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Abstract

The NTNU Test Satellite (NUTS) is a small satellite developed by stu-
dents of the Norwegian University of Science and Technology (NTNU).
The satellite follows the CubeSat specification and the development
started in 2010, while a launch is planned for 2015. One goal of the
NUTS project is to build the satellite entirely from scratch in terms of
both hard- and software.
Another objective is to provide an effective security mechanism for the
operational uplink. The traditional approach of using encryption on the
satellite links in order to prevent a takeover is not realizable for NUTS
and a variety of other CubeSat programs. The reason for this is that the
satellite is operated via amateur radio frequencies which regulations are
not allowing encrypted traffic. Thus, a demand for alternative solutions
providing uplink security does exist.
Previous work inside the NUTS project has pointed out, that an authen-
tication scheme based on keyed-hash message authentication codes in
combination with timestamps embodies an alternative to an encrypted
uplink and a specific scheme has been proposed recently.
This thesis specifies the proposed scheme in detail in order to establish
its correctness to a large extend with methods of formal verification.
Additionally, the scheme is implemented on hardware having similar
computational restrictions compared to the NUTS satellite. This imple-
mentation is carried out in a way which guarantees an easy integration
into the finalized satellite software. Accompanying this, a conceptual
integration to the hard- and software of NUTS is provided.
The implemented authentication scheme is selected as security solution
for the NUTS satellite in space. Therefore, an in-space evaluation of
the scheme can be accomplished as soon as the satellite is launched. In
preparation for this evaluation, a test suite is developed and presented
in this thesis in order to verify the space suitability of the scheme by
experimental results later on.
Furthermore, the existence of minor flaws in the authentication scheme
could be shown and their impacts are discussed in order to demonstrate
their negligibility.
Summarized, this thesis demonstrates that an authentication scheme
based on HMACs and broadcast timestamps provides is reasonable secure
for the operational uplink of NUTS and elaborates a specific implemen-
tation of the scheme which is ready for an integration to the satellites’
software.
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Chapter1Introduction

"Experience without theory is blind, but theory without experience is
mere intellectual play." - Immanuel Kant

This masters’ thesis is a part of continuous research in the NTNU Test Satellite
(NUTS) project. Over the last three years students have been working on possibilities
for a secured communication with the CubeSat of the Norwegian University of Science
and Technology (NTNU). The reason for these ambitions is not far to seek; it is
desired that the satellite is protected against malicious users.
By now, several proposals for a security solution have been made, each of them with
different assets and drawbacks. The most recent proposal suggests the usage of an
authentication scheme based on Keyed-Hash Message Authentication Codes (HMAC)
and broadcast timestamps. It has been selected to be implemented on the NUTS
satellite. This is the starting point for this thesis.
While previous work focused on conceptual implementations and testing of different
schemes, this thesis shall provide a solid theoretical justification for the usage of
the proposed scheme. In order to prevent that this gets stuck in intellectual play,
an implementation for the scheme shall be provided and integrated to the satellite.
Since the scheme will be used on the satellite after its launch, special experiences for
in space operation can be gathered. For this reason, this thesis aims also to establish
a test suite for the evaluation of the scheme in space.
In order to fulfill the demands on the thesis, the following tasks have to be fulfilled:

1. Elaborate the authentication scheme in detail

2. Verify the scheme with methods of formal verification

3. Provide a working implementation

4. Integrate the implementation to satellite and base station

5. Establish a test suite for the implementation

1



2 1. INTRODUCTION

1.1 Structure of this Thesis

This thesis is structured in nine further chapters besides this introduction. The second
chapter shall provide the background and context for this thesis. The third chapter
describes the authentication scheme which will be verified with formal methods in
section four. The fifth section is providing information about a specific implementation
of the authentication scheme for the NUTS satellite. This implementation is tried
to be integrated to the actual satellite in chapter six and tested with the test suite
elaborated in chapter seven. The eighth chapter discusses the results established
in the thesis while the ninth chapter shows how the research of this thesis can be
continued. The thesis is closed with concluding remarks provided in the last chapter.

1.2 Terminology

In order to understand the theoretical part of this thesis, knowledge over the meaning
of specific terms is required. Therefore, a small terminology is introduced in this
section for establishing a common knowledge basis.
A cryptographic scheme is a system of one or more computers utilizing cryptographic
elements in order to reach one or more security goals. Such goals are security
related attributes of data or entities in the system, such as secrecy or authenticity.
Achieved security goals are denoted as the security properties of the scheme. Thus, a
cryptographic scheme can claim that it establishes certain security properties.
Cryprographic protocols or security protocols are crucial for schemes with more than
one entity or party. They define in which order and under which circumstances
messages are exchanged between communicating parties in order to reach the security
goals. An execution or run of the protocol is one specific instance of the message
exchange according to the protcol’s rules. Here, the communicating parties or entities
are representing specific roles, for instance the initiator or responder.
The messages in a cryptographic protcol are exchanged over communication channels.
The channels are normally assigned specific channel properties according to their
nature. One channel property is the directionality of sent messages which could be
one-to-one or broadcast for instance.
Cryptographic schemes are normally assuming the presence of an adversary which is
a generalized attacker who might have control of one or more entities participating
in the scheme.



Chapter2Background

The purpose of this chapter is to enlighten the context of the thesis. First the project
for which the authentication scheme is established will be described. Afterwards, a
brief summary as to why the scheme is needed is provided in order to conclude with
the previous work leading to the scheme presented in this thesis.

2.1 The NTNU Test Satellite Project

The NTNU Test Satellite (NUTS) project aims to built CubeSat entirely from scratch.
It was started in 2010 and provides a plattform for the students of the NTNU to
work with satellite technology. The launch of the satellite is planned for 2015. It is
designed according to the double CubeSat specification and has therefore dimensions
of 10 cm x 10 cm x 20 cm.
The planned payload for the satellite is a camera designated to take pictures of the
earth. By the time this thesis is authored, most parts of the satellites hardware
are already finalized in design and available to use. Thus, the specific subsystems
besides the payload are well defined: the On-Board Computer (OBC), Attitude
Determination and Control System (ADCS), Electronic Power System (EPS), Real-
Time Clock (RTC) and the radio.
The radio subsystem consists of two transceivers, a beacon and a Microcontroller Unit
(MCU) to coordinate incoming and outgoing signals. Each transceiver is connected
to a different antenna in order to allow communication in both the UHF and VHF
spectrum. More specifically, the communication takes place in the 2-meter and
70-centimeter amateur radio bands with a frequency of ca. 145 MHz and 437 MHz,
respectively.
One of the transceivers is only designated for downlink controlled by the OBC in its
normal mode of operation. The beacon is designed as fail-safe component and shall
continuously broadcast status information of the satellite via Morse Code. Figure
2.1 illustrates the NUTS system with focus on the radio subsystem. Between base
station and satellite a custom made link layer protocol, optimized for the needs of

3



4 2. BACKGROUND

Figure 2.1: Schematic view of the communication structure, first appeared in [Mü14]

NUTS, will be used. The development of this protocol is ongoing and carried out
by the NUTS communication group. For addressing the particular components of
the satellite, the CubeSat Space Protocol (CSP) is used. This protocol is developed
and maintained by GomSpace, a company founded by students of the University
of Aalborg [Gom12]. On top of this, a specific developed application protocol will
contain the specific commands for the components. Both the integration of the CSP
and the development of the NUTS application layer protocol is carried out by the
NUTS software group.
The authentication scheme presented in this thesis has been developed for the NUTS
project and relies therefore on the existence of the described components.

2.2 Uplink Security

The demand of a secured uplink for satellite communication is reasonable when it
comes to the operational uplink. Since the signals are transmitted and received over
an open medium, an attacker can easily eavesdrop the communication or introduce
signals on his own. Therefore it is desired that the operational uplink of a satellite is
secured in order to prevent a takeover.
Traditionally, this is achieved by encrypting the satellite uplink which is the de facto
standard for existing satellite applications [Sop12]. However, establishing encryption
for an CubeSat uplink is in many cases not possible due to legal issues. It is common
praxis in the CubeSat community to utilize amateur radio frequencies for satellite
communication due to the openness of this frequencies. Therefore, it is not needed
to purchase special frequency usage rights. However, common regulations have
to be satisfied when communicating on the amateur radio frequency. The most
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important regulation in regard to uplink security is article 25.2A of the International
Telecommunication Union (ITU) radio regulations [ITU12] which states that:

"Transmissions (...) shall not be encoded for the purpose of obscuring their
meaning, except for control signals exchanged between earth command
stations and space stations in the amateur-satellite service."[ITU12, p.
295]

Hence, as long as CubeSats are not part of the amateur-satellite service, encryption
of satellite links is not allowed when using amateur radio frequencies.
As a consequence, the CubeSat community has to solve the challenge of uplink
security without encryption. This thesis aims to contribute to the solution of this
challenge by presenting an scheme for authentication in a space environment.

2.3 Previous Work

The first examination of the demand fpr a secured uplink inside the NUTS project
dates back to 2011. The introductory research within the project focused on uplink
encryption and key exchange mechanisms [Vis11].
Later on it was shown by Prasai that encryption is not mandatory for NUTS in
order to establish a secured uplink [Pra12]. He proposed an authentication scheme
based on HMAC functionalities of the CSP. At the same time, it has been shown
that an authentication scheme only based on HMAC is vulnerable to replay attacks.
Therefore, he proposed to expand the CSP with unique sequence numbers in messages
from the base station to the satellite in order to guarantee freshness of every message.
Subsequently, this proposal has been improved in order to deal with synchronization
problems [BF12]. In this work, one additional sequence number and an extended
resynchronization protocol were introduced, both integrated into the CSP.
Recently, alternative elements for guaranteeing the freshness of messages were dis-
cussed in a separate report by the author of this thesis [Mü14]. It was shown that the
usage of sequence numbers causes unnecessary complexity for the system. Instead
of sequence numbers, the usage of broadcast timestamps sent by the satellite has
been suggested. Building upon this, an authentication procedure for the satellite
which is independent from other protocols could be established. This authentication
procedure is the starting point for this thesis.





Chapter3Authentication Scheme

The main purpose of the thesis is to verify, implement and integrate the authentication
scheme for the NUTS satellite. The presented scheme was elaborated in the preceding
report and particular design decisions can be reviewed in [Mü14].
The purpose of this chapter is to provide an extensive exposition of the scheme
as basis for the rest of the thesis. Therefore, the goal of the scheme is specified
and the special assumptions over the environment are examinated. The scheme is
based on two different components, namely HMAC and broadcast timestamps. Thus,
background knowledge over both components is provided before the authentication
protocol itself is presented.

3.1 Goal

The main goal of the authentication scheme is to prevent unauthorized access to the
satellite. More specifically, the usability of the operational uplink shall be restricted to
authenticated base stations. Therefore, the main goal of the authentication scheme is
to authenticate any legitimate base station to the satellite in order to reject messages
and commands from unauthorized ground segments.
In order to provide further clearance of the goal in regard to the different communica-
tion channels utilized by the NUTS satellite, figure 3.1 illustrates the desired behavior
of the channels. For the NUTS project, the common data uplink can be put on a level
with the operational uplink since no services for other users than the NUTS project
are planned. Since data downlink is only triggered after a corresponding command,
only the legitimate NUTS base station B shall be able to initiate a communication
session with the satellite.
On the contrary, the satellites beacon forms a broadcast channel since he is designed
to be receivable by a large number of base stations B′ in order to allow satellite
tracking.

7



8 3. AUTHENTICATION SCHEME

Figure 3.1: Authentication goal in regard to the communication channels

3.2 Environment Assumptions

In order to guarantee the correctness of the authentication scheme, several assump-
tions over the environment have to be made. In particular, we assume reliability of
the clocks in the system and the beacon of the satellite. Additionally, we presume
the satellite as a trusted source and require correctness of sent and received messages.
In this section, the needs and reasons for these assumptions are presented.

3.2.1 Clock Reliability

The authentication scheme will utilize timestamps as fresh element for establishing
authentication. Therefore, the reliability of the clocks has to be guaranteed. This is
especially challenging in a space environment since the satellite satellite’s on-board
RTC is exposed to space radiation effects. Space radiation can cause single bit flips
and change the saved time of the on-board RTC.
According to the data sheet of the DS3231 RTC [Max13], the used clock on the
satellite, the time is kept in seven 8-bit registers which results into an amount
of Nbits = 56 exposed to space radiation. Assuming a satellite lifetime τ of two
years and an bit error rate εsr of 10−5 errors per day caused by space radiation
[NAS96] the expected amount of errors in the RTC during the lifetime of the satellite
E(RTC)Lifetime can be calculated as shown in equation 3.1.

E(RTC)Lifetime = τ ·Nbits · εsr = 0.409 errors (3.1)
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Thus, a corresponding error could occur with a probability of 40% during the satellite’s
lifetime, which is rather high. Thus, we assume the presence of a watchdog for the
RTC which detects and corrects errors based on space radiation in order to establish
clock reliability for the satellite.
The base station resynchronizes its clock according to the satellite time and hence
does not require additional mechanisms to ensure reliability.

3.2.2 Beacon Reliability

The beacon has a substantial role in the authentication scheme. It continuously
broadcasts the time which is required for the scheme. Therefore, it has to be ensured
that it can not fail and will be available at all times. Inside the NUTS project, this
reliability was defined from the beginning since the beacon is designed to transmit
signs of life of the satellite even if all other subsystems fail [EB06].
Thus, the reliability of the beacon is achieved in two manners: On one hand, the
beacon hardware and software is designed by the NUTS communication group as
fail-safe component. On the other hand, one of the radios can be utilized to transmit
the beacon signal in the case that unexpected failures occur in the primary beacon.

3.2.3 Satellite as Trusted Source

The authentication scheme has only to authenticate the base station to the satellite
because we assume that messages from the satellite are trusted. This means that all
messages, which are apparently sent by the satellite, are indeed created and sent by
the satellite. Therefore, an adversary can not induce messages in the network which
are claiming to be originated by the satellite.
This assumption is based on a physical phenomena called Doppler shift. It describes
the change of a signals frequency which can be observed by a receiver if the sender
is moving relatively to it while sending. This is caused by the changing signal run
time resulting from the movement. Signals from satellites in a low earth orbit are
heavily influenced by Doppler shift since these satellites are moving relatively fast
to maintain there orbit. For instance, a satellite with an altitude of 500 km over
the earth surface moves with a velocity of approximately 7.4 kilometer per second
[AADH98].
To correct the doppler shift, the base station filters an incoming signal in order to
obtain the received data. Signals with a different characteristic of the Doppler shift
would result into unreadable data after filtering.
Additionally, the base station’s antenna is directed towards the satellite. Therefore,
it is rather hard to construct signals on earth which would be received by the base
station.
Thus, the trust assumption relies on the non-reproducibility of a signal with low
earth orbit characteristics for the adversary.
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However, the trust assumption would break if the adversary have the resources to
develop and launch a satellite into an identical low earth orbit. Since the costs for
this are high, especially compared with the benefits of compromising the NUTS
authentication scheme, this is not considered as a threat for the NUTS project.

3.2.4 Correctness of Transmission

Normally, space links are error-prone because of, inter alia, limited transmit power
on the satellite side, radiation effects on on-board components and signal losses on
the long communication path. This which would heavily influence the integrity of
sent and received data.
At the current state, a specialized link layer protocol is developed by the NUTS
communication group. It shall provide error detection and correction in order to deal
with transmission errors. Therefore, we assume that transmission errors are filtered
out by appropriate mechanisms on the link layer.

3.3 Keyed-Hash Message Authentication Code

This bulk of this section appeared first in [Mü14].

The authentication procedure will mainly rely on Keyed-Hash Message Authentication
Codes (HMAC). These are special message authentication codes with the underlying
idea to concatenate the message with a secret key and hash the result with a
cryptographic hash function. Such hash functions are both non-linear and non-
reversible and the secret key is only known by sender and recipient. Therefore,
authentication and data integrity is provided at the same time.
However, research has shown that a simple concatenation of the key and message
is vulnerable to length extension and collision attacks, depending on the order of
the concatenation [PvO95]. The standardized method for creating an HMAC is
defined in RFC2104 [HKC97] and has no known vulnerabilities. The creation of a
HMAC for a message m with the key k is defined as shown below, where h is the
cryptographic hash function, ipad and opad are distinct padding constants and ||
denotes the concatenation.

HMAC(k,m) = h(k XOR opad || h(k XOR ipad ||m))

3.4 Broadcast Timestamps

The usage of HMACs alone is not sufficient enough in order to reach the authentication
goal. It has been shown for the NUTS project that the usage of HMACs alone would
allow replay attacks [Pra12]. In such an attack, the attacker records a sent message
to the satellite including the authentication code and replays it later to the satellite.
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In order to deal with those attacks, a fresh element is required for every transmitted
message from the base station. The NUTS authentication scheme utilizes timestamps
as fresh element. The NUTS satellite broadcasts its actual satellite time via its
beacon which is receivable by any interested base station. Thus, we speak about
broadcast timestamps for the authentication scheme.
In order to use timestamps as fresh elements, a few additional particularities have
to be discussed. First of all, the clocks of the communication parties have to be
synchronized. Additionally, a common format for the timestamps has to be chosen
in order to be understandable for the parties.

3.4.1 Clock Synchronization

Systems which are using timestamps as fresh element are required to have loosely
synchronized [NS93] clocks, otherwise it can not be guaranteed that a message would
be successfully validated. The broadcast of timestamps from the satellite has the
purpose to establish this synchronization. Due to the broadcast, the base station is
able to adjust its clock according to the satellite time. Hence, the satellites RTC can
be seen as master clock inside the system.
This way of achieving clock synchronization has two advantages: An additional clock
resynchronization protocol is not required and the time is provided by a trusted
source.
The downside of this approach is that the timestamps has to be evaluated as coarse
timestamps due to the communication delays which is closer elaborated in section
3.4.3.

3.4.2 Format

The timestamps are transmitted as Unix timestamps, a common standard for digital
time keeping [Sin02]. An according timestamp stores the numbers of seconds since
the beginning of the Unix epoch which is the January 1, 1970 at 00:00:00 UTC. The
timestamp is saved as 32-bit value on the radio MCU.
The usage of this format provides several advantages. First of all, the amount of bytes
needed to denote the time is rather low with 4 bytes compared to other methods.
The decimal representation of unix timestamps will likewise not exceed the size of
10 characters which is smaller than a notation in the traditional yyMMddHHmmss
format. Additionally, conversion functions to a human readable format a provided in
almost every standard C library making the translation of Unix timestamps extremely
easy. Last but not least, the Unix time standard is widely known and broadcasted
timestamps can be interpreted by amatuer radio operators around the world which
support the capabilities of satellite tracking.
For the sake of completeness the year 2038 problem is mentioned. The problem
describes that on systems using 32-bit Unix timestamps an integer overflow occur in
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2038. Thus, a Unix timestamp will represent a wrong time. However, since NUTS
is expected to be launched in 2015 and the lifetime shall not exceed two years, this
problem is not of relevance for the NUTS authentication scheme.

3.4.3 Tolerance

In order to use the broadcast timestamps effectively as an element for the authenti-
cation, the satellite must be able to validate the correctness of received timestamps.
Here, it has to be kept in mind that significant deviations between a received times-
tamp and the actual satellite time are possible. This relies on the fact that the
timestamps are broadcasted from the satellite in the first place and the base station
uses them to synchronize its clock. Since the NUTS Satellite has different fall back
modes in which other transceivers can act as the beacon, it is not possible to assume
a static delay for the timestamp downlink. Thus, the satellite has to deal with both,
the delays resulting from broadcasting a timestamp and sending a message to the
satellite.
Traditionally, this issue is resolved by validating that the received timestamp is ap-
proximately equal to the current time [LB92]. This introduces the need for estimating
a tolerance in which timestamps should be treated as valid.
Generally speaking, the required tolerance T can be expressed as:

T = DTDown
+DMUp

(3.2)

For determining the delay of the timestamp downlink DTDown
and the message

uplink DMUp
, it is important to evaluate the links with the largest delays in order to

recognize a valid timestamp in any case.
Since the directed radio transmission will unlikely experience congestion and the
processing delay is rather negligible, we calculate the total delay Dtot as sum of
transmission Dtrans and propagation delay Dprop as shown in equation 3.3.

Dtot = Dtrans +Dprop (3.3)

The transmission delay Dtrans is calculated as quotient of the packet length L and
the bandwidth R.

Dtrans = L

R
(3.4)

Similarly, the propagation delay Dprop is the quotient of the physical link length d
and the signal propagation speed s.

Dprop = d

s
(3.5)

Since the propagation speed of radio waves is equal to the speed of light c, Dprop is
equal for both DTDown

and DMUp
. The exact altitude of the orbit for NUTS is not
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known by now but is assumed to be less than 800 km [Men13]. Thus:

Dprop = d

c
= 1

375s ≈ 2.7ms (3.6)

For DTDown
the highest propagation delay can be experienced when using the radio

beacon. It is designed to send a signal which can easily be decoded by amateur
radio operators. Thus, it utilizes the Radioteletype (RTTY) specifications. Here,
Audio Frequency Shift Keying (AFSK) is used in order to transmit Morse Code at a
speed of 60 words per minute. The number of letters per word W is defined to be 5
for Morse Code, where special characters and numbers are perceived as two letters.
The transmitted timestamps are consisting of 10 digits during the lifetime of the
NUTS satellite. Therefore, the assumed number of letters Nletters is 20. Hence, the
transmission delay for DTDown

can be calculated as shown in equation 3.7.

DtransT
= Nletters

W
· 60
M

= 4s (3.7)

Following from this:

DTDown
= DtransT

+Dprop = 4.003s (3.8)

The message uplink to the satellite will operate with 9600 baud. Unfortunately,
neither coding scheme nor frame structure is defined for the radio link of the NUTS
project yet. Thus, we will assume a data rate RM of 9600 bits per second. Moreover,
due to the missing specifications for the uplink, we can freely choose the maximum
length of a packet. For this choice two factors were taken into account: the available
memory on the satellite radio MCU and the scalability to the transmission delay
of the timestamp downlink. The memory of the radio MCU is an important factor
because received messages have to be kept in the memory for a fast evaluation.
We decided that a maximum packet size LM of 4 kilobyte is appropriate. Here,
only 6.25% of the radio MCU memory is occupied by an incoming message and the
transmission delay for a message of this size is comparable to the transmission delay
for an timestamp. Hence, the message uplink delay can be calculated as shown in
equation 3.9.

DMUp
= LM

RM
+Dprop = 3.416s (3.9)

Following from this, the required tolerance T should be:

T = DTDown
+DMUp

= 7.419s (3.10)

Since the timestamp precision is limited to the second range, the tolerance is rounded
up to 8 seconds which also allows the uplink data rate to be marginal smaller than
9600 bps.
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3.5 The Authentication Protocol

The cryptographic protocol for the authentication is the core of the authentication
scheme. This section first presents an informal and intuitive description of the protocol
in order to demonstrate the necessary abstractions for notating a cryptographic
protocol. Afterwards, the basic authentication protocol is formally presented as
basis for a protocol verification. Additionally, an improved version of the protocol is
introduced which covers minor flaws in the basic protocol.

3.5.1 Informal Description

The authentication protocol for the NUTS project has been first established in the
preceding report [Mü14] without a formal description. Here, the protocol specification
was rather implied by the proof of concept implementation. The first protocol
description is shown in in figure 3.2. Here, the satellite first sends a timestamp T to
the base station. The base station constructs the HMAC of the message M , the
received timestamp T and the shared secret key K. Afterwards, the triple out of
M , T and HMAC is sent to the satellite. The satellite verifies that the received
timestamp T ′ is equal to its own timestamp and the received HMAC ′ is equal to a
locally constructed HMAC based on the received message M ′, received timestamp
T ′ and secret key K. If and only if this is the case, a response is sent to the base
station.
Furthermore, it is implied that both satellite and base station share the same secret
key K and are agreeing on a hash function H(), even if this is not directly stated.

Figure 3.2: An informal description of the authentication protocol
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3.5.2 Abstractions

It is easy to see that the informal protocol description as of section 3.5.1 uses several
abstractions. First of all, the HMAC construction is notated as H(M,T,K). This
abstraction is legitimate under the perfect cryptographic assumption which assumes
that cryptographic functions are perfect. Thus, length extension and collision attacks
are not existing under this assumption. In general, it is advisable to analyze protocols
under the perfect cryptographic assumption in order to focus on the algorithmic
parts of a security protocol [CLT03].
The second important abstraction is that timestamps are precise and, thus, treated
like cryprographic nonces. While we have to deal with coarse timestamps in reality (cf.
section 3.4.3), it is common praxis to model timestamps as nonces in a cryptographic
protocol in the first place. This is done to reduce the complexity of protocols which
is a huge advantage especially for their verification [CDL06].
The third abstraction in the informal protocol description is that timestamps are
sent directed to the base segment from the satellite. This will be changed in the
formal description and is therefore negligible.

3.5.3 Basic NUTS authentication Protocol

The NUTS authentication protocol, henceforth denoted as NAP, in its basic form
requires that all parties have agreed on a common hash function h(). Additionally,
each pair of communication partners have a shared secret key K. The protocol can
be described as follows:

1. A→ ∗ : T
2. B → A : M,T, h(M,T,KAB)
3. A→ B : R

Alice, in the role as satellite, first broadcasts a timestamp T . Bob, who represents a
base station, sends his message M together with T and the hash of M , T and KAB

to Alice, whereupon Alice sends her response R to Bob.

3.5.4 Extended NUTS authentication Protocol

From a cryptographic point of view, the basic NAP protocol has a major flaw.
Intuitively, a response R shall ensure that a message M was received. However, it is
not specified by the protocol that a specific response R belongs to a specific message
M . Thus, even if Bob receives the third message of the protocol, it is not guaranteed
that it corresponds to his recently sent message.
This can be fixed by appending the hash h(M,T,KAB) to the third message. This
hash can be considered as a fingerprint for a message M and, therefore, Alice signals
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that she has received a specific message by including it in the third message of the
protocol.
Hence, the extended NAP protocol is denoted as:

1. A→ ∗ : T
2. B → A : M,T, h(M,T,KAB)
3. A→ B : R, h(M,T,KAB)



Chapter4Formal Verification of the NUTS
Authentication Protocol

The aim of formal analysis of security protocols is to assure their correctness. On the
example of the Needham-Schroeder Protocol [NS78], it has shown that the classical
way of just claiming protocol properties is rather unreliable [Mjø11]. Thus, researchers
have elaborated formal methods for the analysis of cryptographic protocols. Hereby,
formal methods are techniques based on mathematics and logic which allows to
prove if a model of a system can satisfy its requirements [Mea03]. The requirements
for cryptographic protocols are the claimed security properties, such as secrecy and
authentication.
However, it has to be mentioned that the security of a cryptographic protocol is an
undecidable problem [EG83, MSDL99, CDL06]. Thus, formal verification can not
guarantee the non-existence of weak spots in a protocol. Nevertheless, a protocol is
more trustworthy when formal verification can confirm its soundness. [Mjø11].
By now, a huge amount of automated tools for security protocol analysis utilizing
formal methods have been developed, such as AVISPA [ABB+05], CryptoVerif [Bla07]
and Scyther [Cre08a]. The latter one is used for this work and will be introduced in
section 4.1.
In order to establish a formal analysis with Scyther, protocols must be specified
in its input language. Here, not all messages can be translated into an one-to-
one relationship, thus a model of NAP for the formal verification with Scyther is
elaborated in section 4.2. The results of the verification are presented in section 4.3.

4.1 Scyther

Scyther is a tool for automatic analysis of cryptographic protocols. It is developed by
Cas Cremers and available for Linux, Windows and Mac OS X [Cre13a]. Besides a
command-line and python scripting interface, the tool offers a GUI for the verification
of protocols. In order to analyze the protocols introduced in chapter 3.5, Scyther
version v1.1.3 for Linux was used.

17
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This section shall serve as a short introduction to Scyther, elaborating its special
features, the input language and the verifiable security properties.

4.1.1 Features

One advantage of Scyther in comparison with other tools is the possibility to perfom
an unbounded verification. Traditionally, tools verified only the claimed security
properties for a finite subset of possible behaviors for a given protocol which is called
bounded verification. Opposing this, unbounded verification aims to demonstrate
the soundness of a protocol for all possible behaviors, even in the presence of an
adversary [Cre08b]. Here, the adversary is canonically modeled according to the
Dolev–Yao model [DY83] which grants the three following properties:

– The adversary can obtain, alter or delete any message sent on the network.

– The adversary is a legitimate user of the network and is therefore allowed to
send messages to any other users.

– Moreover, he is allowed to be the legitimate receiver of a message from any
other user.

However, Scyther can not guarantee to establish an unbounded verification for any
given protocol. Instead, the termination of the verification algorithm is guaranteed.
This relies on the fact that the verification algorithm establishes a bounded verification
for rather seldom cases where neither an unbounded verification nor a falsification
for a given protocol is possible [Cre08a].
A second important feature of Scyther is the complete characterization of given
protocol roles in the sense of [CV02]. This means that Scyther is able to determine
representatives for all possible protocol behaviors including the execution of a specific
role. This representatives are denoted as trace patterns. The trace patterns are
forming a finite set and are designed in a manner allowing the verification of security
properties. Following from this, a claimed property can be verified for all patterns.
If the property can not be falsified for every pattern, it is holding for all possible
protocol behaviors by implication [Cre08b].
Another positive aspect is the efficiency and performance of Scyther. It is one of the
fastest tools as of 2009 while still finding attacks efficiently [CLN09].
Lastly, the visualization functionalities of Scyther are worth mentioning. Besides
a graphical representation of the trace patterns for characterized roles, Scyther
generates attack graphs for found attacks.
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4.1.2 Input Language

The input language for describing security protocols in Scyther is called Security
Protocol Description Language (SDPL). The syntax for SDPL is to some degree
based on C and Java [Cre14] and, therefore, rather intuitively. Due to the nature of
cryptographic protocols the language itself is role-based and a protocol must always
define its containing roles.
The available data types are derived from those usually found in security protocols,
such as nonces, functions or agents. Additionally, the user can define own data types
for additional clarification. All variables have to be declared according to their nature
with one of the keywords fresh, var or const. The first keyword indicates that the
corresponding variable is fresh generated by the role, while var is used for variables
received from another agent. The last keyword, however, is used to declare global
constants known by more than one role.
Furthermore, SDPL provides expressions for cryptographic primitives, such as sym-
metric and asymmetric encryption or hash functions. The syntax of those expressions
here is similar to the notation used in this work. However, in Scyther hash functions
have to be defined before they can be used. These definitions are done in the same
manner like user type definitions.
The last element of SDPL are events which have to occur within a role definition and
are either send, recv or claim. These events are used to express sending and receiving
of a message or a claim for a specific security property. Every event is followed by an
underscore and an unique label to provide distinguishability. Send and receive events
are used for indicating the communication among the different roles. Usually, every
send event in one role has a corresponding receive event in another role. Exception
to this is the leakage of information to or receiving messages from the adversary.
Here, an exclamation mark has to be added after the underscore to symbolize the
intention of communicating with the adversary.
The claim events are used to claim the security properties of the specified protocol.
Here, one property can only be claimed for the role in which the claim event occurs.
The possible security claims are closer elaborated in subsection 4.1.3.
Putting it all together, a commented version of a basic secrecy protocol from the
Scyther exercise set [Cre13b] is provided in Algorithm 4.1 in order to visualize the
basic syntax.

4.1.3 Verifiable Security Properties

A first security property which can be verified by Scyther was already mentioned in
section 4.1.2: The secrecy of specific variables.
Contrary to this, the main aim of the NUTS authentication protocol is to authenticate
the ground segment to the satellite. While the concept of authentication itself is
comprehensible, the claim that a protocol authenticates an agent A to an agent B is
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Algorithm 4.1 A simple secrecy protocol for Scyther

1 // d e c l a r a t i o n o f the p r o t o c o l i n c l u d i n g the r o l e s
2 p r o t o c o l p r o t o c o l 0 ( I ,R)
3 {
4 // d e c l a r a t i o n o f the i n i t i a t o r r o l e I
5 r o l e I
6 {
7 // d e c l a r a t i o n o f the nonce n i which i s generated by t h i s r o l e
8 f r e s h n i : Nonce ;
9 // I sends { I , n i }pk (R) to R, whereby the term {I , n i }pk (R) denotes

10 // I s i d e n t i t y and the nonce n i encrypted under the p u b l i c key o f R
11 send_1 ( I ,R, { I , n i }pk (R) ) ;
12 //Claim s e c r e c y f o r the nonce n i
13 claim_i ( I , Secret , n i ) ;
14 }
15 // d e c l a r a t i o n o f the responder r o l e R
16 r o l e R
17 {
18 // d e c l a r a t i o n o f the nonce n i which i s generated by another r o l e
19 var n i : Nonce ;
20 //R r e c e i v e s { I , n i }pk (R) from I
21 recv_1 ( I ,R, { I , n i }pk (R) ) ;
22 //Claim that n i s t a ys s e c r e t
23 claim_r (R, Secret , n i ) ;
24 }
25 }

rather unspecific. Aliveness for instance, the weakest form of authentication, only
assures that the intended communication partner B exists and has run the protocol
previously. On the other hand, it is often required that both agents are agreeing to
the exchanged data which is a way stronger form of authentication. However, both
forms of authentication could be implied by the phrase "A authenticates itself to B"
without a closer examination what the actually meaning of authentication is. Thus,
an authentication hierarchy was introduced by Lowe in [Low97] which got extended
by Cremers et al. in [CMdV06].
The Scyther tool is able to verify some of this authentication forms, namely Aliveness,
Weak Agreement, Non-injective agreement and Non-injective synchronization. This
verifiable security properties are shortly elaborated at this point in the definitions
4.1 - 4.4. A complete formal description of the authentication hierarchy can be found
along with details about Scythers verification algorithm in [CM12].

Definition 4.1. Aliveness, adapted from [Low97]
Whenever an initiator A finishes a run of a protocol and the presumed responder B
has previously been running the protocol, aliveness with B is established for A.
B may neither have believed to run the protocol with A, nor is it required that he
has run the protocol recently.



4.2. MODELING THE PROTOCOL 21

Definition 4.2. Weak agreement, adapted from [Low97]
Whenever an initiator A finishes a run of a protocol and the presumed responder B
has previously been running the protocol presuming A as initiator, weak agreement
with B is established for A.
B may not have been in the role of the responder during his run of the protocol.

Definition 4.3. Non-injective agreement, adapted from [Low97]
Whenever an initiator A finishes a run of a protocol and the presumed responder
B has previously been running the protocol presuming A as initiator, non-injective
agreement with B over a set of data s is established for A when B was in the role of
the responder in his run and both A and B are agreeing on all values of s.

Definition 4.4. Non injective synchronization, adapted from [CMdV06]
Whenever an initiator A finishes a run of a protocol and the presumed responder B
has been running the protocol presuming A as initiator, non-injective synchronization
with B is established for A when B was in the role of the responder in his run, each
run of A corresponds to an unique run of B and all messages are received and sent
in the order provided by the protocol.

4.2 Modeling the protocol

It was pointed out in section 3.2 that various assumptions of the environment are
made. Some of them are crucial for the proposed protocol. Thus, not only the
protocols as shown in section 3.5 have to be modelled for Scyther but also the
implications heritating from these assumptions.
Furthermore, the usage of timestamps has to be modeled for Scyther before a complete
model can be established.

4.2.1 Trust Assumption

We showed in section 3.2.3 that the satellite is a trusted source due to the physical
properties of the communication. This assumption is not directly expressible in
Scyther. Thus, an appropriate method to model this assumption has to be provided.
Considering the main properties of digital signatures as shown in definition 4.5,
similarities to the trust are not undeniable.

Definition 4.5. Main properties of digital signatures
A digital signature from an agent A for a messageM provides the following properties:

1. Authentication M is guaranteed to be created by A
2. Non-repudiation A can not repudiate that he generated M
3. Integrity It is guaranteed that M is not altered after signing
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Since a message sent from a trusted agent is guaranteed to originate from this agent,
property 1 is achieved. Furthermore we are assuming that the underlying link layer
protocol is able to detect and correct transmission errors. Combining this with the
fact that an attacker is not able to intercept and alter a message, property 3 is given
as well. Only property 2 can not be directly guaranteed by the environment for
the NUTS authentication scheme. However, it is still justifiable to model the trust
assumption according to a digital signature for Scyther because it is a reasonable
approximation. Besides that, a repudiation of a message from the satellite affects
only the timestamps in the basic authentication scheme as described in section 3.5.3.
Since timestamps can be constructed and verified by the ground segment as soon
a single valid timestamp from the satellite is received, a repudiation of a former
timestamp would not neglect the authentication procedure.
Thus, we model every message originating from the satellite role as a message signed
by the satellite.

4.2.2 Timestamps

Scyther does not have an inbuilt data type for timestamps. However, it is possible
to reproduce the behavior of a protocol using timestamps and the Scyther manual
[Cre14] recommends two ways of modeling timestamps.
The first possibility is to declare the timestamps as nonces and make them public to
the adversary before using them in the protocol. Logically, this also seems to be a
great way to model the broadcasted nature of the timestamps.
However, this way of modeling timestamps is only valid when the probability of
accepting the same timestamp in two diverse runs is low. This is not feasible for
NAP since the timestamp acceptance tolerance has to be greater than one second
to guarantee a reliable mode of operation due to the expected delay in the beacon
downlink (cf. section 3.4.3). Additionally, it might occur that more than one package
per second are sent to the satellite but the resolution of the timestamps is limited to
the second range.
The second possibility for modeling timestamps in Scyther is catching the probability
of coarse timestamps. Here, the timestamps have to be declared as variables and
their values are getting assigned by the adversary. By doing so, the property of
the timestamps to be broadcasted is not easily seeable anymore. Nevertheless, it
can be deduced from the fact that the adversary determining the timestamps is a
legitimated member of the network. Thus, the timestamps must be known within
the network, which is the implication of broadcasting the timestamps. Therefore,
the timestamps can still be considered as broadcasted.
Accordingly, modeling timestamps as variables with values assigned by the adversary
is an appropriate way to express NAP in Scyther.
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4.2.3 Resulting Scyther Models

Two slightly different Scyther model for NAP have been developed, according to the
basic version shown in section 3.5.3 and the extended version shown in section 3.5.4.
For a better clarity the defined roles for the protocol are base stations B and satellite
S. The formal description of the authentication protocol as modeled for Scyther is:

1. ∗ → S : T
2. S → B : {T}sk(S)

3. B → S : M,T, h(M,T,KBS)
4. S → B : {R}sk(S)

Message 1 is required to model the timestamp as descriped in subsection 4.2.2.
Associated with this is the fact, that message 2 is directed to the B instead of
broadcasted. Additionally, messages 2 and 4 are signed by the S which is used to
model the trust assumption (cf. section 3.2.3).
This protocol model can easily be transformed in a model for extended NAP, here
only message 4 has to be substituted with:

4. S → B : {r, h(M,T,KBS)}sk(S)

The resulting SDPL specification is given in algorithm 4.2. Lines 1-3 are containing
global definitions for the hashfunction and user types for data messages and times-
tamps. The commands for uplink and the responses for the downlink are declared
as constants in line 7-8. This declarations are made because both commands and
possible responses are elements of finite sets which can be obtained by the adversary
- for instance through eavesdropping or access to the specification from the NUTS
project. The lines 14-16 and 25-28 represent the send and receive events according
to the above-presented basic protocol description.
Since the aim of the NAP protocol in its basic form is to authenticate the ground
segment to the satellite, claims for the different forms of authentication as defined
in section 4.1.3 are made in line 31-34. Here, we are claiming that aliveness, weak
agreement, non-injective agreement and non-injective synchronization are established
by the protocol for S with A. Additionally, secrecy is claimed in both roles for the
shared key since it is crucial for the protocol that this key remains undisclosed.
This protocol specification can easily be transformed to verify the extended NAP
protocl as well. Here, only lines 16 and 28 have to be modified and additional claims
for authentication have to be added for the base station role.
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Algorithm 4.2 Scyther model for the basic NUTS authentication protocol

1 hash funct ion hash ;
2 user type Msg ;
3 user type T;
4
5 p r o t o c o l NAP(B, S)
6 {
7 const m: Msg ;
8 const r : Msg ;
9

10 r o l e B
11 {
12 var t : T;
13
14 recv_1 (S ,B, { t } sk (S) ) ;
15 send_2 (B, S ,m, t , hash (m, t , k (B, S) ) ) ;
16 recv_3 (S ,B, { r } sk (S) ) ;
17
18 claim_b5 (B, Secret , k (B, S) ) ;
19 }
20
21 r o l e S
22 {
23 var t : T;
24
25 recv_ ! T1(S , S , t ) ;
26 send_1 (S ,B, { s t } sk (S) ) ;
27 recv_2 (B, S ,m, t , hash (m, t , k (B, S) ) ) ;
28 send_3 (S ,B, { r } sk (S) ) ;
29
30 claim_s1 (S , Al ive ) ;
31 claim_s2 (S , Weakagree ) ;
32 claim_s3 (S , Niagree ) ;
33 claim_s4 (S , Nisynch ) ;
34 claim_s5 (S , Secret , k (B, S) ) ;
35 }
36 }

4.3 Verification Results

Both specifications have been successful characterized and verified with Scyther.
Here, Scyther was run with the additional parameters --unbounded, for guaranteeing
the unbounded verification, --all-attacks and --one-role-per-agent which specifies that
agents are not able to switch roles within distinct runs of the protocol.
The results obtained by the verification with Scyther are shown and analysed in the
following section 4.3.1 and 4.3.2. The resulting flaws are analysed in section 4.3.3 by
the example of specific attacks.

Notes on the additional parameters It is urgent to run Scyther with the -
-unbounded and --all-attacks parameter to determine the exact amount of trace
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patterns and attacks, otherwise Scyther would just establish lower.
The --one-role-per-agent, on the other hand, is logically correct for the NAP protocol
but does not influence the verification results for this particular protocol. Thus, the
following analysis is also valid when agents are allowed to occupy different roles in
different runs.

4.3.1 Analysis of Characterization

Scyther was able to establish a complete characterization for both protocol specifi-
cations. The number of found trace patterns for the according roles is provided by
table 4.1.
In both cases more than one trace pattern has been found indicating the possibility
of attacks. Furthermore, it is easy to see that the extended NAP protocol reduces the
number of patterns for the base segment. This results from the fact that guaranteeing
the reception of sent data lowers the possibilities for the adversary to trick the base
segment. Accordingly, the number of trace patterns for the satellite are the same
for both specifications. Thus, we can assume that the basic authentication works in
the same manner in both cases and is not dependent on the additional information
introduced by the extended NAP protocol.

Table 4.1: Number of found trace patterns for the NUTS authentication protocol

Analysed Specification Role
Base Station Satellite

Basic authentication protocol 39 8
Extended authentication protocol 18 8

4.3.2 Analysis of Reported Attacks

It was possible to verify both specifications in an unbounded manner. The number
of found attacks on the specific claims are shown in table 4.2 for the basic NAP
protocol and in table 4.3 for the extended protocol. For the sake of completeness,
all verifiable authentication claims were analyzed with Scyther even for the basic
authentication protocol.
A found attack for a claim means that the corresponding claim of this role is not
holding and can be falsified with this specific attack. To clarify this, we utilize the
13 found attacks for the base station’s claim of non-injective synchronization in table
4.3 as example: The found attacks are demonstrating that the base station can not
establish weak agreement with the satellite because 13 distinct attacks are falsifying
the corresponding claim.
Analysing the results for the basic authentication protocol, it is easy to see that
the the shared key KBS stays secret. All authentication claims except non-injective
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synchronization are holding for the satellite role which means that the protocol
authenticates the base station to the satellite without establishing non-injective
synchronization.
On the other hand, it is not surprising that a huge amount of attacks for weak
agreement, non-injective agreement and non-injective synchronization were found for
the base station role. The protocol is not designed to establish this properties since
they would induce that the satellite authenticates itself to the base station. However,
the Aliveness of the satellite is guaranteed for the base station which relies on the
fact that a signed timestamp has to be received in order to initiate the protocol.

Table 4.2: Found attacks for the basic NUTS authentication protocol

Claimed Property Role
Base Station Satellite

Secrecy for KBS - -
Aliveness - -
Weak Agreement 31 -
Non-Injective Agreement 31 -
Non-Injective Synchronization 35 4

In the extended NAP protocol, the weak agreement and non-injective agreement
claims are also holding for the base station role and the number of found attacks for
non-injective synchronization has been reduced. Thus, the protocol can establish the
same authenticity properties for both roles. Additionally, the number of reported
attacks on non-injective synchronization for the satellite role has not changed. In
fact, these are exactly the same attacks which confirms the assumption that the
authenticity of the base station for the satellite does not get changed by using the
extended NAP protocol.

Table 4.3: Found attacks for the extended NUTS authentication protocol

Claimed Property Role
Base Station Satellite

Secrecy for kBS - -
Aliveness - -
Weak Agreement - -
Non-Injective Agreement - -
Non-Injective Synchronization 13 4
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4.3.3 Analysis of the Protocols’ Flaws

In order to be clear about the flaws of the protocols, namely, why non-injective
synchronization is not holding for both roles, we analyzed the reported attacks of
Scyther. Figure 4.1 is an example attack falsifying the claim that S is synchronized
with B. Here, Alice plays the role of the satellite and both Bob and Charlie are playing
the role of distinct base stations. The attack graph shows, that in the first run Alice
sends a timestamp to Bob which is never received. In the meantime, Alice starts
another run of the protocol with Charlie. The adversary intercepts the timestamp
which is sent to Charlie and redirect it to Bob instead. Bob is now executing the
protocol and sending his constructed message to Alice and the protocol follows its
normal execution. It is easy to see that Alice run the protocol two times to establish
authentication with Bob. Thus, more than a single run of Alice corresponds to a run
of Bob which violates the definition of non-interjective synchronization due to the
missing one-one relationship between the runs.
There are two main causes for this attack. The obvious one is, that in the first
message from S to B the identity of B is not included. This allows the possibility of
redirecting this message as shown in the attack graph. Even if the identity would
be included in the protocol, it still can not guarantee non-injective synchronization.
Assuming that the S initiates the protocol two times consecutively with B, the
adversary can intercept the timestamp from the first run. This would result that B
executes his run as result of the second run of S, while S thinks that the received
messages from B correspond to the first run. This problem originates from allowance
of coarse timestamps: Since a timestamp can be valid in more than one run and no
other nonces are included in the protocol, it is obvious that the protocol can not
guarantee synchronization for S with B.
If we analyze the extended protocol, we can see that the attack on non-injective
synchronization for B with S relies on the fact that one sent timestamp could possibly
be received in two distinct runs of B. Thus, it could occur that Alice receives a
message from one run with Bob but her response is captured by another run of Bob.
It is clearly to see that a one-one relationship between the runs of Bob and Alice can
not be established. The reason for this lies in the nature of the protocol: B receives
two messages from S in one run of the protocol but only sends one message. Since
only one fresh variable, the timestamp, is used over the full protocol run, B can not
be assured that the second received message really corresponds to the actual run.
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Figure 4.1: Example attack on non-injective synchronization for S with B
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Figure 4.2: Example attack on non-injective synchronization for B with S
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To verify our reasoning about the causes of the protocol flaws, we developed additional
Scyther models for the protocol utilizing precise timestamps. Like already seen for
coarse timestamps, it does not matter for S if NAP would be executed in its basic
or extended form. Thus, only the number of found attacks on the specific claims of
the extended NAP protocol are shown in table 4.4. It is easy to see, that precise
timestamps would establish non-injective synchronization for S with A. Additionally,
the number of attacks found on non-injective synchronization for B with A has
been reduced. The remaining attacks can be explained with the same argument as
mentioned above.

Table 4.4: Found attacks for the extended NUTS authentication protocol with
precise timestamps

Claimed Property Role
Base Station Satellite

Secrecy for kBS - -
Aliveness - -
Weak Agreement - -
Non-Injective Agreement - -
Non-Injective Synchronization 4 -



Chapter5Implementation

Parts of the authentication scheme were implemented as proof of concept module in
the preceding project report [Mü14]. In the course of this thesis, the functionalities
of this proof of concept have been enhanced in order to establish a usable realization
of the NUTS authentication protocol.
In this chapter, the development environment is described first. Afterwards, details f
the implementation of the communication protocol are provided which is followed by
the specifics of the developed satellite and base station code.

5.1 Development Environment

The development area was to a large extend already established in the preceding
report [Mü14]. However, in order to establish a common basis for the implementation
details, the development environment is also presented in terms of both hardware
and software within this thesis.

5.1.1 Hardware

The bulk of this section appeared first in [Mü14].

The hardware used to implement the authentication scheme for satellite can be
divided into four subsystems. The key element of the implementation is the UC3-A3
Xplained evaluation kit for a microcontroller from Atmel. An AVR Dragon is used as
programming and debugging interface for this kit. The RTC is a DS3231SN from the
company maxim integrated. The communication link between microcontroller and
RTC is an Inter-Integrated Circuit (I2C) bus which had to be deployed separately.
Figure 5.1 provides an overview over the development hardware.

31
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Figure 5.1: The development environment: 1.) I2C/RTC 2.)AVR UC3-A3
3.) AVR Dragon

U3-A3 Xplained

The UC3-A3 Xplained is an evaluation kit for the Atmel AT32UC3A3256 microcon-
troller which is also used by the satellite. The kit contains a 64Mbit SDRAM, four
status LEDs and both one push and one slider button. It provides one USB, one Joint
Test Action Group (JTAG) and four Universal Asynchronous Receiver/Transmitter
(USART) headers [Atm12]. The JTAG header is utilized as interface to the AVR
Dragon. One of the USART interfaces is used for the I2C bus to the RTC.

AVR Dragon

The AVR Dragon is a programmer and debugger for 8-bit and 32-bit AVR micro-
controller. A core feature of the Dragon is on chip debugging and it supports up to
three hardware and 32 software breakpoints [Coo09]. It offers different interfaces
where the JTAG interface is used for this project.

DS3231SN

The used RTC is the industrial implementation of the DS3231 I2C clock. It supports
operating temperatures from -45 °C to +85 °C and is therefore suitable for operation
inside a satellite in the low earth orbit. The accuracy is denoted with ±3.5 ppm
which means that the RTC is satisfyingly precise. The clock has two power inputs
including one for a battery which is automatically activated when the normal supply
fails. The clock processes the time in seconds, minutes, hours, days, month and years.
It contains an internal leap year compensation up to the year 2100 which is by far
out ranging the operating time of the NUTS satellite [Max13].
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The RTC is already designated to be deployed inside the satellite. A previous project
developed customized software for the use of the DS3231 in combination with the
UC3-A3 Xplained [JMT+13].

I2C

I2C is a serial data bus for the communication between different peripherals and
used as bus between the different components of the satellite [IB03]. It uses two
bi-directional connections, the serial data line (SDL) and serial clock (SCL). Both of
them are connected to the peripherals and to the power line with pull-up resistors.
The resistance value of the resistors used for the I2C implemention is 2.7 kΩ.
The bus is designed as a master/slave system and the UC3-A3 operates as master
node in the development environment. This will be changed in a final implementation
where the OBC of the satellite will serve as master. The used I2C implementation
uses a 7-bit addressing scheme and the address of the RTC (0b1101000) is hardcoded
inside the clock itself. Software to access the I2C bus is also provided by [JMT+13].

5.1.2 Software

The bulk of this section appeared first in [Mü14].

This section describes the third party software which was used during the development
process. In particular, this is the development software Atmel Studio, the real time
operating system FreeRTOS and the cryptographic library PolarSSL.

Atmel Studio

Atmel Studio 6.1 is an Integrated Development Environment (IDE) for Atmel mi-
crocontrollers [Atm13]. The IDE is free of charge and runs on Windows. It offers a
variety of useful tools like software libraries for different Atmel products, a built-in
compiler tool chain and direct device programming. The provided software libraries
are all part of the Atmel Software Framework and are therefore customized for
Atmel microcontrollers. The studio supports different programming and debugging
interfaces like the AVR Dragon and is capable of on-chip debugging functionalities.
Additionally, it contains a simulator in order to run and test code without the need
of a connected microcontroller. All in all it is a mighty platform and simplifies the
development process.

FreeRTOS

FreeRTOS is a small open source operating system for embedded systems. It is
available for different microcontrollers including the used AT32UC3A3256. The
operating systems provides basic functionalities to enable tasking like a scheduler
and semaphores for both mutual exclusion and synchronization. FreeRTOS V7.0.0
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is used on all microcontrollers of the NUTS project and the implementation of the
security module runs therefore on FreeRTOS.
A task itself is just a C function which never returns. In order to initiate a task the
function xTaskCreate() has to be called with the pointer to the function and various
other parameters like task name, stack size and priority. After all desired tasks are
created the scheduler has to be started through the call of vTaskStartScheduler().
Algorithm 5.1 shows exemplary C-code in order to demonstrate the task functionalities
of FreeRTOS. Here, a simple function which toggles a LED on and off on the AVR
UC3-A3 evaluation board is defined in line 1-6. In the corresponding main function,
this function is initiated as task in line 10. This task is executed as soon the scheduler
is started in line 11.

Algorithm 5.1 Example of a FreeROTS task

1 void simpleLEDtask ( void ) {
2 whi le (1 ) {
3 gpio_toggle_pin (AVR32_PIN_PB03) ;
4 vTaskDelay (1000) ;
5 }
6 }
7
8 i n t main ( void )
9 {

10 xTaskCreate ( ( TaskFunction_t ) simpleLEDtask , " SimpleLEDtask " ,
configMINIMAL_STACK_SIZE+512 ,NULL, 1 , NULL) ;

11 vTaskStartScheduler ( ) ;
12 }

PolarSSL

PolarSSL is used as library for cryptographic hash functions. It is easy to use and
provides a direct access to different HMAC functions. Therefore it is only necessary
to include the corresponding header file and call the function with its parameters.
These parameters are, in order of their occurrence, the HMAC key, the length of the
key, the buffer containing the data which shall be evaluated, the length of the data
and the buffer in which the calculated HMAC shall be saved.
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5.2 Communication Protocol

While the authentication protocol described section 3.5 describes in which order and
with which data messages should be exchanged, the communication protocol defines
the structure of the messages itself. This is necessary in order to provide a fixed
set of rules for the implementation in base station and ground segment to enable
successful communication between both entities.

5.2.1 Hash Function for HMAC Construction

The authentication protocol assumes a secure hash function used by both parties.
In the implementation, this hash function has to be defined. An analysis of the
efficiency and performance of different hash functions has been carried out in the
preceding report [Mü14]. The analysis has shown that MD5 is suitable for the NUTS
project due to the small digit size, the high performance and the low on-chip size. All
of this properties are ideal for an embedded system with low computational power
such as NUTS.
However, it is widely known that MD5 is considered as broken and its usage as secure
hash should therefore be well considered. More specifically, it has been shown that
MD5 is vulnerable to collision attacks and collisions can be generated fairly easy
[WY05]. Additionally, preimage attacks are theoretically possible on MD5 with a
computational complexity of 2123.4 [SA09].
Notwithstanding this vulnerabilities, MD5 can still be used as secure hash function
in the NUTS authentication protocol. The reason for this is that MD5 is used as
hash function for HMAC functionalities and not as standalone hash function. In fact,
after the collision attacks for MD5 were found, it was shown that the underlying hash
function for the construction of secure HMACs does not have to be collision-resistant
[Bel06]. Stallings concludes that it is reasonable to use MD5 in time critical cases as
hash function for HMAC on embedded system because an attacker would need 264

HMAC blocks in order to reconstruct the key [Sta11].
NUTS, on the other hand, is expected to not receive more than 216 messages in his
full lifetime [Pra12]. Thus, the usage of MD5 for HMAC can achieve reasonable
security for the NUTS authentication scheme, while still allowing a fast computation
and reduced overhead on the radio link.

5.2.2 Protocol Header

The protocol header is designed to be as easy and short as possible, in order to
minimize the overhead for transmitted packets. Thus, the header consists of only
3 fields: the timestamp, the HMAC and the data length. The first two fields are
required to provide the authentication functionalities while the latter one is used to
specify the length of an packet.
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Timestamps are transmitted in the Unix timestamp format and have a size of 4
bytes (cf. section 3.4.2). The length of a HMAC is equal to the digest length of the
underlying hash function. Since MD5 is used as hash function, the HMAC header
field has a length of 16 bytes. The data length field removes the need for an additional
procedure to determine the actual packet size. It also specifies the amount of bytes
over which the HMAC was constructed. Since the maximum amount of possible
bytes in a packet can be expressed in 2 bytes, the tradeoff between protocol and
computational overhead is reasonable.
The result header has a length of 22 bytes and is shown in table 5.1.

Table 5.1: The communication protocol header

Field Timestamp HMAC Data length
Size [bytes] 4 16 2

5.2.3 Flexibility

The communication protocol has been implemented in a flexible manner on the
satellite side in order to provide adaptability to changes in the project specification.
In this sense, a transition to another hash function is easily realizable. Additionally,
this flexibility establishes a reusability for other projects or scenarios.
The flexibility is given by expressing the protocol definition as macros in C. The
implementation of the authentication functionalities uses only this macros for the
processing of the protocol. Algorithm 5.2 shows the defined macros for the protocol
header as defined in section 5.2.2

Algorithm 5.2 Definition of Macros for the Protocol Header

1 #d e f i n e PROTO_POS_TIMESTAMP 0
2 #d e f i n e PROTO_POS_HMAC 4
3 #d e f i n e PROTO_POS_DATALEN 20
4 #d e f i n e PROTO_HEADERLEN 22
5 #d e f i n e PROTO_HMACLEN 16
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5.3 Satellite

All required functionalities for the authentication are provided in one C file with
an corresponding header file. In order to allow substantial tests for the security
functionalities, different modes of operations are possible. The main authentica-
tion functionalities are provided in two distinct functions, security_validate() and
security_response(). The first one is designated to verify the correctness of the
timestamp and the HMAC correctness of an incoming packet. The latter one is only
required when the extended NAP protocol is used since it appends the fingerprint of
an received message to the corresponding outgoing response.
The provided interface utilizes callback functions for further data processing and is
elaborated separately.

5.3.1 Operation Modes

The need for different operation modes results from the fact, that the authentication
scheme is a state-of-the-art feature for CubeSats. Thus, the specific behavior in-space
could differ from the expected behaviour. Thus, different operation modes allow unit
tests for the individual parts of the authentication.
Besides that, the operation modes are providing fallback functionalities. Should
a required subsystem for the authentication fail, it is still possible to operate the
satellite with a weaker form of authentication. This is important since it is a worst
case scenario that the NUTS base station is not able to communicate with the
satellite due to unexpected failures in the authentication procedures. Therefore, the
weakest operation mode does not perform any security checks at all. The second
weakest mode is designated to run even when the RTC fails. Here, the correctness
of the timestamp in a received message is not verified while a received HMAC is
still validated. The third mode validates a received message according to the basic
authentication protocol while the strongest mode also processes outgoing messages
according to the extended authentication protocol.
It is easy to see that this for operation modes are forming a hierachy which is
shown in figure 5.2. Here, the name of the operation modes corresponds to their
names in the source code. It is remarkable that the different authentication modes
can be considered as tradeoff between fail-safeness and strength of authentication.
The interface for changing the operational mode is defined by a seperate function
security_setmode() which expects the integer representation of the specific modes as
input. It is obvious that for a secure system this function should only be called from
an authenticated context. This also holds for transitions from SECURITY_MODE_OFF
to other operation modes since otherwise an attacker could lock out legitimate users
by demanding another security mode in this particular case. Thus, as an additional
measurement to minimize the resulting damage from such an attack a transition is
only possible from one operation mode to the next higher or lower one.
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Figure 5.2: Hierarchy of operation modes

5.3.2 Validation

The core of the authentication implementation on the satellite side is the function
security_validate() which is shown in algorithm 5.3. Its input is a pointer to the
buffer containing the received message and the output is an status code according to
definitions made in the header file.
The execution flow from the validation itself is dependent from the used operation
mode is observable in line 6 and 13. A validity check on the data length field is
performed in lines 8-11. This check shall deny the possibility of malicious data length
field inducing unexpected behavior. Afterwards, the conditional branch from line 13
to 18 verifies if a received timestamp is within the specified tolerance in the according
operational nodes.
Thereafter, the local HMAC is constructed in lines 20-22, where the last line calls
the the external HMAC function from PolarSSL. Since the local HMAC construction
requires that the HMAC field in the received message is set to zero, the original
state of the input buffer is restored in line 23. Lastly, it is checked if the received
HMAC matches the local constructed one in lines 24-26. In the case that none of
the validation checks fails, the received message is assumed as authenticated and the
function returns with the according status code.

5.3.3 Response

The security_response() procedure as shown in algorithm 5.4 is only invoked when
then extended NAP protocol shall be run which corresponds to the operation mode
SECURITY_MODE_EXTENDED_AUTH. It expects a pointer to the pointer of the output
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Algorithm 5.3 Function for validating received messages for the satellite

1 s t a t i c i n t s e c u r i t y _ v a l i d a t e ( char ∗ i nbu f ) {
2 unsigned char hmac_recv [PROTO_HMACLEN] ;
3 unsigned char hmac_calc [PROTO_HMACLEN] ;
4 unsigned shor t data len ;
5 int32_t timestamp_recv , time ;
6 i f (mode > SECURITY_MODE_OFF) {
7
8 data len = secur i ty_extract_data_length ( inbuf ) ;
9 i f ( data len < 1 | | data len > MAX_PACKET_SIZE−PROTO_HEADERLEN) {

10 r e turn VALIDATE_INVALID_DATALEN;
11 }
12
13 i f (mode>SECURITY_MODE_NO_TIME) {
14 memcpy(&timestamp_recv ,& inbuf [PROTO_POS_TIMESTAMP] , s i z e o f (

int32_t ) ) ;
15 time = rtc_get_timestamp ( ) ;
16 i f ( time > timestamp_recv | | time+TOLERANCE < timestamp_recv )
17 r e turn VALIDATE_INVALID_TIME;
18 }
19
20 memcpy(&hmac_recv ,& inbuf [PROTO_POS_HMAC] ,PROTO_HMACLEN) ;
21 memset(& inbuf [PROTO_POS_HMAC] , 0 ,PROTO_HMACLEN) ;
22 md5_hmac( ( const unsigned char ∗) &HMAC_KEY, s i z e o f (HMAC_KEY) −1,

inbuf , data len+PROTO_HEADERLEN, hmac_calc ) ;
23 memcpy(& inbuf [PROTO_POS_HMAC] ,& hmac_recv ,PROTO_HMACLEN) ;
24 i f (memcmp( hmac_calc , hmac_recv ,PROTO_HMACLEN) ) {
25 r e turn VALIDATE_INVALID_HMAC;
26 }
27 r e turn VALIDATE_SUCCESS;
28 }
29 r e turn VALIDATE_SECURITY_DISABLED;
30 }

buffer, the length of the output and a pointer to the HMAC of the received message.
The output buffer will be allocated on the heap, thus the procedure tries to reallocate
the output buffer in line 2 in order to create space for the communication header.
In the case that this reallocation fails, no further data processing takes place. Upon an
successful reallocation, the original contents of the output buffer are moved backwards
by the length of communication header in line 4. Afterwards, the communication
header is constructed and prepended to the actual output in lines 5-7. Here, the
timestamp field is set to a dummy value and the HMAC field is filled with the HMAC
of the received message according to the specification of the extended NAP protocol.
The data length field is used to indicate the length of the output.
The procedure does not return an error code on purpose. Even if the reallocation
fails, the output data should still be sent to the base station because they are still
valid and meant to be sent. Since no other kind of expected failures can occur in the
function, a special error handling is not necessary.
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Algorithm 5.4 Function for expanding the response

1 s t a t i c void secur i ty_re sponse ( char ∗∗ outbuf , unsigned shor t out len ,
char ∗ hmac) {

2 ∗ outbuf = r e a l l o c (∗ outbuf , out l en+PROTO_HEADERLEN) ;
3 i f (∗ outbuf ) {
4 memmove(∗ outbuf+PROTO_HEADERLEN, ∗ outbuf , out l en ) ;
5 memset (∗ outbuf+PROTO_POS_TIMESTAMP, " . " , s i z e o f ( int32_t ) ) ;
6 memcpy(∗ outbuf+PROTO_POS_HMAC, hmac ,PROTO_HMACLEN) ;
7 memcpy(∗ outbuf+PROTO_POS_DATALEN, outlen , s i z e o f ( unsigned shor t ) ) ;
8 }
9 // r e a l l o c f a i l e d , dont change anything

10 }

5.3.4 Interface

The interface to the authentication functionalities is provided by the function
security_validate_and_respond(). This function is designed to be called from
a FreeRTOS task responsible for data input and output handling. Since an incoming
data packet has not only to be validated but also processed, it provides an interface
for further data processing via callback functions.
A callback function cb is a function which gets passed as argument to another function
f in order to be potentially called within f . This allows a function g which calls f
to specify which code shall be executed as cb. Therefore, it is not required to know
the implementation details of cb during the development of function f . This allows
flexibility regarding the actual implementation of cb.
These properties are used by the security_validate_and_respond() to provide in-
terfaces for specifying how the received data shall be processed after the validation.
In particular, two callback functions are defined and expected to be passed as pa-
rameters, cb_success and cb_fail. They shall determine the further execution flow
after the validation took place. According to the name, the first callback function is
executed upon successful validation of an received packet. Thus, it is declared to be
of the type int (*cb_success)(char *, char **, unsigned short). The callback function
shall return an integer and expect three input parameters. In C, it is only possible
to assign the input parameters for a callback function a type but not a name. Thus,
it is additionally mentioned what the callback function expects as input: a pointer
to the data location, a pointer to the pointer for output buffer and the data length.
The second callback function, int(∗cb_fail)(int, char ∗ ∗), is invoked upon a failed
validation of an incoming packet. Here, the function expects the specific error code
and the pointer to the pointer to the output buffer as input. Besides the two callback
functions, security_validate_and_respond() requires pointer to the input buffer
and a pointer to the pointer for the output buffer as parameter. A summary of the
expected input for the interface function is provided in table 5.2, where parameter
for the callback functions are indented.
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The double reference of the output buffer is required to ensure a lifetime of the output
data over several functions. Here, it is assumed that inside the callback functions
a specific memory region is allocated for the output buffer. Between the specific
functions, just the pointer to the pointer of the allocated memory is passed. This
allows that a called function, for instance one of the callbacks, can allocate a chunk
of memory and the calling function still can determine the location of this memory
chunk.

Table 5.2: Expected parameter for the interface function

Parameter Description
char * inbuf Pointer to the input buffer
char ** outbuf Pointer to the pointer for the output buffer
int (*cb_success) Pointer to the callback function for successful validation

char * Pointer to the data buffer
char ** Pointer to the pointer for the output buffer
unsigned short Length of the data

int (*cb_fail) Pointer to the callback function for failed validation
int error code
char ** Pointer to the pointer for the output buffer

5.4 Base Station

The NUTS base station will be operated with LabVIEW which is a graphical
programming language. LabVIEW is developed by National Instruments and is
widely used for instrument control systems [TK06]. One advantage of LabVIEW is
its ability to easily invoke scripts written in other languages such as Perl and Python
[Ins10]. Here, LabVIEW is possible to evaluate the standard output, the error output
and the return code resulting from the execution of a script.
Since base station code is not existing at the time this thesis is being composed, we
developed two small Perl scripts to provide the authentication scheme functionalities.
This scripts are designed to be as easily integrable into LabVIEW as possible.

5.4.1 Creation of the NUTS Authentication Protocol Header

The first script as shown in algorithm 5.5 is responsible for adding the NAP header
to an outgoing packet. The script takes the name of the file representing the packet,
the timestamp and the HMAC key as input. It is necessary to save the packets
intermediate in files because it is likely that they contain zero bytes. A zero byte is a
byte where all bits are set to zero. Those bytes are not printable characters and can
therefore not be represented in standard strings. Since LabVIEW invokes scripts via
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the command line and the arguments are given as strings, zero bytes could get lost
which would result into missing information. Therefore, it is better to save a packet
in a file and read its content to preserve zero bytes.
Thus, the Perl script reads the given input file in line 11-16 into a $data variable.
Afterwards, the NAP header is constructed in line 18-21 in order to calculate and
insert the HMAC in line 23-25. Finally, the packet including the security header is
saved to the hard disk and the filename is printed for further processing of the packet
in LabVIEW. The filename is hereby constructed of the timestamp and the HMAC.

Algorithm 5.5 Perlscript for constructing uplink packets

1 #! / usr / bin / p e r l
2 use warnings ;
3 use s t r i c t ;
4 use Digest : :HMAC_MD5 qw(hmac_md5 hmac_md5_hex) ;
5
6 my $ i f i l e n a m e = s h i f t ;
7 my $timestamp_int = s h i f t ;
8 my $key = s h i f t ;
9

10 my $data ;
11 open FILE , "<" , $ i f i l e n a m e or d i e $ ! ;
12 {
13 l o c a l $ / ;
14 $data = <FILE>;
15 }
16 c l o s e FILE ;
17
18 my $timestamp = pack "N" , i n t ( $timestamp_int ) ;
19 my $ d i g e s t = " \0 " x16 ;
20 my $length = pack " n" , l ength ( $data ) ;
21 my $uplink_data = $timestamp . $ d i g e s t . $ l ength . $data ;
22
23 my $hmac_hex = hmac_md5_hex( $uplink_data , $key ) ;
24 $ d i g e s t = hmac_md5( $uplink_data , $key ) ;
25 $uplink_data = $timestamp . $ d i g e s t . $ l ength . $data ;
26
27 my $of i l ename = " secured_out / $timestamp_int \_$hmac_hex" ;
28 open FILE , "+>" , $o f i l ename or d i e $ ! ;
29 p r i n t FILE $uplink_data ;
30 c l o s e FILE ;
31
32 p r i n t $o f i l ename ;
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5.4.2 Obtaining of HMACS

The second base station script, get_nap_hmac.pl is responsible to extract the HMAC
of existing packets and print them into a human readable format. This is a simple
task since only bytes at a static offsets must been extracted. Nevertheless, the
script is important for the extended authentication protocol since the HMAC of an
outgoing packet must match the HMAC of a corresponding incoming packet in order
to establish mutual authentication.
Figure 5.3 shows schematic the flow of a specific message which shall be sent to the
satellite. First, the file containing the message is opened and the authentication
header is added. The HMAC of this message is extracted and the message itself is
sent to the satellite. As soon the satellite sends a response, this is saved in an output
file in order to extract the HMAC of the response. If both extracted HMAC are
matching each other, the extended authentication protocol was executed successful.

Figure 5.3: Conceptual base station program flow for the extended NUTS
authentication protocol





Chapter6Integration

The authentication scheme must be integrated in both satellite and base station.
Unfortunately, several parts of satellite and base station were not in an usable state
at the time this thesis was written. Therefore, an integration beyond the design is
not possible.
Nevertheless, the integration in the design had to be fulfilled in close cooperation
with the different working groups inside the NUTS project. This chapter shows in
which manner the authentication scheme is integrated in hardware design, software
design and the protocol stack.

6.1 Hardware Design

Special hardware for the NUTS authentication scheme is only necessary for the
satellite and the required elements are already integrated in the satellites hardware
design. Namely, these elements are the RTC, the I2C bus, the radio MCU, the beacon
and transceivers.
The only additional circuit which was designed for the hardware due to the authen-
tication scheme is a fallback power circuit for the RTC. The RTC would loose the
current time as soon its not powered. Since the satellite is expected to do a power
cycle at least once per day, this additional circuit is needed in order to achieve clock
reliability.
The designed circuit is shown in figure 6.1. Here, the DS3231SN component is the
RTC. The other three components are dual ideal diodes with adjustable current limit
of type LTC4415. For these components, OUT1 is enabled when EN1’s voltage is
higher than a certain treshhold and OUT2 is enabled when EN2’s voltage is lower
than this treshhold [Lin12]. Thus, as soon the regular power supply V CC is switched
off, V BAT is provided for the RTC. Additionally, the output of the I2C data and
clock connections, SDA and SCL, is blocked by the diodes as soon V CC is switched
off. The reason for this is that during a power cycle no current on other components
than the RTC is desirable. Thus, a feedback of the SDA or SCL signal to the

45



46 6. INTEGRATION

main circuit during the power cycle can cause unexpected behavior and is therefore
circumvented.

Figure 6.1: Protection circuit for the RTC (figure provided by the NUTS hardware
group)

6.2 Software Design

Since the software design for the base station is in an early stage with ongoing changes,
a finalized integration of the authentication scheme could only be established for the
satellite software design as shown in figure 6.2. Here, the authentication functionalities
are located in the radio MCU in form of an independent module. Logically, the
authentication scheme requires access to the RTC and the I2C bus. Correspondingly,
the authentication module is able to utilize the RTC driver which includes the I2C
driver. Below the authentication scheme, the radio encode and decode functionalities
for received and sent signals are located in order to provide access to the radio link.
The authentication module itself must provide an interface for the radio interface
which takes care of further processing of the data. This interface is provided in the
form of callback functions as described in section 5.3.4.
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Figure 6.2: Overview of the NUTS Radio Software Design (figure provided by the
NUTS software group)

6.3 Protocol Stack

The placement of the communication protocol required for the NAP is well defined
and intuitively comprehensible.
The actual validation of received messages takes place before messages are forwarded
to other satellite components. Thus, the protocol is directly positioned above the
link layer protocol. Together with the CubeSat Space Protocol (CSP) and the NUTS
application layer protocol, the protocol stack for the NUTS satellite can be visualized
like shown in figure 6.3.

Figure 6.3: NUTS protocol stack
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The authentication scheme aims to establish a secure satellite uplink. Thus, its
applicability should also demonstrated in the space environment. This is not possible
at the time this thesis is written but can be done as soon the NUTS satellite is
launched. Therefore, a test suite is elaborated and presented in this chapter. Hence,
a specific set of test cases is established so that the capabilities of the scheme’s
implementation can be evaluated easily.
Additionally, a laboratory test environment is presented which is used to run the
specific tests before the satellite is launched. This fulfills two purposes: First, it
can be evaluated if the implementation of the scheme is working in general. Second,
reference values for an in-space evaluation are established.

7.1 Laboratory Test Environment

The established laboratory test environment consists of the AVR UC3-A3 evaluation
board and two PCs. The UC3-A3 contains the implementation of the authentication
scheme for the satellite. Additionally, two FreeRTOS tasks have been developed in
order to provide necessary input and output functionalities for testing. The first task,
simulation_beacon_task() , is frequently checking the time of the RTC and outputs
the timestamp. The second task, simulationlinktask() listens for incoming mes-
sages and calls the validate_and_respond() function of the authentication scheme’s
implementation. The provided callback functions are just writing the result of the
validation to the output buffer which is afterwards printed. Additionally, within the
task for the link simulation useful debugging information are printed.
The input and output functions for the AVR UC3-A3 are provided by the ATMEL
Universal Data Bus (USB) Standard Input/Output (I/O) driver. This driver emulates
a virtual serial connection via USB and redirect the standard C I/O functions to
this connection. Thus, a computer can establish a serial connection via USB to the
evaluation kit in order to access its input and output.
For the laboratory test environment, this is done by the first PC. The purpose of
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Figure 7.1: Schematic overview over the test environment

this PC is to provide a middleware between the link simulation and the base station
simulation which is carried out by the nap_middleware.pl Perl script. Additional
middleware is required in order to emulate the behavior of the different communica-
tion channels. Thus, the middleware establishes a virtual serial connection to the
evaluation board and listens on three different ports representing the data uplink,
data downlink and beacon downlink channel. As soon a connection is present on every
port, the middleware starts to receive and forward messages to their destination with-
out any further processing of the data. Debug output of the simulation_link_task()
is treated like downlink data if the reception of the debug information is desired.
The second PC simulates a base station with the nap_base_station_simulation.pl
Perl script. The script establishes connections to the different middleware ports and
keeps track of the time received on the beacon downlink channel. Furthermore, it
invokes the developed base station scripts in order to send authenticated packets and
validate the fingerprint of received packets. Figure 7.1 illustrates the interaction of
the components in the laboratory test environment.
In order to do quantified testing with a lot of packets containing different data, an
additional nap_packetgenerator.pl Perl script is separately provided. The purpose
of the script is to generate an amount of n packages with the length L containing
random data.



7.2. FUNCTIONAL TESTING 51

7.2 Functional Testing

The purpose of functional testing is the validation that specific functions are fulfilling
their purpose. This is a form of black-box testing and done by feeding the particular
functions with input and evaluating the resulting output [KFN00].
For testing the implementation of the authentication scheme in space, the complete
authentication procedure is abstracted to one function. The reason for this is that
during in-space operation only the interface for the authentication functionalities
should be accessed due to the security reason. Additional, it can be said that the
authentication procedure is one specific function of the NUTS satellite.
The first test case F1 shall demonstrate, that the implementation of the authentication
scheme recognizes authenticated packets. Correspondingly, packets which are not
fulfilling the authentication requirements have to be correctly identified by the
implementation. Thus, test case F2 evaluates that packets with an incorrect HMAC
are detected correctly, while test case F3 examines the outcome of packets with
incorrect timestamps. Additionally, it is important to verify that the data length field
is correctly evaluated. To demonstrate the need of this evaluation, CVE-2009-2415
[UC09] is taken as example. Here, an attacker could achieve remote code execution
on servers running memcached version 1.1.12 and 1.2.2 by introducing a malicious
value for the data length field which results into an heap-based buffer overflows.
Thus, test case F4 determines if the data length field is evaluated correctly.
Last but not least, it has to be verified that the extended authentication scheme is
also working which is done in test case F5.

Test Case F1 - Validation of authenticated packets
Input Specification
For every operation mode, packets with following components have to be provided:

1. A timestamp within the tolerance window.
2. A HMAC constructed over the full message with the correct key.
3. A correct specified data length.
4. Arbitrary data.

Expected Output

– A response packet indicating that the authenticity of the sent packet was
successful validated.

Laboratory results
The output received under laboratory conditions is matching the expected output.
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Test Case F2 - Validation of packets with an incorrect HMAC
Input Specification
For every operation mode, packets with following components have to be provided:

1. A timestamp within the tolerance window.
2. An arbitrary invalid HMAC.
3. A correct specified data length.
4. Arbitrary data.

Expected Output

– For the operation mode SECURITY_MODE_OFF, a response packet indicating that
the authentication functionality is turned off.

– For any other other mode, a response packet indicating that the authenticity
of the packet could not be validated due to an incorrect HMAC.

Laboratory results
The output received under laboratory conditions is matching the expected output.

Test Case F3 - Validation of packets with an incorrect timestamp
Input Specification
For every operation mode, packets with following components have to be provided:

1. A timestamp outside the tolerance window.
2. A valid or invalid HMAC
3. A correct specified data length.
4. Arbitrary data.

Expected Output

– For the operation mode SECURITY_MODE_OFF, a response packet indicating that
the authentication functionality is turned off.

– For the operation mode SECURITY_MODE_NO_TIME and a correct constructed
HMAC, a response packet indicating that the authenticity of the sent packet
was successful validated.

– For the operation mode SECURITY_MODE_NO_TIME and an invalid HMAC, a
response packet indicating that the authenticity of the packet could not be
validated due to an incorrect HMAC.

– For any other other mode, a response packet indicating that the authenticity
of the packet could not be validated due to an incorrect timestamp.

Laboratory results
The output received under laboratory conditions is matching the expected output.
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Test Case F4 - Validation of packets with an incorrect data length value
Input Specification
For every operation mode, packets with following components have to be provided:

1. A timestamp within the tolerance window.
2. A HMAC constructed over the full message with the correct key.
3. A incorrect specified data length.
4. Arbitrary data.

Expected Output

– For the operation mode SECURITY_MODE_OFF, a response packet indicating that
the authentication functionality is turned off.

– For any other operation mode and an incorrect data length value between 1
and the maximal allowed data length, a response packet indicating that the
authenticity of the packet could not be validated due to an incorrect HMAC.

– For an incorrect data length value outside this range, a response packet indi-
cating that the specified data length value is incorrect.

Laboratory results
The output received under laboratory conditions is matching the expected output.

Test Case F5 - Validation of correct fingerprint construction
Input Specification
For the operation mode SECURITY_MODE_EXTENDED_AUTH, packets with following
components have to be provided:

1. A timestamp within the tolerance window.
2. A HMAC constructed over the full message with the correct key.
3. A correct specified data length.
4. Arbitrary data.

Expected Output

– A response packet containing the fingerprint of the sent message and indicating
that the authenticity of the packet was successful.

Laboratory results
The output received under laboratory conditions is not matching the expected
output in all cases. The number of matching fingerprints is shown in fig 7.2 for 10
distinct runs of the test with 100 sent packages each.
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Figure 7.2: Test results for the validation of correct fingerprint construction

Discussion of laboratory results
The reason for the laboratory results is easy explainable. The simulation_link_task()
utilizes printf() in order to provide a response as string to the middleware. The
printf() function stops the printing of a string as soon a zerobyte is reached. The
middleware sends a response to the base station simulation when a newline is read
and the base station simulation stops printing to a file as soon an EOF character is
read.
This sums up to three distinct bytes which would inhibit that a fingerprint is saved
correctly to the hard disk. Since the fingerprint is 16 bytes long, the possibility that
one of the disruptive bytes occur amounts to 18.75% which matches the results of
figure 7.2.
It is not likely that these bytes are causing errors during in-space operation due to
the specialized link layer and the functionality of LabVIEW to write a bytestream to
a file. Both of them will be able to circumvent the errors observed in the laboratory
environment for this test case.
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7.3 Non-Functional Testing

Contrary to functional testing, non-functional testing does not aim to evaluate a
specific function. Instead, the main purpose of non-functional testing is to determine
different quality factors of the system.
Test case P is designated to show the performance of the authentication scheme.
Hereby, the actual execution time is evaluated. This time might be noticeable
higher during in-space operation compared to the times achieved under laboratory
conditions. This relies on the fact, that under laboratory conditions no other tasks
are concurrently executed while the MCU’s workload will be significantly higher
during in-space operation.
The last test case R evaluates the effectivity of the replay protection provided by
broadcast timestamp. This evaluation is necessary in order to show the influence of
the chosen timestamp tolerance window to the authentication scheme.

Test Case P - Performance Evaluation
Input Specification
For every operation mode, an amount N of authenticated packets with different
lengths in the range from minimum packet size to maximum packet size.

Expected Output

– Different characteristic curves for the authentication modes.
– Longer evaluation time for higher operation modes in the operation mode
hierarchy (cf. figure 5.2).

– Longer evaluation time for larger packets.

Laboratory results
The output received under laboratory conditions is matching the expected output in
almost all cases. The results are visualized in figure 7.3 where the packet validation
time inside the satelliteis set into context with the packet length for different operation
modes.
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Figure 7.3: Test results for evaluating the performance of the implementation

Discussion of laboratory results
In general, the validation of a received packet does not take longer than 6 ms. This is
satisfyable low, compared with the delay times for up and downlink. The validation
of a packet is in fact longer for larger packet sizes when a authenticity valuation is
executed.
It is easy to see that the curves for the basic and extended authentication mode
are within the same range. Thus, the extended authentication scheme does not
require significantly more validation time than the basic authentication scheme. This
contradicts the expected results but is easy explainable. In fact, the computational
overhead for the extended scheme is very low since no expensive computation has
to be done. Instead, only the memory overhead is increasing minimally because
an additional copy of the fingerprint has to be kept in memory and appended to a
outgoing packet.
Another interesting observation established by the test is the almost 2 ms difference
between SECURITY_MODE_NO_TIME and the two higher authentication mode. This
difference is obviously resulting from the need to access the RTC. Therefore, it can
be concluded that the access time to the clock is a bottleneck in the implementation.
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Test Case R - Effectivity of the replay protection

Input Specification
For SECURITY_MODE_BASIC_AUTH or SECURITY_MODE_EXTENDED_AUTH an authenti-
cated packet with length L is sent to the satellite and replayed until the satellite
reject the packet as invalid. The packet length L has to be in the range from minimum
packet size to maximum packet size.

Expected Output

– A huge amount of successful replays for packets with a small length L which is
decreasing with increasing values for L

Laboratory results
The output received under laboratory conditions is matching the expected output.
The results are visualized in figure 7.4 and will be discussed in section 8.1.

Figure 7.4: Test results for the validation of the effectivity of the replay protection
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The authentition scheme was successfully verified, implemented and tested. During
this process, it was shown, that the authentication scheme has minor formal flaws and
a small vulnerability window for replay attacks does exist. Therefore, the impacts of
this weaknesses are discussed in this chapter in order to show whether a application
of the scheme is advisable or not.
Additionally, the scope of the integration is elaborated since the initially planned
integration on the satellite software could not be established.

8.1 Effectivity of Replay Protection

The main reason for using timestamps in the first place is to guarantee replay pre-
vention. Hence, it should not be possible to have two valid messages with the same
timestamp. Contrary to this, it has been shown in section 3.4.3 that the tolerance
in which a timestamp is considered fresh has to be rather large with 8 seconds.
Therefore, an attack window for replay attacks remains which could be verified with
the test case reftc:r.
The authentication scheme is not able to detect a replay attack when an attacker is
able to intercept and replay a certain packet p within the tolerance window. This
allows the attacker to force additional executions of the command contained in p as
long the packet length of p is smaller than 2800 bytes. This is not a threat as long
the command does not change the state of the satellite upon repeated execution.
However, in some cases the re-execution of a certain command can compromise the
satellite state. To clarify this, the following example is given:

Example 8.1: Assuming a variable v with an initial value of 0 which can be changed
by an function f . Upon receiving a command c, the function f is executed and v may
be compromised depending of the implementation of f . The safe implementation of
f changes v only according to the passed parameter to f . An exemplary definition
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of such a function is f(X) = X. This would set v = 1 upon calling f(1) which gets
not changed upon re-execution of f .
A vulnerable implementation of f would change the value of v according to the
passed parameter to f and the current state of v. An exemplary definition of such
an function is f(X) = v + X. This would set v = 1 upon calling f(1) and v = 2
upon re-execution etc.

In an complex software system the likelihood that an according vulnerable function
is invoked upon receiving a command is rather large. Thus, an attack on the
authentication scheme does exist due to temporal side effects introduced by the usage
of timestamps in a system with long delays. The impact of the attack depends on
the specific vulnerable functions and can therefore not be predicted as for now.
The risk that such an attack is executed is rather low because several conditions
have to apply at the same time. First of all, a vulnerable function must exist and a
packet with a corresponding command sent. Additionally, the packet has to be short
since the reception of it is a blocking process on the satellite. If the packet exceeds
a certain length, its reception requires enough time to make a replay of the packet
within the same tolerance window impossible. Furthermore, the attacker has to have
access to a base station in geographical proximity to a legitimate base station since
the attack window could not be utilized otherwise. Thus, it can be concluded that
the application of the presented authentication scheme is still reasonable secure.
Additionally, it has to be mentioned that the vulnerability can be fixed by introducing
a required minimum packet size. The minimum packet size must establish that a
reception of two packets with minimum size is not possible within the tolerance
window minus the timestamp downlink delay. Unfortunately, this fix can not be
applied for this thesis since the specification of the NUTS link layer protocol is still
under development.

8.2 Results of the formal verification

The formal verification has shown that specific flaws are existing in the protocol.
However, even with these flaws the NAP protocols are still fulfilling their main
purpose.
The basic authentication protocol guarantees that the base station authenticates
itself to the satellite in such a way, that the sent data can not be altered by the adver-
sary (non-injective agreement). Nevertheless, it has been confirmed that a received
response from the satellite does not necessarily corresponds to a base station’s run of
the protocol (weak agreement) for the basic NAP Protocol. Therefore, a response can
also not be resolved to one specific message (non-injective agreement). These issues
must be addressed on a higher communication layer when the basic NAP protocol
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is used, since it is necessary for the base station to recognize to which message a
response belongs to.
The extended NAP protocol establishes non-injective agreement for both roles and
is therefore fulfilling its purpose. Unfortunately, it increases the communicational
overhead on the downlink. Since the downlink capacities are rather restricted, the
extended protocol might not be utilized for NUTS.
The major flaw which has been found by formal verification is the lack of synchro-
nization between base station and satellite. This is, however, not a threat for the
application of the protocol, since even if data are exchanged in a non-synchronized
manner, it can be guaranteed that the data received on the satellite are originated
from an authenticated source. This is the main aim of the NUTS authentication
protcol and the verification of this security properties makes the application of the
protocol more reasonable. However, it should not be forgotten that we only verified
a model of the protocol and that the security problem is an undecidable question.
Thus, the formal verification does not guarantee the absolute security of the protocol
but helped to determine and understand its boundaries. Last but not least, it has to
be mentioned that the verification relies completely on the environment assumptions
of section 3.2. Without these assumptions, the elaborated models would be wrong
and the established verification therefore invalid.

8.3 Scope of the Integration

The authentication scheme could be successfully integrated in the design of the
NUTS satellite. Unfortunately, it was neither possible to integrate the authentication
scheme in the actual base station nor satellite code. The reason for this is that broad
parts of both satellite and base station software were missing while this thesis was
carried out. Additionally, the radio links were not ready to use and the NUTS link
layer protocol was not finalized.
Therefore, an integration beyond the conceptual design was not possible because
functionalities for both delivering messages of the authentication scheme and pro-
cessing validated messages were lacking.
However, even if the NUTS satellite is not ready yet, the authentication scheme has
been implemented on hardware similar to the satellite’s hardware. Additional, link
delays and properties could be simulated in a laboratory environment. It has also be
mentioned that the established interfaces for an integration are not limited to the
NUTS project but rather usable for any CubeSat with a RTC and customized radio
software.
Thus, this thesis provides all in all a contribution towards a security solution for the
operational uplink of small satellites communicating in the amateur radio band.
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This thesis established an authentication scheme for the NUTS project along with
a formal verification, an implementation ready for integration and a test suite for
in-space operation.
Nevertheless, additional work is required which is beyond the scope of this thesis
in order to finalize the evaluation of the scheme’s applicability. The required future
work for this is elaborated in this chapter.

9.1 Integration to the Final System

As pointed out in section 8.3 an integration of the implementation was only possible
in a conceptual manner. Thus, a complete integration for the satellite and base
station is still required and must be carried out before the satellite is launched.
It is advisable to re-run the test suite on the finalized integration in order to discover
flaws resulting from the interaction of different software components and the presence
of a realistic physical link layer.

9.2 Radiation Hardness Testing

The proposed implementation of the authentication scheme has only been tested
in regard to its functionality and its performance on earth. For operation in space
it has to be assured that the scheme is also working while being exposed to space
radiation effects. This was not studied by this thesis since underlying hard- and
software of the satellite will provide measures against these effects. Nevertheless, it
is advisable to test the radiation hardness of the scheme under laboratory conditions
as soon it is integrated to the satellite software.
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9.3 Evaluation of Performance in Space

The provided test suite aims to provide a framework for evaluating the authentication
scheme in space. Logically, the specific tests have to be run and analyzed after the
launch of the satellite. By now, the correctness of the authentication scheme can
only be assured theoretically. Therefore, running the tests in a space environment is
beneficial for evaluating the practical applicability of the scheme and its application
to future missions

9.4 Key Management

The HMAC construction and verification relies on a shared key for both satellite and
base station. Since bit flips can occur in the satellite’s memory due to space radiation
effects, the possibility that a saved key is changed does exist. Thus, additional key
management is required as basis for the authentication scheme. The key management
must in particular establish safety for the stored keys.
Additionally, a secured re-keying functionality could be considered in order to deal
with a compromised key.
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The main motivation for this thesis was to integrate and verify an authentication
scheme usable for the NUTS satellite. In the first chapter, specific tasks were defined
in order to satisfy this motivation. The great majority of the defined tasks could be
fulfilled.
The authentication scheme was prior to this work only loosely defined which is
changed by this thesis. The third chapter provides a detailed elaboration of the
specific authentication scheme used for NUTS.
A formal verification could be established for the underlying cryptographic protocol in
chapter three. The verification showed that the protocol is not perfect but fulfills its
purpose entirely. Thus, it was implemented on hardware with a similar architecture
and computational restraints compared to the satellite.
This implementation has been integrated to the design process of the NUTS satellite.
Unfortunately, an actual integration of the developed satellite and base station
software was not realizable. This relies on the fact that other subsystems providing
necessary functionalities for the authentication scheme were not in a usable state at
the point this thesis was written. Therefore, the implementation of the authentication
scheme was carried out in such a way that it can easily be integrated onto the base
station and satellite as soon as the required functionalities are available. The hereby
established necessity of easy usable interfaces comes along with another beneficial
fact: the specific implementation is not only restricted to the NUTS satellite. Instead,
it can also be easily integrated by other CubeSat projects.
Nevertheless, experiences with an in-space operation of the authentication scheme
should be gathered first. Therefore, a test suite for the scheme has been elaborated
in chapter seven. This tests are developed to be run once the satellite is in space
in order to evaluate the scheme. The complete test suite had also been run against
the existing implementation to verify that the implementation is working under
laboratory conditions.
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All in all it has been shown that reasonable security for satellite uplinks can
be established even without the traditional usage of encryption. Nothing stands in
the way of integrating the presented authentication scheme to the NUTS satellite.
Therefore, the theoretical established security of the scheme might be supported with
practical results as soon the satellite is launched.
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AppendixASDPL Files

A.1 coarse_timestamps.sdpl

1 hash funct ion hash ;
2 user type Msg ;
3 user type T;
4 p r o t o c o l NAP(B, S)
5 {
6 const m: Msg ;
7 const r : Msg ;
8

9 r o l e B
10 {
11 var t : T;
12

13 recv_1 (S ,B, { t } sk (S) ) ;
14 send_2 (B, S ,m, t , hash (m, t , k (B, S) ) ) ;
15 recv_3 (S ,B, { r } sk (S) ) ;
16

17 claim_b5 (B, Secret , k (B, S) ) ;
18 }
19

20 r o l e S
21 {
22 var t : T;
23

24 recv_ ! T1(S , S , t ) ;
25 send_1 (S ,B, { t } sk (S) ) ;
26 recv_2 (B, S ,m, t , hash (m, t , k (B, S) ) ) ;
27 send_3 (S ,B, { r } sk (S) ) ;
28

29 claim_s1 (S , Al ive ) ;
30 claim_s2 (S , Weakagree ) ;
31 claim_s3 (S , Niagree ) ;
32 claim_s4 (S , Nisynch ) ;
33 claim_s5 (S , Secret , k (B, S) ) ;
34 }
35 }

I



II A. SDPL FILES

A.2 coarse_timestamps_extended_auth.sdpl
1 hash funct ion hash ;
2 user type Msg ;
3 user type T;
4

5 p r o t o c o l NAP(B, S)
6 {
7 const m: Msg ;
8 const r : Msg ;
9

10 r o l e B
11 {
12 var t : T;
13

14 recv_1 (S ,B, { t } sk (S) ) ;
15 send_2 (B, S ,m, t , hash (m, t , k (B, S) ) ) ;
16 recv_3 (S ,B, { r , hash (m, t , k (B, S) ) } sk (S) ) ;
17

18 claim_b1 (B, Al ive ) ;
19 claim_b2 (B, Weakagree ) ;
20 claim_b3 (B, Niagree ) ;
21 claim_b4 (B, Nisynch ) ;
22 claim_b5 (B, Secret , k (B, S) ) ;
23 }
24

25 r o l e S
26 {
27 var t : T;
28

29 recv_ ! T1(S , S , t ) ;
30 send_1 (S ,B, { t } sk (S) ) ;
31 recv_2 (B, S ,m, t , hash (m, t , k (B, S) ) ) ;
32 send_3 (S ,B, { r , hash (m, t , k (B, S) ) } sk (S) ) ;
33

34

35 claim_s1 (S , Al ive ) ;
36 claim_s2 (S , Weakagree ) ;
37 claim_s3 (S , Niagree ) ;
38 claim_s4 (S , Nisynch ) ;
39 claim_s5 (S , Secret , k (B, S) ) ;
40 }
41 }



A.3. PRECISE_TIMESTAMPS.SDPL III

A.3 precise_timestamps.sdpl
1 hash funct ion hash ;
2 user type Msg ;
3 user type T;
4

5 p r o t o c o l NAP(B, S)
6 {
7 const m: Msg ;
8 const r : Msg ;
9

10 r o l e B
11 {
12 var t : T;
13

14 recv_1 (S ,B, { t } sk (S) ) ;
15 send_2 (B, S ,m, t , hash (m, t , k (B, S) ) ) ;
16 recv_3 (S ,B, { r , hash (m, t , k (B, S) ) } sk (S) ) ;
17

18 claim_b1 (B, Al ive ) ;
19 claim_b2 (B, Weakagree ) ;
20 claim_b3 (B, Niagree ) ;
21 claim_b4 (B, Nisynch ) ;
22 claim_b5 (B, Secret , k (B, S) ) ;
23 }
24

25 r o l e S
26 {
27 f r e s h t : T;
28

29 send_ ! T1(S , S , t ) ;
30 send_1 (S ,B, { t } sk (S) ) ;
31 recv_2 (B, S ,m, t , hash (m, t , k (B, S) ) ) ;
32 send_3 (S ,B, { r , hash (m, t , k (B, S) ) } sk (S) ) ;
33

34 claim_s1 (S , Al ive ) ;
35 claim_s2 (S , Weakagree ) ;
36 claim_s3 (S , Niagree ) ;
37 claim_s4 (S , Nisynch ) ;
38 claim_s5 (S , Secret , k (B, S) ) ;
39 }
40 }



IV A. SDPL FILES

A.4 precise_timestamps_extended_auth.sdpl
1 hash funct ion hash ;
2 user type Msg ;
3 user type Timestamp ;
4

5 p r o t o c o l NAP(B, S)
6 {
7 const m: Msg ;
8 const r : Msg ;
9

10 r o l e B
11 {
12 var t : Timestamp ;
13

14 recv_1 (S ,B, { t } sk (S) ) ;
15 send_2 (B, S ,m, t , hash (m, t , k (B, S) ) ) ;
16 recv_3 (S ,B, { r , hash (m, t , k (B, S) ) } sk (S) ) ;
17

18 claim_b1 (B, Al ive ) ;
19 claim_b2 (B, Weakagree ) ;
20 claim_b3 (B, Niagree ) ;
21 claim_b4 (B, Nisynch ) ;
22 claim_b5 (B, Secret , k (B, S) ) ;
23 }
24

25 r o l e S
26 {
27 f r e s h t : Timestamp ;
28

29 send_ ! T1(S , S , t ) ;
30 send_1 (S ,B, { t } sk (S) ) ;
31 recv_2 (B, S ,m, t , hash (m, t , k (B, S) ) ) ;
32 send_3 (S ,B, { r , hash (m, t , k (B, S) ) } sk (S) ) ;
33

34 claim_s1 (S , Al ive ) ;
35 claim_s2 (S , Weakagree ) ;
36 claim_s3 (S , Niagree ) ;
37 claim_s4 (S , Nisynch ) ;
38 claim_s5 (S , Secret , k (B, S) ) ;
39 }
40 }



AppendixBSatellite Code

B.1 security.h
1 #i f n d e f SECURTY_H_
2 #d e f i n e SECURTY_H_
3

4 #d e f i n e VALIDATE_INVALID_TIME −1
5 #d e f i n e VALIDATE_INVALID_HMAC −2
6 #d e f i n e VALIDATE_INVALID_DATALEN −3
7 #d e f i n e VALIDATE_SECURITY_DISABLED −4
8 #d e f i n e VALIDATE_SUCCESS 1
9 #d e f i n e VALIDATE_AND_RESPOND_OUT_OF_MEMORY −5

10

11 #d e f i n e HMAC_KEY "ABCD"
12 #d e f i n e TOLERANCE 8
13 #d e f i n e MAX_PACKET_SIZE 4096
14

15 #d e f i n e SECURITY_MODE_OFF 0
16 #d e f i n e SECURITY_MODE_NO_TIME 1
17 #d e f i n e SECURITY_MODE_BASIC_AUTH 2
18 #d e f i n e SECURITY_MODE_EXTENDED_AUTH 3
19

20 #d e f i n e PROTO_POS_TIMESTAMP 0
21 #d e f i n e PROTO_POS_HMAC 4
22 #d e f i n e PROTO_POS_DATALEN 20
23 #d e f i n e PROTO_HEADERLEN 22
24 #d e f i n e PROTO_HMACLEN 16
25

26 void s e c u r i t y _ i n i t ( i n t init_mode ) ;
27 i n t security_set_mode ( i n t new_mode) ;
28 i n t secur ity_val idate_and_respond ( char ∗ inbuf , char ∗∗ outbuf ,
29 i n t (∗ cb_success ) ( char ∗ , char ∗∗ , unsigned shor t ) , i n t (∗ c b _ f a i l ) (

int , char ∗∗) ) ;
30 s t a t i c void secur i ty_re sponse ( char ∗∗ outbuf , unsigned shor t out len ,

char ∗hmac) ;
31 s t a t i c i n t s e c u r i t y _ v a l i d a t e ( char ∗ i nbu f ) ;
32 s t a t i c unsigned shor t secur i ty_extract_data_length ( char ∗ i nbu f ) ;
33 #e n d i f /∗ SECURTY_H_ ∗/

V



VI B. SATELLITE CODE

B.2 security.c
1 #i n c l u d e <s t d i o . h>
2 #i n c l u d e "FreeRTOS . h "
3 #i n c l u d e " task . h "
4 #i n c l u d e " i 2 c . h "
5 #i n c l u d e " r t c . h "
6 #i n c l u d e " p o l a r s s l /md5 . h "
7 #i n c l u d e " s e c u r i t y . h "
8 #i n c l u d e <s t r i n g . h>
9

10 i n t mode ;
11

12 void s e c u r i t y _ i n i t ( i n t init_mode )
13 {
14 i 2 c _ i n i t ( ) ;
15 r t c _ i n i t ( ) ;
16 mode= init_mode ;
17 }
18

19 i n t security_set_mode ( i n t new_mode) {
20 i f (new_mode+1 == mode | | new_mode−1 == mode | | new_mode >=

SECURITY_MODE_OFF | | new_mode <= SECURITY_MODE_EXTENDED_AUTH) {
21 mode = new_mode ;
22 r e turn 1 ;
23 }
24 r e turn −1;
25 }
26

27 /∗ The core i n t e r f a c e to the s e c u r i t y module
28 ∗ Params :
29 ∗ i nbu f : Po inter to the incoming b u f f e r conta in ing the packet being

v a l i d a t e d
30 ∗ outbuf : Po inter where the output s h a l l be s to r ed
31 ∗ ∗ cb_succes : Cal lback f u n c t i o n which s h a l l be c a l l e d to p r o c e s s the

data − format : cb_success ( char ∗data , char ∗ outbuf , i n t data len )
32 ∗ ∗ c b _ f a i l : Cal lback f u n c t i o n which s h a l l be c a l l e d f o r e r r o r handl ing

− format : c b _ f a i l ( i n t er rorcode , char ∗ outbuf )
33 ∗/
34 i n t secur ity_val idate_and_respond ( char ∗ inbuf , char ∗∗ outbuf , i n t (∗

cb_success ) ( char ∗ , char ∗∗ , unsigned shor t ) , i n t (∗ c b _ f a i l ) ( int ,
char ∗∗) ) {

35 unsigned shor t data len ;
36 char ∗data , re sponse ;
37 i n t v a l i d a t e ;
38 unsigned shor t response_length ;
39

40 v a l i d a t e = s e c u r i t y _ v a l i d a t e ( inbuf ) ;
41

42 i f ( v a l i d a t e <0){
43 c b _ f a i l ( v a l i d a t e , outbuf ) ;
44 r e turn v a l i d a t e ;
45 }



B.2. SECURITY.C VII

46

47 data len = secur i ty_extract_data_length ( inbuf ) ;
48 response_length = cb_success(& inbuf [PROTO_HEADERLEN] , outbuf , data len ) ;
49

50 i f (mode> SECURITY_MODE_BASIC_AUTH) {
51 char hmac [PROTO_HMACLEN] ;
52 memcpy(&hmac,& inbuf [PROTO_POS_HMAC] ,PROTO_HMACLEN) ;
53 s e cur i ty_re sponse ( outbuf , response_length , hmac) ;
54 }
55 r e turn 1 ;
56 }
57

58 s t a t i c void secur i ty_re sponse ( char ∗∗ outbuf , unsigned shor t out len ,
char ∗ hmac) {

59 ∗ outbuf = r e a l l o c (∗ outbuf , out l en+PROTO_HEADERLEN) ;
60 i f (∗ outbuf ) {
61 memmove(∗ outbuf+PROTO_HEADERLEN, ∗ outbuf , out l en ) ;
62 memset (∗ outbuf+PROTO_POS_TIMESTAMP, ’− ’ , s i z e o f ( int32_t ) ) ;
63 memcpy(∗ outbuf+PROTO_POS_HMAC, hmac ,PROTO_HMACLEN) ;
64 memcpy(∗ outbuf+PROTO_POS_DATALEN, outlen , s i z e o f ( unsigned shor t ) ) ;
65 }
66 // r e a l l o c f a i l e d , dont change anything
67 }
68

69

70 s t a t i c unsigned shor t secur i ty_extract_data_length ( char ∗ i nbu f ) {
71 unsigned shor t data len ;
72 memcpy(&datalen ,& inbuf [PROTO_POS_DATALEN] , s i z e o f ( shor t ) ) ;
73 r e turn data len ;
74 }
75

76 s t a t i c i n t s e c u r i t y _ v a l i d a t e ( char ∗ i nbu f ) {
77 unsigned char hmac_recv [PROTO_HMACLEN] ;
78 unsigned char hmac_calc [PROTO_HMACLEN] ;
79 unsigned shor t data len ;
80 int32_t timestamp_recv , time ;
81 i f (mode > SECURITY_MODE_OFF) {
82

83 data len = secur i ty_extract_data_length ( inbuf ) ;
84 i f ( data len < 1 | | data len > MAX_PACKET_SIZE−PROTO_HEADERLEN) {
85 r e turn VALIDATE_INVALID_DATALEN;
86 }
87

88 i f (mode>SECURITY_MODE_NO_TIME) {
89 memcpy(&timestamp_recv ,& inbuf [PROTO_POS_TIMESTAMP] , s i z e o f (

int32_t ) ) ;
90 time = rtc_get_timestamp ( ) ;
91 i f ( time > timestamp_recv | | time+TOLERANCE < timestamp_recv )
92 r e turn VALIDATE_INVALID_TIME;
93 }
94

95 memcpy(&hmac_recv ,& inbuf [PROTO_POS_HMAC] ,PROTO_HMACLEN) ;



VIII B. SATELLITE CODE

96 memset(& inbuf [PROTO_POS_HMAC] , 0 ,PROTO_HMACLEN) ;
97 md5_hmac( ( const unsigned char ∗) &HMAC_KEY, s i z e o f (HMAC_KEY) −1,

inbuf , data len+PROTO_HEADERLEN, hmac_calc ) ;
98 memcpy(& inbuf [PROTO_POS_HMAC] ,& hmac_recv ,PROTO_HMACLEN) ;
99 i f (memcmp( hmac_calc , hmac_recv ,PROTO_HMACLEN) ) {

100 r e turn VALIDATE_INVALID_HMAC;
101 }
102 r e turn VALIDATE_SUCCESS;
103 }
104 r e turn VALIDATE_SECURITY_DISABLED;
105 }



AppendixCBase Station

C.1 create_nap_header.pl
1 #! / usr / bin / p e r l
2 use warnings ;
3 use s t r i c t ;
4 use Digest : :HMAC_MD5 qw(hmac_md5 hmac_md5_hex) ;
5

6 my $ i f i l e n a m e = s h i f t ;
7 my $timestamp_int = s h i f t ;
8 my $key = s h i f t ;
9 my $data ;

10

11 open FILE , "<" , $ i f i l e n a m e or d i e $ ! ;
12 {
13 l o c a l $/ ;
14 $data = <FILE> ;
15 }
16 c l o s e FILE ;
17

18 my $timestamp = pack "N" , i n t ( $timestamp_int ) ;
19

20 my $ d i g e s t = " \0 " x16 ;
21 my $length = pack "n " , l ength ( $data ) ;
22 my $uplink_data = $timestamp . $ d i g e s t . $ l ength . $data ;
23 my $hmac_hex = hmac_md5_hex( $uplink_data , $key ) ;
24 my $f i l ename = " secured_out / $timestamp_int \_$hmac_hex" ;
25 $ d i g e s t = hmac_md5( $uplink_data , $key ) ;
26

27 $uplink_data = $timestamp . $ d i g e s t . $ l ength . $data ;
28

29 open FILE , "+>" , $ f i l ename or d i e $ ! ;
30 p r i n t FILE $uplink_data ;
31 c l o s e FILE ;
32

33 p r i n t $ f i l ename ;

IX



X C. BASE STATION

C.2 get_nap_hmac.pl
1 #! / usr / bin / p e r l
2 use warnings ;
3 use s t r i c t ;
4

5

6 my $f i l ename = s h i f t ;
7

8 my $data ;
9 open FILE , "<" , $ f i l ename or d i e $ ! ;

10 {
11 l o c a l $/ ;
12 $data = <FILE> ;
13 }
14 c l o s e FILE ;
15

16 my $hmac = subs t r ( $data , 4 , 1 6 ) ;
17 my $hmac_hex = unpack ( ’H∗ ’ , $hmac ) ;
18 p r i n t $hmac_hex ;



AppendixDTesting Code

D.1 link_simulation.h
1 #i f n d e f LINK_SIMULATION_H
2 #d e f i n e LINK_SIMULATION_H
3

4 i n t beacon_out ( char ∗msg) ;
5 void s imulat ion_l ink_task ( ) ;
6

7 void simulation_beacon_task ( ) ;
8 i n t s imulat ion_cb_fa i l ( i n t er rorcode , char ∗∗ outbuf ) ;
9 i n t s imulat ion_cb_success ( char ∗data , char ∗∗ outbuf , unsigned shor t

data len ) ;
10

11 #e n d i f /∗ LINK_SIMULATION_H_ ∗/

XI



XII D. TESTING CODE

D.2 link_simulation.c
1 #i n c l u d e " l ink_s imula t i on . h "
2 #i n c l u d e " s e c u r i t y / s e c u r i t y . h "
3 #i n c l u d e "FreeRTOS . h "
4 #i n c l u d e " task . h "
5 #i n c l u d e " s e c u r i t y / r t c . h "
6 #i n c l u d e " s t r i n g . h "
7 #i n c l u d e " stdio_usb . h "
8

9 i n t beacon_out ( char ∗msg) {
10 p r i n t f ( " [BEACON] NTNU Test S a t e l l i t e ; %s \n " , msg) ;
11 r e turn 1 ;
12 }
13

14 void simulation_beacon_task ( ) {
15 const portTickType de lay = 5000 / portTICK_RATE_MS;
16 char t imebuf [ 1 0 ] ;
17 f o r ( ; ; ) {
18 int32_t time = rtc_get_timestamp ( ) ;
19 s p r i n t f ( timebuf , "%d " , time ) ;
20 beacon_out(&timebuf ) ;
21 vTaskDelay ( de lay ) ;
22 }
23 }
24

25 i n t s imulat ion_cb_success ( char ∗data , char ∗∗ outbuf , unsigned shor t
data len ) {

26 // p r o c e s s data
27 ∗ outbuf = mal loc (30 ∗ s i z e o f ( char ) ) ;
28 s n p r i n t f (∗ outbuf , 3 0 , " Packet s u c c e s s f u l v a l i d a t e d ! \ n " ) ;
29 r e turn 30 ;
30 }
31

32 i n t s imulat ion_cb_fa i l ( i n t er rorcode , char ∗∗ outbuf ) {
33 ∗ outbuf = mal loc (30 ∗ s i z e o f ( char ) ) ;
34 s n p r i n t f (∗ outbuf , 3 0 , " Va l idat i on f a i l e d : %d\n " , e r r o r c o d e ) ;
35 r e turn 30 ;
36 }
37

38 void s imulat ion_l ink_task ( ) {
39 TickType_t t imeStart , timeEnd ;
40 i n t s t a t u s ;
41 unsigned shor t l ength ;
42 char recbu f [MAX_PACKET_SIZE] ;
43 char ∗∗ outbuf = mal loc ( s i z e o f ( char ∗) ) ;
44 f o r ( ; ; ) {
45

46 f r e a d (&length , s i z e o f ( shor t ) , 1 , s t d i n ) ;
47 i f ( l ength == 0 | | l ength > MAX_PACKET_SIZE) {
48 cont inue ;
49 }
50
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51 p r i n t f ( " [DEBUG] Incoming packet with l ength : %d\n" , l ength ) ;
52

53 memset ( recbuf , 0 ,MAX_PACKET_SIZE) ;
54 f r e a d ( recbuf , s i z e o f ( char ) , length , s t d i n ) ;
55

56 t imeStart = xTaskGetTickCount ( ) ;
57 s t a t u s = security_val idate_and_respond ( recbuf , outbuf ,

s imulat ion_cb_success , s imulat ion_cb_fa i l ) ;
58 timeEnd = xTaskGetTickCount ( ) ;
59

60 p r i n t f ( " [DEBUG] Cal led v a l i d a t e and response f u n c t i o n : %d\n " , s t a t u s
) ;

61 p r i n t f ( " [DEBUG] Elapsed Time : %d ms\n " , timeEnd−t imeStart ) ;
62 p r i n t f ( " [RESPONSE] %s \n " , ∗ outbuf ) ;
63

64 f r e e (∗ outbuf ) ;
65 }
66 }
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D.3 main.c
1 #i n c l u d e <a s f . h>
2 #i n c l u d e "FreeRTOS . h "
3 #i n c l u d e " task . h "
4 #i n c l u d e " s e c u r i t y / s e c u r i t y . h "
5 #i n c l u d e " s imu la t i on / l ink_s imula t i on . h
6 void simpleLEDtask ( void ) {
7 whi le (1 ) {
8 gpio_toggle_pin (AVR32_PIN_PB03) ;
9 vTaskDelay (1000) ;

10 }
11 }
12

13 void u c 3 a 3 i n i t ( ) {
14 s t r u c t p l l _ c o n f i g p l l c f g ;
15 pm_switch_to_osc0(&AVR32_PM, 12000000 ,

AVR32_PM_OSCCTRL0_STARTUP_2048_RCOSC) ;
16 p l l _ c o n f i g _ i n i t (& p l l c f g , PLL_SRC_OSC0, 1 , 96000000 / FOSC0) ;
17 pl l_enab le (& p l l c f g , 0) ;
18 pl l_wait_for_lock (0 ) ;
19 s y s c l k _ s e t _ p r e s c a l e r s (1 , 3 , 1) ; // CPU c l o c k i s 48MHz, PBA i s 12MHz,

PBB i s 48MHz
20 sysc lk_set_source (SYSCLK_SRC_PLL0) ;
21 }
22

23 i n t main ( void ) {
24 u c 3 a 3 i n i t ( ) ;
25

26 s td io_usb_in i t ( ) ;
27 s e c u r i t y _ i n i t (2 ) ;
28

29 xTaskCreate(&simulat ion_l ink_task , ( const s igned portCHAR ∗) " Link
Simulat ion Task " , configMINIMAL_STACK_SIZE+MAX_PACKET_SIZE, NULL,
tskIDLE_PRIORITY+1, NULL) ;

30 xTaskCreate(&simulation_beacon_task , ( const s igned portCHAR ∗) " Beacon
Simulat ion Task " , configMINIMAL_STACK_SIZE+512 , NULL,

tskIDLE_PRIORITY+1, NULL) ;
31

32

33 xTaskCreate ( ( TaskFunction_t ) simpleLEDtask , " SimpleLEDtask " ,
configMINIMAL_STACK_SIZE+512 ,NULL, 1 , NULL) ;

34 vTaskStartScheduler ( ) ;
35 }
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D.4 nap_middleware.pl
1 #! / usr / bin / p e r l
2

3 use warnings ;
4 use s t r i c t ;
5 use Win32 : : S e r i a l P o r t ;
6 use IO : : Socket : : INET ;
7 use threads ;
8 use IO : : S e l e c t ;
9

10 $|++;
11

12 i f ($#ARGV < 3) {
13 d i e " Usage : $0 <s e r i a l port> <upl ink port> <downlink port> <beacon

l i n k port >\n" ;
14 }
15 my $ s e r i a l P o r t = s h i f t ;
16 my $upl inkPort = s h i f t ;
17 my $downlinkPort = s h i f t ;
18 my $beaconPort = s h i f t ;
19 my $PortObj = Win32 : : S e r i a l P o r t −>new( $ s e r i a l P o r t ) or d i e " Fa i l ed to

open $ s e r i a l P o r t \n " ;
20 p r i n t " [ ∗ ] Es tab l i shed s e r i a l connect ion \n " ;
21

22 my $up l inkServe r = new IO : : Socket : : INET(
23 LocalHost => ’ 0 . 0 . 0 . 0 ’ ,
24 Proto => " tcp " ,
25 LocalPort => $upl inkPort ,
26 Li s t en => 1 ,
27 Timout => 10 ,
28 r euse => 1 ,
29 ) or d i e " Fa i l ed to open Socket on port $upl inkPort : $ ! \ n " ;
30

31 my $downl inkServer = new IO : : Socket : : INET(
32 LocalHost => ’ 0 . 0 . 0 . 0 ’ ,
33 Proto => " tcp " ,
34 LocalPort => $downlinkPort ,
35 Li s t en => 1 ,
36 Timout => 10 ,
37 r euse => 1 ,
38 ) or d i e " Fa i l ed to open Socket on port $downlinkPort : $ ! \ n " ;
39

40 my $beaconServer = new IO : : Socket : : INET(
41 LocalHost => ’ 0 . 0 . 0 . 0 ’ ,
42 Proto => " tcp " ,
43 LocalPort => $beaconPort ,
44 Li s t en => 1 ,
45 Timout => 10 ,
46 r euse => 1 ,
47

48 ) or d i e " Fa i l ed to open Socket on port $beaconPort : $ ! \ n " ;
49
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50 p r i n t " [ ∗ ] Waiting f o r c l i e n t to connect \n " ;
51 my $ u p l i n k C l i e n t = $upl inkServer −>accept ;
52 my $downl inkCl ient = $downlinkServer−>accept ;
53 my $beaconCl ient = $beaconServer−>accept ;
54 my $peerAddr = $upl inkCl i ent −>peerhost ( ) ;
55

56 p r i n t " [+] C l i e n t connected from $peerAddr\n " ;
57 my $thread_1 = threads−>new(\& s e r i a l T h r e a d )−>detach ( ) ;
58

59 whi le (1 ) {
60 my ( $in , $pre ) ;
61 $up l inkCl i ent −>recv ( $in , 4 0 9 6 ) ;
62 l a s t i f ( l ength ( $ in )==0) ;
63 $pre = addPseudoNetworkLayer ( $ in ) ;
64 $PortObj−>wr i t e ( $pre ) ;
65 $PortObj−>wr i t e ( $ in ) ;
66 }
67

68

69 p r i n t " [ − ] Connection c losed , Ex i t ing . . . \ n " ;
70

71 $up l inkCl i ent −>c l o s e ( ) ;
72 $upl inkServer −>c l o s e ( ) ;
73 $downl inkCl ient−>c l o s e ( ) ;
74 $downlinkServer−>c l o s e ( ) ;
75 $beaconCl ient−>c l o s e ( ) ;
76 $beaconServer−>c l o s e ( ) ;
77

78

79 sub addPseudoNetworkLayer{
80 my $in = s h i f t ;
81 my $out = pack " n" , l ength ( $ in ) ;
82 r e turn $out ;
83 }
84

85 sub s e r i a l T h r e a d {
86 $PortObj−>user_msg (1) ;
87 $PortObj−>error_msg (1 ) ;
88 $PortObj−>d a t a b i t s (8 ) ;
89 $PortObj−>baudrate (115200) ;
90 $PortObj−>p a r i t y ( " none " ) ;
91 $PortObj−>s t o p b i t s (1 ) ;
92 $PortObj−>b u f f e r s (4096 , 4096) ;
93 $PortObj−>read_inte rva l (10) ;
94 $PortObj−>read_char_time (5) ;
95 $PortObj−>read_const_time (10) ;
96 $PortObj−>w r i t e _ s e t t i n g s ;
97 my $response = " " ;
98

99 whi le (1 ) {
100 $response .= $PortObj−>input ;
101 i f ( $ response =~ /\n/) {
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102 i f ( $ response =~ /\ [RESPONSE\ ] ( . ∗ ) / ) {
103 $downl inkCl ient−>send ( $response ) ;
104 $response = " " ;
105 }
106

107 i f ( $ response =~ /\ [BEACON\ ] ( . ∗ ) / ) {
108 $beaconCl ient−>send ( $1 ) ;
109 $response =~ s /\ [BEACON\ ] ( . ∗ ) \n // ;
110 }
111

112 }
113 }
114

115 }
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D.5 nap_packetgenerator.pl
1 #! / usr / bin / p e r l
2 use warnings ;
3 use s t r i c t ;
4

5 my $ s i z e = s h i f t ;
6 my $num = s h i f t ;
7 my $ p r e f i x = s h i f t ;
8 my $ d i r = " . / out " ;
9

10 open RAND, "<" , " /dev/urandom " or d i e $ ! ;
11

12 f o r (my $ i = 0 ; $ i < $num ; $ i++){
13 my $bytes = " " ;
14 read (RAND, $bytes , $ s i z e ) ;
15 my $ f i = s p r i n t f ’%05d ’ , $ i ;
16 open FILE , "+>" , " $ d i r / $ p r e f i x \ _$f i " or d i e $ ! ;
17 p r i n t FILE $bytes ;
18 c l o s e FILE ;
19 }
20 c l o s e RAND;
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D.6 nap_base_station_simulation.pl
1 #! / usr / bin / p e r l
2 use warnings ;
3 use s t r i c t ;
4 use threads ;
5 use threads : : shared ;
6 use Digest : :HMAC_MD5 qw(hmac_md5 hmac_md5_hex) ;
7 use IO : : Al l ;
8 use IO : : Socket : : INET ;
9 use Time : : HiRes qw( us l e e p ) ;

10

11 $|++;
12 my $ip = s h i f t ;
13 my $upl inkPort = s h i f t ;
14 my $downlinkPort = s h i f t ;
15 my $beaconPort = s h i f t ;
16 my $proto = ’ tcp ’ ;
17 my $response = " " ;
18

19 my $ d i r = ’ . / out ’ ;
20 my $timestamp : shared = undef ;
21 my $key = "ABCD" ;
22

23 my $sent_packages = 0 ;
24 my $ f i n g e r p r i n t _ c o u n t e r = 0 ;
25

26

27 my $upl inkSocket = IO : : Socket : : INET−>new(
28 PeerHost => $ip ,
29 PeerPort => $upl inkPort ,
30 Proto => $proto ,
31 Timeout => 100 ,
32 ) or d i e " Unable to connect to up l ink at $ ip : $upl inkPort − $ ! \ n " ;
33

34 my $downlinkSocket = IO : : Socket : : INET−>new(
35 PeerHost => $ip ,
36 PeerPort => $downlinkPort ,
37 Proto => $proto ,
38 Timeout => 10 ,
39 ) or d i e " Unable to connect to downlink at $ ip : $downlinkPort − $ ! \ n " ;
40

41 my $beaconSocket = IO : : Socket : : INET−>new(
42 PeerHost => $ip ,
43 PeerPort => $beaconPort ,
44 Proto => $proto ,
45 Timeout => 10 ,
46 ) or d i e " Unable to connect to beacon l i n k at $ ip : $beaconPort − $ ! \ n " ;
47

48 my $recv_t = threads−>new(\&recvThread )−>detach ( ) ;
49 whi le ( ! d e f i n e d ( $timestamp ) ) {}
50

51 my $incTimestampt_t = threads−>new(\&incTimestampThread )−>detach ( ) ;
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52

53 opendir (DIR , $ d i r ) or d i e $ ! ;
54 my @ f i l e s = s o r t r e a d d i r (DIR) ;
55 whi le (my $ f i l e = s h i f t @ f i l e s ) {
56 my ( $data , $recv , $response ) ;
57 my $ts = $timestamp ;
58 my $replay_counter = −1;
59

60 next u n l e s s (− f " $ d i r / $ f i l e " ) ;
61

62 my $ o f i l e = ‘ . / create_nap_header . p l $ d i r / $ f i l e $ t s $key ‘ ;
63 my $saved_hmac = ‘ . / get_nap_hmac . p l $ o f i l e ‘ ;
64 open FILE , "<" , $ o f i l e or d i e $ ! ;
65 {
66 l o c a l $/ ;
67 $data = <FILE> ;
68 }
69 c l o s e FILE ;
70

71 p r i n t " Sending : $ o f i l e : \n " ;
72 $sent_packages++;
73

74 p r i n t " Packet Length : " , l ength ( $data ) , " \n " ;
75

76 #Goto Label f o r r ep lay t e s t i n g
77 REPLAY:
78 #Simulate up l ink t r a n s m i s s i o n de lay
79 my $transde lay = i n t ( l ength ( $data ) ∗ 8 / 9600∗1000∗1000) ;
80 u s l e e p ( $ t ransde lay ) ;
81

82 $upl inkSocket −>send ( $data ) ;
83 $downlinkSocket−>recv ( $recv , 1 0 2 4 ) ;
84

85 i f ( $recv =~ /\ [RESPONSE\ ]\ s ( . ∗ ) /) {
86 $response = $1 ;
87 my $ r e s p f i l e = " . / in /tmp" ;
88 open FILE , "+>" , $ r e s p f i l e or d i e $ ! ;
89 p r i n t FILE $response ;
90 c l o s e FILE ;
91

92 p r i n t $recv ;
93

94 ###Only r e q u i r e d f o r t e s t i n g extended auth#################
95 # my $recv_hmac = ‘ . / get_nap_hmac . p l $ r e s p f i l e ‘ ;
96 # i f ( $recv_hmac eq $saved_hmac ) {
97 # p r i n t " [ENAP] HMAC matches ! \ n " ;
98 # $ f i n g e r p r i n t _ c o u n t e r++;
99 # } e l s e {

100 # p r i n t unpack ’H∗ ’ , $ re sponse ;
101 # $recv =~ s / [ ^ [ : p r i n t : ] \ n ]+/./ g ;
102 # p r i n t " $recv \n\n " ;
103 # }
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104 # }
105 #}
106 #p r i n t " [ENAP RESULT] $ f i n g e r p r i n t _ c o u n t e r / $sent_packages " ;
107 ############################################################
108

109 ###Normal excut ion f low###
110 }
111 # Simulate donmlink t r a n s m i s s i o n de lay
112 # $transde lay = i n t ( l ength ( $response ) ∗ 8 / 9600∗1000∗1000) ;
113 # u s l e e p ( $ t ransde lay ) ;
114

115 ###Only r e q u i r e d f o r t e s t i n g immediate r ep lay at tacks######
116 # i f ( $recv ! ~ /\ [DEBUG\].∗ −/) {
117 # $replay_counter ++;
118 # goto REPLAY;
119 # }
120 # i f ( $replay_counter == −1 ) { p r i n t $recv } ;
121 # p r i n t "Number o f s u c c e s f u l r e p l a y s : $replay_counter \n " ;
122 ###########################################################
123 }
124

125 $upl inkSocket −>c l o s e ( ) ;
126 $downlinkSocket−>c l o s e ( ) ;
127 $beaconSocket−>c l o s e ( ) ;
128 c l o s e d i r (DIR) ;
129

130

131 sub recvThread {
132 my $response ;
133 whi le ( $beaconSocket−>connected ) {
134 $beaconSocket−>recv ( $response , 4 0 9 6 ) ;
135 $response =~ / . ∗ ? ( \ d {9 ,}) / ;
136 $timestamp = $1+4;
137

138 }
139 }
140

141 sub incTimestampThread{
142 whi le (1 ) {
143 $timestamp += 1 ;
144 s l e e p (1 ) ;
145 }
146 }
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