining and rearranging Equations 3.6, 3.7 and 3.8 results in:

λcont = Fn
contΔt+

1

2

(
u̇n +

1

2
Fextm

−1Δt

)
Δt2kn +

1

4
Δu̇contΔt2kn+

1

2
Fextm

−1Δt2 cn +
1

2
Δu̇contΔt cn

(3.9)
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This can be rewritten as:

−Δu̇cont +
λcont(

1
4knΔt2 + 1

2cnΔt
) =

Fn
cont(

1
4knΔt+ 1

2cn
)+

1
2

(
u̇n + 1

2Fextm
−1Δt

)
Δt2kn(

1
4knΔt2 + 1

2cnΔt
) +

1
2Fextm

−1Δt2 cn(
1
4knΔt2 + 1

2cnΔt
)

(3.10)

By using the relation:

λcont = −Δu̇cont m (3.11)

a system of equations can be formulated as:[
m 1
−1 Σ

] [
Δu̇cont
λcont

]
=

[
0
Υ

]
(3.12)

in which Σ and Υ are defined as:

Σ =
1(

1
4knΔt2 + 1

2cnΔt
) (3.13)

Υ =
Fn
cont

1
4knΔt+ 1

2cn
+

1
2

(
u̇n + 1

2Fextm
−1Δt

)
Δt2kn

1
4knΔt2 + 1

2cnΔt
+

1
2Fextm

−1Δt2 cn
1
4knΔt2 + 1

2cnΔt

(3.14)

The solution of this system gives the impulse λcont and the body velocity change

due to the contact impulse Δu̇cont.

Equations 3.12, 3.13 and 3.14 provide a general description of a compliant con-

tinuous 1-DOF contact. A special case occurs when the stiffness and damping

parameters, k and c, respectively, are constant. In this case, Fn
cont = unk + u̇nc,

so Σ and Υ can be simplified to:

Σlin =
1(

1
4kΔt2 + 1

2cΔt
) (3.15)

Υlin =
un k

1
4kΔt+ 1

2c
+ 2

(
u̇n +

1

2
Fextm

−1Δt

)
(3.16)
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This form occurs when the time-stepping scheme is combined with a lattice model

to represent the material properties of intact ice. The Σ and Υ values then represent

the spring-dashpot elements that form the lattice. A random lattice model which

can be combined with the time-stepping scheme to model floe deformation and

fracture is discussed in Section 3.6.

The Newmark-Beta method, on which this derivation is based, is only valid for

continuously differentiable functions. In the case of ice-ice or ice-structure con-

tacts, the contact force as a function of time is discontinuous in the time step in

which the contact is initiated and in the time step in which local ice crushing stops

(i.e., the relative contact velocity becomes zero). However, the method can still be

used in this case by applying appropriate lower and upper limits to the calculated

contact impulse.

The time-stepping scheme as derived in this section may be applied to continuous

contacts, as occurs between the different elements of a lattice representation of the

ice, and to discontinuous contacts, such as ice-ice or ice-structure contacts. Fig-

ure 3.2 clarifies where both types of contacts occur in an ice-structure interaction

simulation.

discontinuous ice-ice and 
ice-structure contacts

continuous lattice contacts

ice floes 
represented by a lattice

Figure 3.2: Continuous and discontinuous contacts in an ice-structure interaction simula-

tion.

3.1.1 Extension of the time-stepping scheme to discontinuous contacts

The forces at ice-ice or ice-structure contacts are bounded by upper and lower

limits, leading to a discontinuous contact behaviour. The limits follow from the

local physical processes occurring at the contacts. Simplifying assumptions are

used regarding the local contact processes to formulate the upper and lower limits
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of the contact forces. The physical reasoning behind these limits will be further

discussed in Section 3.3. The current section focusses on how these limits are

enforced within the time-stepping scheme.

The discontinuous contact assumptions made in this thesis lead to a contact force

that is only dependent on the contact penetration, not on the relative penetration

velocity. If the contact force is only dependent on the penetration, and not on the

penetration velocity, Equations 3.13 and 3.14 can be significantly simplified. All

terms related to cn can be dropped, leading to the simplified form of Σ and Υ:

Σpen =
1(

1
4knΔt2

) (3.17)

Υpen =
Fn
cont

1
4knΔt

+ 2

(
u̇n +

1

2
Fextm

−1Δt

)
(3.18)

Note that a velocity term still appears in Equation 3.18. This term appears because

the change in position within a time step is taken into account, which is a function

of velocity u̇n.

The following limits to the contact parameters are enforced in the case of discon-

tinuous ice-ice and ice-structure contacts:

kn ≥ 0 (3.19)

Fn
cont ≥ 0 (3.20)

Fn
cont = 0 if δ ≤ 0 (3.21)

Equation 3.19 states that the contact force may not decrease as the contact penet-

ration increases. Equations 3.20 and 3.21 state that the contact force may not be

negative and that there may only be a contact force if there is a contact between

bodies (penetration δ ≥ 0).

The contact impulse, which is part of the solution of the system expressed by

Equation 3.12, is subject to the following limits:

λcont ≥ 0 (3.22)

λcont ≤ λres=0 (3.23)

Equation 3.22 states that there may not be tensional impulses (and forces) at a con-

tact, and Equation 3.23 states that the applied impulse may not be higher than the

impulse needed to achieve a relative contact velocity of zero (the zero-restitution

impulse λres=0).
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Limits to the contact parameters (Equations 3.19, 3.20 and 3.21) are enforced in

the formulation of the system of equations and usually follow naturally from the

contact assumptions that are made. The limits to the solution (Equations 3.22

and 3.23) are taken into account in the system as formulated in Equation 3.12 by

introducing complementarity conditions. This leads to the following mixed linear

complementarity problem:⎡
⎣m 1 0
−1 Σcr 1
1 Σcr 1

⎤
⎦
⎡
⎣Δu̇cont

λcont

vcor

⎤
⎦+

⎡
⎢⎣

0
−Υcr

− Fcr
1
4

ΔFcr
Δδ

Δt

⎤
⎥⎦ =

⎡
⎣ 0
αr

βr

⎤
⎦

0 ≤ [
λcont vcor

]T ⊥ [
αr βr

]T ≥ 0

(3.24)

in which vcor is the correctional velocity needed to satisfy the zero restitution re-

quirement, and αr and βr are residuals that have no physical meaning. Σcr and Υcr

are defined as:

Σcr =
1(

1
4
ΔFcr
Δδ Δt2

) (3.25)

Υcr =
Fcr

1
4
ΔFcr
Δδ Δt

+ 2

(
u̇n +

1

2
Fextm

−1Δt

)
(3.26)

Note the difference between this formulation and the continuous contact formula-

tion of Υpen in Equation 3.18. The contact force Fn
cont is replaced by the force Fcr.

This is the force at which contact crushing would be initiated for this contact. This

change follows from the fact that the contact force is no longer uniquely related

to a specific penetration depth δ. The force penetration gradient kn from Equation

3.18 is replaced by a discretized version ΔFcr
Δδ because the analytical expression of

the force-penetration curve Fcont(δ) is not explicitly calculated for each contact.

The MLCP in Equation 3.24 fully describes the desired discontinuous contact be-

haviour. It is not immediately obvious how the MLCP enforces the limits ex-

pressed in Equations 3.22 and 3.23. Therefore the problem statement is further

clarified and proven to be correct in Appendix A of the paper appended to this

thesis in Appendix A.

3.1.2 Extension of the time-stepping scheme to multiple degrees of freedom

In order to apply this time-stepping scheme in a useful manner to ice-structure

interaction, it must be expanded to a 3-D system with multiple degrees of freedom

and friction. This expansion is similar to the procedures followed in previously

applied methods and it is explained in Appendix B of the paper appended to this

thesis in Appendix A. It leads to the following system:

23



⎡
⎣M −Jh −J c

JT
h Σh 0

JT
c 0 Σc

⎤
⎦
⎡
⎣Δu̇
λh

λc

⎤
⎦+

⎡
⎣ 0
Υh

Υc

⎤
⎦ =

⎡
⎣ 0
0
αr

⎤
⎦

0 ≤ λT
c ⊥ αT ≥ 0

(3.27)

where M is a diagonal mass matrix containing the inertial properties of all bod-

ies within the simulation; Jh and J c are matrices containing constraint Jacobians,

which express the influence of contact impulses on body velocities; Δu̇ is a vector

containing the velocity change (both linear and rotational) of each body in the sim-

ulation domain; λh and λc are vectors containing the constraint impulses, which

express the time-integrated contact forces within one time step; Σh and Σc are

matrices containing the compliance factors with unit kg−1; Υh and Υc contain

the compliance factors with unit m s−1; and αr is a vector of residuals with no

physical meaning. The difference between the variables with subscripts h and

the variables with subscripts c is that the variables with subscripts h contain the

holonomic constraints, i.e., the constraints with no upper or lower limits to the

impulses, while the variables with subscripts c contain the non-holonomic con-

straints, i.e., the constraints for which the impulses are bound by upper and lower

limits. Holonomic constraints are used to model connections between lattice ele-

ments when using a lattice model for the ice. Holonomic constraints can also be

used to resemble a mooring system or towing carriage, connecting a structure to a

fixed or moving reference point in the simulated domain.

3.2 Solving the formulated MLCP

The MLCP formulated in Section 3.1.2 is solved using a block Gauss-Seidel solver,

similar to the methods applied in, for example, Servin et al. (2014); Jean (1999);

Lacoursiere (2003). The block Gauss-Seidel solver is an iterative solver. Itera-

tions can be stopped when a user-defined accuracy threshold is met. An advantage

of using an iterative solver is that the solution from the previous time step can

be used as an initial guess for the next time step, reducing the needed number of

iterations. Contact compliance improves the convergence rate of the solver sig-

nificantly compared to a similar system with infinitely stiff contacts. High mass

ratios of interacting bodies, in combination with stiff contacts, can lead to an ill-

conditioned system. The convergence will be slow in such a case.

Absolute convergence criteria are specified both for the velocity change of the bod-

ies Δu̇ as well as for the contact impulses λh and λc. Because of the difference in

units and magnitudes of both parts of the solution, a different convergence criterion
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is used for the body velocities and the contact impulses. Appropriate convergence

criteria for the velocity change of bodies and the contact impulses depend on the

physical characteristics of the modelled scenario.

3.3 Contact model

A contact model is defined based on the assumption that local ice crushing will oc-

cur at ice-ice and ice-structure contacts. The contact parameters are derived based

on an assumption of constant energy dissipation per crushed volume of ice, or

crushing specific energy (CSE) (Kim and Gagnon, 2016). The CSE is the amount

of energy needed to crush a unit volume of ice (unit: J/m3). Ice contact models

based on energy dissipation are similar to contact models based on ice crushing

pressure and contact area. A certain assumed energy dissipation function can eas-

ily be converted to an equivalent crushing pressure, and vice versa.

The assumption of a constant CSE, as used in the contact model described in this

thesis, is equivalent to a constant crushing pressure. This assumption is considered

justifiable in light of other simplifications, such as geometrical simplifications of

the floe shapes. The intended use of this contact model is for local crushing only.

In cases where continuous crushing at the ice-structure interface is the governing

failure mode, the assumption of a constant crushing pressure is no longer sufficient.

Referring to the contact parameters as described in Section 3.1.1, the discontinu-

ous contact model needs to provide values for the contact force when crushing is

initiated (Fcr) and the increase in contact force with penetration (ΔF
Δδ ), as occur

in Equations 3.24, 3.25 and 3.26. In addition, the contact point in global coordin-

ates oc and the contact axis system Bc need to be defined in order to generalize

the time-stepping scheme to multiple contacts and three dimensions. The contact

point and contact axis system are used in Appendix A. The contact axis system Bc

consists of a normal axis nc and two friction axes tc1 and tc2.

A distinction is made between ice-ice and ice-structure contacts. In ice-ice con-

tacts, it is assumed that both contacting bodies will experience local crushing. In

ice-structure contacts, only the ice body will experience local contact crushing.

For clarity, 2-D sketches are used in this section, but the algorithm is implemented

fully in 3-D.

3.3.1 Contact detection

Contacts between discrete bodies must be detected before the contact parameters

can be derived and the contact response can be resolved. The detection and geo-

metry processing of contacts is divided in three phases:
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1. Broad-phase collision detection; dynamic axis-aligned bounding box (AABB)

tree.

2. Mid-phase collision detection; the Gilbert-Johnson-Keerthi (GJK) distance

algorithm (Gilbert et al., 1988).

3. Narrow-phase collision processing; accurate contact geometry determina-

tion based on plane intersections.

For the broad-phase and mid-phase collision detection, open-source algorithms

from Bullet Physics are used (Bullet Physics, 2017). The narrow-phase collision

processing code is developed as part of the PhD work.

An AABB tree is one of the most common algorithms for broad-phase collision

detection. It approximates each body by a bounding box, and checks for overlaps

between these boxes. The algorithm is robust: It is guaranteed to find all overlap-

ping bounding boxes. The bounding boxes are updated in each time step to reflect

the updated body positions. Bounding box sizes are increased by a fixed margin,

such that the broad-phase algorithm also finds almost collisions; bodies that are

currently not in contact, but may come in contact within the time step. If a po-

tential overlap is found in the broad-phase, the mid-phase will further process the

potential contact.

The GJK distance algorithm is used in the mid-phase. If it follows from the mid-

phase that the bodies are in contact, a third processing phase is applied to find the

exact contact geometry of the contacting bodies. The contact geometry is determ-

ined based on the intersection points of body planes.

Once the contact geometry is known, the geometry information is used in com-

bination with ice material properties to determine the contact parameters. The

procedures used to derive the contact parameters from the geometry information

and material properties are different for ice-ice and for ice-structure contact.

3.3.2 Ice-ice contacts

As stated, ice-ice contact parameters are derived based on the assumption that

local ice crushing will occur. Ice crushing is represented by body overlap in the

numerical simulation. The overlap volume that occurs in the numerical simulation

represents crushed ice. Figure 3.3 helps to illustrate this assumption.

The contact point (oc) is defined as the centre of the overlap volume. This is the

point at which the contact forces will be applied to the contacting bodies. The con-

tact normal direction is defined as the weighted average of the normal directions
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of the sub-contact areas related to one of the bodies:

nc =

∑s=ns
s=1 Aj,snj,s

‖∑s=ns
s=1 Aj,snj,s‖ (3.28)

in which ns is the number of surfaces related to one of the bodies in the overlap

volume, Aj,s are the areas of these surfaces, and nj,s are unit length vectors per-

pendicular to these surfaces. The parameters are illustrated in Figure 3.3. The

contact normal may also be defined using the surfaces related to body i, result-

ing in an opposite contact normal. This gives the same final result, as long as the

normal direction definition is applied consistently throughout the calculations.

Figure 3.3: Top-view of two interacting ice floes. Ice-ice contacts are resolved using the

contact projected area and normal direction.

The contact friction direction tc1 is chosen opposite to the tangential component

of the contact velocity:

tc1 = − u̇c − nc (nc · u̇c)

‖u̇c − nc (nc · u̇c) ‖ (3.29)

The contact friction direction tc2 is chosen to complete the axis system:

tc2 = tc1 × nc (3.30)

A second friction direction is needed because the change in the contact velocity

within the time step is taken into account in the MLCP. Therefore, the resulting

friction force is not necessarily opposite to the contact velocity at the beginning of

the time step.

27



The contact force where crushing starts Fcr is determined based on the projected

contact area and an assumed crushing specific energy of the ice:

Fcr = Aproj · CSE (3.31)

in which the contact projected area is the area that results when projecting the

contact polyhedron on the contact normal:

Aproj =
s=ns∑
s=1

Aj,snj,s · nc (3.32)

The gradient ΔF
Δδ is determined such that the kinetic energy dissipated in the con-

tact matches the energy absorbed in ice crushing. The gradient is determined by

calculating the contact projected area in the current body positions and the con-

tact projected area when the contacting bodies are propagated with their current

velocity. This is clarified in Figure 3.4, where Δδ is the change in penetration:

Δδ = u̇contΔt+
1

2
Fextm

−1Δt2 (3.33)

and Aprop
proj is the contact projected area when the contacting bodies are propag-

ated with their current velocity. If there is a zero or negative penetration velocity,

one of the bodies is propagated with a user-defined distance in the contact normal

direction.

Figure 3.4: Projected contact area and propagated projected contact area.

The gradient ΔF
Δδ is determined as:

ΔF

Δδ
=

(
Aprop

proj −Aproj

)
CSE

Δδ
(3.34)
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In the case of decreasing contact penetration, the load will drop to zero. This

follows from the assumption that the overlap volume between bodies represents

crushed material.

This type of contact behaviour can be viewed as hysteretic damping, in which the

loading/unloading curve will be similar to Figure 3.5. Three types of discontinuous

contact behaviour can be distinguished:

• crushing contact: The contact force needed to prevent further penetration is

higher than the bearing capacity of the current contact area. Ice crushes and

body penetration increases.

• resting contact: The contact force needed to prevent further penetration is

lower than the bearing capacity of the current contact area. Penetration re-

mains the same, and the contact force is calculated such that the contact

relative velocity in the contact normal direction remains zero.

• separating contact: Due to external forces or forces at other contacts, the

relative contact velocity is negative (the contact separates). This results in

decreasing penetration, and the contact force drops to zero.

Figure 3.5: Contact crushing implementation as hysteretic damping.

The type of discontinuous contact behaviour is not determined at the beginning of

the time step; it is an outcome of the MLCP, and its implementation in the time-

stepping scheme is described in Section 3.1.
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Since we assume that all available kinetic energy is dissipated by local crushing,

this discontinuous contact algorithm results in a contact restitution of zero in the

case of non-deformable floes. When floes are modelled using a lattice model or

other material model, some of the available kinetic energy will be transformed to

potential energy in the form of elastic deformation in the ice floe. This potential

energy can be recovered to give a restitution > 0.

Ice floe rafting

Ice floe rafting may occur as a result of the assumptions made in the contact model,

even if all bodies in the simulation domain have completely vertical sides. Raft-

ing occurs if the ice-ice frictional force is insufficient to counteract the vertical

component of the contact normal force:

Fnc;z > −Ftc;z (3.35)

where Fnc;z is the vertical component of the contact normal force and Ftc;z is

the vertical component of the contact friction force. The direction of the contact

normal force nc in the numerical model follows from the contact geometry as spe-

cified in Equation 3.28. When two ice floes interact, overlap may occur because of

the contact compliance which represents local crushing. If the ice floes are of equal

thickness and are both in their hydrostatic equilibrium buoyancy position, then the

top and bottom planes of the overlapping floes are coplanar. If this situation oc-

curs, the contact algorithm uses the top plane of one ice floe and the bottom plane

of the other ice floe in the determination of the local contact geometry, resulting

in a vertical component in the contact normal direction. This is clarified in Figure

3.6.

Ice floe i Ice floe j

Figure 3.6: Side-view of two interacting ice floes, clarifying the rafting mechanism in

the numerical model. The contact algorithm uses only the bottom plane of ice floe j in

determining the contact normal direction.
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The onset of rafting in the DEM model occurs mainly for numerical reasons and

does not necessarily resemble the physical mechanisms that lead to rafting in

model or full-scale broken ice conditions. This is taken into account in the ap-

plication of the model in Chapter 4. In the assessment of the floe shape effects,

simulations were performed in 2D, disabling rafting entirely. In the study on ice

tank test variability, the ice-ice friction coefficient was calibrated in order to match

the experimental results for a single test case. This resulted in a visually similar

rafting behaviour in the ice tank test recordings and the numerical simulations.

As discussed in Section 2.3.2, The physical mechanisms responsible for the onset

of rafting in model- or full-scale broken ice fields are currently not well under-

stood. Therefore the current implementation of rafting behaviour in the numerical

model is considered to be sufficient.

3.3.3 Ice-structure contacts

In ice-structure contacts, local crushing only occurs in the ice body, whereas the

structure is assumed to be rigid. The contact geometry is defined by the structure

geometry in contact with the ice. This is illustrated in Figure 3.7.

Figure 3.7: Ice-structure contacts are resolved using the sub-contact areas of each struc-

ture panel (partly) in contact with an ice sheet.

The actual contact geometry cannot be approximated by a single plane, as is done

for ice-ice contacts. To obtain an estimate of the contact forces along the ice-

structure contact interface, a contact ’point’ is defined for every panel of the struc-

ture in contact with the ice. The contact force when crushing is initiated (Fcr) and
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the increase in contact force with penetration (ΔF
Δδ ) are determined similar to the

method applied for ice-ice contacts, but now the area in contact with ice of each

structure panel is used, instead of the total projected contact area.

3.4 Hydrodynamic forces

In broken ice-structure interaction, hydrostatic and hydrodynamic forces on the

ice floes often give a significant contribution to the total ice resistance. In the

numerical model applied in Chapter 4, hydrodynamics forces on ice floes are ap-

proximated using form drag and skin friction coefficients.

Hydrodynamic drag forces resulting from skin friction and form drag are applied to

the ice floes according to their triangulated geometry and the local velocity vector

and position of each triangle. An example of the triangulated body geometry of

an ice floe is shown in Figure 3.8. This method is developed and implemented in

Figure 3.8: Triangulation of outer body geometry for the calculation of hydrodynamic

forces.

the global numerical model by Andrei Tsarau. The method is described by Tsarau

(2015). The total drag force on an ice body is calculated as follows:

Fdrag =

M∑
k=1

[
ρwCpA

k
∣∣∣U̇k

‖
∣∣∣ U̇k

‖ −
(
ρwCdA

k
[(

U̇k · nk
)]2

nk

)∣∣∣∣
(U̇knk)<0

]

(3.36)

in which Fdrag is the total linear drag force on an ice body, M is the number of

completely submerged triangles, ρw is the water density, Cp is the skin friction

drag coefficient, Ak is the area of triangle k, U̇k
‖ is the relative fluid velocity paral-

lel to the triangle, nk is the outward normal direction of the body geometry at the
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triangle center point, and Cd is the form drag coefficient. Torsional drag forces are

calculated similarly as:

Tdrag =

M∑
k=1

rk ×
[
ρwCpA

k
∣∣∣U̇k

‖
∣∣∣ U̇k

‖ −
(
ρwCdA

k
[(

U̇k · nk
)]2

nk

)∣∣∣∣
(U̇knk)<0

]

(3.37)

in which rk is a vector from the body’s COG to the center point of triangle k.

Hydrostatic restoring forces are calculated based on the exact submerged body

geometry and the water density.

3.5 Ice failure

In most interaction scenarios of a structure with broken ice, it is essential to con-

sider ice failure when modelling the ice-structure interaction process. Ice failure is

often one of the governing load releasing mechanisms.

Ice failure can be considered by discretizing the intact ice floes using lattice or

FEM modelling techniques. A lattice model of ice, including selected verification

results, is presented in Section 3.6. Computational modelling of ice failure with

lattice or FEM models is time consuming because of the many degrees of freedom

of the discretized ice features and the nonlinear nature of the fracture process.

However, computational modelling of fracture by discretizing intact ice floes is the

most accurate method of considering fracture. As an alternative to computational

modelling, ice floe failure may be considered by applying analytical solutions, or

pre-computed solutions for a range of cases from a computational model. In the

remainder of this thesis, this method is referred to as semi-analytical ice failure.

In semi-analytical ice failure, the floe geometry and the contact forces resulting

from the DEM model are mapped to a geometry and load case for which an ana-

lytical or pre-computed computational solution is known. Subsequently, this solu-

tion and the occurring contact forces are used to determine if and how ice failure

will occur. The accuracy of the mapping procedure depends on the amount and

the variety of the analytical/pre-computed solutions included in the model. Figure

3.9 gives an example of one of the most simplifying mapping procedures. Here,

an ice floe with an irregular geometry is approximated by a rectangular bounding

box, for which an analytical fracture solution is available.

Semi-analytical failure is used in the modelling results presented in Chapter 4.

The analytical and pre-computed computational solutions used in the modelling

preformed for these studies include:

• Off-centre splitting of a rectangular plate.
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• Consideration of all contact forces, some of which cause confinement and

some of which result in a splitting load.

• Bending failure assuming an infinite plate, taking into account speed effects

and the local contact geometry.

Figure 3.9: An irregular ice floe is approximated by a rectangular bounding box, for which

an analytical fracture solution is known.

The development of the analytical and pre-computed computational solutions, and

the mapping procedures used to link the load conditions as they occur in the sim-

ulation to the analytical and pre-computed solutions, were mainly developed by

Wenjun Lu (PhD), and are partly described in Lu et al. (2015a,b, 2016); Lu, Lub-

bad, Shestov and Løset (2018); Lu, Lubbad and Løset (2018).

The current implementation of semi-analytical failure has the following limita-

tions:

• The effect of ice floe elastic deformation on the contact force occurring in

the DEM model is not taken into account.

• The semi-analytical solutions only consider statics, with the exception of the

velocity-dependent bending failure.

• Crack propagation is instantaneous; the interaction between crack propaga-

tion and contact force is not considered.
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• The number of analytical and pre-computed computational solutions is lim-

ited. The accuracy of the applied solution depends on how well the actual

floe geometry and contact forces can be mapped to one of the pre-computed

or analytical solutions.

The accuracy of the semi-analytical failure implementation should be considered

against the current understanding of ice failure processes and the current model-

ling capabilities. In the context of the conditions for which the model is intended

(a structure interacting with a high number of discrete ice floes), it is doubtful if

a more accurate failure model would lead to numerical modelling results closer to

reality. The results of performed verification studies indicate that the uncertainty in

the choice of model parameters (friction coefficients, drag coefficients, ice mech-

anical properties, etc.) has a much greater influence on the modelling results than

the simplifying model assumptions made in the contact and failure model. There-

fore, research efforts should first focus on a more accurate determination of these

values (either by experiments or detailed numerical analysis). Only when the most

important model parameters can be established with reasonable accuracy, a more

accurate fracture model will be of benefit. The limited gains in model accuracy,

and the time consuming nature of computational fracture, are the main reasons for

using a semi-analytical failure implementation in the model applications presented

in Chapter 4.

3.6 Lattice modelling of ice floes

As a more accurate alternative to the semi-analytical failure procedures that are

currently implemented, ice floe deformation and failure could be modelled using

a lattice model. Lattice models, or spring network models, represent a material as

a collection of discrete masses, connected with a network of springs and dashpots.

Lattice models are principally based on the atomic lattice structure of materials,

but lattice-type models can also be used to represent the continuum properties

of a material by a much courser mesh (Ostoja-Starzewski, 2002). Compared to

continuum models, lattice models offer advantages in the modelling of fracture,

since no stress singularities will occur at the crack tips (van Vliet and Metrikine,

2018). Lattice models have been applied to ice modelling by a number of authors:

Hocking (1992); Jirasek and Bazant (1995); Sayed and Timco (1999); Dorival

et al. (2008); Paavilainen et al. (2009); Lilja et al. (2017); van Vliet and Metrikine

(2018, 2019). The work by van Vliet and Metrikine (2018, 2019) shows that lattice

models can accurately represent the continuum properties of ice, including the

failure behaviour. van Vliet and Metrikine (2018) derive the lattice parameters of

a structured (regular) lattice for out-of plane deformation of a plate based on the

Mindlin-Reissner plate theory.
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In contrast to the work by van Vliet and Metrikine (2018), the lattice method

presented in this section represents the ice as an unstructured (irregular) lattice.

There exist no lattice models that derive the lattice parameters of an unstructured

lattice based on a classical plate theory. Instead, irregular lattice models use sim-

plifying approximations to define the element properties. The lattice models thus

constructed can capture some continuum properties relatively well, but have a lim-

ited accuracy for other properties. The lattice model presented in this section is

primarily based on a lattice model originally described by Kawai (1978), and fur-

ther developed by Bolander and Saito (1998) and Yip et al. (2005). The lattice

model defined by Kawai (1978); Bolander and Saito (1998); Yip et al. (2005) is

modified based on the results of verification tests and on a matching of the theor-

etical scaling behaviour of the out-of-plane plate stiffness with thickness.

The discrete nature of lattice models makes them well suited for the modelling

of ice, in combination with the presented time-stepping scheme. When applying

the time-stepping scheme to the continuous linear contacts as occur in a lattice

model, energy conservation is assured, following from the use of the Newmark-

Beta method. Applications of a combined lattice model and time-stepping scheme

have been published in van den Berg (2016) and van den Berg et al. (2017). These

publications are included in this thesis in Appendices B and C. A structured lattice

model, like the model described by van Vliet and Metrikine (2018), can be com-

bined equally well with the time stepping scheme as the unstructured lattice model

described here.

The work on lattice modelling as described in this section is mainly related to

verification of the presented model. The lattice model itself (i.e., the definition

of the element properties) is mostly based on existing methods. The performed

verification studies show the capabilities as well as some of the limitations of the

random lattice model used. The verification studies presented here are limited to

the natural frequencies of out-of-plane vibrations of a lattice plate, the static out-

of-plane deformation in response to a point load, and static linear elastic mode

I fracture of a symmetric rectangular plate. It is intended to serve as a basis for

further verification studies and the future application of the lattice model in ice-

structure interaction modelling.

3.6.1 Meshing and the determination of element properties

The lattice model described in this section determines the lattice geometry and

properties based on Voronoi tessellation. Voronoi tessellation is a partitioning of

space into polyhedral bodies around seed points. Random seed points are picked

in a pre-defined 2-D or 3-D domain, which represents the geometry of the body

to be discretized by the lattice. A relatively uniform distribution of seed points
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is achieved by defining a minimum distance between seed points, and filling the

domain with points until no new seed points fit in the domain while satisfying the

minimum distance requirement. The procedure is visualized in Figure 3.10. A

(a) (b) (c)

Figure 3.10: Mesh creation procedure. Define the outer geometry (a), fill the geometry

with random points, under the condition of a minimum distance (b) and perform Voronoi

tesselation based on the specified random points(c).

polyhedron around a point contains the region that is closer to that specific seed

point than to any other point. Each surface of a polyhedron represents a lattice

element. The lattice element consists of springs in 6 DOF: three translational and

three rotational springs. The springs have zero length, and are connected to the

discrete bodies at the centroids of the contact surfaces. The spring properties are

determined based on the distance between the seed points, and on the properties

of the contact surface. The connection between two seed points, and the contact

surface determining the connection properties, are shown in Figure 3.11. The dis-

Figure 3.11: Lattice properties based on the shape and area of the contact surface and the

distance between two elements.

tance d is the distance between the two connected seed points. Vectors n, t1 and t2
are normal to the contact surface, horizontal in-plane with the contact surface, and

37



vertical in-plane with the contact surface. h and w denote the height and width

of the contact surface. In the lattices used for the verifications presented in this

section, the spring constants for this contact surface are defined as:

kn =
EA

d
, kt1 = kt2 =

GA

d
, kφn =

2 ·G · It1
d

kφt1 =
EIt1
d

, kφt2 =
EIt2
d

(3.38)

in which E is the Young’s modulus, G = E
2 is the shear modulus, A = wh is the

contact area, and It1 and It2 are the second moments of area around axes t1 and t2.

Note that the Poison’s ratio does not appear in this definition of spring constants.

The spring constants defined in Equation 3.38 are somewhat different from the

spring constants proposed in Yip et al. (2005). The difference is the use of the

shear modulus G for the shear springs (whereas Yip et al. (2005) uses the Young’s

modulus for both the normal and the shear springs) and the second moment of area

It1 for the torsional spring (whereas Yip et al. (2005) uses the second moment of

area around axis n). The second moment of area It1 is used in the definition of

the torsional spring stiffness because this results in a scaling of the plate stiffness

proportional to h3, in accordance with the analytical solution of out-of-plane plate

deformation.

The definition of damping properties is not needed for the verifications performed

in the remainder of this section. However, it is advisable to add damping when

using the lattice model in a time-domain simulation of ice-structure interaction.

For out-of-plane vibrations, the most important damping contribution is the hy-

drodynamic damping. For in-plane vibrations, ice material damping should be

defined in order to prevent unrealistic dynamics. The material damping can be ap-

proximated by Rayleigh damping, in which the damping matrix C is defined as a

function of the mass matrix M and the stiffness matrix K:

C = ζM + ξK (3.39)

where ζ is the mass-proportional damping coefficient and ξ is the stiffness-proportional

damping coefficient. Appropriate values for these damping coefficients for ice are

not described in existing literature.

3.6.2 Verification of the lattice model

The lattice model described in Section 3.6.1 is verified against analytical solutions

for three cases:
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1. Out-of-plane deformation of a semi-infinite plate loaded by a point load on

the edge.

2. Natural frequencies and mode shapes of a finite, simply supported plate on

a Winkler foundation.

3. Mode I splitting of a linear elastic rectangular plate.

The verification results are described in the following sections.

Out-of-plane deformation of a semi-infinite plate loaded by a point load on
the edge

The lattice model is verified by comparison to an analytical solution of a semi-

infinite Kirchoff – Love plate on an elastic foundation, subject to a point load on

a free edge. The analytical solution is obtained as described in Kerr and Kwak

(1993). The lattice plate that is compared to the analytical solution has finite di-

mensions, but the dimensions are chosen such that the side boundaries no longer

influence the solution. All side boundaries are free. The lattice plate is supported

by an elastic foundation. The model parameters used for verification are shown in

Table 3.1.

Table 3.1: Parameters used in the edge load verification study.

parameter symbol value
Young’s modulus [GPa] E 5.0

Shear modulus [GPa] G 2.5

Water density [kg/m3] ρw 1025.0

Point load [kN] Fp 10.0

Ice thickness [m] hi 1.0

Poisson’s ratio [-] ν 0.0

A Voronoi mesh is generated by picking random points within the sheet outer

boundaries, and creating polyhedral bodies around the points, as described in the

previous section. For each additional point, the minimum distance between the

point and all other points is specified based on the position of the point within the

sheet. If the point is too close to another point, it is discarded. Using this technique,

the mesh can be refined around the point of interest by specifying a lower minimum

point-to-point distance close to the loaded point. In this verification study, the

minimum distance between points is specified as:

Dmin;p =
Df

40
+Dmin;t (3.40)
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in which Dmin;p is the minimum distance between the seed point and any other

point, Df is the distance between the loading point and the seed point, and Dmin;t

is the mesh size in the direct vicinity of the loading point. Figure 3.12 shows a

sketch of the modelled situation.

Point load on edge

Figure 3.12: Verification of plate deformation when loaded by a point load on a plate

edge.

Figure 3.13 shows the edge deformation of the loaded edge of the plate for different

mesh sizes, in comparison to the analytical solution of a semi-infinite sheet loaded

by a point load on its edge. It shows that the lattice solution converges to the

analytical solution for a fine mesh. The error between the lattice solution and the

analytical solution is 18.3% for a minimum mesh size Dmin;t of 5.0 m, 9.0% for

a minimum mesh size of 2.0 m, and 1.9% for a minimum mesh size of 0.5 m.

The increase in error with mesh size can be partly explained by the absence of

bending deformation close to the loading point in the case of coarser meshes. The

deformation in the direct vicinity of the loaded point gives a large contribution to

the total deformation.
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Figure 3.13: Edge deformation for different mesh sizes, compared to the analytical solu-

tion.

Natural frequencies and mode shapes of a finite simply supported plate on a
Winkler foundation

The dynamic lattice properties are verified by comparing the out-of-plane natural

frequencies and mode shapes as predicted by the lattice model to an analytical

solution of a rectangular plate on a Winkler foundation that is simply supported at

the edges. The analytical solution which is used for the verification is described

by van Vliet and Metrikine (2018). The natural frequencies and mode shapes of

the lattice plate are obtained by calculating the eigenvalues and eigenvectors of the

stiffness matrix.

In order to compare the accuracy of the irregular lattice presented in this section

to the accuracy of the regular lattice derived in van Vliet and Metrikine (2018),

the plate dimensions are chosen to match the plate dimensions used for model

verification in van Vliet and Metrikine (2018); 60 x 100 m. The other parameters

are equal to the values used in the edge load validation case, as listed in Table

3.1. Figure 3.14 shows a comparison between the mode shapes predicted by the

lattice model and the mode shapes resulting from the analytical solution. The

mode shapes of the first 9 modes as predicted by the lattice model match well with

the analytical mode shapes. The natural frequencies of the lattice plate have been

compared against the natural frequencies given by the analytical solution. Table

3.2 shows the natural frequencies of the first 20 modes as given by the analytical
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Figure 3.14: The first nine mode shapes of a 60 x 100 m plate on a Winkler foundation,

simply supported at the edges.

solution, and the error percentages (e) between the natural frequencies predicted

by the lattice model and the analytical solution, for three different mesh densities,

expressed by the number of elements used to discretize the plate (Nb).

The error percentages consistently decrease with the mesh size. However, the error

percentages are higher than the error predicted by the structured lattice model de-

rived in van Vliet and Metrikine (2018), which gives an error percentage between

0.0 and 0.15% (for the first 20 modes) for a mesh with 6161 elements.

Mode I splitting of a linear elastic rectangular plate

The lattice model is verified against the analytical solution for static mode I split-

ting of a rectangular plate. The verification is performed against the analytical

solution according to linear elastic fracture mechanics (LEFM) (Dempsey et al.,

1994; Lu et al., 2015a). Two cases are modelled: in case a, the lattice is construc-

ted such that there is a straight crack path from the crack initiation point to the
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Table 3.2: Error percentages in the natural frequencies of out-of-plane vibration modes as

a function of mesh size.

mode frequency [Hz] e [%]

Nb = 582
e [%]

Nb = 1243
e [%]

Nb = 4768

1 0.66 2.3 0.66 0.2

2 0.89 4.3 1.5 0.42

3 1.4 4.7 1.4 0.48

4 1.4 2.8 0.6 0.35

5 1.7 5.3 1.7 0.53

6 2.1 3.5 1.1 0.46

7 2.2 7.1 2.1 0.63

8 2.8 2.2 0.42 0.37

9 2.9 5.5 2.1 0.64

10 3.0 4.1 0.83 0.43

11 3.1 4.0 1.2 0.49

12 3.6 6.1 1.8 0.59

13 3.9 6.3 1.8 0.61

14 4.1 2.9 0.68 0.42

15 4.4 6.3 2.2 0.66

16 4.8 2.0 0.29 0.37

17 5.0 5.1 1.6 0.59

18 5.1 3.8 0.82 0.45

19 5.3 6.0 2.2 0.68

20 5.5 3.8 0.55 0.42
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other end of the plate. In case b, the lattice is random. Verification is performed

for both cases in order to distinguish between the effects of the irregular crack path

and the effect of the plate deformation. The normalized splitting load as a function

of the crack length is constructed for the lattice plate by the following procedure:

1. Load the crack tip with a unit load.

2. Store the crack opening displacement.

3. Remove the lattice element with the highest strain.

4. Load the lattice with the propagated crack with a unit load, and repeat the

procedure.

The outcome of this procedure is the crack opening displacement (COD) as a func-

tion of crack length. From the COD and the crack length, the strain energy release

rate Gf can be derived as described in Lu et al. (2015b):

Gf =
FY

h

du0(Lcr)

dLcr
(3.41)

in which FY is the splitting load, h is the ice thickness, u0(Lcr) is the conjugate

deformation to each of the splitting loads and Lcr is the crack length as defined in

Figure 3.15. The stress intensity factor can be derived from the energy release rate

using the relationship:

KI =
√

GfE (3.42)

Figure 3.16 shows the non-dimensional splitting load as a function of the (non-

dimensional) crack length. for a straight crack path (a) and an irregular crack path

(b), for mesh sizes of 10 m , 4 m and 2 m.

The lattice model is close to the analytical solution when the crack path is straight

for all tested mesh sizes. This essentially means that the COD is predicted well by

the lattice model. In the case of an irregular crack path, the lattice results follow the

trend of the analytical solution, but there is substantial deviation at some points.

The deviation is related to the deviation of the irregular crack from the straight

crack path, according to which the analytical solution is constructed.

In the verification as performed above, the COD caused by a unit splitting load

was used to reproduce the analytical non-dimensionalized splitting load curves.

However, in more complicated scenarios, one would typically use the maximum

strain in combination with a failure criterion to check whether a crack propagates.
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b

Lcr

Lcr

Figure 3.15: Visualization of the stress state within the plates during the splitting verific-

ation for a straight crack path (a) and for a irregular crack path (b).

a b

Figure 3.16: Non-dimensional splitting load as a function of the non-dimensional crack

length for a straight crack path (a) and an irregular crack path (b).

Although the COD is largely mesh size independent, the strain at the crack tip is

not. Therefore, a mesh-size dependent scaling factor should be applied to the stress

at the crack tip.
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In accordance with LEFM, the current implementation of the lattice model would

predict a strain going to infinity for a mesh size approaching 0. The stress at the

crack tip is proportional to one over the square root of the mesh size. This scaling

behaviour is in accordance with theory, as derived below.

In LEFM, the stress near a crack tip is proportional to one over to the square root

of the distance to the crack tip:

σt ∝ 1√
r

(3.43)

The stress in a discrete lattice element representing a crack length δ would be the

mean stress over the element length. For an element at the crack tip, this results in

a stress that is proportional to:

σδ ∝
∫ δ
0

1√
r
dr

δ
=

1√
δ

(3.44)

which gives the relationship between mesh size and crack tip stress. This rela-

tionship necessitates that the stresses near the crack tip be multiplied by C
√
δ, in

which C is a constant whose value depends on the critical stress intensity factor

and the failure stress.

This approach effectively removes the mesh dependence from the crack propaga-

tion problem. However, it is not straightforward to determine when the scaling

should be applied. After all, scaling should only be applied to the stresses at crack

tips, and not to all stresses within the lattice plate. In principle, a numerical scheme

can be conceived that keeps track of crack tips, and applies the stress scaling only

where needed. However, such a scheme has not yet been implemented.

3.6.3 Summary of lattice verification

The presented verification studies show that the relatively simple random lattice

model described in this section is capable of capturing the plate deformation under

a point load on the edge; the out-of-plane eigen modes and vibration frequencies

of a plate on a Winkler foundation and simply supported at the edges; and the force

needed to split a rectangular plate according to LEFM. The accuracy of the lattice

model is compared to analytical solutions. In two of the performed verification

studies, the lattice model converges to the analytical solution for an increasing

mesh density. In the splitting verification study, a small deviation remains present.

The unstructured nature of the lattice model leads to larger deviations between the

lattice solutions and the analytical solutions compared to a structured lattice with

a similar mesh size. These deviations can be partly attributed to the mesh random-
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ness directly, such as the fact that the crack path must deviate from the straight

crack path as predicted by the analytical solution. Another source of the deviation

results from the simplified definitions of spring properties. Unlike a structured lat-

tice, the spring properties for an unstructured lattice have not been derived from

continuum theory. This explains the higher deviation between the natural frequen-

cies of the plate discretized with the irregular lattice model compared to the regular

lattice model plate frequencies as derived by van Vliet and Metrikine (2018). One

of the predominant shortcomings of the presented unstructured lattice model is the

inability to properly capture the Poisson effect. The verifications in this section are

all performed against analytical solutions using a Poisson’s ratio of 0. If a Pois-

son’s ratio more common to sea ice would have been used, the deviations between

the lattice result and the analytical solutions would be larger (as the Poisson effect

is not captured in the lattice model).

In judging the applicability of this lattice model, the result inaccuracy caused by

the irregular nature of the lattice should be compared against the irregularities in

actual sea ice. In this perspective, the scatter in the results of the irregular lattice

model is smaller than the scatter resulting from tests on sea ice. As the natural

variability of sea ice is higher than the result variability caused by the lattice irreg-

ularity, the lattice model is considered sufficiently accurate. However, since more

accurate structured lattice models are available, the benefits of an unstructured lat-

tice compared to a structured lattice should be weighted against the downsides of

result scatter and the lack of Poison effects. Which lattice model is most suit-

able (regular of irregular) depends on the modelled scenario. Some benefits of the

irregular lattice model compared to the regular lattice model are:

• The mesh can be refined around a point of interest, as is done in the point-

load-on-edge verification case.

• The dependence of crack paths on the mesh geometry is reduced. There

are no pre-defined crack directions along which a crack can propagate more

easily than other directions. Note, however, that the crack path is not mesh

independent in the irregular lattice, since the crack can still only propagate

along the failure surfaces between elements as defined by the discretization

procedure.

• The effects of the irregular mesh may capture the inhomogeneous nature of

actual sea ice. In fact, regular lattice meshes are often randomized in order to

capture the inhomogeneous nature of materials, thereby intentionally intro-

ducing errors compared to the (homogeneous) continuum behaviour. This is

done by, among others, van Vliet and Metrikine (2017).
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3.7 Summary

This chapter describes a novel implicit discrete element time stepping scheme.

The scheme can be used to model continuous as well as discontinuous contacts,

using a unified approach. The time stepping scheme formulates and solves an

MLCP in each time step. The MLCP is formulated using the constant average

acceleration method. Continuous contacts occur when the time stepping scheme is

combined with a lattice discretization of ice floes. Discontinuous contacts are used

to model the interactions between ice floes and between the ice and the structure.

Ice failure can be considered by discretizing the ice floes, or by applying semi-

analytical failure criteria. When applying semi-analytical ice failure, the ice floe

geometry and loading conditions are mapped to a case for which the failure loads

can be obtained analytically or are pre-computed. The developed discrete element

method is applied to investigate floe shape effects and the variability in ice tank

test results in Chapter 4. Semi-analytical ice failure is used in the simulations

performed for these studies
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Chapter 4

Floe-shape effects and variability
in the results of ice tank tests with
broken ice
The discrete element time stepping scheme described in Chapter 3 is applied to

investigate interaction phenomena in the interaction between structures and broken

ice. Two studies are described in this section. The first study investigates the effect

of floe shape on the load experienced by vertical-sided structures interacting with

a broken ice field. The second study assesses the variability that may occur in the

results of ice tank tests with broken ice. In both studies, the contact model and time

stepping scheme are used in combination with a semi-analytical ice failure model.

The floe-shape effect was studied using a 2-D implementation of the described

model, while the ice tank test variability was studied with a 3-D model.

4.1 The effect of ice floe shape on the load experienced by vertical-
sided structures interacting with a broken ice field

The effect of floe shape on the load experienced by vertical sided structures inter-

acting with a broken ice field is investigated in van den Berg et al. (2019b). This

publication is included in Appendix D. This section contains a summary of this

study. The study is limited to low to medium ice areal coverage conditions (30-

70%). The influence of the floe shape is most relevant in these conditions because

the ice clearing process often governs the ice resistance. Furthermore, the study is

limited to vertical-sided structures. Sloping sides promote bending failure and floe

rafting, thereby significantly reducing the effect of the floe shape.

There are several scenarios in which the load from low- to medium-areal-coverage

broken ice on vertical-sided structures is of interest. Three examples are:
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1. Constructions in the light Arctic. The light Arctic is defined as regions where

sea ice may occur as a statistical possibility, but which are normally ice-free

throughout the year. Most recent Arctic offshore developments are in these

regions. Structures for these regions are not usually designed for heavy ice

conditions, and may have a vertical-sided waterline. Loads from low- to

medium-areal-coverage broken ice may be the operational design load for

such structures.

2. Operations in the ‘ice-free’ season. This includes drilling, towing or con-

struction operations, possibly using jack-ups or other vertical-sided struc-

tures. Low- to medium-areal-coverage broken ice load estimates are needed

to determine the operating window.

3. Structures supported by ice management. Structures can be supported by ice

management operations, in which an ice breaker reduces the size of incom-

ing ice floes in order to decrease the loads on a protected structure. Loads

from broken ice may be the design load of the protected structure.

Floe-shape effects are especially relevant to ice tank tests or numerical simulations

that may be performed in the design phases for the above mentioned scenarios.

In ice tank tests, broken ice is created by manually or mechanically breaking up

an intact ice sheet. Therefore, the resulting ice floe shapes can be controlled to

some extent. Ice tank tests with broken ice are often performed with ice floes that

have square or rectangular shapes (e.g., Hoving et al. (2013); Haase et al. (2012)),

which may have a major effect on the resulting broken ice load.

The effect of the floe shape in DEM modelling of ice has been studied by Hop-

kins et al. (1991); Tuhkuri and Polojärvi (2005); Konno et al. (2011); Rheem et al.

(1997); Yamaguchi et al. (1997). Hopkins et al. (1991) and Tuhkuri and Polojärvi

(2005) studied the effects of rubble shape on the ridge formation process and on

ridge keel punch through tests. Konno et al. (2011) studied the effect of rubble

shape on the resistance of ships in rubble channels. These studies showed a clear

shape effect. However, the modelled scenarios in these studies are different from

the scenarios modelled in the current study, because the studied scenarios concern

ice rubble only. This study investigates the effect of floe shape in level broken ice

varying in size from 20 m2 to 4832 m2. Such broken ice fields typically occur

when ice is broken by environmental forces, such as ocean gravity waves. To the

authors’ knowledge, Rheem et al. (1997) and Yamaguchi et al. (1997) are the only

researchers that studied the effect of the floe shape in similar broken ice-structure

interaction scenarios. However, the scenarios tested by Rheem et al. (1997) were

primarily designed for the validation of a numerical model; therefore, they are not

sufficiently realistic to conclude anything on floe shape effects in actual broken
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ice-structure interactions, other than that the effect is present. Yamaguchi et al.

(1997) proposed a method to take the floe shape effect into account using a para-

meter described as the C-angle. However, the tested scenarios are limited and the

numerical model is greatly simplified. For example, no floe rotation is taken into

account.

The floe-shape effect was studied in confined conditions (as would occur in ice-

tank testing, due to the tank walls) and in unconfined conditions. The floe-shape

effect in unconfined conditions is presented in this section. For an analysis of the

floe-shape effect in confined conditions, the reader is referred to Appendix D.

A sensitivity study is conducted in which the floe shape and other parameters

whose effect may be correlated with the floe-shape effect are systematically var-

ied. The mean load and the standard deviation of the surge load on the structure

are used as the primary comparison parameters in analysing the effect of the floe

shape. The investigated parameters are the structure shape, the ice areal coverage,

the confinement conditions and the friction coefficient. In the sensitivity study,

random numerical broken ice fields with different floe shapes are created. All

broken ice fields have the same properties, except for the difference in floe shape.

The floe size distributions of the numerically created floe fields is obtained from

a digitization of a top-view photograph of a full-scale broken ice field, which is

broken under environmental loading (i.e., not by ice management). The floe field

is digitized following the procedure described in Zhang and Skjetne (2015). Eight

different floe shapes were tested; 3-8 corner regular shapes, circular floes, and real

floe shapes. The real floe shapes are the shapes of the floes in the digitized top-view

photograph. Figure 4.1 shows the floe fields with different floe shapes. Note that

the initial positions of similar-sized floes are largely the same. The investigated

parameter combinations are listed in Table 4.1.

4.1.1 Results of the sensitivity study

The results from the sensitivity study show there is a strong effect of the ice floe

shape on the mean and on the standard deviation of the ice load in the surge direc-

tion. The mean ice loads in surge direction for the different floe shapes are shown

in Figure 4.2. The coloured bars represent the results of the low friction simu-

lations (μ = 0.1). The square markers represent the results of the high friction

simulations (μ = 0.5). For the low-friction simulations, the results for circular

and square structures are grouped in the coloured bars, in which the minimum of

the bar is the lowest mean load and the maximum of the bar is the highest mean

load from both tested structure shapes. In all simulations, the circular structure
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Table 4.1: Investigated parameter combinations.

Constant parameters
ice thickness 1.0 [m]

crushing specific energy (CSE) 2.0 [MJ/m3]
structure width 40.0 [m]

structure velocity 1.0 [m/s]

ice form drag coefficient 0.5 [-]

ice skin friction drag coefficient 0.005 [-]

floe area distribution from top view photo

Varying parameters

structure shape
square

circular

ice areal coverage

30%

50%

70%

floe shape

digitized real floes

3 - 8 corner regular

circular

friction coefficient
0.1 [-]

0.5 [-]
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Figure 4.1: Floe fields with different floe shapes, but otherwise identical properties.

resulted in loads with a lower mean and standard deviation than the loads from

the square structure. The high-friction simulations were only performed with the

square structure geometry. The data in Figure 4.2 show the following:

• Square ice floes result in higher mean ice loads in the surge direction.

• Other regular shapes with ‘parallel opposite edges’, i.e., the hexagonal and

octagonal floes, also result in higher mean ice loads in the surge direction

than other floe shapes; however, the effect is not as strong as with square

floe shapes.
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• The floe-shape effect is stronger for a circular structure geometry than for a

square structure geometry.

• The floe ‘roundness’ appears to play a role in the high-friction simulations,

but not in the low-friction simulations.

• The influence of floe shape is inversely related to the friction coefficient.

The higher the friction coefficient, the lower the effect of the floe shape.
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Figure 4.2: The effect of floe shape on the mean ice load in unconfined conditions.

Parallel opposite edges are defined as edges of the floe that have a parallel edge

perpendicularly opposite to the edge across the floe. This is clarified in Fig. 4.3.

Floe roundness is a measure for how closely a body approaches a disk geometry

(in 2-D). Different definitions are used in the literature to define floe roundness;

however, the exact definition is not relevant in this study. Floe roundness is a

common way to classify ice floe geometry and is used, for example, by Toyota

et al. (2011).
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parallel opposite edgesparallel opposite
edges

Figure 4.3: Parallel opposite edges enable the formation of larger force networks.

4.1.2 Mechanisms responsible for the floe-shape effect

The most important phenomenon responsible for the floe-shape effect is the greater

extend of force networks in the broken ice field when floes have parallel opposite

edges. The analyses presented in this section are published in van den Berg et al.

(2019a). This publication is included in this thesis in Appendix E. The parameters

used to generate the results in this section were equal to the constant parameters

listed in Table 4.1. In addition, the following parameters were used:

structure shape: circular

ice areal coverage: 70%

floe shape: digitized real floes and square floes

friction coefficient: 0.15 [-]

A scalar loading value is assigned to each ice floe in order to study the difference in

force propagation and dissipation in the broken ice field as a result of the different

floe shapes. The loading value is defined similar to the value used to visualize

force chains in Paavilainen and Tuhkuri (2013), as the maximum eigenvalue of the

load tensor α̂ij :

α̂ij =

Nc∑
c=1

F c
i r

c
j (4.1)

in which Nc is the number of contacts of each floe, F c
i are the contact force vec-

tors, and rcj are normalized vectors from the body’s COG to the contact point.

Differences in force propagation between the floe fields with real and square floe

shapes are quantified by comparing the mean combined floe area of all floes with

a loading value above a range of threshold load values:

A (Fthr) =

∑Nt
t=1Aλmax>Fthr

(t)

Nt
(4.2)
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in which A is the mean broken ice area with a loading value above threshold load

value Fthr, Nt is the number of time steps, and Aλmax>Fthr
(t) is the broken ice

area with a loading value above load value Fthr in each time step. Figure 4.4 shows

a visual comparison of the force networks occurring in the square floe simulations

and the force networks occurring in the real floe simulations. The area of the floes

with a load level above a threshold load value at a time instance is the summation

of the top areas of all coloured floes. A threshold load value of 5 kN is used in the

left figures and a threshold load value of 0.25 MN is used in the right figures.
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Figure 4.4: Floes with a load value exceeding a threshold level (coloured floes) for the

simulations with square floes (top) and the simulations with real floe shapes (bottom), and

for different threshold levels (left and right).

The resulting load-area curve is shown in Figure 4.5. Figure 4.5 shows that the

force network is larger in the square floe simulations. Depending on the threshold

load level, the mean floe area with a load value higher than the threshold load is

2.15 to 3.13 times higher in the square floe simulations.
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Figure 4.5: Mean total floe area of the floes exceeding a threshold load level.

In order to gain insight in the differences in force propagation and dissipation, the

area-load curves are normalized by scaling the load thresholds with the mean struc-

ture load value. The mean area-over-load-threshold as a function of the normalized

load thresholds can be described by a power function of the form:

A (Fthr) = a

(
Fthr

F thr;s

+ b

)c

+ d (4.3)

in which F thr;s is the mean load value of the structure, constants b and c have no

units and constants a and d have the unit of m2. The normalized area-load curves

are shown in Figure 4.6.

The normalized area-load curve of the square floe shape simulation can be scaled

to match the area-load curve of the real floe shape simulation by applying a scaling

factor of 0.7:

Anat ≈ 0.7Asq (4.4)

The scaled results, as well as a power law fit of the real and scaled results, are

shown in Figure 4.6. The normalized area-load curve of the real floe shape simula-

tion and the scaled area-load curve of the square floe simulation can be accurately

approximated by the power law function given in Equation 4.3 with the coefficients

a = 2034 m2, b = 0.0127, c = −0.891 and d = −359.5 m2. The exact values of

coefficient a, b, c and d are not so relevant since they depend on the chosen simula-

tion parameters such as drag and friction coefficients. However, it is an important

finding that the normalized area-load curves of both the real and square floe shape
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Figure 4.6: Mean total floe area of the floes exceeding a normalized threshold value,

including the scaled square floe results and a power law fit to the real floe shape and scaled

results.

simulations can be approximated with the same power c = −0.891. This indicates

that the propagation and dissipation processes are similar in the real and square

floe simulations. The force network in the square floe simulations can be seen as a

scaled-up version of the force network in the real floe simulations.

4.1.3 Model limitations and result validity

As any numerical model, the model used in this study is a simplification of reality.

The simplifications that were made may influence the modelling results. In the

context of the study on floe-shape effects, the most important limitation is the 2-D

nature of the numerical simulations and the lack of 3-D effects like ice floe rafting.

However, the contact forces and ice areal coverage in the tested cases described in

this section were such that it is not expected that ice floe rafting and/or rubbling

would have a large effect on the study results.

In addition to the model simplifications, there is also a significant uncertainty in the

chosen physical parameters. Parameters which may have a significant influence on

the results, such as the friction coefficients and the hydrodynamic drag coefficients,
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have a high uncertainty. There is no agreement in the ice modelling community

on what values are most appropriate. As an example, there is a wide range of

friction values being applied in discrete ice-structure interaction simulations, as

described in Section 2.3.2. This uncertainty is partly alleviated by assessing the

floe-shape effects at two friction values which represent the approximate lower

and upper bounds of friction values used in other numerical ice modelling studies

with conditions similar to the study performed in this section. For both friction

values, the floe-shape effect is significantly present.

4.1.4 Conclusions and recommendations

The numerical simulations show that there is a strong floe-shape effect on the

mean ice load in the surge direction in all tested broken ice conditions. The results

from the sensitivity study show that the square floe simulations predict a mean

ice load that is between 19% and 88% higher than the mean ice load predicted by

the real floe shape simulations. The effect of floe shape is correlated to all of the

investigated parameters. For instance, a circular structure results in a higher floe-

shape effect than a square structure, a higher friction coefficient reduces the floe-

shape effect and the floe-shape effect is stronger for a higher ice areal coverage.

The greater extend of force networks is the primary mechanism responsible for the

floe-shape effect.

The extend of force networks is related to the presence and length of parallel op-

posite edges. The presence and length of parallel opposite edges as a description of

floe shape is novel and distinctly different from the often used roundness or (equi-

valent but opposite) angularity parameter. A quantification of the effect of parallel

opposite edges is not provided. The high number of parameters that may influence

the floe-shape effect and the complexity of the phenomena leading to the shape

effect, make such a quantification infeasible. Currently, numerical simulation ap-

pears the best tool to assess the influence of floe shape in a particular interaction

scenario, possibly in combination with ice-tank tests. The results of this study lead

to two recommendations:

• DEM simulations of broken ice should attempt to approximate the expected

real floe shape. If the floe shape is not known, several floe shapes should

be modelled to assess the influence of floe shape in the scenario of interest.

Approximating the broken ice with square floe shapes will lead to conser-

vative results, but the results may be overly conservative, resulting, in some

conditions, in loads that are almost two times greater than if real floe shapes

would have been used. Approximating the ice floes with circular floe shapes

may lead to an under-prediction of broken ice loads.
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• Ice-tank tests of broken-ice-structure interaction should be performed using

broken ice with shapes that resemble the floe shapes of the ice condition

one intends to model. It is left to the ice tanks to define a realistic ‘real-

equivalent’ floe shape.

4.2 Variability in the results of ice-tank tests with broken ice

During the numerical study on floe-shape effects, it was observed that changes

in the initial (random) floe positions could have a large effect on the simulation

results. An interaction length of 10 000 m was needed before the mean load was

converged to a stable value (i.e, a longer simulation would not lead to a change

in mean load) that was independent from the initial floe positions. The interaction

length that was needed to get a converged mean load was much longer than the

(full-scale equivalent) length of most ice tank tests in broken ice. Based on these

results, the question arose if and how the result variability caused by a change

in initial floe positions would affect ice tank test results. This led to the study

described in this section. This study is submitted to Marine Structures. The sub-

mitted manuscript is included in Appendix F.

Ice-tank test campaigns are often designed to investigate the influence of several

parameters that may affect the ice-structure interaction process, such as the floe

size, the floe shape, the interaction velocity, the ice thickness, the ice concentra-

tion and the structure orientation. To analyse the influence of these parameters,

each parameter must be varied separately compared to a base case, while keeping

the other parameters constant. Ice-tank test campaigns generally do not perform

multiple repetitions of tests with the same parameter combinations, mainly due to

the cost and efforts involved in each single test case. Therefore, the variability

and repeatability of tests in broken ice with the same initial parameters is not well

understood.

In this study, selected test cases from two test campaigns were analysed. Both test

campaigns were conducted at the Hamburg Ship Model Basin (HSVA). The first

test campaign studied the interaction between a 4-legged structure with a vertical

waterline and several broken and level ice conditions. This campaign is described

in Hoving et al. (2013). The second test campaign studied the interaction between

two ship-shaped structures and several level and broken ice conditions with the

primary aim of testing the dynamic positioning capabilities of ships in ice. This

campaign is described in, among others, Kjerstad et al. (2015); Haase et al. (2012);

Haase and Jochmann (2013). In this section, only the ice tank test and numerical

modelling results of the multi-leg structure tests are described. The results of the

ship-shaped structure tests are described in Appendix F.
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For the selected test cases, The measured structure load is analysed and the ice

tank test is reproduced numerically. Each analysed test case is simulated 20 times.

In each numerical simulation run, the initial position of the ice floes is slightly

different. Otherwise the conditions are identical and equal to the ice-tank test

conditions. Using the numerical simulation results, the variability in the ice load

statistics caused by the difference in the initial floe positions is assessed.

The analysed multi-leg structure tests were performed in 2014 at HSVA as part of

the Hydralab IV project. The primary objective of the tests was to investigate the

loads from broken ice on a jack-up structure, and establish relationships between

the level ice load and the load from broken ice with the same thickness and mech-

anical properties. A description of the tests and a preliminary evaluation of the

ice loads can be found in Hoving et al. (2013). The structure that was used in the

tests had 4 cylindrical legs, which were vertical at the waterline. The waterline

dimensions of the test structure are shown in Figure 4.7. A scaling factor of 32

was applied in the ice tank tests, leading to an equivalent full-scale structure with

a leg center-to-center spacing of 50 m and a leg diameter of 7 m.

1565 m
m

 

219 mm

towing direction

a b c

Figure 4.7: Planar view of the waterline geometry of the multi-leg test structure. Not

rotated (a), rotated with α = 22.5o (b) and rotated with α = 45o (c).

Seven test cases were selected for the analysis in this study. The test cases were se-

lected based on 1) the availability of complete top-view photographs of the broken

ice field for accurate numerical reproduction and 2) the reliability of the measured

structure loads. In some test cases, there were clear errors in the measured loads,

which could not easily be corrected. These cases are not included in this study.

The tests in level ice are also not considered. The analysed test cases are listed

in Table 4.2. In the analysed tests, the ice thickness (hi), the ice concentration

(ci) and the structure orientation (α) were varied. Table 4.3 lists the parameters
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Table 4.2: Analysed test cases for the multi-leg structure. The case name includes the

structure type (ML), the ice thickness, the ice concentration and the structure orientation.

case hi [m] ci [%] α [o]

ML_33_80_000 0.033 80 0

ML_33_80_225 0.033 80 22.5

ML_33_60_225 0.033 60 22.5

ML_16_80_225 0.016 80 22.5

ML_16_60_225 0.016 60 22.5

ML_33_60_450 0.033 60 45

ML_16_80_000 0.016 80 0

Table 4.3: Constant simulation parameters, multi-leg structure tests.

structure velocity [m/s] vs;l, vs;h 0.09-0.18 (first half, second half)

friction coefficient ice-ice [-] μii 0.25

friction coefficient ice-structure [-] μis 0.12

ice form drag coefficient [-] Cd 0.1, 0.5 (horizontal, vertical)

ice skin friction drag coefficient [-] Cp 0.005

fracture toughness [kPa
√
m] Kic 6.0

crushing specific energy [kPa] CSE 30.0

flexural strength [kPa] σf 60.0

water density [kg/m3] ρw 1020.0

ice density [kg/m3] ρi 900.0

used in the numerical reproduction of the ice-tank tests. The structure velocity,

flexural strength, water density and ice density are based on measured test values.

The fracture toughness is based on measured values for model-scale ice reported

in Dempsey et al. (1986) (not specifically for the ice used in the analysed tests).

The crushing specific energy is derived from the measured loads in the level ice

tests. It is equivalent to the mean crushing pressure and is approximately half

of the maximum compressive strength. The ice-ice friction coefficient is determ-

ined by tuning the numerical model results to match the ice-tank test results of

the ML_33_80_000 test case. The resulting ice-ice friction coefficient of 0.25 is

similar to the value used in Metrikin et al. (2013). After tuning this parameter to

match the ice-tank test results for this single case, the parameters are kept constant

while modelling all other test cases.

The numerical broken ice fields were created from top-view photographs of the

fields used in the ice-tank tests. The fields were digitized using an adapted version

of the algorithm described in Zhang and Skjetne (2015). Figure 4.8 shows an
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example of the stitched top-view photographs of test case ML_33_80_000 and

the digital reproduction of the broken ice field. This figure also shows the tank

dimensions, the coordinate system and the boundary conditions.

57 m

10 m

sloping end boundary

x
y

structure

Figure 4.8: Stitched top-view photograph of the broken ice field of case ML_33_80_000

(top) and the digitized version of the broken ice field (bottom).

4.2.1 Comparison of the results from ice-tank tests and numerical simula-
tions

To visualize the results of all the numerical simulations and to compare the res-

ults against the results of the 7 selected ice-tank test cases, 5 representative load

properties are compared for each test case. The compared parameters are the auto-

correlation of the load-time signal in the x-direction (ρac), the absolute mean load

in the x-direction (|F x|), the load standard deviation (σF ), the maximum of the ab-

solute load in the x-direction (max (|Fx|)) and the sheltering effect. The sheltering

effect is assessed by considering the ratio between the mean load in the x-direction

on the most sheltered leg (leg 4) and the least sheltered leg (leg 2):

γ =
F l;4

F l;2

(4.5)

in which γ is a parameter describing the sheltering effect. The autocorrelation is

the correlation of the load-time signal with a delayed copy of itself. The autocor-

relation can be viewed as a measure of the fluctuation of the load-time signal. It is

calculated as in Box et al. (2016):

ρac;n =
E
[(
Fx;t − F x

) (
Fx;t+n − F x

)]
σ2
F

(4.6)

where ρac;n is the autocorrelation at time lag n, E is the expected value operator,

Fx;t is the load in the x-direction at time t, F x is the mean load in the x-direction

and σ2
F is the variance of the load.
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Figure 4.9 shows a comparison of the properties of the simulated and measured

loads for the multi-leg ice tank test cases. The properties are separately shown for

the low-velocity segment of the ice-tank tests and numerical simulations (the first

half of the run) and for the high-velocity segment (the second half of the run).

Figure 4.9: Properties of the simulated loads compared to the properties of the measured

loads on the multi-leg structure. Values are shown separately for the low-velocity segments

of the tests (vs;l) and the high-velocity segments of the tests (vs;h).

The influence of structure velocity, ice concentration and ice thickness as was ob-

served in the ice-tank tests is captured well in the numerical simulations. For most

cases and for most properties, the value resulting from the ice-tank tests falls within

the range predicted by the 20 numerical simulations for each case. For each prop-

erty, there is a minority of cases where the ice-tank test result falls outside of the

range predicted by the 20 numerical simulations. Several reasons for the observed

discrepancies are discussed in Section 4.2.4.
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4.2.2 Variability in the results of the ice-tank tests and in the numerical sim-
ulations

All representative properties used for the result comparison are strongly influenced

by the initial floe positions. The variation can, in some cases, be attributed to

specific interaction events. This section examines one of the interaction events

responsible for the result variability in more detail.

Bridging of a force chain between the tank wall and the structure occurs in one

of the numerical simulations for case ML_33_60_225. This results in the highest

mean load of the 20 numerical simulations performed for this case. Figure 4.10

shows the load-time signals of the simulation with the highest and lowest mean

loads for case ML_33_60_225. Only the high-velocity segment of the time series

is analysed.

H1 H2 H4
H3

L1
L2

L3

L4

Figure 4.10: Comparison between the load-time signals of the total load in the x-direction

of the ice-tank test result, the numerical simulation result with the highest mean load and

the numerical simulation result with the lowest mean load.
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The floe positions and the stress state within the ice sheet at several instances

during the simulation is examined. The analysed intances are indicated by H1-H4

(for the simulation with the highest mean load) and L1-L4 (for the simulation with

the lowest mean load). The stress state in the ice sheet is visualized by assigning

a load value to each floe. The load value is defined as the maximum eigenvalue

of the load tensor defined in Equation 4.1. The floe positions and stress states are

visualized in Figure 4.11.
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Figure 4.11: Differences in interaction between the simulation with the highest mean load

(H1 - H4) and the simulation with the lowest mean load (L1 - L4), visualized by the force

networks.

In the simulation with the highest mean load, bridging of a force chain between

the structure and the tank wall occurs at H1. The force chain is clearly visible, and

the occurrence of the bridging event leads to a peak in the ice load. At H2, the

bridging is cleared, leading to a drop in the ice load. Because of the occurrence of

bridging, a lead has formed behind the bridging event. Ice floes have accumulated

ahead of the structure and ice floe bridge, leading to a higher ice concentration

ahead of the structure. Because of the higher concentration, the force networks

within the broken ice can extend to the end of the ice tank at H3, leading to a

build-up of the ice load. At H4, the remaining ice ahead of the structure is under a
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high pressure. In summary, the bridging event that occurs at H1 leads to a higher

ice concentration ahead of the structure for the remainder of the test, leading to

substantially higher ice loads even after the bridging event has cleared.

In the simulation with the lowest mean ice load, on the other hand, no bridging

occurs; therefore, the ice concentration ahead of the structure remains lower for a

longer period of time. No significant force networks are formed until L1, much

later than in the simulation with the highest load. After L1, the load-time signal

is comparable to that of the high-load simulation, and the interaction process is

governed by the formation and release of force networks.

A bridging event as the one described above does not occur in the ice-tank test

of case ML_33_60_225. This is not surprising, because the ice-tank test only

represents one realization of many possible interaction scenarios. However, a

similar bridging event is observed in one of the other analysed test cases; case

ML_16_80_225. Figure 4.12 shows the bridging event observed in the ice-tank

test ML_16_80_225. In the 20 numerical simulations of case ML_16_80_225, a

similar bridging event did not occur. This may be the reason why all numerical

simulations of case ML_16_80_225 result in a lower mean load than the mean of

the measured load.

Open lead appears due to bridging of ice between 
the structure and the tank wall.

Open lead due to bridging of ice between 
the structure and the tank wall.

a b

Figure 4.12: Bridging event in ice-tank test - case ML_16_80_225

4.2.3 Interpretation of results from ice-tank tests with broken ice

The high variability observed in the numerical reproductions of the ice-tank tests

can be related to specific interaction events. The occurrence of these events is also

observed in the ice-tank tests. This result indicates that the mechanisms leading

to the result variability are not merely a numerical phenomenon. Therefore, it is

expected that a variability similar to the variability in the numerical simulation
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results would also occur if a single case (i.e., with the same parameters) would be

repeated several times in the ice tank. This should be considered in the interpreta-

tion of results from ice-tank tests with broken ice.

A possible solution to the issue of result variability, is the processing of ice loads

as a function of ice concentration. As discussed, the variability of ice-tank test

results can be partly attributed to changes in the concentration of the broken ice

field ahead of the structure. The numerical simulation data produced in this study

provides several cases that can be used to analyse the influence of concentration,

and the change in concentration, on the loads.

The ice concentration ahead of the structure was analysed over several regions for

all simulated cases. The results of this analysis show that the concentration from

the centre of gravity (COG) of the structure to the end of the ice tank correlated

best with the ice load in the x-direction.

Figure 4.13 shows a binned scatter plot of the load as a function of the concentra-

tion of the 20 simulations performed for the cases ML_33_80_225 and ML_33_60_225.

Only the high-velocity segments of the simulations were analysed. The brightness

is a measure of the number of data points in each bin. At each concentration

interval, the mean load at that concentration, denoted as μ(ci), is calculated and

displayed in the figure. The mean load at each concentration interval is calculated

as follows:

S = cli < ci < chi (4.7)

μ(ci) =

∑
Fx|ci∈S
Ns

(4.8)

in which S is the concentration interval between cli and chi , where cli and chi are the

lower and upper limits of the concentration interval; Fx is a vector containing all

loads in the x-direction of the 20 simulation runs performed for each case; and Ns

is the number of load data points in the concentration interval.

Figure 4.13 shows a clear jump in load at an ice concentration of 83%. Until a

concentration of 83%, the load is almost unaffected by the concentration. When

the concentration exceeds 83%, the load increases sharply as a function of con-

centration. There is some disagreement between the mean loads as a function of

concentration resulting from the 80% initial concentration case ML_33_80_225

and the 60% initial concentration case ML_33_60_225. A possible explanation

for this disagreement is the higher amount of ice rubble (as a percentage of the

total ice cover) in the ML_33_60_225 case.

68



Figure 4.13: Binned scatter plot of the total load in the x-direction versus the ice concen-

tration ahead of the structure, for the cases ML_33_80_225 and ML_33_60_225.

van der Werff et al. (2012) described an earlier study in which the relationship

between the ice concentration and the ice load was analysed. van der Werff et al.

(2012) found that the concentration correlated well with the ice load in some cases,

but not in others. In the current study the ice concentration correlated well with the

ice load in all analysed simulation results. A possible reason for this discrepancy

is that the concentration was only analysed in the direct vicinity of the structure in

van der Werff et al. (2012), whereas in the current study the ice concentration is

assessed over a larger region (from the structure COG to the end of the ice tank).

4.2.4 Discussion of the discrepancy between ice-tank test and numerical sim-
ulation results

This section discusses possible reasons for the discrepancy, for some cases and

parameters, between the numerical simulation results and the ice tank test results,

as shown in Figure 4.9.

Of the 5 load parameters used to compare the simulation results to the ice tank test

results, most discrepancy between the numerical and ice tank test results can be

observed in the autocorrelation. Specifically in the high-velocity segments of the

time series, the autocorrelation of the ice tank test signal is often higher than the

maximum value resulting from the numerical simulations. A comparison of the

video images and the visual simulation results indicates that this may be caused

by the discrete nature of the rubble in the numerical simulations. In the cases
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where the autocorrelation is significantly higher in the ice-tank tests, there is often

a significant amount of crushed ice present, which possibly smooths out the load

peaks. In the numerical simulations, on the other hand, ice rubble is approximated

by small ice bodies, but crushed ice, which appears more like slush in the physical

tests, is not simulated.

For each of the other load parameters, there are one or two ice tank test results

that fall outside of the range predicted by the numerical simulations. This can be

partly explained by the natural variability in results. The result variability of the 20

performed simulation does not necessarily capture the maxima and minima of that

particular property, and thus the ice tank test result may fall outside of the range

predicted by the numerical simulations.

In addition, it should be noted that there is a high uncertainty in some of the as-

sumed numerical simulation parameters and model properties. Although both the

visual model results and the simulated loads indicate that the model captures the

observed interaction phenomena well, there are inherently differences between the

assumptions made in the model and reality. The most important model proper-

ties that may influence the numerical model results are the rafting behaviour, the

constant friction coefficient (no distinction between static, dynamic, wet or dry

friction), the lack of roughness on the edges of ice floes and the simplified crush-

ing model (constant crushing pressure). The current knowledge and measured data

on these factors is such that a more advanced numerical model is not warranted.

There is a high uncertainty in some of the parameters used in the numerical model,

such as the drag coefficients, friction coefficients and fracture toughness of ice.

4.2.5 Conclusions and recommendations

In this study, 7 ice-tank test cases were analysed. Each test case was simulated 20

times using a numerical model based on the non-smooth discrete element method.

In the 20 simulations performed for each case, the ice floes had different initial

positions. Otherwise, the simulations were identical. The goal was to study the

variability that may occur in the statistical properties of the ice loads due to un-

controllable conditions, such as the initial floe positions. The results of this study

support the following conclusions:

• Uncontrollable properties of tests in broken ice (the initial positions of ice

floes) can cause significant differences in the statistical properties of the ice

load in numerical simulations.

• The development of floe accumulation ahead of a structure is often strongly

influenced by specific interaction events, such as the bridging of a force

chain between the structure and the tank wall.
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• The events responsible for the variability in load statistics as observed in

the numerical simulations also occur in the analysed physical ice-tank tests.

This indicates that the variability observed in the numerical simulation res-

ults would also occur in physical tests if a single test case would be repeated

multiple times.

This study shows, using numerical simulations, to what extent representative load

properties such as the autocorrelation, mean, standard deviation and maximum can

be affected by changes in the initial floe positions. The variability in the results of

ice-tank tests with broken ice should be considered when interpreting the results

from ice-tank tests. The effects of differences in the floe accumulation process

can be partly accounted for by considering the ice load as a function of the ice

concentration ahead of the structure. It is recommended that this measure be used

in the post processing of results from ice-tank tests with broken ice. To enable this,

ice tanks should be equipped with a camera system that accurately captures the ice

field ahead of the structure throughout the test duration.

In addition, this study shows that numerical modelling can be used in combination

with ice-tank tests to investigate and account for phenomena such as the result

variability caused by a difference in initial floe positions and the change in ice

concentration during a test run.
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Chapter 5

Discussion
Numerical modelling is a valuable tool that can be used to better understand and

predict the phenomena that will occur in ice-structure interaction. The role of

numerical models is to:

• Clarify the mechanisms and phenomena that lead to a certain outcome, as is

done in the study on the floe shape effect in this thesis.

• Predict what would happen in an interaction scenario for which no model-

or full-scale data are available, as is done in the study on result variability in

this thesis.

When applying numerical models for these purposes, three central questions come

to mind:

1. How can numerical models of ice-structure interaction be validated?

2. How can the input parameters of a numerical model be determined in a con-

sistent and justifiable way?

3. Can numerical models ever replace, rather than support, ice tank tests and/or

full-scale measurements?

The answers to these questions are interlinked and often no definitive answer can

be given. In the remainder of this chapter, potential answers to these questions are

discussed both from a general perspective and specifically focussing on the model

presented in this thesis.

5.1 How can numerical models of ice-structure interaction be valid-
ated?

There is currently no agreement within the ice-structure modelling community on

how model validation should be performed. There is no standardized approach for

model validation, and, given the wide range of possible interaction scenarios, it is
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questionable if a standardized approach would even be possible. The judgement

of whether a model is sufficiently validated for its intended area of application

currently mostly falls on reviewers, editors and the model developers when applied

in scientific studies and on certifying authorities, clients and the model developers

when applied in industrial practice.

Journal editors and reviewers are often relatively lenient with regard to model val-

idation, and usually operate from the assumption that validation results are repor-

ted honestly and completely. Certifying authorities, on the other hand, require a

more thorough validation process and documentation.

In other areas where numerical modelling is applied, validation is also an ongoing

topic of discussion. Tinoco (2008) describes the model validation process well in

the context of CFD modelling:

“CFD validation cannot consist of the comparison of the results of one code to
those of one experiment. Rather, it is the agglomeration of comparisons at mul-
tiple conditions, code-to-code comparisons, an understanding of the wind tunnel
corrections, etc., that leads to the understanding of the CFD uncertainty and valid-
ation of its use as an engineering tool. Examples include comparisons of predictive
CFD to subsequently acquired test data. The question is not can CFD give a great
answer for one or two test cases, but can the CFD “processes” give good answers
for a range of cases when run by a competent engineer? This is what validation
for an intended purpose is all about.”

In summary:

• Rather than a single comparison, validation is the agglomeration of compar-

isons of multiple test cases.

• Model validation should include tests of the predictive value of the model

by comparison of pre-computed model results to subsequently acquired test

data.

This validation philosophy can be directly applied to numerical models of ice-

structure interaction as well. It is proposed that the validation of ice-structure

interaction models be performed in two phases:

1. Validation of sub-models. In the validation of sub models, specific model

assumptions and simplifications can be tested. The validation tests should

be simplified as much as possible, such that a single model assumption can

be tested in isolation. In the context of the model developed in this thesis,
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an example of a validation test that could be performed for a sub model is a

test of the edge friction of model- or full-scale ice floes, or a test of the drag

experienced by an ice floe in model- or full-scale.

2. Global validation. Successful validation of sub-models does not automatic-

ally mean that the global model captures all important phenomena correctly.

For instance, it may be that an important phenomenon is simply overlooked

in the model development. There is no sub-model for this phenomenon, thus

the sub-model cannot be validated. Therefore global validation is a neces-

sary additional validation step.

The simulations performed for the result variability study (Section 4.2) presen-

ted in this thesis can be seen as a global validation of the presented numerical

model for the specific application area of the reproduction of ice tank tests

with broken ice. In the assessment of result variability, the numerical model

was tuned using the results of one test case, after which the predictive value

of the model was tested by applying the model with the same parameter

set to all other test cases. The model results indicate that the presented nu-

merical method has clarifying and predictive capabilities for the modelled

interaction scenarios. For other scenarios, such as the resistance of ships in

level ice, the predictive value of the model is still being investigated. An

example is the sensitivity study performed by Raza et al. (2019).

Although the global model validation gives promising results, the validation

of sub-models has yet to be performed for the presented method. Therefore

it can not be excluded that the error in one sub-model is offset by the error

in another sub-model, leading to global model results that seem correct, al-

though the underlying processes are different from reality. It is the author’s

intention to continue performing validation of sub-models in the near future.

5.2 How can the input parameters of a numerical model be determ-
ined in a consistent and justifiable way?

The determination of model input parameters is interlinked with the model valid-

ation. As discussed in Chapter 2, model input parameters can be determined by

direct measurements, by tuning of the model results, or by copying values used by

others.

Direct measurements are considered the most accurate and justifiable way of de-

termining model input parameters. However, this approach is not always an option

because is it not always feasible to directly measure all required model input para-

meters. Determination of model input parameters by direct measurement can be

combined with the validation of sub-models.
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When determining model parameters by tuning, there is a risk that the parameter

values may be incorrectly determined if the underlying model assumptions are

incorrect, or if other model parameters or assumptions are not correct. In this case,

the tuning of the model parameters may indirectly correct for an error introduced

by other assumptions or parameters. The resulting (incorrect) model may not have

predictive value for cases other than the case(s) used for tuning. The determination

of model input parameters by tuning may be combined with the global model

validation.

When basing model parameters on values used in other models, one should con-

sider the source of the values used in the other model. If the values are determ-

ined by direct measurements, then this approach is equivalent to using values from

direct measurements. If the parameter values are determined by tuning, the as-

sumptions made in the other model may have an influence on the parameter val-

ues that best capture the underlying physics. For instance, a discrete ice-structure

interaction model that assumes circular floe shapes may find that a higher friction

coefficient is needed to capture phenomena observed in physical tests than a model

that uses more realistic floe shapes. If the friction coefficient from the model with

circular floe shapes is used in the model with realistic floe shapes, then this may

lead to incorrect interaction phenomena.

Ultimately, model development, parameter determination and validation is an in-

terlinked and iterative, rather than a linear process. Figure 5.1 shows the model

development and validation process as envisioned here. As discussed, validation

can be split up in validation of sub-models and validation of the global model. The

global model should be validated and adapted based on comparisons against mul-

tiple data sets. After each model adaptation, the model performance in previous

validation cases should be re-evaluated.

It should be noted that there is often substantial uncertainty in measured data as

well. This uncertainty should be taken into account when comparing numerical

modelling results to full-scale or ice-tank test data. In addition, it is important to

consider that model-scale tests (i.e., ice tank tests) are also ’models’, and that the

mechanisms and results from model-scale tests are not necessarily representative

of full-scale interaction.
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Figure 5.1: The process of model development, parameter determination and validation.

5.3 Can numerical models ever replace, rather than support, ice tank
tests and/or full-scale measurements?

The capabilities of numerical ice-structure interaction models are continuously in-

creasing. At the same time, both ice-tank testing and full-scale measurements

have various shortcomings, as listed in the introduction of this thesis. This raises

the question if there will ever be a time when numerical modelling will completely

replace ice-tank tests and/or full-scale measurements.
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The many physical processes that play a role in ice-structure interaction (multi-

body interaction, dynamic fracture and failure, fluid dynamics, material model-

ling) make that even current state-of-the-art ice-structure interaction models must

greatly simplify many of the interaction-processes. Scale-model tests and full-

scale measurements are still needed to determine if the simplifications that are

made are sufficiently valid. Even in fields where the numerical modelling cap-

abilities are arguably more advanced, and where the underlying assumptions are

better validated, numerical modelling has not yet replaced model-scale testing and

measurements. An example is CFD models and wind tunnel testing Kraft (2010).

Therefore it is expected that numerical simulations will not replace scale-model

testing any time soon. Full-scale measurements will always be needed to validate

the assumptions made in models. Thus, it is expected that full-scale tests will never

be replaced by numerical modelling.

In the near future, the only cases in which numerical modelling may replace model-

scale testing are the cases for which very similar model-scale tests have already

been performed. If the data from previous similar tests is available, and it has

been shown that a numerical model is capable of accurately capturing the test

results, then there is no practical reason to perform another model-scale test cam-

paign. However, this stage of model accuracy and validation has probably not been

reached yet.

A final consideration is that certifying and regulating authorities, as well as indus-

trial clients, should approve the use of numerical modelling instead of model-scale

tests.

5.4 Summary

Numerical models of ice-structure interaction can clarify observed phenomena,

and can be used to predict what would happen in interaction cases for which no

physical measurements are available. The implicit DEM model developed in this

thesis has been used to clarify phenomena leading to floe shape effects, and to

predict what would happen to the results of ice tank tests if the initial positions of

ice floes would be different. The model is partly validated against the results of

ice tank tests. However, validation of sub-models has yet to be performed. The

validation and development of numerical models is an interlinked and iterative

process, which is still ongoing for the model presented in this thesis.
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Chapter 6

Conclusions and recommendations
In this thesis, a novel implicit discrete element method is developed. The method

follows similar procedures as other non-smooth discrete element methods. How-

ever, the contact parameters are derived such that the method can capture both

non-smooth as well as smooth contacts. The method is capable of modelling the

interaction between discrete polyhedral bodies in 3-D. In the calculation of contact

forces between bodies, contact compliance is taken into account. The contact com-

pliance parameters are derived based on the assumption that local contact crush-

ing will occur. The compliance parameters are derived using the exact contact

geometry and the material properties of the interacting bodies. Specifically, the

crushing specific energy of ice is used to derive the contact compliance properties.

The combination of model properties; implicit time integration, and a compliant

contact model which uses the exact contact geometry and material properties in

calculating the contact forces, is novel and offers expanded capabilities and im-

proved accuracy compared to other DEM models applied in ice-structure interac-

tion. A notable capability of the method is the ability to model ice floes as lattices.

This is not possible in other NDEM methods used in ice-structure interaction. The

developed method was applied to investigate specific aspects of the interaction

between structures and broken ice fields.

First, the method was used to investigate the effect of floe shape on the load ex-

perienced by vertical-sided structures interacting with broken ice. A sensitivity

study was performed that assessed the influence of structure shape, confinement

conditions, friction coefficients, and ice areal coverage on the floe shape effect.

Second, the model was used to study the variability in the results of ice tank tests

with broken ice. 7 ice tank test runs were analysed. Each test run was simulated

20 times with the numerical model. In each simulation, the initial floe positions

were slightly different, while all other model parameters were constant. The nu-

merical modelling results were studied and compared to the ice tank test results in

order to identify sources of result variability. These studies lead to the following

conclusions:
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• There is a clear and strong effect of floe shape in the interaction between

broken ice and vertical-sided structures. This floe-shape effect should be

taken into account in the numerical modelling of interaction between broken

ice and structures, and in the design and interpretation of ice tank tests with

broken ice. In clearance-dominated interaction regimes, the mechanism re-

sponsible for the floe shape effect is the increased ability of floes with par-

allel opposite edges to form force networks. This results in a larger ice area

that is loaded and displaced by the structure.

• There is a high variability in the results of ice tank tests in broken ice. The

mean load, load standard deviation and the maximum load in the surge dir-

ection are all strongly influenced by uncontrollable test properties such as

the initial positions of ice floes. The result variability should be considered

when interpreting results from ice tank tests in broken ice. It is shown that

the mechanisms that lead to the results variability occur both in the numer-

ical simulations as well as in the physical ice tank tests. This indicates that

the result variability is not merely a numerical phenomenon. As an example,

the formation of a force chain between the structure and the tank wall is

highlighted. This event occurred both in the numerical simulations as well

as in the ice tank tests. In both cases, the formation of the force chain led to

an increase in ice concentration ahead of the structure for the remainder of

the test. This, in turn, led to an increased surge load on the structure.

It is shown that there is a correlation between the ice concentration ahead of

the structure and the ice load in surge direction. The ice concentration ahead

of the structure can be used to correct for the effects of floe accumulation.

Currently, ice tank tests often only film the ice field in the direct vicinity

of the structure. The analysis results show that the broken ice over a larger

aerial domain influences the structure load. Therefore it is recommended

that ice tanks be equipped with a camera system that captures the ice field

in the complete tank during a test. This would allow post-processing of the

test data while taking into account the changes in ice concentration.

• The studies on floe shape effects and result variability show that valuable

insights in ice-structure interaction processes can be obtained by combining

ice tank tests with numerical modelling. Numerical reproductions of tests

can be used to assess the influence of modelling choices such as the used

floe sizes and shapes, and to study the variability in the test results due to

uncontrollable test conditions. In addition, numerical modelling can be used

to assess the influence of scaling effects.
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However, there are also challenges in the numerical reproduction of ice tank

tests with numerical models. The correct determination of model parameters

and the implementation in the model of all phenomena that occur in the tests

are the two main challenges.

For the conditions studied in this thesis, the friction and drag coefficients

are the model parameters that have a high uncertainty and a large influence

on the simulation results. Ice floe rafting is the interaction phenomenon that

is least understood in the scenarios studied in this thesis, while the rafting

behaviour has a large influence on the model results. These uncertainties

can be partly alleviated by a series of simple tests, which can help in further

identifying the parameters and phenomena needed for the numerical model:

– The floe rafting behaviour in model-scale can be tested by compressing

a series of free floating ice floes.

– Ice floe edge, top and bottom friction coefficients can be measured in

a similar fashion.

– Ice floe drag can be tested by dragging a single ice floe through the

tank with a constant velocity.

In the review process of the publications that are part of this thesis, a criticism

was that the results of the floe shape and test variability studies were self-evident.

Although the shape effects and results variability may seem self-evident to the

experienced ice expert, the consequences of these effects are currently not properly

accounted for in the preparation of ice tank tests and the interpretation of test

results. This demonstrates the relevance of the studies performed in this thesis.

Further development of the model presented in this thesis will focus on the val-

idation of sub-model components, the further implementation and validation of

a lattice model for ice failure, and the implementation of a more realistic hydro-

dynamics model based on potential theory.
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A B S T R A C T

This paper presents a novel time-stepping scheme for the modelling of discrete ice-structure interaction. The
scheme extends the non-smooth discrete element modelling (NDEM) technique to enable compliant continuous
and discontinuous contacts. This increases the accuracy and expands the applicability range of the NDEM
technique related to ice-structure interaction problems. We derive the parameters representing the compliant
behaviour of contacts. The accuracy of the presented scheme for discontinuous contacts is compared to an
existing, simpler scheme that limits the contact force based on a maximum force assumption. The comparison
shows that the derived scheme results in more accurate contact forces, for the same time step size, as previously
applied NDEM schemes in ice-structure interaction. An example simulation is compared against ice tank tests of
a 4-legged, vertical-walled structure moving through a broken ice field.

1. Introduction

The reduction of the areal extent and thinning of the Arctic sea ice
cover will increase activity in waters where sea ice may occur. The
accurate prediction of the loads and resistance caused by sea ice is
important for safe and economical operations in these waters. Existing
calculation methods for loads from sea ice on structures often rely on
empirical formulas based on a limited range of full-scale data. Full-scale
data are limited to existing structures and the regions where they are
located. On top of this, the data are often incomplete and there is a high
uncertainty in the measured loads. Ice tank tests can be used to obtain
load data for specific types of structures or ice conditions. However, it is
often uncertain if and how the loads measured in the ice tank can be
scaled to full-scale equivalent loads. This is especially challenging for
load cases other than continuous level ice, such as floe ice or ice ridges.
Numerical modelling of ice-structure interaction can help, in combi-
nation with full-scale and model test data, to increase the under-
standing of occurring phenomena and ice failure modes, and can lead to
a more accurate prediction of the sea ice loads that may be en-
countered.

Interaction between sea ice and structures is a complicated process.
There are many factors that may contribute to the load and resistance
experienced by a structure interacting with sea ice, and that pose
challenges to the accurate numerical representation of the occurring
processes. For example:

• many simultaneously contacting ice bodies

• complicated, and (seemingly) random body geometries

• difficult to estimate and highly variable ice material properties

• complicated hydrodynamic effects

• complicated and continuous dynamic fractures and failures

This combination of factors makes ice-structure interaction different
from any other engineering problem. A numerical model will need to
simplify some or all of the above-mentioned factors. To what extent the
parameters can (and need to) be simplified depends on the processes to
be investigated and limiting factors such as the available computing
power and computation time, as well as the availability and accuracy of
input parameters. The broad range of occurring processes and the dif-
ferent requirements that may be put upon numerical models, has led to
a broad range of models and modelling types.

Numerical models for sea ice load estimation can broadly be divided
in continuum and discrete models, although there are also several
models that combine both modelling types. Among discrete ice-struc-
ture interaction models, a further distinction can be made based on the
time-stepping scheme that is used. This difference is often described as
smooth discrete element modelling (SDEM) versus non-smooth discrete
element modelling (NDEM). The difference between NDEM and SDEM
can be seen as the difference between implicit and explicit time in-
tegration (Servin et al. (2014)), allowing for much larger time steps,
while maintaining stable simulations, when using NDEM. The time
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steps can often be several orders of magnitude larger than those in
SDEM, but the processing of each time step is more computationally
expensive. NDEM requires the solution of a linear complementarity
problem (LCP) or a mixed linear complementarity problem (MLCP) at
each time step. Nevertheless, NDEM simulations are often considered
more efficient and are mostly chosen when real-time or near-real-time
simulations are required.

There are many publications describing SDEM models and model-
ling results of ice-structure interaction, going back to the early 90s.
Some examples can be found in Hopkins et al. (1991); Hocking (1992);
Løset (1994a,b); Tuhkuri and Polojärvi (2005); Polojärvi and Tuhkuri
(2009); Paavilainen et al. (2009); Liu et al. (2017). The application of
NDEM in ice-structure interaction has been more recent, and so far it
has been mostly applied to global broken ice-structure simulations.
Application examples of NDEM in ice-structure interaction can be found
in Konno and Mizuki (2006); Lubbad and Løset (2011); Metrikin
(2014); Alawneh et al. (2015); Yulmetov et al. (2016). In NDEM, con-
tacts between interacting bodies are often assumed to be infinitely
rigid. Therefore, contact forces cannot be defined in a physically correct
manner. This limitation can be remedied to some extent by introducing
an upper limit for the contact force based on a combination of contact
area and crushing pressure, as is done in Lubbad and Løset (2011) and
Metrikin (2014), where both papers use a slightly different method to
apply the upper limit.

In this paper, we derive a novel NDEM time-stepping scheme
starting from the Newmark-Beta method for differential equations
(Newmark (1959)). The new formulations are valid for compliant
continuous and discontinuous contacts. The position and velocity up-
date rules of the Newmark-Beta method are rewritten, and limits are
introduced in order to enable discontinuous contact modelling. Com-
pared to previously applied NDEM methods in ice-structure interaction
modelling, where only an upper limit for the contact force was defined
based on the current contact area, our new method takes the current
contact area as well as the expected change in the contact area into
account in determining the contact response, leading to a higher ac-
curacy of the predicted contact force for the same time step size. The
main properties of the NDEM time-stepping scheme are maintained in
the new method, i.e., an MLCP is solved in each time step, and large
time steps can be taken without affecting the stability. In addition, the
new method can now handle compliant as well as infinitely stiff con-
tacts. The method is implemented in the Simulator of Arctic Marine
Structures (SAMS), the product of Arctic Integrated Solutions (ArcISo); see
ArcISo (2018); Lubbad et al. (2018).

To the authors' knowledge, this is the first time such a time-stepping
scheme has been applied to ice-structure interaction modelling. In other
fields, such as soil modelling and physics simulations, similar methods
have been described and used Jean (1999); Moreau (1999); Lacoursière
(2007); Krabbenhoft et al. (2012); Tasora et al. (2013); Servin et al.
(2014). The difference between these methods and the method de-
scribed in this paper is that the current model assures energy con-
servation for continuous linear contacts. This is a property of the
Newmark-Beta method. The other methods are derived from an implicit
Euler or similar schemes, and therefore result in numerical damping.

In Section 2, we first derive a generalized form of the time-stepping
scheme that applies to rigid, compliant, continuous and discontinuous
contacts. Sections 3 and 4 describe how the needed contact parameters
can be obtained for continuous contacts, as would occur in a lattice
model, and discontinuous contacts, such as ice-ice and ice-structure
contacts. The accuracy of the derived scheme for discontinuous contacts
is compared against an existing scheme in Section 5. In Section 6 we
provide an application example, in which we compare the results from
the numerical model against data obtained in an ice tank test. Section 7
discusses some features of the numerical model and the application
example. Finally, Section 8 concludes the paper.

2. An implicit DEM time-stepping scheme

The proposed implicit time stepping-scheme expands the traditional
NDEM formulation to include compliant contact behaviour, which is
needed for the accurate simulation of ice-structure interactions. Similar
to the traditional NDEM formulation, the stability of the simulations is
independent of the time step size when using the proposed scheme, and
it is capable of efficiently solving a large network of simultaneous
contacts.

The following sections derive the MLCP, which needs to be solved at
each time step. The central assumption in the derivations is a constant
average acceleration within a time step. More particularly, this means
that we use the average force occurring within a time step in body
propagation. It does not mean, however, that the contact force itself is
assumed constant. This corresponds to a Newmark-Beta method
(Newmark (1959)) with parameters =γ 1

2 and =β 1
4 , yielding the

constant average acceleration method. We start by deriving some terms
for a continuous 1 degree of freedom (DOF) case, then add constraints
to the contact force to enable discontinuous contact modelling, and
finally compare the resulting formulation to previously used formula-
tions. The expansion to multiple degrees of freedom and frictional
contacts is explained in Appendix B, since this part is similar to pre-
viously applied methods.

2.1. Derivation of the time-stepping scheme for a continuous 1-DOF case

Fig. 1 shows the 1-DOF example case used for the derivations in this
section. In this example case, we use a generalized Kelvin-Voigt unit as
the contact model, in which the parallel spring and dashpot element can
be linear or nonlinear. The method can also be applied to other rheo-
logical elements, such as a Maxwell unit, following a similar procedure
as described in this section. In Fig. 1, m stands for the mass of the body,
δ for the penetration depth, δ ̇ for the penetration velocity, F δ δ( , )̇cont for
the contact force as a function of the penetration and the penetration
velocity, and Fext stands for an external (non-contact) force acting on
the body during time step Δt= tn+1− tn, where tn is the current time
and tn+1 is the time at the end of the time step. u, u ̇ and ü are the body
position, velocity and acceleration, respectively. For convenience, we
choose the axis system such that δ= u if δ≥ 0. In the derivation in this
section, we assume δ≥ 0, and thus =F δ δ F u u( , )̇ ( , ̇)cont cont . This is ex-
panded to a case in which u∈ℝ in Section 2.2. The equation of motion
of this system is:

+ =mu F u u F¨ ( , ̇)cont ext (1)

Assuming constant average acceleration within each time step, the
equation of motion can be discretized, and body positions and velocities
are updated according to Eqs. (2) and (3), which are the time-stepping
equations as used in the constant average acceleration method:

Fig. 1. General single DOF contact case.
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= + + ++ −u u u t u F m t ṫ Δ 1
2
(Δ ̇ Δ )Δn n n1 cont ext

1
(2)

= + ++ −u u u F m ṫ ̇ Δ ̇ Δn n1 cont ext
1 (3)

Subscripts n indicate the body position and velocity at the beginning
of the time step, subscripts n+1 indicate the body position and velo-
city at the end of the time step, Δt is the time step size and uΔ ̇cont is the
change in body velocity due to the contact force Fcont. We write the
contact force at the beginning and end of the time step as:

= =+
+ +F F u u F F u u( , ̇ ) and ( , ̇ )n

n n
n

n ncont cont cont
1

cont 1 1 (4)

The partial derivatives of Fcont with respect to the penetration and
the penetration velocity at the beginning of the time step are used to
estimate the change of he contact force during a time step:

= ∂
∂

= ∂
∂= =k

F
u

c
F
u

| and
̇

|n

n

u u n

n

u u
cont cont

̇ ̇n n (5)

Using these partial derivatives and the body propagation Eqs. (2) and
(3), we estimate +Fn

cont
1 as:

= + ⎛
⎝

+ + ⎞
⎠

+ +

+ −

−

F F k u t u F m t t

c u F m t

̇ Δ 1
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(Δ ̇ Δ )Δ

(Δ ̇ Δ )

n n
n n
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cont
1

cont cont ext
1

cont ext
1 (6)

We rewrite this equation and formulate a system of equations in
which the contact impulse λcont, as in Eq. (7), and the velocity change
uΔ ̇cont are the unknowns:

= ⋅λ F tΔcont cont
av (7)

The average contact force over a time step Fcontav is defined as:

= + +
F

F F
2

n n

cont
av cont cont

1

(8)

Combining and rearranging Eqs. (6), (7) and (8), we obtain:

= + + +
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This can be rewritten as:

− +
+

=
+

+
+

+

+
+

−

−

( ) ( )
( )
( )

( )

u λ

k t c t

F

k t c

u F m t t k

k t c t

F m t c

k t c t

Δ ̇
Δ Δ Δ

̇ Δ Δ

Δ Δ

Δ

Δ Δ

n n

n

n n

n n

n n

n

n n

cont
cont

1
4

2 1
2

cont
1
4

1
2

1
2

1
2 ext 1 2

1
4

2 1
2

1
2 ext 1 2

1
4

2 1
2 (10)

Using the relation:

= −λ u mΔ ̇cont cont (11)

we can formulate a system of equations:

⎡
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in which Σ and Υ are defined as:
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The solution of this system gives the impulse λcont and the body
velocity change due to the contact impulse uΔ ̇cont.

Eqs. (12), (13) and (14) provide a general description of a compliant
continuous 1-DOF contact. A special case occurs when the stiffness and
damping parameters, k and c, respectively, are constant. In this case,

= +F u k u ċn
n ncont , so Σ and Υ can be simplified to:

=
+( )k t c t
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Δ Δ

lin 1
4

2 1
2 (15)
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(16)

This form occurs when the time-stepping scheme is combined with a
lattice model to represent the material properties of intact ice. The Σ
and Υ values then represent the spring-dashpot elements that form the
lattice. The application of this scheme to lattice modelling is further
explained in Section 3.

Note that the Newmark-Beta method, on which this derivation is
based, is only valid for continuously differentiable functions. In the case
of ice-ice or ice-structure contacts, the contact force as a function of
time is discontinuous in the time step in which the contact is initiated
and in the time step in which the crushing stops. However, the method
can still be used in this case by applying appropriate lower and upper
limits to the calculated contact impulse.

2.2. Extension of the time-stepping scheme for discontinuous 1-DOF
contacts

The forces at ice-ice or ice-structure contacts are bounded by upper
and lower limits, leading to a discontinuous contact behaviour. The
limits follow from the local physical processes occurring at the contacts.
In this paper, we use simplifying assumptions regarding the local con-
tact processes to formulate the upper and lower limits of the contact
forces. The physical reasoning behind these limits will be further ela-
borated in Section 4. The current section focusses on how these limits
are enforced within the time-stepping scheme.

Our discontinuous contact assumptions lead to a contact force that
is only dependent on the contact penetration, not on the relative pe-
netration velocity. If the contact force is only dependent on the pene-
tration, and not on the penetration velocity, Eqs. (13) and (14) can be
significantly simplified. All terms related to cn can be dropped, leading
to the simplified form of Σ and Υ:

= ( )k t
Σ 1

Δn
pen 1
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Note that a velocity term still appears in Eq. (18). This term appears
because the change in position within a time step is taken into account,
which is a function of velocity uṅ.

The following limits to the contact parameters are enforced in the
case of discontinuous ice-ice and ice-structure contacts:

≥k 0n (19)

≥F 0n
cont (20)

= ≤F if δ0 0n
cont (21)

Eq. (19) states that the contact force may not decrease as the contact
penetration increases. Eqs. (20) and (21) state that the contact force
may not be negative and that there may only be a contact force if there
is a contact between bodies (penetration δ≥ 0).

The contact impulse, which is part of the solution of the system
expressed by Eq. (12), is subject to the following limits:

≥λ 0cont (22)

≤ =λ λcont res 0 (23)

Eq. (22) states that there may not be tensional impulses (and forces) at a
contact, and Eq. (23) states that the applied impulse may not be higher
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than the impulse needed to achieve a relative contact velocity of zero
(the zero-restitution impulse λres=0).

Limits to the contact parameters (Eqs. (19), (20) and (21)) are en-
forced in the formulation of the system of equations and usually follow
naturally from the contact assumptions that are made. The limits to the
solution (Eqs. (22) and (23)) are taken into account in the system as
formulated in Eq. (12) by introducing complementarity conditions. This
leads to the following mixed linear complementarity problem:
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in which vcor is the correctional velocity needed to satisfy the zero
restitution requirement, and αr and βr are residuals that have no phy-
sical meaning. Σcr and Υcr are defined as:

= ( )tΣ 1
ΔF

δ

cr 1
4
Δ
Δ

2cr
(25)

= + ⎛
⎝

+ ⎞
⎠

−F
t

u F m tΥ
Δ

2 ̇ 1
2

ΔF
δ

ncr
cr

1
4
Δ
Δ

ext
1

cr
(26)

Note the difference between this formulation and the continuous
contact formulation of Υpen in Eq. (18). The contact force Fcontn is re-
placed by the force Fcr. This is the force at which contact crushing
would be initiated for this contact. This change follows from the fact
that the contact force is no longer uniquely related to a specific pene-
tration depth δ. The force penetration gradient kn from Eq. (18) is re-
placed by a discretized version F

δ
Δ
Δ
cr because the analytical expression of

the force-penetration curve Fcont(δ) is not explicitly calculated for each
contact.

The MLCP in Eq. (24) fully describes the desired discontinuous
contact behaviour. It is not immediately obvious how the MLCP en-
forces the limits expressed in Eqs. (22) and (23). Therefore the problem
statement is further clarified and proven to be correct in AppendixA.

To highlight the difference between the derived MLCP (Eqs. (24),
(25) and (26)) and the corresponding MLCP used in other schemes, a
direct comparison is made in Section 2.3.

2.3. Comparison of the new time-stepping scheme to the rigid contact
method

In this section we present the MLCP for the 1 DOF example case
according to previously used formulations and compare these to the
derived formulation in Eqs. (24), (25) and (26).

Most NDEM formulations assume that contacts between bodies are
rigid. The rigid contact NDEM formulation does not take the contact
force evolution F δ δ( , )̇cont into account. Instead, when a contact is de-
tected, an impulse is applied such that the relative contact velocity
changes according to a certain restitution factor γrf:

= + + −u γ u F m tΔ ̇ (1 )( ̇ Δ )ncont rf ext
1 (27)

Combining this with Eq. (11) and Condition 22, leads to the following
MLCP for the 1 DOF example in Section 2.2:
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The restitution factor γrf specifies the extent to which the contact
dissipates energy. A restitution factor of zero results in a contact that
dissipates all kinetic energy (the relative contact velocity becomes

zero), and a restitution factor of 1 would result in a fully ‘elastic’ con-
tact: the relative velocity after contact resolution is opposite and equal
in value to the relative velocity before the contact resolution.

Since no contact properties are included in the formulation as
shown in Eq. (28), it is not possible to find a physically correct contact
force using this method. Only the contact impulse is defined, but the
impulse cannot be translated in a physically meaningful way to an
equivalent force. This is problematic for ice-structure interaction si-
mulations, since most simulation methods use contact forces to de-
termine whether ice failure should occur.

As mentioned in the introduction, some existing papers work
around this limitation by introducing an upper limit to the contact
impulse based on contact properties. The upper limit is determined
based on a certain assumed upper limit force Flim. If the impulse re-
sulting from the MLCP is equal to the upper limit, it can be assumed
that the contact force is equal to the limit force, multiplied by the time
step. The way this upper limit is enforced differs between methods. For
instance, Metrikin (2014) enforces an upper limit contact force in the
MLCP framework in the following manner:
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Comparing this formulation to the new MLCP formulation in Eq. (24) as
presented in this paper, this formulation is clearly different. The dif-
ference can be most easily understood by considering that the approach
using an upper limit force only uses the geometry information at the
beginning of the time step, while the approach presented in this paper
uses the current contact geometry as well as the expected change in
contact geometry to define a force penetration gradient F

δ
Δ
Δ
cr , resulting in

the higher accuracy of this scheme. An accuracy comparison is provided
for a simplified test case in Section 5.

2.4. Expansion of the time-stepping scheme to a multi-contact three-
dimensional case with friction

To apply this time-stepping scheme in a useful manner to ice-
structure interaction, it must be expanded to a three dimensional (3-D)
system with multiple degrees of freedom and friction. This expansion is
similar to the procedures followed in previously applied methods and it
is explained in AppendixB. It leads to the following system:

+ =
≤

⊥ ≥

Az b w
λ λ λ λ λ λ

α β γ ζ η θ

0 [ ( ) ( ) ( ) ]

[ ] 0
n
T

t
T

ϕ
T

n
T

t
T

ϕ
T T

T T T T T T T

cor cor cor

r r r r r r (30)

in which:
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and Sn is:
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The terms in this system are derived and explained in Appendix B.

2.5. Solving the formulated MLCP

The MLCP is solved using a block Gauss-Seidel solver, similar to the
methods applied in, for example, Servin et al. (2014); Jean (1999);
Lacoursiere (2003). The block Gauss-Seidel solver is an iterative solver.
Iterations can be stopped when a user defined accuracy threshold is
met. An advantage of using an iterative solver is that the solution from
the previous time step can be used as an initial guess for the next time
step, reducing the needed number of iterations. The inclusion of the
parameters Σ improves the convergence rate of the solver significantly
compared to a similar system with infinitely stiff contacts.

The time-stepping scheme as derived in this section may be applied
to continuous contacts, as occurs between the different elements of a
lattice representation of the ice, and to discontinuous contacts, such as
ice-ice or ice-structure contacts. Fig. 2 clarifies where both types of
contacts occur in an ice-structure interaction simulation. The following
sections will explain in further detail how the scheme may be applied to
both scenarios.

3. Application of time stepping-scheme to lattice modelling

Lattice models represent a material as a collection of discrete
masses, connected with a network of springs and dashpots. Compared
to continuum models, lattice models offer advantages in the modelling
of fracture, since no stress singularities will occur at the crack tips (van
Vliet and Metrikine (2018)). Therefore, lattice models have been ap-
plied to ice modelling by a number of authors: Hocking (1992); Jirasek
and Bazant (1995); Sayed and Timco (1999); Dorival et al. (2008);
Paavilainen et al. (2009); Lilja et al. (2017). The discrete nature of
lattice models makes them well suited for the modelling of ice, in
combination with the presented time-stepping scheme. When applying
the time-stepping scheme to the continuous linear contacts as occur in a

lattice model, energy conservation is assured, following from the use of
the Newmark-Beta method. Applications of a combined lattice model
and time-stepping scheme have been presented by the authors in van
den Berg (2016) and van den Berg et al. (2017). In these papers, the
spring stiffness of connections between masses are defined as:
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where E is the Young's modulus of the ice, A=wh is the area between
the mass elements and w and h as defined in Fig. 3, G is the shear
modulus of ice, d is the distance between the centres of gravity of both
mass elements, and It1 and It2 are the second moments of area around
axes t1 and t2, respectively. n is the axis perpendicular to the contact
plane, and t1 and t2 are the principal axes or the contact area as defined
in the contact plane. This is clarified in Fig. 3.

The spring-dashpot connections between the masses in a lattice
representation of ice are treated similar to discontinuous contacts in the
time-stepping scheme, and appear in the linear complementarity pro-
blem as shown in Eqs. (15) and (16). The main difference between the
continuous lattice contacts and the discontinuous contacts such as ice -
ice or ice - structure contacts is that the connection properties within
the lattice remain constant and that no upper and lower limits are ap-
plied if ice failure is not considered.

In the remainder of this paper, we focus on the application and
validation of the time-stepping scheme to discontinuous contacts, as
would occur in ice-ice or ice-structure interaction. For the application
to lattice modelling, the reader is referred to van den Berg (2016) and
van den Berg et al. (2017).

4. Application of the time-stepping scheme to discontinuous ice-
ice and ice-structure contact modelling

This section derives the parameters of discontinuous ice-ice and ice-
structure contacts. The parameters of these discontinuous contacts be-
tween the ice and/or structure bodies are derived based on an as-
sumption of constant energy dissipation per crushed volume or crushing
specific energy (CSE) (Kim and Gagnon (2016)). The CSE is the amount
of energy needed to crush a unit volume of ice (unit: J/m3). Ice contact
models based on energy dissipation are similar to contact models based
on ice crushing pressure and contact area. A certain assumed energy
dissipation function can easily be converted to an equivalent crushing
pressure, and vice versa. The main difference between existing contact
models for ice is whether they assume a constant crushing pressure/
energy dissipation or a crushing pressure that is dependent on the
contact area. For example, Hopkins (1992); Paavilainen et al. (2011);
Keijdener and Metrikine (2014) assume a constant crushing pressure
(or plastic limit stress) during indentation. Using a constant crushing
pressure is supported by Kim and Høyland (2014) and Kim and Gagnon

Fig. 2. Continuous and discontinuous contacts in an ice-structure interaction
simulation.

Fig. 3. Local axis system of lattice connection in an ice plate (from van den Berg
(2016)).
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(2016). Kim and Høyland (2014) suggest that the crushing specific
energy (CSE) of ice might be a scale-independent parameter, at least for
geometrically similar situations. Kinnunen et al. (2016) also suggests
that the CSE value remains stable during an impact event. Daley (1999),
on the other hand, assumes a crushing pressure that is dependent on the
contact area.

The assumption of a constant CSE is equivalent to a constant
crushing pressure. We consider this assumption justifiable in light of
other simplifications, such as geometrical simplifications of the floe
shapes. The intended use of this contact model is for local crushing
only. In cases where continuous crushing at the ice-structure interface is
the governing failure mode, the assumption of a constant crushing
pressure is no longer sufficient.

For the detection of contacts between bodies, we use an open-source
algorithm which is part of the Bullet Physics library Bullet Physics
(2017). After a contact is detected, we use the assumption of constant
energy absorption during crushing to derive the discontinuous contact
parameters that are needed in our new time-stepping scheme. The
parameters are derived using the contact geometry. Referring to the
contact parameters as described in Section 2, the discontinuous contact
model needs to provide values for the contact force when crushing is
initiated (Fcr) and the increase in contact force with penetration ( F

δ
Δ
Δ
), as

occur in Eqs. (24), (25) and (26). In addition, we need to define the
contact point in global coordinates oc and the contact axis system Bc to
generalize the time-stepping scheme to multiple contacts and three
dimensions. The contact point and contact axis system are used in
Appendix B. The contact axis system Bc consists of a normal axis nc and
two friction axes tc1 and tc2.

For clarity, 2-D sketches are used in this section, but the algorithm is
implemented fully in 3-D.

Contact crushing is represented by body overlap in the numerical
simulation, under the assumption that the overlap volume that occurs
in the numerical simulation represents crushed ice. Fig. 4 helps to il-
lustrate this assumption.

The contact point (oc) is defined as the centre of the overlap volume.
The contact normal direction is defined as the weighted average of the
normal directions of the sub contact areas related to one of the bodies:
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(36)

in which ns is the number of surfaces related to the one of the bodies in
the overlap volume, Aj, s are the areas of these surfaces, and nj, s are unit
length vectors perpendicular to these surfaces. The parameters are il-
lustrated in Fig. 5. The contact normal may also be defined using the
surfaces related to body i, resulting in an opposite contact normal. This
gives the same final result, as long as the normal direction definition is

applied consistently throughout the calculations.
The contact friction direction tc1 is chosen opposite to the tangential

component of the contact velocity:

= − − ⋅
− ⋅

t u n n u
u n n u
̇ ( ̇ )
̇ ( ̇ )c1
c c c c

c c c c (37)

The contact friction direction tc2 is chosen to complete the axis
system:

= ×t t nc c2 1 c (38)

A second friction direction is needed because the change in the
contact velocity within the time step is taken into account in the MLCP.
Therefore, the resulting friction force is not necessarily opposite to the
contact velocity at the beginning of the time step.

The contact force where crushing starts Fcr is determined based on
the projected contact area and an assumed crushing specific energy of
the ice:

= ⋅F A CSEcr proj (39)

in which the contact projected area is the area that results when pro-
jecting the contact polyhedron on the contact normal:
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We determine the gradient F
δ

Δ
Δ

such that the kinetic energy dis-
sipated in the contact matches the energy absorbed in ice crushing. The
gradient is determined by calculating the contact projected area in the
current body positions and the contact projected area when the con-
tacting bodies are propagated with their current velocity. This is clar-
ified in Fig. 6, where Δδ is the change in penetration:

= + −δ u t F m tΔ ̇ Δ 1
2

Δcont ext
1 2

(41)

and Aproj
prop is the contact projected area when the contacting bodies

are propagated with their current velocity. If there is a zero or negative
penetration velocity, one of the bodies is propagated with a user-de-
fined distance in the contact normal direction. The gradient F

δ
Δ
Δ

is de-
termined as:

=
−F

δ
A A

δ
Δ
Δ

( )CSE
Δ

proj
prop

proj

(42)

In the case of decreasing contact penetration, the load will drop to
zero. This follows from the assumption that the overlap volume be-
tween bodies represents crushed material. This type of contact beha-
viour can be viewed as hysteretic damping, in which the loading/un-
loading curve will be similar to Fig. 7. Three types of discontinuous
contact behaviour can be distinguished:

Fig. 4. The overlap volume of two interacting bodies represents crushed ice.

Fig. 5. Clarification of sub contact areas and normals.

M. van den Berg et al.



• crushing contact The contact force needed to prevent further pene-
tration is higher than the bearing capacity of the current contact
area. Ice crushes and body penetration increases.

• resting contact The contact force needed to prevent further penetra-
tion is lower than the bearing capacity of the current contact area.
Penetration remains the same, and the contact force is calculated
such that the contact relative velocity in the contact normal direc-
tion remains zero.

• separating contact Due to external forces or forces at other contacts,
the relative contact velocity is negative (the contact separates). This
results in decreasing penetration, and the contact force drops to
zero.

The type of discontinuous contact behaviour is not determined at
the beginning of the time step; it is an outcome of the MLCP, and its
implementation in the time-stepping scheme is explained in Section 2.

Since we assume that all available kinetic energy is dissipated by
local crushing, this discontinuous contact algorithm results in a contact
restitution of zero in the case of non-deformable floes. When floes are
modelled using a lattice model or other material model, some of the
available kinetic energy will be transformed to potential energy in the
form of elastic deformation in the ice floe. This potential energy can be
recovered to give some restitution> 0.

In time steps in which contact is initiated and in time steps in which

contact crushing stops, the assumed continuity of the time-stepping
scheme longer holds, causing a numerical error. This error is reduced by
treating the contact somewhat differently in these cases. This is ex-
plained in Sections 4.1 and 4.2.

4.1. Discontinuous contact treatment when contact is initiated

The assumption of constant average acceleration as made in the
time-stepping scheme is not valid in a time step in which the contact is
initiated. Therefore, a numerical error is introduced in this time step. In
practice, this means that the contacting bodies will overlap less than
they should at the end of such a time step, reducing the amount of
overlap volume, which is assumed to be crushed. This leads to the
following energy imbalance:

> ⋅E VΔ CSEkin
dissip

overlap (43)

in which ΔVoverlap is the change of overlap volume of two contacting
bodies and Ekindissip is the dissipated kinetic energy. We find that this
error can be minimized by calculating the F

δ
Δ
Δ

value for this time step as:
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in which δprop is the contact penetration after the contacting bodies are
propagated with their current velocity, and u ̇cont is the relative contact
velocity at the beginning of the time step. This effectively reduces the
gradient F

δ
Δ
Δ
, causing a lower dissipated kinetic energy and a higher

overlap volume at the end of the time step.

4.2. Discontinuous contact treatment when crushing stops

In a time step in which crushing stops, the contact will penetrate
further than it should because the constant average acceleration as-
sumption is not valid. This causes the following energy imbalance:

< ⋅E VΔ CSEkin
dissip

overlap (45)

A positional error will be introduced in the contacting bodies,
causing too much penetration. This is most problematic when one
wants to determine the peak force during a time step, for instance, to
determine whether or not a threshold value is reached such as for the
initiation of splitting or bending failure of an ice floe. Usually, the force-
time curve during such a time step will look similar to Fig. 8.

The Fpeak force is the exact peak force we want to extract from our
numerical results. There are several ways of computing the peak force:

Fig. 6. Projected contact area and propagated projected contact area.

Fig. 7. Contact crushing implementation as hysteretic damping.

Fig. 8. Peak force determination in time steps where crushing stops.
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• Assume the force is constant during the time step, and approximate
the peak force as:

∫
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F t dt
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n
n 1

(46)

• Another option is to use the initial contact force and the change in
penetration to approximate the peak force:

≈ +F F F
δ

δΔ
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Δnpeak (47)

Both methods will introduce an error, as demonstrated in Fig. 8.
This error can be reduced to a minimum by considering the difference
between an unconstrained impulse and the impulse resulting in zero
restitution:
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in which τ is a measure for the moment within the time step where the
peak force occurs, as visualized in Fig. 8. Using this approximation of

the peak force, we find we can get an accurate peak force prediction
even for large time steps, provided that the contact force does not in-
crease step-wise. A step-wise increase may occur if the initial contact
area between bodies (penetration δC= 0) is higher than zero. In prac-
tice, this rarely occurs.

The next section compares the accuracy of our new time-stepping
scheme to an existing method for discontinuous contacts.

5. Accuracy comparison to an existing algorithm

We compare the numerical accuracy of the proposed time-stepping
scheme against a time-stepping scheme that only considers the current
contact area for discontinuous contacts. We use the error percentage of
the peak force as predicted by both numerical methods as a measure for
the method accuracy. The peak force is chosen as a measure of accuracy
because this is often one of the main parameters of interest in ice-
structure interaction scenarios. The error percentage is calculated as:

=
−

⋅e
F F

F
100peak

analytical
peak
numerical

peak
analytical

(49)

The time -tepping scheme presented in this paper is referred to as
force gradient method in the remainder of this section. The existing time-
stepping scheme that only takes the current contact area into account is
referred to as the limit force method. The limit force method is applied
in, among others, Metrikin (2014). Note that there are further differ-
ences between the contact model as applied in Metrikin (2014) and the
contact model as applied in the current paper. Therefore the accuracy
comparison between both methods only applies to the used time-step-
ping scheme, and not directly to the predicted loads. For instance,
Metrikin (2014) introduces randomness in the contact algorithm,
making a direct load comparison irrelevant.

The time-stepping schemes are compared for two cases: one in
which the contact force increases linearly with penetration and one in
which the contact force jumps to an initial value as soon as contact is
initiated, after which it has a limited further increase with penetration.
These cases can both be linked to a physical situation in which a multi-
faceted circular structure is in contact with an ice floe. Both situations
are sketched in Figs. 9 and 10.

We choose a simple case for the accuracy comparison because it is
not straightforward to define a good error measure in more complicated
scenarios. Because of the non-linear nature of discrete element simu-
lations, the results are often highly sensitive to initial conditions or
changes in the solution procedure. As a consequence, the results will
inevitably diverge after a number of discrete interactions. Therefore,
model accuracy and validity in more complicated scenarios can only be
assessed by comparing the statistical properties of the outcomes, and
since the ‘correct’ solution is not necessarily known in a more compli-
cated case, it would be difficult to determine which method gives the
most accurate solution. The parameters of the example case are listed in

Fig. 9. Contact implementation comparison case, overview.

Fig. 10. Contact implementation comparison case, detail. The upper figure shows the linearly increasing contact force situation and the lower figure shows the
situation in which there is an initial jump in the contact force.
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Table 1.
For this test case, the exact force-time curves, using the assumption

of constant energy absorption per crushed volume, will look like the
curves shown in Figs. 11 and 12.

The force gradient and the limit force methods both formulate a
different MLCP to solve for the contact impulse (or equivalent average
contact force) at each time step. The MLCP of the force gradient method
is equal to the formulation presented Eq. (24). The formulation using
the limit force method is equal to the formulation presented in Eq. (29),
in which Flim is calculated using the contact projected area and the
crushing pressure and the restitution coefficient γrf = 0.

Figs. 13 and 14 show an accuracy comparison of the limit force
method against the force gradient method for a linearly increasing
contact force and an initial jump in the contact force, respectively. In
the case of a linearly increasing contact force, the error in the peak
force in the force gradient method scales proportional to Δt4. This
shows that second-order accuracy is maintained in the case of a con-
stant force-penetration gradient, even when the discontinuities at
contact initiation and at the end of contact crushing are included. The
error in peak force using the limit force method scales proportional to

Δt2, which is consistent with the first-order accuracy of the limit force
method. Over the complete range of tested time-step sizes, the force
gradient method gives a more accurate prediction of the occurring peak
force than the limit force method for a linear increase in contact force
with penetration.

A generalized analytical expression for the numerical error in the
peak force predicted by both methods can be found by considering the
duration of the contact resolution relative to the time step size. In the
case of a constant gradient F

δ
Δ
Δ
, and assuming there are no external

forces or other contacts influencing the interacting bodies, the crushing
duration can be calculated as:

=T
π

m

1
2

F
δ

Δ
Δ
eff (50)

in which T is the time duration from contact initiation until the end of
the crushing phase. In this example case, the effective mass of the
contact meff (in contact normal direction) is equal to:

=
+

m 1

m m

eff 1 1
struc ice (51)

The effective mass of the contact is a measure of the impulse that is

Fig. 12. Exact force-time curve in the case of initial non-zero contact area.

Fig. 13. Error in peak force prediction, contact force increasing linear with
penetration.

Table 1
Parameters used in accuracy comparison.

Ice thickness (m) 1.0

CSE (MJ/m2) 2.0
Diameter of structure (m) 70.0
Mass of structure (kg) 28 · 106

Mass of ice floe (kg) 5.69 · 105

Initial velocity difference (m/s) 1.0

Fig. 11. Exact force-time curve in the case of a contact force that increases
linearly with penetration.

Fig. 14. Error in peak force prediction, initial jump in contact force.
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needed to change the relative contact velocity. The numerical error
percentage is then a factor of the time step size relative to the crushing
duration:

= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

e C t
T

e C t
T

Δ

Δ

fg 1
4

lf 2
2

(52)

in which efg is the numerical error percentage of the peak force pre-
dicted by the force gradient method and elf is the numerical error
percentage in the peak force predicted by the limit force method. C1

and C2 are constants that need to be determined from our calculation
example.

We found the following expressions for the error percentage by
fitting to the outcome of the calculation example:
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Δ
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(53)

Note that this error definition is independent from the the interaction
velocity. It only depends on the time needed to resolve the contact, T,
relative to the time-step size, Δt.

In the case of an initial jump in the force-time curve, as is the case
when the contact area at zero penetration is non-zero, the accuracy of
both methods is comparable, as shown in Fig. 14. This is in accordance
with expectation, since the higher order of the force gradient method
degenerates in this case, giving results comparable to the limit force
method. A generalized analytical approximation of the error percentage
is more difficult to define in this case, since it depends on the ratio
between the initial crushing threshold and the linearly increasing
component of the contact force as well as on the ratio between both
force components and the contact effective mass.

6. Application example: comparison to ice tank test data

Numerical results from the proposed time-stepping scheme and the
discontinuous contact model are compared to ice tank test results for a
4-legged, vertical-walled structure moving through broken ice with an
areal coverage of 60%. The ice tank tests were performed in 2012 at the
Hamburg Ship Model Basin (HSVA) as part of the European
Community's HYDRALAB-IV project. More details can be found in
Hoving et al. (2013). We chose a comparison case in which ice failure
did not have a major influence on the results for the majority of the
experiment, since ice failure modelling is not part of the current paper.

The experimental parameters of the ice tank test are shown in
Table 2. The towing velocity was changed during the experiment, from
the lower value in Table 2 for the first 1/3 of the tank, to the higher
value for the other 2/3, resulting in an equal test duration at the lower
and at the higher velocity. The loads on the structure were measured on
each leg separately and the load on the complete structure was mea-
sured using a separate measuring device. The back wall of the tank is
upward-sloping under a 30° angle, to allow ice floes to raft and reduce
the effect of confinement.

The time-stepping scheme as described in Section 2 and the dis-
continuous contact model as described in Section 4 are used in this
application example. Lattice modelling is not applied in this example,
because we do not predict it to have a noticeable effect on the accuracy
of the final results. In addition to the presented time-stepping scheme
and contact model, a hydrodynamic model is needed to obtain nu-
merical results that can be compared to the experimental data. Buoy-
ancy and hydrodynamic damping in the form of form drag and skin
friction are included as external forces. The form drag and skin friction
are calculated as described in Tsarau (2015).

The ice tank floe field was replicated by the numerical processing of
the top view photos of the actual ice field. The following steps were
taken in the image processing procedure:

1. Top view photos are stitched together using Image Composite Editor
(Image Composite Editor 2.0 (2017)).

2. The image is converted to monochrome black and white using GIMP
2 (GIMP 2.8.22 (2017)).

3. Some distortion is removed using the Cage Transform tool in GIMP 2.
4. The tank walls are removed from the image using the Intelligent

Scissors tool in GIMP 2, to prevent the tank walls from being re-
cognized as ice floes.

5. Ice floes are detected using the GVF snake algorithm as described in
Zhang and Skjetne (2015).

6. Convex ice floe polygons are created from the ice floe pixels using
the convexhull algorithm in MATLAB.

7. The geometry of large ice floes (area > 0.5m2) is approximated by
a similar-sized rectangle, in order to better represent the observed
ice floe shapes.

A top view of the actual and numerical floe fields is shown in
Fig. 15. The waterline geometry of the structure is shown in Fig. 16.

The areal coverage of the numerical floe field that was produced
using image processing is similar to the reported coverage of 60% at
62.9%. The tank walls and the slope at the far end of the tank were
included in the numerical model.

Some input parameters that are needed in the numerical model
were not measured during the ice tank tests. These parameters are es-
timated based on reported values in other experiments and based on
engineering judgement. The most important parameters not measured
during the tests are the friction coefficients, the CSE value, and the
hydrodynamic skin friction and form drag coefficients.

The skin friction and form drag coefficients are taken from mea-
sured values in full scale as reported by Tsarau et al. (2017). The CSE
value is chosen based on the assumption that during crushing, the
average crushing pressure is half the maximum crushing pressure,
taking the maximum crushing pressure as reported in Table 2. The
friction coefficients were chosen similar to Haase et al. (2010). Table 3
lists the used experimental parameters.

The loads on all four legs in the x and y directions from the nu-
merical simulation are compared against the loads on the legs as
measured in the tests in Figs. 17 and 18. From 0 to 200 s the structure
moves at a velocity of 0.09m/s, and from 200 to 400 s the structure
moves at a velocity of 0.18m/s. In comparing the data, we should note
that the results are significantly influenced by specific events within the
simulation. For instance, whether jamming of floes between the legs
occurs or not can significantly influence the results for a major portion
of the resulting signal. From a qualitative comparison of the measured
data and the numerical results, we observe the following:

• Similar to the measured data, the numerically predicted ice load
increases in the second half of the test. The increase in load corre-
sponds to the increase in towing velocity.

• The loads as predicted by the numerical model are of the same order
of magnitude as the measured experimental loads.

• Jamming of ice floes between the two front legs is observed both in

Table 2
Measured experimental parameters.

Ice thickness (mean value)(m) 0.035

Ice areal coverage (as reported) 6/10th
Compressive strength (kPa) 57.7
Carriage velocity (m/s) 0.09–0.18
Tank width (m) 10
Tank length (as used in experiments) (m) 57
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the numerical simulation as well as in the tests. Figs. 19 and 20 show
a snapshot of the jamming events.

• The directionality of the ice loads in the numerical simulation is
similar to the directionality of the ice loads in the experiment.

• Sheltering of leg 4 is apparent both in the experimental as well as in
the numerical results

A statistical comparison between the measured loads and the si-
mulated loads is not appropriate in this case because the loads are in-
fluenced too much by specific events within the simulation, and the
measured load signal is too short to say anything significant about the
statistical properties of the signal.

In general, we conclude that the loads predicted by the numerical
simulation are of the same order of magnitude as the measured results.

Fig. 16. Waterline geometry of the test structure.

Table 3
Parameters used in numerical simulation.

Ice thickness (m) 0.0346

Ice-ice friction coefficient (−) 0.12
Ice-structure friction coefficient (−) 0.12
Ice areal coverage (based on image analysis) (%) 62.9
CSE (kJ/m3) 29
Carriage velocity (m/s) 0.09–0.18
Skin friction drag coefficient (−) 0.005
Form drag coefficient (−) 0.5
Water density (kg/m3) 1005
Ice density (kg/m3) 900
Gravity acceleration (m/s2) 9.81

Fig. 15. Ice tank floe field stitched top view image (top) and processed floe field (bottom). Structure moves from left to right.
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7. Discussion

The discussion section is divided into three parts. First, we discuss
the time-stepping scheme, then we discuss the discontinuous contact
model, and lastly, we discuss the application example.

7.1. Time-stepping scheme

We derive a time-stepping scheme based on the second-order
Newmark-Beta method. As mentioned in the introduction, other models
introducing contact compliance in an NDEM scheme often derive the
compliance parameters based on first-order methods, such as the

implicit Euler scheme. One may wonder why a higher-order method is
not used by others.

A possible reason for the use of lower-order methods in other fields
of application is that a higher-order method will not lead to more ac-
curate results in discrete modelling of many materials other than ice.
Referring to the accuracy comparison in Section 5, we see that as the
time step Δt increases compared to the period needed for contact re-
solution T, the accuracy gained by using a higher-order method di-
minishes. In many application areas, individual contacts are resolved
within one time step due to a combination of particle size, contact
stiffness and the relatively large time steps (compared to explicit DEM
modelling) that are used in NDEM. Therefore, a higher-order method

Fig. 17. Numerical results compared to experimental results: loads in x-direction.

Fig. 18. Numerical results compared to experimental results: load in y-direction.
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will not lead to more accurate contact force predictions. In ice-structure
interaction, on the other hand, the build-up of contact forces often takes
place over multiple time steps. This is especially true for contacts be-
tween larger ice floes and a structure, where local crushing often occurs
before other failure modes might occur. The higher-order method is
more accurate for these types of contacts, while its accuracy is similar to
the accuracy of lower-order methods in the case of more stiff contacts.

7.2. Ice-ice and ice-structure contact model (discontinuous contacts)

The presented discontinuous contact model is based on the as-
sumption of constant CSE, which is equivalent to a constant crushing
pressure. This assumption has a limited validity. Other contact models
assume a crushing pressure that is dependent on the contact area
(pressure-area relationship). We acknowledge that the assumption of
constant CSE is a simplification of reality. Whether the crushing pres-
sure is related to the contact area or not, it will certainly fluctuate over
time, even within very short time scales, due to the mechanical

processes in the ice such as spalling events. However, a more detailed
crushing model would not fit within the computational framework of
this paper and is better suited for detailed simulations of a single con-
tact with a structure.

As explained in Section 4, the assumption of constant crushing
specific energy, or a constant crushing pressure, is not new in itself.
Similar assumptions have been used in other studies. The novelty of our
contact algorithm is how the assumption of constant CSE is subse-
quently used to derive the contact parameters as needed for the time-
stepping scheme.

7.3. Application example results

The comparison of discrete element simulation results to experi-
mental data is not straightforward. The numerical simulation results are
strongly dependent on the initial conditions: a minor change in initial
ice floe positions may lead to completely different results later in the
simulation. Similarly, a minor change in the model input parameters
may also lead to different results. This is similar to what is observed in
Ranta and Tuhkuri (2017). Due to the strong dependence of the results
on the initial conditions and the input parameters, a direct match be-
tween the numerical and experimental results should not be expected.
Moreover, measurement and processing errors in the experimental data
give another source of discrepancy. Some factors that may cause ad-
ditional discrepancies between the experimental and numerical data
are further discussed below.

• Capturing the floe field. From the comparison of the experiment
recordings and the top view photos of the floe field, we observe that
the floe field at the moment the experiment is started is actually a bit
different from the floe field in the top view images. Probably, the
floe field was not completely static at the moment that the photos
were taken. In Fig. 21, the initial position of a group of floes from
the experiment recordings is compared to the initial position of the
same group of floes as captured in the top view photo.One can
clearly recognize the same floes in the experiment recording and the
top view photo, and see that the floe positions are significantly
different.

• Digitizing the floe field. The digitization process of top view images
is not perfect. Discrepancies between the observed and digitized floe
fields occur regularly. These are mostly related to distinguishing
separate ice floes. Sometimes, two floes are digitized as one floe, or
one floe is digitized as several floes. Examples are given in Fig. 22.
Similar errors occur in about 10% of the discretized floes.

• Uncertainty in model input parameters. Some parameters, which are
required as inputs for the numerical model were not measured di-
rectly during the experiments. Most importantly, the ice-ice and ice-
structure friction coefficients, the crushing specific energy during
crushing and the form and skin friction drag coefficients were not
measured during the experiments but can have a significant influ-
ence on the numerical model outcome. Because of the high

Fig. 19. Jamming of an ice floe between the two front legs in the simulation.

Fig. 20. Jamming of an ice floe between the two front legs in the experiment.

Fig. 21. Floe positions in experiment recording, start of experiment (left) compared to top view photo of floe field (right).
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sensitivity of the results to input parameters, a minor change in
input parameters will lead to completely different results later in the
simulation, and the only proper way to assess input parameter in-
fluence would be to study the influence on the statistical properties
of the results. However, the duration of the experiments is too short
to assess the statistical properties of occuring ice loads. Therefore,
an assessment of statistical properties would require running a high
number of simulations for each set of input parameters, similar to
the analysis done in Ranta et al. (2018). Such an analysis is not
performed in the current paper, since this paper mainly focusses on
the introduction of a novel time-stepping scheme and contact model,
and the experimental comparison is merely introduced as an ap-
plication example. A more detailed analysis of the model parameter
influence on the results will be provided in future work.

• Neglection of splitting failure. Near the end of the ice tank test, it
appears that the ice is more confined by the walls and the end of the
tank, and several splitting failure events occurred in the experiment.
This splitting failure is not captured in the presented numerical
model. Based on this, one may expect that the numerical simulation
would give higher loads near the end of the simulation. However,
this is not apparent in the presented simulation results. We attribute
this to other, largely random processes that are inherently different
in the numerical simulation compared to the physical experiments.
In the numerical simulation, it appears that the accumulation of ice
that forms in front of the structure clears right before the end of the
tank is reached, while this in not the case in the physical experi-
ments.

8. Conclusions

Numerical modelling can help to increase the understanding of the
processes occurring during ice-structure interactions. The presented
implicit DEM time-stepping scheme expands the previously applied
NDEM modelling framework to allow for compliant contact behaviour.
This enables modelling of continuous compliant contacts, as would
occur in a lattice representation of ice, as well as modelling of dis-
continuous ice-ice and ice-structure contacts. The discontinuous contact

model formulates contact parameters based on the assumption that ice
crushing will occur when a crushing pressure is exceeded, using the
exact contact geometry and expected change of contact geometry. To
the authors' knowledge, this is the first time such a time-stepping
scheme is applied to ice-structure interaction scenarios. The time-
stepping scheme presented in this paper enables accurate large time
step simulations, which may lead to increased numerical efficiency in a
range of cases. Comparison with ice tank test data shows that the new
time-stepping scheme and discontinuous contact model manages to
capture some important phenomena that were also observed in ice tank
tests. It predicts well the sheltering effects, directionality, and order of
magnitude of ice loads on a 4-legged, vertical-walled structure in ice
tank tests.

Referring to the factors mentioned in the introduction that make
ice-structure interaction modelling challenging, the presented model
addresses the first two points, one directly and the other indirectly.
Regarding the first mentioned factor, the modelling of many simulta-
neously interacting bodies, the presented time stepping scheme enables
more accurate numerical simulations, which enables possible efficiency
improvements by using a larger time-step size. The second factor,
complicated body geometries, is partly alleviated as a result of the
higher numerical efficiency. The efficiency gains can be used to im-
plement more accurate geometrical representations of actual ice floes.

Further development of the presented time-stepping scheme and
contact model will mainly focus on the inclusion of ice failure. Ice
failure may be included in several ways:

• Combination with a lattice model. As shortly discussed in this paper,
the presented time-stepping scheme is well suited for the modelling
of dynamic lattices in combination with discontinuous ice-ice and
ice structure contacts. The combined latttice-NDEM model will be
further developed and validated, mainly focussing on accurate
fracture behaviour of the ice lattice.

• Combination with analytical ice failure calculations. Using the contact
forces resulting from the contact model and time-stepping scheme,
analytical approximations can be used to represent ice failure be-
haviour. A comprehensive set of analytical solutions for ice fracture
have been developed in Lu et al. (2015a,b, 2016). Combinations of
NDEM models with analytical ice failure have been published earlier
by Lubbad and Løset (2011) and Metrikin (2014), and lead to effi-
cient numerical simulations.

The authors intend to compare the model results to more challen-
ging model scale and full scale experimental results for further valida-
tion of the model. These will include the following cases:

• Higher-concentration broken ice fields.

• Tests in which ice failure plays a significant role, both bending and
splitting failure.

• A comparison with experimental results of ice ridge-structure in-
teraction, using the presented time-stepping scheme in combination
with a lattice material model representing the consolidated part of
the ice ridge.

One of the envisioned usages of the model is for pre-testing of
concept structures and configurations. This testing stage before real-life
ice tank tests are commenced can help designers to narrow down the
range of to be tested ice conditions to the most challenging ones, and
reduce the needed amount of ice tank testing. This can lead to a more
efficient design cycle, and to more efficient and robust designs.
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Fig. 22. Discretization (left) compared to actual floe field (right).
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Appendix A. Clarification of MLCP behaviour

This appendix will demonstrate that the used MLCP will satisfy the assumptions made for ice-ice or ice-structure contacts. Consider the 1-DOF
MLCP statement as given in Section 2.2:
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For which the parameters are explained in Sections 2.1 and 2.2. This MLCP can be rewritten in the following form:
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in which, for crushing contacts:
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this MLCP full describes the desired contact behaviour. It enforces the limits to the contact impulse as stated in Eqs. (22) and (23). To clarify the
problem statement, we distinguish two cases:

• Negative contact velocity: X≥ 0 and Y≤ 0

• Positive contact velocity: X≥ 0 and Y > 0

We consider all solution options for both cases, and show that there is only one correct solution in each case.
In the case of a negative contact velocity, we first assume that vcor > 0. Using Eq. (A3) and Conditions expressed in Eq. (A5), this results in:
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Substituting A6 in Eq. (A2), we obtain:
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Since Y in this case is ≤0, λcont = 0 in order to satisfy the condition, resulting in vcor= X.
If we assume that vcor = 0, we find that λcont = 0 since, if λcont > 0, in order to satisfy Eq. (A2):
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substituting Eq. (A8) in Eq. (A3), we obtain:
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Eqs. (A8) and (A9) cannot be satisfied simultaneously because Y > 0, and X≥−Y, following from Eq. (A8). Thus, the only possible solution in
the case of a negative contact velocity Y > 0, is λcont = 0 and vcor = X.

In the case of a positive contact velocity, we follow the same procedure as for a negative contact velocity. If we assume that vcor > 0, and use Eq.
(A3) and the conditions expressed in Eq. (A5), we again obtain:
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Substituting this in Eq. (A2), we obtain:
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resulting in:
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This is the impulse resulting in zero restitution. The correctional velocity becomes:
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If vcor = 0 it follows from Eq. (A2) that:
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This is the impulse that results if there is continuous crushing at a contact. Substituting this in Eq. (A3) gives:
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If this condition is met, there is continuous crushing. Otherwise the contact impulse is calculated such that the zero restitution requirement is
enforced, or the contact velocity is negative, resulting in a zero contact impulse.

This shows that there is a unique solution to the MLCP for a contact that satisfies the conditions expressed in Eq. (A5). Fig. A23 gives an overview
of the possible solutions.

Fig. A23. Solution diagram of MLCP.

Appendix B. Multiple degrees of freedom, rotation and friction

In this section we derive the MLCP for the general case in which a 3-D ice body interacts with a fixed plane. The body has 6 DOF, three
translational and three rotational. In addition to the derivation in Section 2, three new concepts are introduced: The contact Jacobian, the addition of
Gyroscopic forces and frictional contact constraints.

We define a body fixed coordinate system such that its origin is at the body centre of gravity (COG), and the axes coincide with the principal axes
of rotation, making the body inertia tensor diagonal. We define a mass matrix for the body in Eq. (B1), which represents the body's inertial properties
in the body fixed coordinate system:
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The basis of the body fixed coordinate system is described by the 3×3 matrix Bb, in which the columns of Bb are unit length vectors describing
the axis directions defined according to a right-handed coordinate system and the COG of the body is described in a global coordinate system by the
vector ob. The basis of the contact coordinate system is described by the 3×3 matrix Bc, and the contact ‘point’ is described in global coordinates by
vector oc. The determination of the contact point is further explained in Section 4. The axes of the contact coordinate system coincide with the
contact normal direction and two perpendicular frictional directions, one of which is opposite to the perpendicular contact velocity and the other
completing the axis system according to the right-hand-rule. The determination of the contact normal direction is further explained in Section 4.

We define the basis of the contact coordinate system in body coordinates, obtaining Eq. (B2):

= BB BT
cb b c (B2)

and we define a vector rb in the body coordinate system from the contact point to the body COG as in Eq, (B3):

= −r B o o( )T
b b c b (B4)

The influence of contact impulses in the contact coordinate system on the body velocity change in the body coordinate system are described by
Jacobian Matrix J. The matrix J is formulated as:
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The translational and rotational velocity of the body at the contact point in contact coordinates is described by Eq. (B7):

=u J u̇ ̇T
c b (B7)

In which u̇c and u̇b are vectors describing the body velocity (in the body coordinate system) and contact velocity (in the contact coordinate
system) in 6DOF as shown in Eq. (B8):
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We take the gyroscopic forces into account in an implicit manner, similar to the implementation in the Bullet Physics engine Bullet Physics (2017).
This is done by calculating the rotational velocity change due to gyroscopic forces over the time step. The velocity change is calculated using a time
discretized version of Euler's rotation equation, shown in Eq. (B9):
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in which I is the inertia tensor of the body, ϕ ̇ is the rotational velocity vector, and P is the momentum working on the body. Assuming there is no
external momentum, ϕΔ ̇ is solved using Newton's method, as shown in Eq. (B10):

= − ×
+ × + ×

= −

+

+

ϕ ϕ
ϕ ϕ ϕ t

ϕ ϕ ϕ ϕ ϕ t
ϕ ϕ ϕ

I
I 1 I I

̇ ̇ ( ̇ ( ( ) ))Δ
( ) ( ( ( ) ̇ ( ))Δ

Δ ̇ ̇ ̇

n n
n n n

n n n n n

n n

1

.

.

1 (B10)

We now incorporate the derived J matrix and gyroscopic velocity change in the MLCP of Eq. (24), in order to expand it to a multi degree of
freedom system shown in Eq. (B11):
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0 [ ] [ ] 0n n

T T
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in which A and b are defined as in Eqs. (B12) and (B13):
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Jn is the column of the Jacobian matrix related to the contact normal constraint (the first column), Jt are the columns of the Jacobian matrix
related to the tangential constraints, and Jϕ are the columns of the Jacobian matrix related to the rotational constraints.

The contact velocity changes uΔ ̇ t
1
2 ;ext

c and ϕΔ ̇1
2 ext

c are half the velocity change caused by external (non-contact) forces within a time step.
In this system, the tangential and rotational constraint impulses are calculated such that the velocity at the contacts in these DOF's becomes zero.

However, for ice-ice and ice-structure contacts, both the tangential and rotational contact constraints should be limited as a function of the normal
impulse, because of the friction limit and the fact that there can not be tension in a contact. The next section explains how these limits are applied.
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B.1. Friction constraints and constraints on contact rotational impulses

Both the frictional impulses and rotational impulses at ice-ice or ice-structure contacts are limited by the contact normal impulse. This is taken
into account in the MLCP in the form of complementarity conditions. According to the Coulomb friction law, the frictional impulses λt1 and λt2 are
limited according to:

+ ≤λ λ μλt t n1
2

2
2 (B14)

In which λt1 is the frictional impulse in tangential direction t1, λt2 is the frictional impulse in tangential direction t2, λn is the impulse in the
contact normal direction, and μ is the friction coefficient. In order to enforce this limit within the framework of an MLCP, we approximate the
resulting friction cone by a multi-faceted friction polyhedron, illustrated in Fig. B24. The number of facets can be altered based on the desired
accuracy at each contact.

Fig. B24. Faceted approximation with 8 sides of Coulomb friction cone.

The direction of the resultant friction force during a time step should be opposite to the average tangential velocity vector during the time step.
This average tangential velocity vector is a combination of the tangential velocity vector at time tn, and the velocity change at the contact during the
time step. The average sliding velocity during the time step is not known before the MLCP is solved. Therefore there should be enough tangential
impulse directions such that a tangential friction impulse opposite to the average tangential velocity can result as a sum of impulses in the pre-
defined frictional directions. Simultaneously, one of basic conditions of a LCP must be ensured, namely that all constraint impulses λt≥ 0. To
achieve this, we define two friction impulse variables, t and t͠ , for each friction direction, one opposite to the other.

Frictional impulses are limited by complementarity conditions for each face of the friction cone approximation. This is achieved using the
matrices Efr and Ufr, corresponding to the 8 faceted friction cone approximation shown in Fig. B24:
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Adding the complementarity conditions for the frictional contacts to the MLCP of Eq. (B11), we obtain:
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in which:
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The rotational contact impulses should also be limited by the contact normal impulse. We limit the rotational impulses based on the outer points
of the contact area and the normal impulse. The upper limits for rotational impulses are interlinked: one rotational impulse influences the maximum
magnitude of the other. This link is neglected in the current formulation.

The limits to rotational impulses, based on the normal impulse and the outer points of the contact area, are taken into account by introducing
matrices Urot and Erot:
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in which the distances d are as shown in Fig. B25.

Fig. B25. Example contact area, demonstrating the maximum distance determination.

Adding these matrices to the MLCP of Eq. (B11), the MLCP becomes:
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in which:
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Finally, the MLCP from Eq. (B22) can be generalized to multi-contact case, in which some contacts have upper and lower limits as explained in
previous section and some contacts (such as spring-damper contacts within a lattice) are holonomic. This generalized MLCP becomes:
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in which:
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and Sn is:
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in which nc is the number of crushing contacts in the current time step.
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A B S T R A C T

In this study, numerical experiments are conducted to investigate the effect of ice floe shape on
the load experienced by vertical-sided structures interacting with a broken ice field. We create
numerical ice fields with different floe shapes and otherwise identical properties. These fields are
used to simulate ice-structure interaction with vertical-sided structures. First, we investigate the
effect of floe shape in ice-tank tests by comparing the numerical results to the ice tank test results.
Then, we conduct a sensitivity study to investigate the correlation between the floe shape effect
and other parameters. The primary finding is that the ice floe shape has a large influence on the
mean and standard deviation of the ice load in interaction scenarios dominated by ice accu-
mulation and clearance around the structure. In particular, square floes, which are often used in
ice tank tests, result in higher mean loads and standard deviations than other floe shapes. The
simulation results show that the greater length and higher stability of force chains is the primary
mechanism causing the floe shape effect. The floe shape effect is exacerbated in confined con-
ditions, where the force chains may cause bridging between the structure and a rigid boundary.
The presence and length of ‘parallel opposite edges’ is an important factor influencing the floe
shape effect. This result is novel compared to earlier studies, which only consider body ‘round-
ness’ or ‘angularity’ in assessing shape effects. We demonstrate the importance of using accurate
floe shapes in ice tank tests and in discrete element method (DEM) modelling of broken ice-
structure interaction scenarios.

1. Introduction

The Arctic sea ice cover is decreasing both in areal coverage and thickness as a result of the long-term changes in the climate.
Therefore, sea ice will be encountered more often in the form of broken ice, rather than intact level ice.

The prediction of broken ice loads on structures is complicated by many (often not well understood) phenomena that may
influence the ice load. The contributing factors are the ice areal coverage; the ice thickness; the ice material properties and the floe
size (including size distribution); the floe shape; the quantity of brash ice; the ice drift velocity; the wind and current conditions; and
the confinement conditions (e.g., by a shoreline or other structures).

Of the above factors, the effects of the ice areal coverage, the ice thickness and the ice drift velocity are most studied. The ice areal
coverage is found to have the largest influence on the ice load (Comfort et al. [1]. However, most studies of broken ice loads do not
take the ice floe shape into account as a parameter. Therefore, its influence is currently not well understood.

In this study, the influence of ice floe shape on the load experienced by structures interacting with a broken ice field is
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investigated. The study is limited to low to medium ice areal coverage conditions (30–70%). The effect of the floe shape is most
relevant in these conditions because the ice clearing process often governs the ice resistance. Furthermore, we limit the study to
vertical-sided structures. Sloping sides promotes bending failure and floe rafting, significantly reducing the effect of the floe shape.

There are several scenarios in which the load from low-to medium-areal-coverage broken ice on vertical-sided structures is of
interest. Three examples are:

1. Constructions in the light Arctic. We define the light Arctic as regions where sea ice may occur as a statistical possibility, but which
are normally ice-free throughout the year. Most recent Arctic offshore developments are in these regions. Structures for these
regions are not usually designed for heavy ice conditions, and may have a vertical-sided waterline. Loads from low-to medium-
areal-coverage broken ice may be the operational design load for such structures.

2. Operations in the ‘ice-free’ season. This includes drilling, towing or construction operations, possibly using jack-ups or other ver-
tical-sided structures. Low-to medium-areal-coverage broken ice load estimates are needed to determine the operating window.

3. Structures supported by ice management. Structures can be supported by ice management operations, in which an ice breaker
reduces the size of incoming ice floes in order to decrease the loads on a protected structure. Broken ice loads may be the design
load of the protected structure.

Floe shape effects are especially relevant to ice tank tests or numerical simulations that may be performed in the design phases for
the above mentioned scenarios. In ice tank tests, broken ice is created by manually or mechanically breaking up an intact ice sheet.
Therefore, the resulting ice floe shapes can be controlled to some extent. Ice tank tests with broken ice are often performed with ice
floes that have square or rectangular shapes (e.g., Hoving et al. [2]; Haase et al. [3], which may have a major effect on the resulting
broken ice load.

The effect of floe shape on rafting of a broken ice field was studied by Tuhkuri and Lensu [4]. Tuhkuri and Lensu [4] found that
the floe shape does not have a clear effect on the force. The effect of the floe shape in discrete element method (DEM) modelling of ice
has been studied by Hopkins et al. [5]; Tuhkuri and Polojärvi [6]; Konno et al. [7]; Rheem et al. [8]; Yamaguchi et al. [9]. Hopkins
et al. [5] and Tuhkuri and Polojärvi [6] studied the effects of rubble shape on the ridge formation process and on ridge keel punch
through tests. Konno et al. [7] studied the effect of rubble shape on the resistance of ships in rubble channels. These studies showed a
clear shape effect. However, the modelled scenarios in these studies are different from the scenarios modelled in the current study,
because the studied scenarios concern ice rubble only. This paper investigates the effect of floe shape in broken ice varying in size
from 20m2 to 4832m2. Such broken ice fields typically occur when ice is broken by environmental factors, such as ocean gravity waves.
To the authors’ knowledge, Rheem et al. [8] and Yamaguchi et al. [9] are the only researchers that studied the effect of the floe shape
in similar broken ice-structure interaction scenarios. However, the scenarios tested by Rheem et al. [8] were primarily designed for
the validation of a numerical model; therefore, they are not sufficiently realistic to conclude anything on floe shape effects in actual
broken ice structure interactions, other than that the effect is present. Yamaguchi et al. [9] proposed a method to take the floe shape
effect into account using a parameter described as the C-angle. However, the tested scenarios are limited and the numerical model is
greatly simplified. For example, no floe rotation is taken into account.

In the DEM modelling community, there are many studies on the effect of body shape, of which Cleary and Sawley [10] is one of
the most cited examples. The effect of body shape is mostly studied in relation to particle flow through a hopper (Cleary and Sawley
[10], the stability and shear strength of packings (Azéma et al. [11], and the behaviour of bodies in a rotating drum (Höhner et al.
[12]. Although a shape effect is observed in all situations, the results are not sufficiently generalized or comparable to broken ice-
structure interaction to extrapolate their findings to the scenarios modelled in the current study.

The simulations for this study are performed with an adapted version of the Simulator for Arctic Marine Structures (SAMS), a
product of Arctic Integrated Solutions (ArcISo); see ArcISo [13]; Lubbad et al. [14]. To study the effect of floe shape, first we nu-
merically reproduce ice tank tests using different floe shapes to demonstrate that the floe shape had an influence in the described
tests. Thereafter, we perform a parametric study in which the correlation of the floe shape effect with other parameters is in-
vestigated. The results show that the floe shape has a strong influence on the mean and standard deviation of the simulated ice loads
in all studied parameter combinations.

2. Methodology

We study the effect of floe shape using DEM modelling. Ice-ice and ice-structure contacts are resolved using the non-smooth
discrete element method (NDEM). Section 2.1 explains the used method in more detail. The study of floe shape effects is divided into
two parts.

In Part 1, the presence and relevance of the floe shape effect is demonstrated by a comparison of ice tank test results to numerical
simulation results. The ice tank tests used for the comparison were carried out as part of the Hydralab IV project (Hoving et al. [2].
The experiment is replicated numerically with the floe shapes used in the tank experiment, and additionally with triangular, square
and circular floe shapes. The numerical replication of the ice tank tests is explained in further detail in Section 2.2.

In Part 2, we perform a sensitivity study in which the floe shape and other parameters whose effect may be correlated with the floe
shape effect are systematically varied. The mean load and the standard deviation of the surge load on the structure are used as the
primary comparison parameters in analysing the effect of the floe shape. The time series comparison methodology is further ex-
plained in Section 2.3. The investigated parameters are the structure shape, the ice areal coverage, the confinement conditions and
the friction coefficient. This is further described in Section 2.4. In the sensitivity study, the broken ice fields are created randomly,
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using a method that enables the generation of very large unique broken ice fields. The random ice field generation method is further
explained in Section 2.5.

2.1. The discrete element method

The discrete element method which is used in the numerical simulations can be classified as a non-smooth discrete element
method. Ice-ice, ice-structure and ice-wall contacts are compliant. The contact compliance parameters are determined based on the
material properties and the geometrical properties of the contacts, under the assumption that local ice crushing will occur. The
method used in the simulations is explained by van den Berg et al. [15].

In NDEM, a mixed linear complementarity problem (MLCP) is solved at each time step. For the simulations in this study, the MLCP
is formulated as follows:
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where M is a diagonal mass matrix containing the inertial properties of all bodies within the simulation; Jh and Jc are matrices
containing constraint Jacobians, which express the influence of contact impulses on body velocities; uΔ ˙ is a vector containing the
velocity change (both linear and rotational) of each body in the simulation domain; λh and λc are vertices containing the constraint
impulses, which express the time-integrated contact forces within one time step; Σh and Σc are matrices containing the impulse-
dependent compliance factors; vertices ϒh and ϒc contain the compliance factors which are independent from the contact impulses;
and α is a vector of residuals with no physical meaning. The difference between the variables with subscripts h and the variables with
subscripts c is that the variables with subscripts h contain the holonomic constraints, i.e., the constraints with no upper or lower limits
to the impulses, while the variables with subscripts c contain the non-holonomic constraints, i.e., the constraints for which the
impulses are bound by upper and lower limits. A holonomic constraint is used in the simulations for this study to propagate the
structure with a constant velocity.

Upper and lower limits to the contact forces are enforced by the complementarity condition as specified in Eq. (2). The following
limits are enforced:

≥λ 0n (3)

≤λ λμt n (4)

≤λ l λ1
2ϕ c n (5)

where λn are the normal impulses, λt are the frictional impulses, λϕ are the rotational impulses that occur between interacting bodies,
and λn, λt and λϕ are part of the λc vector in Eq. (1). Eq. (3) states that there cannot be any tension at the ice-ice or ice-structure
contacts. Eq. (4) states that the frictional impulses are limited by a friction coefficient μ and the normal impulse occurring at the same
contact. Eq. (5) states that the rotational impulses are limited by the normal impulse at that contact and the contact length lc. The
contact length lc is defined as follows:

A
h
c

(6)

where Ac is the contact area and h is the ice thickness. The variable Ac is defined as the contact projected area in the case of ice-ice

Fig. 1. Ice-ice contacts are resolved using the contact projected area and normal direction.
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contact. In the case of ice structure contact, it is defined as the area in contact with the ice of each individual structure panel, which is
clarified in Figs. 1 and 2. For further details and explanation on how the limits expressed in Eqs. (3)–(5) lead to the MLCP as
formulated in Eqs. (1) and (2), the reader is referred to van den Berg et al. [15].

The contact parameters representing compliance are determined based on an assumption of constant crushing specific energy
(CSE) (Kim and Gagnon [16]. The CSE is the amount of energy needed to crush a unit volume of ice (unit: J m/ 3). The CSE assumption
is used in combination with the exact contact geometry to determine the compliance properties of each contact, such that the loss in
kinetic energy matches the energy dissipated in local ice crushing:

⋅ = − ↔ >V E VCSE Δ Δ Δ 0ko o (7)

in which VΔ o is the change in overlap volume at the contact and EΔ k is the change in kinetic energy of the contacting bodies. The
contact geometry and overlap volume is determined by finding the intersection points of the lines that form the ice floe shapes, and
composing the contact geometry from these points. The local crushing assumption results in a contact behaviour with zero restitution;
all available kinetic energy is dissipated. This type of contact behaviour can be viewed as hysteratic damping. A detailed mathe-
matical description of the contact model is provided by van den Berg et al. [15].

Using the contact forces occurring at the compliant contacts, ice floe splitting is implemented using closed-form analytical so-
lutions as presented by Lu et al. [17]. Bending failure is not considered because we limit the study to vertical-sided structures. Form
drag and skin friction on the ice floes are calculated as described by Tsarau [18].

The limitations of the model used in this study are clarified below.
Exclusion of rafting and ridging behaviour. Floe rafting is excluded because of a lack of a generally accepted model or mechanism to

describe ice floe rafting. There is not much literature examining broken ice rafting behaviour. A mechanical model of sea ice rafting
behaviour was presented by Parmerter [19]. This model is based on the assumption that the sides of the ice floes are non-vertical and
that there is no friction between two interacting ice sheets. However, data on the ‘non verticality’ of the sides of broken ice is not
known to the authors. Additionally, we question the validity of the zero friction assumption. Broken ice rafting experiments were
done in the 1990's, by Tuhkuri and Lensu [4]; Tuhkuri [20]. Numerical modelling of these experiments is described by Hopkins and
Tuhkuri [21]. Hopkins and Tuhkuri [21] modelled circular ice floes with hemispherical edges. To match the rafting behaviour as
observed in the experiments, Hopkins and Tuhkuri [21] introduced and tuned a ‘circular edge friction coefficient’ that varied with the
ice thickness. This method relies on experimental data to determine appropriate values, and the values used in Hopkins and Tuhkuri
[21] cannot be simply translated to appropriate values for other ice floe sizes or thicknesses or to the appropriate full-scale values.
Moreover, the numerical model used in the current paper assumes vertical floe edges; thus, the method of Hopkins and Tuhkuri
cannot be directly applied.

Considering the modelled ice floe sizes, areal coverage and ice thickness of the broken ice floes used in the simulations presented
in this paper, we would expect rafting to occur only when significant accumulation of ice occurs. In this case, rafting can be a load
releasing mechanism capping the upper limit load that may occur. As rafting is considered the initial stage of ice ridging, excluding
rafting behaviour also excludes ridging.

No ice rubble and no brash ice. Ice rubble and brash ice is not modelled primarily because of numerical reasons. The inclusion of
rubble as a large number of small bodies would make the simulations too inefficient to generate the statistically significant results
that are needed for the examinations done in this study. Additionally, ice rubble can occur in many forms; therefore, the size and size
distribution as well as the quantity of rubble particles would be additional variables in the sensitivity analysis. In existing numerical
models, rubble or brash is sometimes included as a viscous fluid (Løset [22]. However, the properties of this representative fluid are
not quantified, and it is not clear that the inclusion of ice rubble or brash ice as a fluid will properly capture its influence on the
discrete ice-structure interaction process. Because rubble is not included in the simulation, the presented results should be considered
valid for no- or low-rubble broken ice conditions only.

Although our numerical model is capable of performing 3D simulations including bending, we choose to perform 2D simulations
since 3D effects, such as bending failure and floe rafting, are not taken into account. Since the simulations are in 2D, each ice floe has

Fig. 2. Ice-structure contacts are resolved using the sub-contact areas of each structure panel (partly) in contact with an ice sheet.
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three degrees of freedom; two translational and one rotational.
Given the limitations regarding ice rubble and floe rafting behaviour, the validity of the results must be carefully interpreted. For

certain parameter combinations, phenomena occur that we would not expect to see in reality because floe rafting and ridging would
occur as load limiting mechanisms. This finding is further discussed in Section 5.

2.2. Part 1: The effect of ice floe shape in ice-tank tests

The first part of this study examines the effect of floe shape on loads measured in an ice-tank test. The experiment we used as
comparison involves a structure with four vertical-sided cylindrical legs at the waterline that moves through a broken ice field with a
reported concentration of 60%. Most of the floes in this experiment are rectangular in shape. More details can be found in Hoving
et al. [2]. These experimental results have been used previously for comparison to the results of a numerical model by van den Berg
et al. [15]. We chose these experimental results as comparison case because it is the processing of these results which led to the
current study of the floe shape effect.

The experimental results are compared to the results of numerical replications of the ice-tank test. The numerical replications are
performed with 1) the digitized floe shapes (as used in the actual experiment), 2) triangular floe shapes, 3) square floe shapes and 4)
circular floe shapes. The generated broken ice fields are shown in Fig. 3. All other broken ice properties except for the floe shape
remain constant.

The structure geometry is shown in Fig. 4. Other parameters used in the simulations of the experiment are shown in Table 1. Note
that there are two velocities listed in the table. During the experiment, the structure moved with the lower velocity for the first one-
third of the experiment, while moving with the higher velocity for the last two-thirds of the experiment, resulting in an equal
measurement duration for each velocity.

The Hamburg Ship Model Basin (HSVA) ice tank has a sloping boundary at the far end of the ice tank. Since the simulations were
performed in 2D, the sloping boundary at the end of the ice tank was not included in the numerical simulation. Instead, the numerical
ice field is extended by a random field with similar properties as the ice field used in the ice tank. This is clarified in Fig. 3.

The results of this type of experiment are very sensitive to the initial conditions. The initial conditions of the numerical ex-
periments will always be slightly different from the actual experiment because of inaccuracies in the broken ice digitization and the
uncertainty in the model parameters. Therefore, a direct time-series comparison between the numerical and experimental results is
not very informative; the time series will always be different. Hence, we investigate the statistical properties of the numerical results,
examining how these properties are influenced by the floe shape. Statistical properties are obtained by running 100 numerical
simulations for each floe shape. In each simulation, a slight variation is introduced by giving the ice floes a low random initial
velocity of 0.002m/s. The initial velocity is quickly dissipated because of drag, but it results in slightly different initial floe positions.
From the 100 data points obtained at each time step, the 5th lowest (P5), the mean, and the 5th highest (P95) simulation results are
compared to the ice tank test results.

Fig. 3. Top view photo of the Hamburg Ship Model Basin (HSVA) ice field (a) and digitizations of the field using different ice floe shapes. From top
to bottom; ‘real’ shapes (b), triangles (c), squares (d) and circles (e). Note that the numerical fields are extended with randomly placed ice floes,
whereas the HSVA ice field ends with a sloping boundary.
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2.3. Part 2: sensitivity study; time series comparison methodology

In the sensitivity study, time series for different parameter combinations are compared using the mean and standard deviation of
the ice load in the surge direction. We ensure statistical homogeneity of the results by inspecting the cumulative mean load and
standard deviation as a function of interaction length. If the results are statistically homogeneous, the cumulative mean and standard
deviation should converge to constant values as the simulation progresses. The cumulative mean load is calculated as follows:
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where N l( ) is the number of time steps until interaction length l and Fx is the total ice load on the structure in the surge direction. The
cumulative standard deviation is calculated as follows:
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For all simulations, except for the case of triangular and square floes in the confined domain with the high friction coefficient
=μ 0.5, the data shows that the cumulative mean and the cumulative standard deviation converge to constant values. An interaction

length of 10 000m is needed to reach convergence of the mean and standard deviation in all simulations. The following convergence
criterion was used:
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and similarly for the standard deviation:
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Fig. 4. Waterline geometry of the test structure (from van den Berg et al. [15].

Table 1
Parameters used in the numerical simulations (from van den Berg et al.
[15].

Ice thickness [m] 0.0346
Ice-ice friction coefficient [−] 0.12
Ice-structure friction coefficient [−] 0.12
Ice areal coverage (from analysis) [%] 62.9
CSE [kJ/m ]3 29

Carriage velocity [m/s] 0.09–0.18
Skin friction drag coefficient [−] 0.005
Form drag coefficient [−] 0.5
Water density [kg/m ]3 1005

Ice density [kg/m ]3 900

Gravity acceleration [m/s ]2 9.81
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The convergence criteria in Equations (10) and (11) state that the variance of the mean and standard deviation of the structure
load in the last 500m of the simulation must be less than 3%. Figs. 5 and 6 show examples of a converging cumulative mean and
standard deviation for the simulation case of 70% areal ice coverage, no confinement, digitized real floes and friction coefficient
=μ 0.1. The first 2000 s of each simulation were discarded, since the load statistics are different in this start-up period because the

processes affecting the ice load are developing. The non-converging results are further studied in Section 5.

2.4. Part 2: sensitivity study; investigated parameter combinations

In the sensitivity study, we investigate the correlation between the floe shape effect and other environmental and structural
parameters to determine in which conditions the floe shape effect is (most) important. To investigate the correlation, we formulate a
test matrix in which we systematically vary model parameters that may correlate with the floe shape effect. Because of the long
duration of each individual simulation, we limit the test parameters to the ones that we expect to have the highest correlation with
the floe shape effect. In addition, there are some practical considerations affecting our parameter choice. The chosen simulation
parameters are shown in Table 2.

We discuss the chosen parameter combinations and explain why we chose to investigate the influence of these parameters in the
following sections.

Structure shape. The correlation of the structure shape with the floe shape effect was expected to be especially important in
combination with confinement. The shape of the structure may influence the formation of force chains and may encourage ‘ice
bridging’ between the structure and ice tank walls. We test a square and a circular structure shape, in which the sides of the square
structure are parallel and perpendicular to the propagation direction (i.e., the structure is not rotated).

Confinement conditions. The influence of confinement conditions is investigated because of their relevance to the ice tank tests.
Earlier studies performed by the authors (van den Berg et al. [15] as well as earlier ice tank experiments (Hopkins and Tuhkuri [21]
suggest that tank walls may influence ice tank test results under certain conditions. We expected that the influence of confinement by
tank walls may be correlated to the ice floe shape effect.

Areal ice coverage. Ice areal coverage is one of the most important parameters determining the resistance of structures in broken
ice (Comfort et al. [1]. We expected a strong correlation between the broken ice shape effect and the areal coverage. In former ice-
tank tests and numerical simulations, the results showed that for high ice areal coverage (> 70%), ice clearance is no longer the
predominant load limiting mechanism; therefore, the effect of floe shape becomes less important with high areal coverage. We test

Fig. 5. Cumulative mean load, 70% areal ice coverage, no confinement, digitized real floes and friction coefficient =μ 0.1.

Fig. 6. Cumulative standard deviation, 70% areal ice coverage, no confinement, digitized real floes and friction coefficient =μ 0.1.
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the floe shape effect in ice areal coverage ranging from 30% to 70%.
Friction coefficient. Frictional forces play an important role in the accumulation of broken ice. Therefore we expected a correlation

between the assumed friction coefficient and the effect of the floe shape. We investigate the influence of floe shape at friction
coefficients of 0.1 and 0.5. These values roughly coincide with the lower and upper values used in the literature for simulations of
similar ice-structure interaction scenarios. The same friction coefficient is used for ice-ice and ice-structure interactions.

Floe shape. Because the floe shape is the primary parameter of interest in this study, we test several floe shapes to assess its
influence. First, we run simulations with floe geometries obtained from a digitized top view photo of a broken ice field. These floe
geometries are referred to as the ‘real’ floe geometries in the remainder of this paper. Second, we run simulations with regular shapes,
ranging from triangular to octagonal. Third, we run simulations with circular floe shapes. The floe shapes used in this study are
shown in Fig. 7, where the ‘real’ floe shape (upper left) is an example shape.

All possible combinations of structure shape, confinement conditions, ice areal coverage and floe shape are simulated with a
friction coefficient of =μ 0.1. To save calculation time, only the square structure geometry is used in combination with the friction
coefficient =μ 0.5. This results in 144 unique simulations of 10 000m structure propagation each. To limit the number of simula-
tions, certain simulation parameters are set to constant values. The constant parameters are included in Table 2. The constant
simulation parameters may also be correlated with the floe shape effect, but their correlation is not investigated in this study.

2.5. Part 2: sensitivity study; broken ice definition and field creation

For the sensitivity study, random broken ice fields are created using the ice floe sizes, shapes and size distribution obtained from a
top-view photo, which ensures that the randomly created broken ice fields resemble broken ice conditions as observed in nature.
Fig. 8a shows the top view photo used for digital broken ice creation and Fig. 8b shows the digitized field. The photo was taken
during the Oden Arctic Technology Research Cruise 2015 (OATRC2015) and was published and digitized by Lubbad et al. [14]. The
ice field was digitized using the method described by Zhang and Skjetne [23]; using a minimum floe area of 20 m2.

Table 2
Investigated parameter combinations.

Constant parameters

ice thickness 1.0 [m]
CSE 2.0 [MJ/m ]3
structure width 40.0 [m]
structure velocity 1.0 [m/s]
ice form drag coefficient 0.5 [-]
ice skin friction drag coefficient 0.005 [-]
floe area distribution from top view photo
Varying parameters
structure shape square circular
confinement conditions ice tank walls unconfined
ice areal coverage 30% 50% 70%
floe shape digitized real floes 3–8 corner regular circular
friction coefficient 0.1 [-] 0.5 [-]

Fig. 7. Floe shapes used in the simulations. Left to right, top to bottom: ‘Real’ floe shapes (as observed in top view photo), 3–8 corner regular shapes
and circular floes.
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Comparing the digitized broken ice field to the top view photo, we observed that the lower left corner was not digitized correctly.
Therefore the digitized floes in this area are not used in the broken ice creation process. The remaining floes are used as the basis for
the randomly generated broken ice fields that are used to investigate the floe shape influence. Fig. 9 shows the cumulative floe area
distribution of the floes resulting from the digitization of the broken ice field. The inertial properties of the ice floes are determined
assuming a constant thickness and ice density, resulting in a COG position in the center of area of a floe (in top view).

Random broken ice fields are produced with the areal coverage as specified in Table 2. The broken ice fields are created by placing
the digitized floes randomly inside the simulation domain. Then, the overlaps between floes are resolved, resulting in randomized
broken ice fields with the desired areal coverage, having the exact same floe areas and floe area distribution as the digitized broken
ice.

For the broken ice fields with shapes other than the natural shapes resulting from image processing, the floe areas from the
digitized broken ice fields are used to create floes with the specified shapes, and the floes are placed in the same initial location as
their counterparts with the same area. This results in generated broken ice fields with the exact same properties, except for the
difference in floe shape. Snapshots of the resulting broken ice fields are shown in Fig. 10.

The simulations are set up such that the simulation duration is not limited by the size of the created broken ice field. The ice field
with the specified areal coverage is generated continuously ahead of the structure, and it is always unique. Floes that have passed the
structure by 200m are deleted from the dynamic domain, to increase the efficiency of the simulations. Fig. 11 provides a clarification

Fig. 8. Digitization of the ice field as observed from a helicopter. Top-view photo (a) and digitized broken ice field (b) (Lubbad et al. [14].

Fig. 9. Floe area distribution.
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Fig. 10. Generated broken ice fields with different floe shapes, 50% areal coverage. From left to right, top to bottom: ‘real’ floe shapes (a), 3–8
corner regular shapes (b–g) and circular shapes (h).

Fig. 11. Clarification of the continuous broken ice field generation process.
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of the floe addition and deletion process.
The ice field generation algorithm generates the ice field in blocks, ensuring for each block that the average areal coverage is

equal to the defined areal coverage. The area of the generated blocks is such that the desired areal coverage is reached when placing
all digitized floes within the block. Although the specified areal coverage is ensured over each block, subregions of the generated
broken ice field may have a higher or lower areal ice coverage than the specified areal coverage, similar to real ice broken ice fields.

The choice of simulation dimensions is closely linked to the confinement conditions we are modelling. The dynamically modelled
domain must extend sufficiently far that the contact network extending from the structure does not reach the free boundaries of the
modelled domain. Otherwise, the free boundaries will unrealistically influence the simulation results. For the unconfined simulations,
we find that a domain of 1000×700m is sufficiently large to ensure that the contact network does not extend to the domain
boundaries. In the confined simulations, the confinement wall distance is chosen to match the distance of HSVA ice-tank width. A
scaling factor of 40 is applied, leading to a full-scale width of 400m. The scaling factor is chosen such that the ratio between floe size
and tank width is similar to the ratio observed in published ice tank tests (Hoving et al. [2]; Haase et al. [3]. In higher areal coverage
fields, the build-up of ice floes in front of the structure in the confined case can be substantial, leading to a required domain length in
the surge direction of 2000 m to ensure the structure influence on the broken ice field does not reach the domain boundary. The
domain dimensions of the confined domain are shown in Fig. 12. All simulations are performed in full-scale.

3. Results of part 1: the floe shape effect in ice tank tests

As explained in Section 2.2, the results of 100 simulations for each of the simulated floe shapes are compared to the measured
data. To further clarify how the P5, mean and P95 values are obtained, the simulated results and the resulting P5, mean and P95 values
for the simulations with square floe shapes are shown in Fig. 13.

The aggregated results of the ice-tank test simulations are shown in Figs. 14 and 15. For all tested floe shapes (digitized ex-
perimental shapes, triangular, square and circular), the figures show the P5 and P95 lines and the mean value at each time step of the
100 simulations performed. The data show that the digitized experimental floe shapes and the square floe shapes show similar
behaviour (note that most of the digitized experimental shapes are rectangular) and that the triangular and circular floe shapes show
similar behaviour.

The measured experimental loads mostly fall within the P5 and P95 bounds of the simulations performed with digitized experi-
mental floe shapes and the simulations performed with square floe shapes. The simulations performed with triangular and circular
floe shapes have lower mean and P95 load values, and the experimental results are higher than the P95 load values for a significant

Fig. 12. Dimensions of the simulation domain for the confined cases.

Fig. 13. The 100 simulation results and the resulting P5, mean and P95 values of the simulations performed with square floe shapes. As in the ice tank
tests, the structure velocity increases after 200 s, leading to the higher loads in the second part of the simulations.
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portion of the time series. Especially in the segment of the time series where the structure had a velocity of 0.18m/s, which was the
last 200 s of the experiment, the differences between the experimental and square floe shape simulation results and the triangular and
circular floe shape simulation results are evident.

4. Results of part 2: the floe shape effect and its correlation with the investigated parameters

The results from the sensitivity study show there is a strong effect of the ice floe shape on the mean and on the standard deviation
of the ice load in the surge direction.

The means and standard deviations of the ice loads in the surge direction for the unconfined and confined simulations are
illustrated in Figs. 16–19. The coloured bars represent the results of the low friction simulations ( =μ 0.1). The square markers
represent the results of the high friction simulations ( =μ 0.5). For the low-friction simulations, the results for circular and square
structures are grouped in the coloured bars, in which the minimum of the bar is the lowest mean load and the maximum of the bar is
the highest mean load from both tested structure shapes. In all simulations, the circular structure resulted in loads with a lower mean
and standard deviation than the loads from the square structure. The high friction simulations were only performed with the square
structure geometry. Note that the y-axes of Figs. 18 and 19 are in log scale. The mean and standard deviation of the 70% areal
coverage simulations with triangular and square floes in the confined domain and with a friction coefficient =μ 0.5 are shown in
gray, because these simulations did not reach a statistically homogeneous state. Therefore, these values are invalid. The mechanism
causing these invalid results is further examined in Section 5.

To further clarify the correlation between the floe shape and the other investigated parameters, the percentage differences of the
mean and standard deviation resulting from the simulations with square floe geometries as compared to the mean and standard
deviation resulting from the simulations with the real floe geometries are shown in Table 3. The percentage differences are listed
separately for the confined and unconfined simulations because the mechanisms responsible for the differences are different for the
confined and unconfined simulation cases. The mechanisms are further explained in Section 5.

The data in Figs. 16–19 and Table 3 shows the following:

Fig. 14. Statistical properties of the numerical results compared to the loads measured in the ice-tank tests; velocity 0.09m/s.

Fig. 15. Statistical properties of the numerical results compared to the loads measured in the ice-tank tests; velocity 0.18m/s.
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Fig. 16. Mean ice load in the surge direction as a function of floe shape, concentration and friction coefficient, no confinement.

Fig. 17. Standard deviation of the ice load in the surge direction as a function of floe shape, concentration and friction coefficient, no confinement.

Fig. 18. Mean ice load in the surge direction as a function of floe shape, concentration and friction coefficient, confined domain.
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• Square ice floes result in ice surge loads with a higher mean and standard deviation.

• Other regular shapes with ‘parallel opposite edges’, i.e., the hexagonal and octagonal floes, also show a higher mean and standard
deviation of the ice load than other floe shapes; however, the effect is not as strong as with square floe shapes.

• The effect of floe shape is strongly related to the confinement conditions. In unconfined simulations, the floe shape effect is weaker
than in confined simulations. The higher the ice areal coverage, the stronger the effect of confinement.

• The floe shape effect is stronger for a circular structure geometry than for a square structure geometry.

• The floe ‘roundness’ appears to play a role in the high-friction simulations, but not in the low-friction simulations.

• Both in the confined and in the unconfined simulation cases, the floe shape effect is stronger for higher ice areal coverage.

• In the unconfined case, the influence of floe shape is inversely related to the friction coefficient. The higher the friction coefficient,
the lower the effect of the floe shape.

Parallel opposite edges are defined as edges of the floe that have a parallel edge perpendicularly opposite to the edge across the
floe. This is clarified in Fig. 20. Floe roundness is a measure for how closely a body approaches a disk geometry (in 2D). Different
definitions are used in the literature to define floe roundness; however, the exact definition is not relevant in this study. Floe
roundness is a common way to classify ice floe geometry and is used, for example, by Toyota et al. [24].

Fig. 19. Standard deviation of the ice load in the surge direction as a function of floe shape, concentration and friction coefficient, confined domain.

Table 3
Percentage difference of square floe results compared to the real floe results for the
investigated parameters.

Mean Std

Unconfined simulations
μ 0.1 +66% +59%
μ 0.5 +28% +29%
30% coverage +19% +18%
50% coverage +52% +43%
70% coverage +55% +57%
square str. +38% +40%
circular str. +88% +57%
Confinement effecta

Unconfined +39% +33%
Confined +84% +79%
Confined simulations a

μ 0.1 +62% +46%
μ 0.5 +63% +68%
30% coverage +22% +21%
50% coverage +87% +79%
70% coverage +764% +529%
square str. +57% +60%
circular str. +87% +45%

a Excluding the 70% simulation results, because the confined 70% concentration
simulations did not reach a statistically homogeneous state.
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5. Discussion

The mechanisms responsible for the floe shape effect as observed in Sections 4 and 3 are discussed in this section. We also
elaborate on the limitations of the presented results, and discuss how ice-tank tests with broken ice may be improved.

5.1. Mechanisms responsible for the floe shape effect

The most important phenomenon responsible for the floe shape effect is the greater length and the higher stability of force chains
for floes that have parallel opposite edges. In the confined simulations, this phenomenon may lead to bridging of force chains
between the structure and the tank walls, exacerbating the floe shape effect. In the high-friction simulations, the results indicate that
the floe ‘roundness’ plays a more important role than in the low friction simulations. In analysing the mechanisms responsible for the
floe shape effect, we rely on time-domain visualizations of the numerical simulations performed for the replication of the ice-tank
tests and for the sensitivity study. The mechanisms are examined in more detail in the following sections.

Force chain formation. The simulation results show that force chains extending from the structure are longer and more stable when
floes have parallel opposite edges. In this paper, force chains are defined as three or more contacting bodies with a maximum body
contact force exceeding half the global maximum contact force:

≥f fmax( ) 0.5max( )b t g t; ; (12)

in which fb t; is a vector of all contact forces for one body at time step t and fg t; is a vector of all contact forces in the domain at time
step t. Note that this definition is different from the definition applied in other literature describing force chains in ice structure
interaction. Other literature often applies the definition as given by Paavilainen and Tuhkuri [25]; where force chains are defined
based on a load vector that takes both the force magnitude as well as the force direction into account, and requiring that the load
vector is higher than the average value of the load vector for an assembly of three or more elements. However, in the simulations
performed in this study, most bodies in the domain are free floating and therefore have a contact load vector of 0, resulting in a low
mean load vector. This makes the definition by Paavilainen and Tuhkuri [25] less applicable, as it would result in force ‘regions'
rather than force chains, even though force chains are clearly visible using the definition as described above.

Fig. 21 shows the difference in length and stability of force chains by comparing the maximum body forces from a simulation with
real floe geometries to the maximum body forces in a simulation with square floe geometries. In the square floe simulations, the force
chains are longer, resulting in a larger region influenced by the moving structure. The ice floes that are pushed ahead of the structure

Fig. 20. Parallel opposite edges enable the formation of stable force chains.

Fig. 21. Difference in force chain formation, square floes (a) and real floes (b).
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experience drag forces, which are transferred to the structure through force chains. This transfer leads to a higher average surge load
on the structure in the simulation with square floe shapes.

The simulation results show that force chains extending from the structure are longer and more stable when floes have parallel
opposite edges. Both the proportion of edges that are parallel and opposite and the length of the parallel opposite edges influence the
length and stability of the occurring force chains; in regular shapes with an even number of corners, all edges are parallel and
opposite. However, the results show that as the shape approached a circle, the effect of the parallel opposite edges becomes weaker
because each edge is shorter. The data in Figs. 16–19 show that the presence of parallel opposite edges leads to a higher mean and a
higher standard deviation of the load in both the confined and the unconfined cases, when a friction coefficient =μ 0.1 is used. In the
simulations with the friction coefficient =μ 0.5, the effect of parallel opposite edges is only observed in the difference between the
triangular and square floe results, but it is no longer present for 5–8 corner regular shapes. This result can be explained by the fact
that edges must no longer be exactly parallel for the formation of stable force chains to occur when using a friction coefficient of
=μ 0.5. In addition, the data show that the effect of floe roundness starts to play a role in the high-friction coefficient simulations.
To the authors' knowledge, the presence and length of parallel opposite edges is currently not used as a parameter to describe

body shapes in discrete element simulations. Rather, authors tend to choose the more general ‘roundness’ or ‘angularity’ (similar but
opposite to ‘roundness’) to describe body geometries (e.g., Toyota et al. [24]. However, our results show that a ‘roundness’ or
‘angularity’ parameter does not sufficiently describe floe shapes in ice-structure interaction scenarios if the reproduction of ice loads
is of interest.

Ice bridging. Both in the confined simulations that were performed for the ice-tank test replication study (part 1) and in the
sensitivity study (Part 2), the force chain formation causes bridging between the structure and the tank walls in some of the si-
mulations. When bridging occurs, the effect of the force-chain formation and, by extension, the effect of the floe shape on the ice load,
is greatly exacerbated. The bridging is rarely permanent; when ice floes accumulate behind the bridging event, the bridging is usually
resolved because of a floe-splitting failure event or instability in a force chain. Instability of force chains was also observed as load
limiting mechanism, although in a different setting, by Paavilainen and Tuhkuri [25] and Ranta et al. [26]. An example of how a force
chain clears because of splitting failure is provided in Fig. 22.

In Part 1, the ice-tank replication study, typically one of three mechanisms occurs in the simulations with the digitized experi-
mental floes (mostly rectangular) or the square floe shapes; 1) no bridging events, 2) partial bridging events that quickly clear or 3)
full bridging. With the digitized experimental floe geometries, no bridging occurs in 79% of the simulations. In 18% of the simu-
lations, partial bridging occurs, and only in 3% of the simulations full bridging occurs. The simulations were identical, apart from the
low random initial velocity of the ice floes, as explained in Section 2.2. Fig. 23 illustrates the bridging behaviour of the ice floes.
Fig. 24 displays the surge load on the structure for the three different scenarios, comparing them to the measured load. The load-time
signal of the partial bridging case most closely resembles the measured load.

In the simulations with triangular and circular floes, bridging does not occur in any of the simulations, and the P5, mean, and P95
lines are lower than the measured load for the majority of the time series.

In the sensitivity study (Part 2), bridging occurs in the 70% areal coverage confined simulations. Usually, the bridging events are
unstable; a force chain between the structure and the tank wall is formed and then breaks again a few seconds later. Nevertheless, the
formation of these bridging events inhibits the sufficient clearing of ice around the structure, leading to significant accumulation of
ice floes in front of the structure. Fig. 25 shows an example of floe bridging and accumulation as it occurs in the sensitivity study.

The bridging and subsequent accumulation of ice greatly exacerbates the effect of the floe shape, leading to mean loads and
standard deviations of up to 8 times higher for square floes compared to real floe shapes (shown in gray in Table 3). Often, the
accumulation of floes would be so extensive that we consider the simulation results unrealistic. We expect that floe rafting would
have occurred if the simulations would have been three dimensional. Thus, the model results for confined simulations with 70%
concentration and square floe geometries are considered invalid.

Effect of floe ‘roundness'. The data in Figs. 16–19 show that the triangular floe shapes give the lowest mean and standard deviation
in all scenarios when using the low friction coefficient =μ 0.1, but result in mean loads as high or higher than the other regular
shapes when using a high friction coefficient =μ 0.5, especially in the 70% areal coverage simulations. We attribute this result to the
effect of floe ‘roundness’, which our results indicate starts to play a more important role in the higher friction coefficient simulations.

Fig. 22. Example of a force chain that disappears because of splitting failure.
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5.2. Limitations of the current study

There are several limitations of the performed study, which limit the validity and range of applicability of the results.
Limited parameter combinations tested. Although the correlation of important parameters with the floe shape effect is assessed in the

sensitivity study, there nevertheless remain many untested parameter combinations in which the influence of the floe shape effect is
unclear. The reasoning behind our parameter choices is explained in Section 2.4. Naturally, the validity of the results is limited to the
tested parameter combinations, and the influence of (among other parameters) the interaction velocity, the floe size and size dis-
tribution, the structure orientation, rafting and ridging effects and the presence of ice rubble and brash ice remains unstudied.
Nevertheless, we consider the tested range of parameters sufficiently broad to conclude that the effect of floe shape is present and
relevant in the interaction between broken ice and vertical-sided structures.

Validity of obtained results. Among the results, there are parameter combinations for which the 2D nature of the simulations may
have had a significant influence on the results. Three reasons are listed in the following sections:

Fig. 23. Mechanisms causing different loading behaviour: no bridging (a), partial bridging (b), and full bridging (c), visualized by floe velocity.
Yellow floes move with the same velocity as the structure. (For interpretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)

Fig. 24. Loads resulting from the different interaction mechanisms: no bridging, partial bridging and full bridging.

Fig. 25. Bridging of a force chain between the structure and the tank wall, and floe accumulation in front of the structure as a result of multiple
bridging events.
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• Parameter combinations for which the mean and standard deviation did not converge. For two parameter combinations, a statistically
homogeneous state was not reached because of excessive build-up of floes in front of the structure. This behaviour occurred in the
70% areal coverage confined simulations with triangular and square floe shapes and a high friction coefficient of =μ 0.5. Figs. 26
and 27 show the cumulative mean and standard deviation for the non-converging simulations with triangular floes. The results for
these parameter combinations are considered invalid and are thus shown in gray in Figs. 18 and 19. We expect that floe rafting
would have occurred in these simulations if it would have been modelled. The rafting mechanism could reduce the bridging
processes that result in the excessive floe build-up.

The above described invalid results do not affect the primary findings as described in Sections 3, 4 and in the current section, i.e.,
that the effect of floe shape is present and significant for the modelled parameter combinations.

Fig. 26. Cumulative mean, 70% areal ice coverage, confinement, triangular floes and friction coefficient =μ 0.5. Example of simulation in which a
statistically homogeneous state is not reached.

Fig. 27. Cumulative standard deviation, 70% areal ice coverage, confinement, triangular floes and friction coefficient =μ 0.5. Example of simu-
lation in which a statistically homogeneous state is not reached.

• Simulations in which excessive floe build-up occurs. For some parameter combinations, the mean and standard deviation did converge to a constant
value; however, the floe accumulation and resulting ice load was such that we expect that floe rafting would have occurred if it would have been
possible. Simulations in which this occurs include all confined 70% areal coverage high friction ( =μ 0.5) simulations, except the one with
circular floes, and the confined 70% areal coverage simulations of square floes with the low friction coefficient =μ 0.1. From Part 1, the ice tank
test simulations in which full plug formation occurs fall in this category.

• The effect of floe discretization on the contact force. In the floe discretization process, the real floe geometries are approximated numerically by a
polygon consisting of a limited number of points. Small protrusions as well an any non-verticality of floe edges is filtered out. The resulting
numerical approximations of the floes have vertical and planar floe edges. This may lead to contact forces that increase more rapidly in the
numerical model than in reality, leading to higher load peaks and a higher standard deviation of the load-time signal.

• The end-boundary effect in Part 1; the ice tank test simulations. As explained in Section 2.2, the sloping tank boundary of the HSVA ice tank is not
modelled in the numerical representation because of the 2D nature of the simulations. Instead, we extend the ice field with floe ice that has
similar properties to the experimental ice field. This difference between the experiments and the simulations has an influence on the numerical
simulation results. In the results from the tank experiments, the data show that the ice load increases significantly near the end of the test
because of the effect of the sloping boundary. In the numerical simulations this increase in load is not present.
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5.3. Recommendations regarding ice tank experiments with broken ice

From the results in the previous sections, we propose that artificial broken ice is created such that the created floe shapes match
the floe shapes of the conditions one intends to model. At the same time, we also acknowledge the practical limitations related to the
creation of artificial broken ice. It is left to the ice tanks, who are the experts in this field, to properly define real-equivalent broken ice
conditions.

One may note that broken ice in real life may also have floe shapes that are close to rectangular or square, and that the use of
square or rectangular floes in ice tanks will at least lead to conservative results. However, rather than providing conservative results,
ice-tank tests should provide insight into the processes that may occur. As is shown in this paper, these processes can be significantly
influenced by the floe shape, especially in combination with confinement effects that may lead to bridging. Bridging can result in the
accumulation of ice in front of the structure to such an extent that the ice-tank test no longer represents the scenario for which the test
was originally intended. Although the resulting loads may be conservative, they are no longer relevant. Furthermore, the occurrence
of ice bridging between the structure and the tank walls, and the floe accumulation that may results, are part of a largely random
process. In the numerical reproduction of the ice-tank tests, there is a large difference in ice surge load between runs in which no
bridging occurred (79% of the simulations), simulations in which partial bridging occurred (18% of the simulations) and simulations
in which full bridging occurred (3% of the simulations). These differences may limit the reproducibility of the ice-tank test results.

6. Conclusion

The numerical experiments show that there is a strong floe shape effect on the mean and standard deviation of the ice load in the
surge direction in all tested broken ice conditions. The results from the sensitivity study (Part 2) show that the square floe simulations
predict a mean load that is between 19% and 88% higher than the mean load predicted by the real floe shape simulations. The effect
of floe shape is correlated to all of the investigated parameters. For instance, a circular structure results in a higher floe shape effect
than a square structure, a higher friction coefficient reduces the floe shape effect, the floe shape effect is stronger for higher ice areal
coverage and confinement exacerbates the floe shape effect for the tested combinations of floe size, structure size, and confinement
conditions. Bridging and floe accumulation are the mechanisms responsible for the correlation between the floe shape effect and
confinement. The greater length and stability of force chains is the primary mechanism responsible for the floe shape effect.

The stability and length of force chains is related to the presence and length of parallel opposite edges. The presence and length of
parallel opposite edges as a description of floe shape is novel and distinctly different from the often used roundness or (equivalent but
opposite) angularity parameter. A quantification of the effect of parallel opposite edges is not provided. The high number of para-
meters that may influence the floe shape effect and the complexity of the phenomena leading to the shape effect, make such a
quantification infeasible. Currently, numerical simulation appears the best tool to assess the influence of floe shape in a particular
interaction scenario, possibly in combination with ice-tank tests. The results of this paper lead to two recommendations:

• DEM simulations of broken ice should attempt to approximate the expected real floe shape. If the floe shape is not known, several
floe shapes should be modelled to assess the influence of floe shape in the scenario of interest. Approximating the broken ice with
square floe shapes will lead to conservative results, but the results may be overly conservative, resulting, in some conditions, in
loads that are almost two times greater than if ‘real’ floe shapes would have been used. Approximating the ice floes with circular
floe shapes may lead to an under-prediction of broken ice loads.

• Ice-tank tests of broken-ice-structure interaction should be performed using broken ice with shapes that resemble the floe shapes
of the ice condition one intends to model. It is left to the ice tanks to define a realistic ‘real-equivalent’ floe shape.
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Figure 1. Digitization of a broken ice field from a top view photo. The image merges from 
photo to digitized ice field from left to right.

Figure 2. Floe area distribution of the digitized broken ice field.

simulated domain and the structure’s position within t



Figure 3. Random broken ice fields created from the digitized broken ice field. Left: natural 
floe shapes. Right: square floe shapes.

Table 1. Parameters used in the simulations.
Parameter Value Parameter Value

150 Pa m  



Figure 4. Mean and standard deviation of the ice load on the structure opposite to the 
structure propagation direction, in the simulation with natural floe shapes and in the 

simulation with square floe shapes.
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Figure 5. Energy input and dissipation during ice-structure interaction. Energy is introduced 
in the system by the load component of the ice-structure interaction load in the structure 

propagation direction. Energy is dissipated in the ice-structure contacts and in ice-ice contacts 
by contact crushing and friction, and by hydrodynamic drag.
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Figure 6. Relative energy dissipation by collisions and drag, natural floe shapes and square 
floe shapes.
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Figure 7. Floes with a load value exceeding a threshold level (coloured floes) for the 
simulations with square floes (top) and the simulations with natural floe shapes (bottom), and 

for different threshold levels (left and right).



Figure 8. Mean total floe area of the floes exceeding a threshold load level.
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Figure 9. Mean total floe area of the floes exceeding a normalized threshold value, including 
the scaled square floe results and a power law fit to the natural floe shape and scaled results.
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