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Abstract

This paper considers generators of Heisenberg modules in the case of twisted group C*-algebras of
closed subgroups of locally compact abelian groups and how the restrction and/or periodization of these
generators yield generators for other Heisenberg modules. Since generators of Heisenberg modules are
exactly the generators of (multi-window) Gabor frames, our methods are going to be from Gabor analy-
sis. In the latter setting the procedure of restriction and periodization of generators is well known. Our
results extend this established part of Gabor analysis to the general setting of locally compact abelian
groups. We give several concrete examples where we demonstrate some of the consequences of our results.
Finally, we show that vector bundles over an irrational noncommutative torus may be approximated by
vector bundles for finite-dimensional matrix algebras that converge to the irrational noncommutative torus
with respect to the module norm of the generators, where the matrix algebras converge in the quantum
Gromov-Hausdorff distance to the irrational noncommutative torus.

1 Introduction

As shown in detail in [16] and [24], the construction of dual (multi-window) Gabor frame generators is
equivalent to the construction of (matrix-valued) idempotent elements in twisted group C*-algebras for
closed subgroups of phase spaces represented by the Schrédinger representation of the Heisenberg group (as
a special case we find the non-commutative tori generated by the translation and the modulation operator
[23, 28]). Due to the mentioned equivalence, we present our results in a way that is understandable by
members of both communities.

In the language of Gabor frames we generalize results on the sampling and periodization of dual Gabor
frames generators developed in |17, 18, 30] from the Euclidean setting to the general setting of locally compact
abelian (LCA) groups as well as to the multi-window case. For the Euclidean case our results widen the
known theory, as the here developed results can also handle time-frequency shifts that come from general
(not necessarily separable) subgroups of the time-frequency plane. The results given here also cover more
abstract cases, e.g., sampling and periodization of Gabor frames for the square integrable functions over the
adeles and over Q, x R as constructed in [5]. Furthermore, the results here can be applied to sample and
periodize super (also known as vector valued) Gabor frames as well.

Concerning the Heisenberg modules, the results presented here and even those of [17, 18, 30| are com-
pletely new and have not been observed in the setting of the non-commutative geometry before. To give
a good picture of what the results are, let us state a particular version of the known theory from [30] for
the non-commutative torus Ay. We assume that 6 is such that § = a/M = b/N for some a,b, M, N € N
and take d = alN. The pre-C*-algebra to this Ay we realize as three different Banach algebras of opera-
tors. Specifically, we realize them as samples of the Schrodinger representations of the Heisenberg group
that act on L2(R), ¢*(a'Z) and (?(Zq), where Zg = Z/dZ = {0,1,...,d — 1}. Clearly, (*(Z;) = C?. For
convenience, we denote the algebras by A, Ag_lz and AGZE‘. They are generated by the following unitary
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operators respectively,
Urf(t) =™ f(t), Vef(t)=f(t—1), feL*R), teR,
Upzf (t) = 7 f (1), Voigf() = f(t=1), felP(a'Z), tea 'L,
Uz, f(t) = 2™ aft), Vg, f(t) = f(t —a), fel*(Z)dZ), t€{0,1,...,d—1}.
Observe that
UrVi = e VoUr, Up-1zVy-1z = €™VmizUsrz, Uz, Va, = €7Vz,Uz,.

So .AH;, A]g and .A]g are realizations of the non-commutative torus with parameter 8. To be consistent with
later notation, we shall not so much use the operators U and V' but rather the time-frequency shift operator
7, defined as follows:

(i) For (z,w) € R? and f € L*(R) we define 7(z,w)f(t) = ™! f(t—x), t € R. Note that 7(1,6) = Ur Vk.

(ii) For (z ,w) €a'Z x [0,a) and f € £%(aZ) we define 7(x,w)f(t) = ¥ f(t — z), t € a~'7Z. Note that
7(1,0) = Uy-17Vo-17-

(iii) For (z,w) € ZgxZgand f € (3(Zy) we define 7(x,w) f(t) = 2™/ f(t—x). Note that 7(a,b) = Uz, V7,
From the time-frequency shifts we construct the following spaces,

Af ={a€B(L*R)) : a= >  a(n,m)n(n,0m), ac (' (2%},

n,me7Z
Ag_lz:{aEB(ﬂ(a* : a—z Z (n,m)m(n,0m), a € ("(Z x L)},
n€Z m=0
—1M-1
AZd—{aEBKQZd :a—zz (n,m) m(na,mb), a € "(Zn x Zr)}.
n=0 m=0
The norm ||al| = ||al|; turns each of them into a Banach algebra with respect to composition of operators

and the taking of L2-adjoints.
For functions in Feichtinger’s algebra So(R) (see Section 2.1), sequences in ¢!(a~'Z), and vectors in C¢
we define a respective Ag-valued inner-product in the following way:

R<'> > : SO(R) X SO(R) - Algv ]R(fag> = Z (f,w(n,ﬁm)g) 71'(71, 0m)>

nme”Z

g Y 0T Z) x T Z) —» AGTE i (fg) = ZZ £,m(n, 0m)g) ©(n, Om),

n€Z m=0
—1M-1
7,8 ) ce ><(Cd—>.,49 » 2,(f59) Z Z fym(na, mb)g) w(na, mb),
n=0 m=0

The un-annotated inner products are the usual ones on the Hilbert space L?: for f, g € L?(R) (and particular
for functions in So(R)) we have (f, g) = [, f t) dt, where dt is the Lebesgue measure. For f,g € (?(a™17Z)

(and parti(;ullar for sequences in a 1Z)) we have (f,9) = Yica—1z f(t)g(t). For f,g € C? we have
(f:9) = 2= F(H) 9(t).
The module norm of a function in Sy(R), a sequence in ' (a~'Z) and a vector in C? is given, respectively,
by
”gHAR - HR(g g Hop L2 g e SO(R)7
/2 —
||g||Ag_IZ = H —1Z<g g Hop,ﬁ’ g € él(a 1Z)7
d
HgHAgd H Z4 <g g Hop 2(Zy) g € C%

Established results in the theory of Gabor frames, and especially concerning the sampling and periodiza-
tion of Gabor frame generators [30], directly translate into the following statements.
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Theorem 1.1. Let all notation be as above. If g is a function in So(R) (or particularly in the Schwartz
space) such that (g, g) is a projection in A5, then the following holds.

(i) The module norm of g satisfies

lgllag < C =071 " (g, g(- —no™ ).

m,nEL

(ii) The sequence G := {Va=1 g(t)}1eq-17 belongs to (*(a='Z) and is such that ,-1,{g,§) is a projection in
Ag_lz. Moreover, the module norm of g satisfies ||g|| -1z < C.
0

(iii) The ﬁm’fe sequence 9(t) = Va LY 9(a Mt - kd)), t € {0,1,.. ’jd -1} belo~ngs to C and is such
that 5 (g, g) is a projection in A%d. Moreover, the module norm of g satisfies HQHAZd <C.
(%

The purpose of this note is to generalize Theorem 1.1 to the setting of functions over locally compact

abelian groups and the associated Heisenberg modules and Gabor systems as described in [16]. We do this
in Section 3 and 4.
Specifically, our main results are the sampling and periodization theorem for the generators of matriz valued
projections in Banach algebras and, equivalently, for dual multi-window Gabor frames that are generated
by the time-frequency shifts from closed subgroups of the time-frequency plane of general locally compact
abelian groups in Theorem 3.2 and Theorem 4.2.

Due to the abstract nature of these results we give a number of concrete examples in Section 5.

In Section 2 we state some necessary terminology on Fourier analysis on groups, on the Feichtinger
algebra (Section 2.1) and the connection between multi-window Gabor frames and matrix-valued projections
in Heisenberg modules (Section 2.2).

In Section 6 we state results that are of independent interest in the matter of projections for the tori
described here in the introduction. Observe that Theorem 1.1 only applies to non-commutative tori where
is rational. In Section 6 we translate known results in Gabor analysis into the language of NC-tori to give an
approach for the irrational case. Furthermore, we state results that make it possible to construct generators
of projections in A% from the sequences § and § obtained via Theorem 1.1. The results in Section 6 are based
on the theory of Gabor frames established in [8, 9, 11, 18]. These results indicate that a natural measure for
projective finitely generated modules in terms of the difference of the generators in the module norm and
hence two such modules are close if their generators are in the module norm. Our results show that this
is the case for Heisenberg modules over Ag&. If Ag& is the irrational noncommutative torus, then we show
that for a sequence of matrix algebras converging to A]}} in the sense of Rieffel’s quantum Gromov-Hausdorff
distance, then one can use the generators of Heisenberg modules over these matrix algebras can be turned
into generators of .,4]5 and that these generators converge with respect to the module norm.

2 Preliminaries

We let G be a locally compact Hausdorff abelian topological (LCA) group and let G be its dual group. The
action of a character w € G' on an element z € G is written as w(z). We assume some fixed Haar measure
pe on G and we normalize the Haar measure pz on G in the unique Way such that the Fourier inversion
holds. That is, if f € L'(G) is such that its Fourier transform, F f(w) = o f( w(t)dt, w € Gisa
function in L!(G), then

/f t)dw forall teG.

We equip L?(G) with the inner product (f, g) fG dt which is linear in the first entry. The Fourier
transform extends to a unitary operator on L2(G)
For any x € Gand w € G we define the translation operator (time-shift) 7} and the modulation operator
(frequency-shift) E,, by
T.f(t) = f(t—=) and E,f(t) =w(t)f(t), t€G,
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where f is a complex-valued function on G. Observe that
Fl,=FE_F , FE,=T,F , E, T, =w(x)T,E,.
For any x = (z,w) € G x G we define the time-frequency shift operator
m(x) = 7(z,w) := E,T;.

It is clear that time-frequency shift operators are unitary on L?(G).
For two elements y; = (z1,w1) and x2 = (z2,ws2) in G X G we define the cocycle

c: (Gx Q) x(GxG) =T, clxi,x2) = wa(x1) (1)

and the associated symplectic cocyle

cs: (G x G)x (GxG) =T, cs(x1,x2) = c(x1,x2) c(x2, x1) = wa(1) wi(w2). (2)

For any x, x1, X2, X3 € G X G the cocycle and time-frequency shift satisfy the following,

c(x1,x2) = c(—x1, x2) = c(x1, —Xx2),

c(x1 +x2,x3) = c(x1,x3) c(x2, x3), c(x1, X2 + x3) = c(x1, X2) c(X1, X3),
m(x1) m(x2) = c(x1, x2) 7(X1 + Xx2),
m(x1) m(x2) = cs(x1, x2) 7(x2) T(x1),
m(x)" = c(x, x) 7(—x),
m(x1)" m(x2)" = c(x2, x1) m7(xa + x2)*

The short-time Fourier transform with respect to a given function g € L?(G) is the operator
Vy 1 LA(G) = L*(G x G), Vof(x) = (£,7(X)g), x € G x G. (3)

The operator V; oV, is a multiple of the identity. Specifically, for all fi, fa,9,h € L*(@)

(f1, f2) (hy g) = (Vg f1, Vi f2) (4)
= /Gxé<f,7r(x)g> (r()hs f2) dpgy a(x)-

The symbol A will always denote a closed subgroup of the ti/rpe—frequency plane G x G. The induced
topology and group action on A and on the quotient group (G x G)/A turn those into LCA groups as well,
and can therefore be equipped with their own Haar measures. If the measures on G, G and A are fixed,
then the Haar measure H(GxG)y/n On the quotient group (G x G)/A can be uniquely scaled such that, for all

feLY(Gx @),

/G’xé 00 diga () _/«;xam/ FOCHN dpa(N) dpg ey, (0 X=x+A, x€eGx G (5)

If (5) holds we say that u. 4, pa and H(GxGy/a Are canonically related and the equality in (5) is called
Weil’s formula. We always choose the measures pi,, &, pa and (Gx@)/A in this way. For more on this, see

[26, p.87-88] and [26, Theorem 3.4.6]. With the uniquely determined measure HGxdy/n We define the size or
the covolume of A, by s(A) = f(Gxé)/A Ldp gy n- Note that s(A) is finite if and only if A is a co-compact
subgroup of G x é, i.e., the quotient group (G X é) /A is compact. If A is discrete, co-compact (hence a

lattice), and equipped with the counting measure, then s(A) is exactly the measure of any of its fundamental
domains. The adjoint group of A is the closed subgroup of G x G given by

A ={xeG@xG:cs(x,A)=1 forall A A}
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For any closed subgroup A one has (A°)° = A and Ao (G x @)/A Given these identifications, we take
the Haar measure ppo on A° such that the Fourier inversion between functions on A° and (G x G)/A holds.
This unique measure on A° is called the orthogonal measure relative to uy [26, Definition 5.5.1]. We now
choose the Haar measure on (G x G)/A° such that the measures (Gx@yr HAe and (Gx@)/ne A€ canonically

related. This ensures that also the Fourier inversion formula between functions on A and (G x G)/A° holds
[26, Theorem 5.5.12].

Remark 2.1. For a closed subgroup A with measure ua it is in general difficult to say more about the
orthogonal measure on ppo on A°. However, if the quotient group (G x G)/A is compact (equivalently A° is
discrete), then the orthogonal measure on A° satisfies

/A O e () = o 30 FO°) forall f e £1(A%). (6)

W 2,

For more on harmonic analysis on locally compact abelian groups see the book by Reiter and Stegeman
[26]. Other books are the one by Folland [10] and Hewitt and Ross [13, 14].
2.1 The Feichtinger algebra

For any LCA group G the Feichtinger algebra So(G) [7, 15, 22] (sometimes denoted by M!(G)) is the set of
functions given by

So(G) = {f e L*Q) : Vif € L}(G x G)}.
For the definition of V¢ f see (3). Any non-zero function g € So(G) can be used to define a norm on So(G),
I Iso(@).0 = S0(G) = Ry, | fllsocy.g = Vo fllr- (7)

All norms defined in this way are equivalent |15, Proposition 4.10] and they turn So(G) into a Banach space
[15, Theorem 4.12|. The usefulness of the Feichtinger algebra So(G) lies in the fact that it behaves very
much like the Schwartz-Bruhat space . (G) (also, one has the inclusion . (G) C So(G), see |7, Theorem 9]).

The construction of projective modules over the twisted group algebra in Rieffel’s setting [28] requires
one to have a function space that allows us to define actions and innerproducts with values in L!, and
Feichtinger’s algebra turns out to be the most convenient choice. In some problems it has also turned out to
be of relevance that we are in the position to deal with settings beyond the smooth one [4, 23, 24, 16].

Among its properties, we mention the following ones. Properties (vi)-(ix) are of special importance to us
here.

Lemma 2.2. (i) All functions in So(G) are continuous, absolutely integrable, and vanish at infinity.
(ii) If G is discrete, then (So(G), | - [Is,) = (¢1(G), || - [[1)-

(iii) Time-frequency shifts w(x), x € G X @, are an isometry on So(G). The Fourier transform is a
continuous bijection from So(G) onto So(G).

(iv) So(QG) is continuously embedded into LP(G) for all p € [1,00]. In fact, if 1/p+1/q =1, then
1£1lp < llgllg 1 ls.g for all f € So(G).

(v) So(G) is a Banach algebra with respect to convolution and point-wise multiplication.

(vi) For any closed subgroup H of G, the restriction operator
Ru :So(G) = So(H), Ruf(t)=f(t), te€H,

is a linear, bounded and surjective operator from So(G) onto So(H).
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(vii) For any closed subgroup H of G, the periodization operator
Pu  So(G) = So(G/H), Puf(d) / Ft+2)dun(z), f=t+H teH

is a linear, bounded and surjective operator from So(G) onto So(G/H).

(viii) For any f,g € So(G) the short-time Fourier transform Vg f is a function in So(G x G). Also, there
exists is a constant ¢ > 0 such that ||[Vyf|ls, < ¢l fllso lglls, for all f,g € So(G).

(ix) The Poisson (summation) formula holds pointwise for all functions in So(G). That is, for any closed
subgroup H of G and any f € So(G)

/f ) dpugr (1) /f ) dpugy

If H is a closed co-compact subgroup of G, then the Poisson formula takes the form
| £®dunte) 7 2 70 ®)

Proof. (i). This follows from |7, Definition 1] or [15, Lemma 4.19]. (ii). see |7, Remark 3| or |15, Lemma
4.11]. (iii). [15, eq. (4.12), Example 5.2(i,iii), |. (iv). That Sq is continuously embedded into L? follows from
the fact that that So(G) = W(FL!, L') (|7, Remark 6]) together with the inclusions in [6, Lemma 1.2(iv)]
and the fact that W(LP, LP) = L? |6, Lemma 1.2(i)]. For the inequality see [15, Lemma 4.11]. (v). Sq is a
Segal algebra (|7, Theorem 1]) and any Segal algebra is a convolution algebra [25, §4|. By (iii) this implies
that it is also an algebra under pointwise multiplication. Alternatively, see [15, Corollary 4.14]. (vi+vii).
See |7, Theorem 7| or |15, Theorem 5.7|. (viii). [15, Theorem 5.3(ii)]. (ix). That the Poisson formula holds
for functions in Sy is stated in [6, Remark 15|. Alternatively, see [15, Theorem 5.7, Example 5.11]. O

2.2 Gabor frames and Heisenberg modules

The following is a summary of certain results and facts that can, unless specififed otherwise, be found in [16].
Let A be a closed subgroup of the time-frequency plane G x G and let A° be its adjoint group. We use the
integrated Schrodinger representation to define the following two Banach algebras,

A={acB(L’G)) : a= / (V) 7(A) dA, a € So(A)),
A
B={beB(I2Q)) : b :/ b(A°) 7(A°)* dA°, b € So(A%) ).

Indeed, the norm ||al| 4 = ||a||s, (where a and a are related as in the definition of .A) turns A into an involutive
Banach algebra with respect to composition of operators and where the involution is the L?-adjoint. Similarly,
B becomes an involutive Banach algebra.

Remark 2.3. In the definition of B the measure on A° is the measure that is orthogonal to the measure on
A, cf. Remark 2.1. Hence, if A is a co-compact subgroup of G x G (e.g., a lattice), then

B={beB(LQ)) : Z b(A°) m(A°)* dX°, b € So(A°)}.
)\OEAO
Since A° is discrete we have So(A°) = ¢1(A°) (cf. Lemma 2.2(ii)), and so ||b||z = ||blls, = ||bl|1-
The traces on both A and B are given by the continuous operators
tra: A—C, tra(a) =a(0), trg:B— C, trg(b) =b(0).

Elements of A act from the left on functions in L?(G) by

a-f:= / Nfd\, feL*G), ac A
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Operators in B act from the right on L?(G),

f-b:= / b(A) m(A\°)*fd\°, f e L*(G), beB.
We define A- and B-valued inner products in the following way:
Al ) 180(G) X So(G) = A, \(f,9) =/A<f,7r(k)g>7r(k) dA,
(-5 )ae :80(G) X So(G) = B, (f,g)p0 = /A (g, m(A")"f) m(A®)" dA°.

Remark 2.4. In [16] the notation 4(-,-) and (-, -)gz is used for the A- and B-valued inner products,
respectively. However, for our purposes it will prove useful that the inner products reflect the subgroup of
the time-frequency plane that is used, i.e., A and A°.

The A- and B-valued inner products satisfy the associativity condition,

A(fag>h:f<g?h>1\° for all fvg7h€SU(G)' (9)

Le., [\ (f,7(N)g) m(AN)hdX = [,o(h, m(A°)*g) w(A°)* f d\° for any f,g,h € So(G). In time-frequency analysis,
this equality is known as the fundamental-identity of Gabor analysis. We define the A-module and B-module

1/2
norm to be ||g|la := || A {9, 9)| /

1/2 . .
op.z2 and llgllae := H(g,g)AoHOI/)’LQ, respectively. It is a fact that ||g]|a = ||g||ae-
Observe that

tra( 4(f,9)) = trs({g, f)g) = (f,g) forall f,ge Su(G).

Rather than just the Banach algebras A and B, we wish to consider matrices that consist of such elements.
Thus, for n € N we let M,,(A) be the set of all A-valued n x n matrices (a;x), aj, € A, j,k € Z,. Elements
in M,,(A) have the natural left-action on n-tuple of functions in L?(G), L?(G)™.! Tt is given by matrix-vector
multiplication,

(aj7k)_77kezn f] jeZn Z a],k’ fk} jeZ
k€Zn

We define the M,,(.A)-valued inner product on So(G)" as follows:

Alf01) Al g2) - A(f190)

As 15 S0(G)  So(G) = Man(A), [ (gl = [A2 0 alfogzh o alfenn)

o) ) e Ao

We use the square brackets ,[-, -| to distinguish the M, (.A)-valued inner product from the A-valued inner
product ,(-, -). For n =1 these two notions coincide.

For n € N we let M,,(B) be the set of all B-valued n x n matrices (bjx), bjx € B, j,k € Z,. These have
a natural right-action on L?(G)", given by vector-matrix multiplication,

(fi)jezn - (bja)imez, = (D fr brj) ez
kE€Zn,
The M,,(B)-valued inner product is
[+ Tao = So(G)" x So(G)" = Mu(B), [(f7), (97)]ne = diag( Y {fs,9)ne)-
J€Ln

Note that, in general, ,[-, -] is a full matrix, where as [, -],. is a diagonal matrix. By use of (9) it is
immediate that the matrix valued inner-products satisfy Rieffel’s associativity condition

al(F3); (gi)] - (hg) = (£5) - [(95), (Ry)lpo for all (f5),(g5), (hj) € So(G)". (10)

'Rather than n-tuples of functions in L?(G) one can, equivalently, think of functions in L?*(G x Z,) or of vector valued
functions L*(G;C™).
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The trace on elements in M,,(A) and M,,(B) are given by

travi(a) : Mp(A) = C, tryea)((ajk)) Z tra(a;;), (ajr) € Mp(A),
]eZn

trM(B) : Mn(B) — C, tTM(B) Ztrlg J] ) € Mn(B)

Observe that

trarca) (A1) (9)]) = traasy ([97), (F)]ae) = D (fingy) for all (£5),(g;) € So(G)™ (11)
JELn

The matrix valued inner products allow us to define module norms on So(G)",

1/2
op,L2"

1gi)lla = [ Al(95), (95 ]HopLza Igllae = [[[(g5), (97)] r0

The family of functions {m(X\)g;}ren, jez, generated by an n-tuple (g;) in So(G)™ and by a closed sungroup
A in G x G is a multi-window Gabor system. .

Definition 2.5. A multi-window Gabor system {m(\)g;}rea,jez, is a Gabor frame for L*(G) if there exists
constants A, B > 0 such that either of the following equivalent conditions are satisfied.

(i) For all f € L*(G)
AlfllF2iey < A KF 7N P dua(X) < Bl fll72 - (12)
(i) For all f € So(G)
Atra(n (1)) < 32 tra(a(F.95) o950 ) < Btra( (S, )

J€Ln
(iii) For all (fj) € So(G)n
AtrM(A)(A[(fj)7 (fj)]) < trM(A)(A[(fj)v (gj)] A[(Qj)a (fj)]) < BtrM(A)(A[(fj)a (fj)])-

The constants A and B are called lower and upper frame bounds, respectively.

The largest possible value for A, Agp, is the optimal lower frame bound and the smallest possible
valued for B, Bopy, is the optimal upper frame bound. As shown in Lemma 3.6 and Remark 3.13 of [16],
Bopt = [/(95)||a- A Gabor frame for which the frame bounds are equal is called tight; it is called Parseval if
its frame bound equals 1

Necessary conditions for (g;) and A to generate a Gabor frame are that the group (G x @) /A is compact
and that As(A) <3, llgill3 < Bs(A). In case A is discrete and equipped with the counting measure, then
furthermore, the condition s(A) < n is necessary.

The Gabor system {m(\)g;}ren jez, is a Gabor frame for L*(G) if and only if the associated frame
operator S(,) A is a continuous invertible bijection on both L?*(G) and So(G) [11]. The frame operator is
given by any of the following expressions, for any f € So(G),

Z/ fom Ngidh= D \(F.9) 95

JELn J€Ln
=72 990 = 5 Z > (g, m(A) g)m (A F.
J€Ln jGZ AeeA°

If (g;) € So(G)™ and A generate a Gabor frame for L?(G), then there exist functions (h;) € So(G)" such
that the following equivalent statements hold,

) =S\ (fsm(N)gi)m(A)hy dX for all f € L3 (G),
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(i) f= ZjeZn A(fv gj) - by for all f € So(G),
(iti) (f;) = Al(f5); (gj)] - (hy) for all (f;) € So(G)™.

In that case we say that (g;) and (h;) are a dual pair of Gabor frame generators and that {m(\)g;}ren jez,
and {m(A\)gj}ren jez, are dual Gabor frames for L?(G). The canonical choice of the functions (h;) is the
canonical dual frame: the Gabor frame generated by the functions (h;) = (S;* s £97)-

(9
The following is an adaptation of Corollary 3.15 in [16].

Lemma 2.6. Let A be a closed co-compact subgroup of G x G and let (gj) and (h;) be n-tuples in So(G)".
The following statements are equivalent.

(i) f= 2 a{fr95) - hj for all f € So(G).

J€Ln

(it) > (g;,hj)so is the identity operator on L*(G).
J€ZLn

(iii) (gj) and (h;) generate dual multi-window Gabor frames with respect to A for L*(G).

(iv) the A-valued n x n-matric

algr, b)) pfg1,h2) oo {91, Ba)

((9:). ()] = alg2,h1)  a{g2 h2) oo (92, hn)
A 1/ ¥l . . . .

A<gn7h1> A<gn7h2> A<gn7hn>

is an idempotent operator from L*(G)" onto V := span{ Djez. W(AO)*gj}AOGAO.
Given an n-tuple of functions (g;) € So(G)" and a closed subgroup A, we define the constant
B((g;),A) Z | 9]»9]>Ao||8 Z Z } g5, T ’
Jez A°EA©

The properties of Sg imply that this quantity in fact is finite.

Lemma 2.7. For any n-tuple of functions (g;) € So(G)" and closed subgroup A of G x G the Gabor system
{m(N)g;}ren jez, satisfies the upper frame inequality. In fact,

1(gi)lla = ll(g)llae = Bopt < B((g5),A)-
Proof. This follows from the proof of Lemma 4.26 in [16]. O

Lemma 2.8. Let (g;) and (hj) be functions in So(G)" that generate dual Gabor frames for L*(G). If the
Gabor system generated by (hj) has an upper frame bound By, then Bgl s a lower frame bound for the
Gabor system generated by (g;).

Proof. This is a general result of frame theory and can be found in, e.g, [3]. O

Lemma 2.9. Let (g;) € So(G)™ and A be a closed subgroup of GxG such that the Gabor system {m(N)gj}ren jezn
is a Gabor frame for L?(G). The canonical dual generators (h;) = (S(;l_) A9j) are the unique dual generators
7/

that lie in the closed subspace of L*(G) given by span{m(\°)*g;}reenc, jez, -
Proof. See Lemma 4.15 in [16]. O
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3 Sampling of Gabor frames

Let (g;) and (h;) be n-tuples in So(G)™ and let A be some closed co-compact subgroup of G x G.

We show that, if {m(A\)gj}ren jez, and {m(A)h;}ren jez, are dual multi-window Gabor frames for L?(G),
or equivalently ,[(g;), (hj)] is an idempotent element of M, (A), then, under certain assumptions, the func-
tions obtained by restriction of the generators to a closed subgroup H of G preserves these properties.

In order to formulate the result we need a way to think of elements in the time-frequency plane of H,

H x H as elements of the time-frequency plane of G, G x G. We do this by constructing an injection from
H x H into G x G:

Remark 3.1. Let H be a closed subgroup of G. Note that H can be identified (as a toplogical group)
with the quotient group G /H*. This quotient group has a set of coset representatives K1 in G. If we fix
such a set of coset representatives, then every coset in G /H* has a unique representation as k + H+ , where
k € Kp.. This establishes a bijection between G JH* and K. Due to the isomorphism between G JH*+
and H we can define a bijection

¢:H— Ky CG, ¢p(w) = k.

For our purposes we will always take K. so that 0 € Kyi. This is always possible. Observe that this
implies that ¢(0) = 0. For any given character w € H the element ¢(w) is an extension of w to a character
on G. It is clear that this extension crucially depends on the choice of K.

With the identification ¢ between Hand K L we construct the injective operator

<I>:H><I/1\T—>H><KHLQG><@, @(w,w)z(w,qﬁ(w)),xEH,weﬁ.

This operator allows us to regard elements of H X H as elements of G x G. Observe that ®(0) = 0.
Furthermore, for any x = (z,w) € H x H and any f € So(G)

T(X)Ruf =Run(®(x))f. (13)

Note that the time-frequency shift on the left acts on functions on So(H), where as to the right, the time-
frequency shift acts on functions in So(G).

A side remark: it is possible to take K1 to be a measurable subset of G (we do not require this extra
property for our purposes). In that case ¢ is a measure preserving map between the measure spaces G JH*
(with its Haar measure) and K1 (with the measure it inherits from CA;') We refer to [2, Section 3] for more
details on this.

In the following we denote the Banach algebra generated by time-frequency shifts of a subgroup A of
G x G by A%, and the Banach algebra generated by time-frequency shifts of a subgroup A of H x H by AM.
The sampling theorem for Gabor frames and generators of Heisenberg modules reads as follows.

Theorem 3.2. Let A be a closed co-compact subgroup of G x G, and let (g95) and (hj) be n-tuple in So(G)".

Assume that ,[(g;), (k)] is an idempotent element of M, (A%), i.e., {m(N\)gj}ren jez, and {m(A\)h;}ren jez.,
are dual Gabor frames for L*(G). If the following two assertions are satisfied,

(i) H is a closed cocompact subgroup of G such that A C H X @,
(i) A is a closed cocompact subgroup of H x H such that ®(A°) C A°,

then the n-tuple (g;) and (fLJ) in So(H)"™ given by §; = cRugyj, h = cRpyhj, and where

¢= (SHxﬁ(A) SG(H)/SGxé(A))l/z’

are such that 3[(g;), (h;)] is an idempotent element of M,,(A™), i.e., the two Gabor systems {m(Ngi}er el

and {W(A)}N’L]‘})\EK iz, are dual frames for L%*(H). Moreover, the optimal frame bounds Aopt and Bopt of the
Gabor frame {m(A)Jj}\cR jez.,

B((h), A)™" < Aopt < Bope = [[(35)lI5 < B((g5), M) (14)

satisfy the estimate
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Remark 3.3. The merit of the inequalities (14) is that it shows that the condition number (the ratio

between the optimal upper and lower frame bound) of any new Gabor frame for L*(H) generated by (g;)
and A obtained via Theorem 3.2 is bounded by B((g;),A) - B((h;),A).

Corollary 3.4 (Oversampling). Consider the situation as in Theorem 3.2. IfA s a subgroup of G x G such
that A C A, then the functions (gj) and (h) in So(G)" given by g; = cyj, h = chj, and where

¢ = (sgxa(M) sga™) ",

are such that 3[(g;), (}NLJ)] is an idempotent element of M, (A%), i.c., the Gabor systems {m(Ngj}er iz,
and {W()‘)ﬁj}Aef\jeZn are dual frames for L*(Q).

Proof. Apply Theorem 3.2 with H = G and A such that A € A. In that case ® is the identity operator on
G xG. Tt is easy to verify that conditions (i) and (ii) in Theorem 3.2 are satisfied. The statement follows. [

In general, the assumptions in Theorem 3.2 do mot guarantee that the sampling procedure preserves
canonical pairs of dual frames. The following lemma provides a sufficient condition for this.

Proposition 3.5. If condition (ii) in Theorem 3.2 is strengthened to be
(ii*) A is a closed cocompact subgroup of H x H such that <I>(A°) =ANN(Gx Ky),

then the process described in Theorem 3.2 preserves pairs of canonical dual frames. That is, if (g;) is an

n-tuple in So(G)" that generates a Gabor frame for L*(G) with respect to time-frequency shifts from A and

(hj) = (S(_gl,) A9i), then the dual pair of Gabor frame generators (g;) and (hj) constructed by Theorem 3.2
5 )s

are such that (h;) = (S-1.g;).
gij

Let us give the proof of Theorem 3.2 and Proposition 3.5. The proof of Theorem 3.2 builds on the ideas
of Sendergaard [30]. The following lemma is essential.

Lemma 3.6. For any closed cocompact subgroup H of G and any two functions fi, fo € So(G)

1
<RHf17RHf2>L2(H) = o) Z <f1,E7f2>L2(G)

yeHL

Proof. Tt is clear that <RHf1,RHf2>L2(H) = [y (f1- f2)(t)dpp (). Since fi - fy is a function in So(G) we
may apply Poisson’s formula as in (8). This yields the desired equality

1

<RHf1,RHf2>L2(H) = ol Z F(fr-f2)(0)
yeH+

1

= so(H) g,;/ fr- f2) (#)(t) du (t)
1

= fi(t) - (Byf2) () duc(t)

sc(H) ng/ ' ? ¢

1

O

Proof of Theorem 3.2. In order for the functions (;) and (h;) in L So(H)"™ to form a pair of dual multi-window
Gabor frames for L?(H) with respect to time-frequency shifts of A, i.e., 51(g), (hj)] is an idempotent operator
in M, (A7), it is, by Lemma 2.6, necessary and sufficient that [(;), (ﬁj)]fxo is the identity operator on L?(H)".
That is,
D (i) Gi) oy = Snea(M) o0 forall A% € A° (15)
J€Ln
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We use that §; = cRugj, hj = cRih; to rewrite the left hand side of (15),

Z <}~lj;7r()‘o)*§j>L2(H) = Z <Rth,7r()\°)*Rng>L2(H)

JELn J€ZLn

13 (o] *
(1) 2 Z (Ruhj, Rum(®(X°)) 9j>L2(H)
jGZn

G (@(A o))*gj>L2(G)

’YEHL JE€Ln

In the last step Lemma 3.6 is used. Hence (15) becomes

o <(®( ) D D (hm((0,7) + () 0)) oy = S (D) drep forall A° € A% (16)
SG( ) ~yEHL jELn,

We now observe the following.

(a). Assumption (i) is equivalent to the fact that {0} x H+ C A°. Furthermore by (ii) we have ®(A°) C A°.
The fact that A° is a group implies that the time-frequency shifts that appear in the inner product on the
left side in (16), 7((0,7) + ®(\°))", are of the form m(\°) for some \° € A°.

(b). By assumption, the functions (g;) and (h;) generate dual Gabor frames for L?(G) with respect to
time-frequency shifts in A and hence they satisfy, by Lemma 2.6,

N
D (1A 95) 1y = Saxa(D) o0 for all A € A°.

A combination of observation (a) and (b) establishes the following relation for the inner products appearing
on the left side of (16):

Z (hj, m((0,7) + ®(X° ) g]>L2 = Sy a(MN) Oj0,y)+a(r0),0 for all v € H* and X\° € A°.
JELn

Using this in (16) yields the equality

2 szé(A)

solH) (@A), (0,7) D Fjom+apen0 =Syya(A) dreo forall X € A°. (17)

~yeHL

Recall that ® maps H X H into G x K gL, where K71 is a set of coset representatives of H* and also ®
is constructed such that ®(0) = 0. Because of this, (0,7) + ®(A°), v € HL, X\° € A° is equal to zero if and
only if both v = 0 and A° = 0. That is, equation (17) is satisfied whenever (v, A°) # (0,0). The only case
left to verify is thus (v, A°) = (0,0), in which case the required equality becomes

62 SGxa(A) . ]\ 2 SHXI:\I(A) Sg(H)

sq(H) = SN &= Saxa(M)

This is exactly the way we chose the constant ¢. This shows that the desired equality (15) is satisfied and
the first statement of the theorem follows. Concerning the moreover part, we observe that by Lemma 2.7
the optimal Bessel bound Bopy for the Gabor system {m(A)g;},c4 jez, In L?(H) can be estimated by

Bopt < B(( ) A Z Z ‘ gjv )*§j>L2(H)"
H><H ]EZn A°cAo
As previously in the proof, an application of Lemma 3.6 lets us turn the inner product from one on L?(H)

into one on L?(G),

Bopt = =
HXH ]EZn o GAO

< X Z > Z €957 ((0,7) + @(X))"95) 12 |

g (M) ]ezn Aocho vEH L

)+ (I)(Ao)) g]>L2(G)‘
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By construction of ¢, we have CQ(SHXFI(]\) sa(H))™' =s,, 5(A) "' Moreover, by construction of ® and the
assumption (i) and (ii) the collection of points {(0,7) + ®(A°)} g1 yoco is a subset of A° (as also argued
earlier in the proof). Thus
1 o
Bow < 5 22 22 i 7OV 03) ey = Bllaa): V)
GXGY jely XoEA®
The lower bound follows by the upper frame bound for the dual system, see Lemma 2.8. O

Proof of Proposition 3.5. Let (g;) be functions in So(G)™ that generate a Gabor frame {7(X\)g;}ren jez, for
L?(G), which we turn into a Gabor frame {m(N)35}reh jez, for L*(H) as in Theorem 3.2. Let (h;) be the
canonical dual frame generators. By Lemma 2.9 we know that they are of the form

hi=Y > di(\ k) 7(X)gk, J € Zn

k€Zn A°€N®

for a certain d; € (Y (A° x Zy). Using Theorem 3.2 these dual generators are turned into dual generators of
the Gabor system {m(\)7;j}\cx ez, I So(H) by restricting them to the subgroup H and multiplying them
with the constant c,

hj=cRuhj=cY > dj(\ k) Ruw(A)gr, j € Zn.
kEZn N°€AN°

By assumption we have ®(A°) = A°N(G'x K. ). Furthermore, by assumption (i) in Theorem 3.2 the inclusion
{0} x H+ C A° holds. This implies that every A\° € A® can be written in a unique form ®(A°) + (0,7) for
some \° € A° and v € H-. Thus

hj=cRyhj=cd > > di(@(A°) +(0,7),k) Ry m(S(X°) + (0,7))gs- (18)

k€Zn )\°€/~\O ’YGHL
Observe that
Rum(®(A°) +(0,7))g9 = Ru Eym(®(A°))g = Rum(®(\°))g.

In the last step we used that Ry E, f = Ry f for all f € So(G) (since, E, f(t) = v(t)f(t) = f(t) forallt € H
and v € H*). Furthermore,

Ri w(®(X°) + (0,7))g = Rum(@(1*))g & 7(A°)Rug.

We now continue in (18) and find that the sampled dual generators are of the form

hi=cRuhi= 3 % ( 3 4 @) + (O,’y),k)) () ¢Rrg -
e S~——

k€Zn yocho ~eHL =3

This shows that each l~1j, J € Zy, lies in span{m(A°)g; : A° € Ao j e Zy}. By Lemma 2.9 it is the canonical
dual generator of (g;). O

4 Periodization of Gabor frames

We will now consider the situation where we periodize the dual generators of a multi-window Gabor frame for
L?(G) with respect to a discrete subgroup H. Under the right assumptions this will give us a multi-window
Gabor frame for L?(G/H). We will deduce the result from Theorem 3.2 together with the following two
facts:

(i) For all f € So(G)
Puf = FquRur Fal-

Here Fq g is the Fourier transform from So(G/H) onto So(H 1) and Fg is the Fourier transform from

~

So(G) onto SO(G)
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(ii) The Fourier transform (as any unitary operator) preserves the frame properties of any collection of
functions.

Because of these two facts, the n-tuples (Prg;) and (Prh;) in So(G/H)™ generate dual Gabor frames for
L%*(G/H) if and only if the n-tuples (Ry.Fgg;) and (RyLFgh;) in So(HL)™ generate dual Gabor frames
for L?(H'). This allows us to transfer the statements about sampling of Gabor frames from the previous
section into the setting of periodized Gabor frames.

Mimicking the situation from before, we require an injective function from the time-frequency plane of

G/H, (G/H) x H* into G x G.

Remark 4.1. Let H be a discrete subgroup of G. Let Ky be a set of coset representatives of the quotient
G/H in G such that 0 € Kp. Every coset in G/H has a unique representation as k + H, where k € Kp.
this defines a bijection ¢ between G/H and Kp

v:G/H— Ky CG, Y(k+H)=k.
With this identification between G/H and Kp we construct the injective operator
U:G/HxH - Gx G, Y(k+H,~) = (Y(k+H),~) = (k,), k+ HeG/H, ve H*.
Observe that ¥(0) = 0. Furthermore, for any x = (z,w) € G/H x H* and any f € So(G)

7(X)Puf =Pun(¥(x))f (19)

Theorem 4.2. Let A be a closed co-compact subgroup of G X @, and let (g;) and (hj) be n-tuple in So(G)™.
Assume that \[(g;), (h;)] is an idempotent element of My, (AS), i.e., {m(N)gjren jez, and {m(\)hj}ren jez,
are dual Gabor frames for L*(G). If the following two assertions are satisfied,

(i) H is a discrete subgroup of G such that A C G x H* (or, equiv. H x {0} C A°)
(i) A is a closed cocompact subgroup of G/H x H' such that W(A°) C A°,

then the n-tuple (g;) and (hj) in So(G/H)"™ given by §; = ¢ Pugj, hj = ¢Puhj, and where

¢ = (o (A sg(HY) /s, a(0)'2,

are such that ;[(g;), (iL])] is an idempotent element of M, (AS/H), i.e., the two Gabor systems {m(Ngi}er ez
and {W()\)?lj})\ex iz, are dual frames for L*(G/H). Moreover, the optimal frame bounds Aqpt and Bopt of

the Gabor frame {m(N)g;} ek ez satisfy the estimate

B((hy), M)~ < Aope < Bope = [|(3)Iz < B((97): ). (20)

As with the sampling theorem, also the assumptions in Theorem 4.2 do not guarantee that the periodizing
procedure preserves canonical pairs of dual frames. The following lemma yields a sufficient condition for this.

Lemma 4.3. If condition (ii) in Theorem 4.2 is strengthened to be
(ii*) A is a closed cocompact subgroup of H x H such that U(A°) = A° N (K x G),
then the process described in Theorem 4.2 preserves pairs of canonical dual frames.

An alternative proof of these results is to mimic the proof of Theorem 3.2, where the crucial Lemma 3.6
is replaced by the following.

Lemma 4.4. For any discrete subgroup H of G and any two functions fi, fo € So(G)
1

<PHf17PHf2>L2(G/H) = m Z <f17T’yf2>L2(G)' (21)
G yeH
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5 Examples

In this section we consider several examples. In each of them we detail how we pick the groups G, H, A and
A, how their respective measures are defined, and we specify how we construct the Banach algebras A and

B.

5.1 Sampling a separable Gabor frame from L?(R?) to a frame for (?(Z9)

Corollary 5.1 below follows by an application of Theorem 3.2 with the following setup: G = G=R? (equipped
with the Lebesgue measure), w € R? acts as a character on z € R? by = — *™*% H = qa'7Z¢ (equipped
with the counting measure), H= [0,aa™1)? (equipped with its probability measure and addition modulo
aailzd), any w € |0, aail)d acts as a character on « € aa™'Z? by z — €2™*“  We take the groups A, A, A°
and A° to be the lattices (equipped with the counting measure) given by

L d % __|a 0 z°
A = aZ® x BZ", A—{O 5]‘[{0,1,...,1\4—1}4’

S AR R VI

Observe, s, a(A) = stH( ) = (aB)? = (a/M)? and sq(H) = (ca™")%. With the notation as in Remark

3.1, we take K. = [0,aa!)%. Hence the map ® : H x H = aa™'Z% x [0,a 0 1)? — G x G = R*® is the one
given by ®(z,w) = (7,w), (z,w) € aa"'Z% x [0,aa~1)?. One can now verify that the conditions of Theorem
3.2 and Proposition 3.5 are satisfied. In this case the Banach algebras AR and BR are given by

AR = Lae B(LARY) :a= Y a(\)7()), a€ (L)},
>\6A

R = {beB(LXRY) : b= Y b(\)1(A)*, be (A%},
5}\061\0

and ||al| 4z = [|a[[1 and ||b]| 4z« = ||b][1. Observe that AB? is generated by the two unitary operators U and
V on L2(RY) given by

Uf(t) =Taf(t) = f(t —a) and V[(t) = Egf(t) = ™ f(t), teR,
where as BR” is generated by the two unitaries U° and V° given by
U°f(t) = Brjaf(t) = 2™/ f(t) and VOf(t) =Tyjpf(t) = f(t=1/5), teR".
The Banach algebras A% 2 and B¢ 2" are given by
AT = {a e B(2(aa'Z%) r a =Y a(\)w(\), a € (L(A)},

Aefx
B2 = (b € B(2(aa~'Z%) : — Z b(A°) m(X°)*, b e ¢'(A°)}.
)\OGAO
The algebra AcaT'Z? g generated by the unitaries U and V on £2(aa~'Z%) given by
Uf(t)=Taf(t) = f(t —a) and Vf(t) = Egf(t) = ¥"Pf(t — qa), t € aa™'Z,
and the algebra Boa™'Z? iy generated by the unitaries U° and V° on ¢2 (aa~'Z%) given by

U°f(t) = Byjaf(t) = ™ f(t) and VOf(t) = Tyaf(t) = f(t—1/B), t€aa'Z"

Observe that . . , -
VU =™l yy VU =P gy,

Le., AR and Aca™'Z? give rise to the same non-commutative torus. We can formulate the following result.
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Corollary 5.1. Let A be the lattice in R?® of the form A = aZ% x BZ%, a, 8 > 0 and let (gj) and (h;) be

n-tuple in So(RY)". Assume that ,[(g;), (h;)] is an idempotent element of M, (AR ), , AT (N)gjtren ez,
and {m(\)h;}ren jez, are dual Gabor frames for L*(R%). If a and B are such that ozﬁ = a/M for some
a, M € N and if we define

- 7d
A= |:g g:| . |:{0’1’ ,_,M—l}d C()éa_lzdx [()’]\4B)d7

then the n-tuple (§;) and (hy) in (£*(aa= Z))™ given by §; = ¢ Ryg-1749j, hj = ¢ Rog-17ah;, and where
c= (aa_l)d/2,

are such that ;[(g;), (h;)] is an idempotent element oan(.Ao‘aflzd), i.e., the two Gabor systems {m(\)g; } ok iz

and {W(A)Ej}/\ex iz, ore dual frames for %(aa'Z%). Moreover, canonical pairs of dual Gabor frames are
preserved by this process.

5.2 Sampling a non-separable Gabor frame for L*(R) to a frame for (*(Z)

Corollary 5.3 below follows by an application of Theorem 3.2 with the following setup: we take G = G=R
(equipped with the Lebesgue measure), w € R acts as a character on x € R by  — e?mirw [ = a(sa)"'Z
(equipped with the counting measure), H= [0, sa ™) (equipped with its probability measure and addition
modulo saa~!), w € [0,saa~!) acts as a chatacter on = € a(sa) 'Z by x — €27 the groups A, A, A° and
A° are equipped with the counting measure and given by

_|o qa| |Z .

~ o qo 7 o sa
A= [0 ﬂ] ‘ [{0,1,...,51\41}] C Zx[0,—),

A= Wﬁ 1{)/8} ' [Q and A° = Wfé 1(/)B] ' [{0,1,..%%— 1}

Observe, s, a(A) = stH( ) =af =a/M and SG( ) = a(sa)~!. With the notation as in Remark 3.1, we

take K1 = [0, saa!). Hence the map ® : H x H = a(sa) ' Z x [0, saa™) — G x G = R? is the one given
by ®(z,w) = (z,w), (z,w) € a(sa)™1Z x [0,saa~!). One can now verify that the conditions of Theorem 3.2
and Proposition 3.5 are satisfied. In this case the Banach algebras A® and BF are given by

={a€B(L’R)) : a=) a(N)7()), a€ (M)},

/\EA

— {beB(L2(R)) : b= 6 > b)) w(X)*, be ' (A)},
A°€eA°

and ||a|| 4= = ||a]l1 and ||b|| 4= = ||b]|1. Observe that A¥ is generated by the two unitary operators U and V/
on L?(R) given by

UF(t) = Tuf(t) = f(t— ) and V() = BsTyaf(t) = 7P f(t — ga), tER,
where as BR is generated by the two unitaries U° and V° given by
Uf(t) = BrjaTypf (t) = 2™ f(t = q/B) and VOf(t) =Tyjpf(t) = f(t=1/B), tER.
The Banach algebras Asa) 2 and Bsa) 2 gpe given by

APCDTE = {2 € B((a(sa)T'Z)) ra= Y a(N)w(), ae (M)},
Aef\
Bt = {b € B((*(a(sa) '2)) — Z b(A°) m(A°)*, b€ £'(A°)}.
AOGAO



Sampling and periodization of generators of Heisenberg modules 17

The algebra Asa)T'Z g generated by the unitaries U and V on £2(a(sa)~'Z) given by
Uf(t) =Taf(t) = f(t —a) and V[(t) = EsTaf(t) = € f(t —ga), t € a(sa)”'Z,
and the algebra B2 ig generated by the unitaries U° and V° on ¢2(a(sa)~'Z) given by
U°f(t) = ErjaTypf(t) = €™ f(t —q/B) and VOf(t) =Tysf(t) = f(t—1/8), t€ a(sa) 'Z.

Observe that ' . NS
VU =P Uy, VU =™ uv.

We can formulate the following result.

Corollary 5.2. Let A be the lattice in R? given by

_ o qa| |Z o
a=[g %] 5] s 0acona=rss nsen
and let (g;) and (h;) be n-tuple in So(R)™. Assume that \[(g;), (h;)] is an idempotent element of M,(A®),
i.e., {m(N)gj}ren ez, and {m(\)h;tren jez, are dual Gabor frames for L*(R). If o and B are such that
af =a/M for some a, M € N and

A_|:0 B:| |:{0,1,...,SM—1} CSGZX[07Q)7

then the n-tuple (§;) and (hj) in (€*(a(sa) = Z))™ given by §; = cRo(sa)-1295 hj = cRa(sa)-1zNj, and where
c= (a(sa)*l)lﬂ,

are such that ;[(g;), (h;)] is an idempotent element of M, (A9 ™2 i e the two Gabor systems {m(Ngj}er ez,

and {W()‘)BJ}AeKjeZ are dual frames for £?(a(sa)~*Z). Moreover, canonical pairs of dual Gabor frames are
preserved by this process.

5.3 Sampling a certain Gabor frame for L*(R x Z,) to a frame for (*(Z x Z,)

Corollary 5.3 below follows by an application of Theorem 3.2 to projective modules constructed over noncom-
mutative tori by Connes that these may be described in terms of Gabor frames was noted in [4]. Concretely,
we have the following setup: we take G = G =R x Zq (equipped with the Lebesgue measure on R and
the counting measure on Z,), (w,k) € R x Z, acts as a character on (z,m) € R by (z,m) s e2mi(zwtmk/q),
H = aa™'Z x Z, (equipped with the counting measure), H=10,a071) x Zq (equipped with its probability
measure and addition modulo (aa™1,q)), (w,k) € [0,aa™t) x Z, acts as a chatacter on (z,m) € aa"'Z x Z,
by (x,m) e2mi(zwtmk/q) - The groups A, ]\, A° and A° are equipped with the counting measure and given
by

o O
[e)

a 0
r 0 (7,
A=y B '_Z]’
0 s]
(o 0
< r 0 Z leY a
A= 0 8| |01, ’qu}]CaZqux[O,)qu,
_0 S_
By~ 0 Bt 0
o —s° 0 o s° 0 4
A= (ag)"! [Z] amd AT= g (ag) [{0,1, .,aq}}’
0
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where r° and s° are integers such that there exists I,.,ls € Z such that
rr® +ql, =1 and ss° +qls = 1.

Observe, s, a(A) = SHXFI(]\) = qaf = a/M and sg(H) = aa:l. With the notation as in Remark 3.1,Awe
take K1 = [0,aa™!) x {0} C RxZ,. Hence the map ® : Hx H = aa 'Zx Zy x [0,aa ) xZy - Gx G =
R x Zg x R x Zg is the one given by ®(z,m,w, k) = (x,m,w, k). One can now verify that the conditions of

Theorem 3.2 and Proposition 3.5 are satisfied. In this case the Banach algebras A®*%¢ and BR*Z¢ are given
by

ARXZq _ {a c B(LZ(]R X L)) : a= Za()\)ﬂ()\), ac Zl(A)},

AEA
1
B¥*%Za = Ip e B(L2 (R x Z,)) : b= — b(A°) T(A°)*, b e ¢*(A°)},
(beBUAR 2 b= 5 3 bR berA)
and ||a|| 4exz, = ||a]l1 and |[b]|| yexz, = [|b|l1. Observe that A%*%a is generated by the two unitary operators

U and V on L*(R x Z,) given by
Uf(t) = Tarf(t,k) = ft —a,r —k) and Vf(t, k) = Eg f(t,k) = 2T BFF/D £ k) (t,k) € R x Zy,
where as BR®*%4 i generated by the two unitaries U° and V° given by
U°f(t,k) = BElgay-1,—po f(t, k) = 2T =kr%/a) £y 1)

and
Vof(t’ k) = T(q,@)_l,fsof(ta k) = f(t - 1/Q5a k+ So)a (t, k) € R x Zq'
The Banach algebras A% '2xZs and B*e '2%Zq are given by
A X = (g € B((P(aa ' Z X Zy)) a= Y a(A\)7w(N), a€ {(A)},
AeA
_ 1 ~
B X% — [y € B(2(aa ' Z x Zy)) : b= —— b(A*) (A\°)*, b e ¢L(A°)}.
{b < B D) b= 3T b0 R be (A}

Aeehe

The algebra Aaa” ZxZq g generated by the unitaries U and V on (a7 x Zq) given by

Uf(t,k)=Tarf(t, k)= ft —a,k—r),
VI(t.k) = Egsf(t k) = 2Pk p (¢ k), (t,k) € aa™'Z x Zy,

and the algebra Boa™ ZxLq g generated by the unitaries U° and V° on £2(aa='Z x Zq) given by
U° f(t, k) = Blgay-1 — o f(t, k) = 2™ @ =R 14 fy (2, k) € aa™'Z x Zy,

and
Vof(t’ k) = T(qﬂ)_l,fsof(ta k) = f(t - 1/Q57 k+ So)a (t, k) €R x Zq'
Observe that
VU = 627ri(aﬂ+rs/q) uv , ‘70 _ 627ri(aﬁ+rs/q) Uf/

Corollary 5.3. Let q,7,s € N and let r and s be such that they are co-prime to q. Let A be the lattice in
(R x Zg) x (R x Zgq) given by

o o 3 Q0
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and let (gj) and (h;) be n-tuple in So(R x Zg)". Assume that ,[(g;),(h;)] is an idempotent element of
M, (AR*Za) e, {m(N)g;renjez, and {m(\)hj}ren jez, are dual Gabor frames for L*(R x Zg). If a, B and
q are such that qa8 = a/M for some a, M € N and we take

Z
{0,1,...,qM — 1}

=
I

e} a
C —Z XLy x[0,—) X Zyg,
2L % Zy % [0, 2) X Zg

o o 3 Q
n O O

then the n-tuple (g;) and (ﬁj) in ((Y(aa™1Z) x Zy))" given by §; = ¢Raa-12x2,9j h = ¢ Raa-1zx2,Mj, and

where
c= (oza_l)l/Q,

are such that 3[(g;), (h;)] is an idempotent element of M,, (A2 ZxZq) i e the two Gabor systems {m(NFi}er ez

and {m(A >hJ}AeAjeZn are dual frames for >(aa™'Z x Z,). Moreover, canonical pairs of dual Gabor frames
are preserved by this process.

5.4 Sampling and Periodizing Gabor frames from L?(R) to a frame for C¢.

This example (for single window dual frames) can be found in [30]. The result follows by an application of
Theorem 3.2 followed by an application of Theorem 4.2 (or the other way around). We leave the details to
the reader. The algebra AR is generated by the unitary operators U and V on L?(R) given by

Uf(t) = Baf(t) = ™0 f(t), VI(t) = Taf(t) = ft =), tER

so that
={aeBI*R)) :a= Y  a(m,n)Englha, ac (2%}

m,ne’

The algebra A% is generated by the two unitary operators U and V that act on C¢ given by
Uf(t) = Epf(t) = 2™ af(t) V) =Tof(t) = f(t—a), te{0,1,...,d—1},

so that
M—-1N-1

At ={aeB(CY) :a= Y Y a(m,n)EmyThy, acC"N}

m=0 n=0
Observe that UV = e?™B VU and UV = 2™ VU,
Corollary 5.4. Let A be the lattice in R? given by

2=2 [ wsso

and let (g;) and (hj) be n-tuple in So(R)™. Assume that ,[(g;), (h;)] is an idempotent element of M, (AR),
e, {m(N)gjrenjez, and {m(N)h;}ren jez, are dual Gabor frames for L*(R). If a and B are such that
af =a/M =b/N for some a,b, M, N € N, we put d = Mb(= aN), and let

~ la 0 {0,1,...,N —1}
A_[O b:|'[{071’_..,M_1}:|CdeZd’

then the n-tuple (g;) and (hj) in (CH)™ given by
gi(t) = Vaa 1> gi(aa” (t — kd)), hi(t) = Vaa Y hilaa 't —kd), t€{0,1,...,d—1}

kEZ keZ

are such that 5[(g5), (h;)] is an idempotent element of M,,(A%4), i.c., the two Gabor systems {m(NFi}er iz

and {m(A )hJ}AEAjEZn are dual frames for C* = (%(Zy). Moreover, canonical pairs of dual Gabor frames are
preserved by this process.
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5.5 Other examples

In [5] Gabor frames for L*(R x Q,) and L? over the adeles were constructed. The sampling and periodization
results from Theorem 3.2 and 4.2 can be applied to this setting. Super (also called vector valued) Gabor
frames [1, 12, 16] can also be sampled and periodized with these results. We leave these examples for
elsewhere.

6 Approximation of Heisenberg modules over irrational noncommutative
tori

In this section we focus on the situation as described in the introduction, the rational non-commutative
torus Ay, where 6 is such that § = a/M = b/N for some a,b, M, N € N and we put d = aN. We use the
results on generators of Heisenberg modules over rational noncommutative tori to approximate the generators
of Heisenberg modules for irrational noncommutative tori. In particular, we show that representations of
rational noncommutative tori on C" yields approximations of generators in So(R) by generators over finite-
dimensional matrix algebras.

We consider its three different realizations as Banach algebras that act on L?(R), £2(a=1Z) and ¢*(Z/dZ) =
C%, namely A%, Ag_lz and A%’i, respectively. In order to define them, we introduce the three lattices

A=Zx0ZCR? R=Zx0Zy Ca‘ZxR/aZ, A=aly xbLy C (Z/dL)>.
We set

A ={aeB(L’(R) :a=Y a(\)7()), ac{(A)},

AEA
Ay P ={aeB(Pa7'2)) s a= Y a() (), ac (D)},
AeA
Ayt ={a € B(*(Za) : a=3 a()7(V), a € l'(Aa)},
AeA

with the respective inner products

Al ) 1S0(R) x So(R) — AF, A(f,9) = Y _{f,m(N)g) 7(N),

AEA
A ) 00T Z) x a7 Z) = AT ((fg) = D (. (V) m(N),
AeA
A0 ) X T = A (fg) = D (fm(Ng) m().

AeA

In a similar fashion we realize the non-commutative torus with parameter #~! as operators on either of the
three spaces L%(R), (?(a='Z), and (?(Z/dZ). We define

A =01ZXZCR? R°=0"Z x Zpy C a'Z x RJaZ, A° = MZy x NZ, C (Z/dZ)?.

With those lattices we construct

Bijy={beB(L’R) : b=6"" > b(X)x(X)*, be (A%},
A°€eA°
Tl ={beB((a'Z)) : b=0"" > b(\)7(3)*, be ('(A°)},
Aocho
Bl ={beB(*(Za)) : b=0" Z b(A°) m(A°)*, b e (1A},

)\OGAO
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with the respective inner products

(1 Dae 1 So(R) x So(R) = By, (f9)e =071 D (g,7(\)* f) m(A°)",

A°eA°
() Vo : Ma™'Z) x M (a™'Z) — Bf/‘;z, (fs @iz =071 > (g, m(X)* £y m(X°)",
Aeehe
()50 1 COXC = B, (frghz, =07 Y (g, m(A°) f) m(A°)".

AO@Z\O

These inner product are all such that

A<fag>'h:f'<gah‘>/\° for all fag7h€SO(R)7
i(f.9) h=Ff {9,h)o forall f g hel'(a'Z),
{f.9) -h=f (g, h);, forall fg,heC=(Zy).

We equip the spaces of Ay- and By jg-valued n X n matrices with the inner products as defined in Section
2.2,

In the following, for v € R we let R,z be the restriction operator that takes a function in So(R) to a
sequence in (' (yZ) defined by (R4zf)(k) = f(k), k € yZ. Furthermore, for v € R\{0}, d € N we let P4z
be the operator

Pyaz : £'(VZ) = C4, (Phazf)(t) = Y f(yt—k), te{0,1,...,d—1}.
kevydZ

We now generalize Theorem 1.1 to the multi-generator case.

Theorem 6.1. Let all notation be as above. If (g;) is an n-tuple of functions in So(R)"™ such that ,[(g;), (g9;)]
is a projection in Mn(Ag&), then the following holds.

(i) The module norm of (g;) satisfies

lgDla<C:=0"">" > [gjm(X)g)l.

jEZn Aoeeflle

(i) The n-tuple in £ (a= Z)" defined by (§;) = (=2 Ry-129;) is such that il(35), (g;)] is a projection in
Mn(AgAZ). Moreover, the module norm of (g;) satisfies ||(g;)||z < C.

(iii) The n-tuple of vectors in C? given by (§;) = (a™/*Py-147Ra-129;) is such that /:\[(éj),(éj)] is a

projection in Md(Agd). Moreover, the module norm of (g;) satisfies ||(g;)||z < C.

I
Proof. This follows from Theorem 4.2 and Theorem 3.2. See Corollary 5.4. O

We now go a step further, and translate further results from the theory of Gabor frames and time-
frequency analysis into the setting of the non-commutative tori considered here. This will show that it is also
possible to go back from the discrete world into to the continuous one. The hard work in order to establish
the following result has already been done in [8, 9, 18].

The way we will construct a function in S(R) from a sequence in #! is by use of linear interpolation. For
a given v > 0 let Ay be the triangular-function

M@) = (1= lal) Ty

Furthermore, for any «v > 0 we define the operator

QS 11 (Z) = So(R), (QFc)(t) = D c(k) - Ay(t — k).

kenZ
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It is straight-forward to show that QEZ is well-defined, linear and bounded with HQE{ZHOP = || Ay|ls,- Observe
that QSZ interpolates linearly in between the points (k, ¢(k))reyz-

The procedure to turn a vector in C% into a sequence in ¢!(yZ) is similar:

QT £ (2), (@)K = {o y A |
ey mod d) if k€ -4, ., |41},
Here ¢ € C? is treated as a function that can be evaluated on the set {0,1,...,d — 1}.
We have the following important approximation results.

Lemma 6.2. Let all notation be as above. The following holds.

(i) For any f € Sp(R)

yi% Hf - QEZR’YZfHSO(R) =0.
(ii) For any f € So(R)
dim (|7 = @515 Qn PP ez R 1senf [l ) = O

Proof. (i) is [9, Theorem 2.2|. (ii) is [18, Proposition 3]. O

Theorem 6.1 shows that the samples of generator of a matrix valued projection in Mn(Agg) also generate

a projection in Mn(Agflz). If these samples are dense enough, and linear interpolated to a function on R by
the operator QEZ, then the in this way constructed collections of functions generate a projection in Mn(AI§)
again.

Theorem 6.3. Let all notation and assumptions be as above. Let (g;) be an n-tuple in So(R)"™ such that
Al(95), (97)] is a projection in My, (Ag). The following holds.

(i) For all a € N let (g;) be the n-tuple in £'(a'Z)" given by

(i)

(95) = (Ra=1295)-
For all a that are sufficiently large, the n-tuple (k;) := (Q%_,,3;) in So(R)" is such that b, =

[(k)), (kj)]po € Mn(B5-y) is invertible on L*(R)™ and on So(R)™. In that case, the n-tuple (k‘j)-b&i) €

So(R)™ is such that A[(kj), (k) - b@i)] is a projection in M, (AY). Furthermore, we also have that

(kj) = (Q%_,,3;) converges towards (g;) in the module norm as a — oo, that is

lim |[(g;) — (kj)[la = 0.

a—0o0
For each d € N et (éj) be the n-tuple of vectors in C% given by

(.5]) = (Pd1/2ZRd—1/2zgj)-

For all d that are sufficiently large, the n-tuple of functions (k;) in So(R)™ given by

—1/27 ~
(kj) = (Q-122Q0 " “55)
is such that b,y := [(kj), (k)| re € M, (B-.) is invertible on L*(R)™ and on So(R)". In that case, the

n-tuple (k;) - b(_ki) € So(R)™ is such that A[(kj), (k) - b@i)] is a projection in My (AE). Furthermore,

we also have that (k;) converges towards (g;) in the module norm as d — oo, that is

li Y — (kA = 0.
dggoll(g;) (kj)la=0
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Proof. (i). By Lemma 6.2 it follows that for each j = {0,1,...,n — 1} the limit

Jim lg; = Qa-1zRa-129lIs0(r) = 0.

The main result by Feichtinger and Kaiblinger in [8], states that for all a sufficiently large the frame property
of the Gabor system generated by (g;) and the time-frequency shifts from A = 7Z x 67 implies that also the
Gabor system generated by the defined n-tuple (k;) and A is a frame for L*(R). This is equivalent to the
fact that by, is invertible as an operator on L?(R)" and Sp(R)™. That A[(kj), (k) - b&cl_)] is a projection is
J
casily verified with the properties of the M, (Af)-valued inner product (use the compatibility with the left
and right action from M, (AF) and Mn(BIIR/G) and the fact that b ) is self-adjoint). Finally, we have the
estimates

1(g5) — (IR = 1(g5) — (k; ”?\0:H[(g'_k‘)a(gj_k‘)]Ao
<9122\ (A°)*g; —wx)k)LQ |

op,L?

JELp N°EAN°
=071 D V(95— k)O))
JEZLn AoEA®
R
<c Z lg; — k‘j”%O =c Z llg; — Qa*lzRa_lzng%Oa
JELn JELn

for some ¢ > 0 that does not depend on a or (g;). The first inequality follows from Lemma 2.7. The second
inequality follows from Lemma 2.2(vi)+(viii). All that is left is to refer to Lemma 6.2 to conclude that the
last term is indeed converging to zero as a becomes larger. We conclude that limg_ [|(g5) — (kj)[|a = 0 as
desired.

(ii). The reasoning for this statement is similar, we just use the second statement of Lemma 6.2, rather
than the first. O

The theory of quantum Gromov-Hausdorff distance [29] provides a notion of “closeness” between two
C*-algebras and thus provides a way to formalize the convergence of a sequence of C*-algebras (A, )nen to a
C*-algebra B. In many problems one wants to approximate B by finite-dimensional C*-algebras (A, )nen like
in the case of noncommutative tori. In addition, one is often interested in the behaviour of finitely generated
projective modules over A, and if it in the “limit” it converges to a finitely generated projective module over
B. The definition of a distance between modules over two C*-algebras has been recently addressed in [19, 27]
and Latremoliere has worked out the case of Heisenberg modules over noncommutative 2-tori in |20, 21|. Here
we complement these results by pointing out that if one uses that Heisenberg modules are finitely generated
and projective over noncommutative tori, then one can study the behaviour of sequences of Heisenberg
modules converging to a Heisenberg modules by understanding what is going on for the generators.

Finally, we mention the following. Observe that Theorem 6.1 only applies to rational 6. If we translate
results from [8] and [11] from statements of Gabor analysis into statements of the non-commutative torus,
then we find the following.

Theorem 6.4. Let all notation be as above. Furthermore, for a given 6 we put A =7 x 07 and Acé’ =

07 x Z. If (g;) is an n-tuple in So(R)" such that Al(9i): (95)], A=Z x 0Z, is a projection in My, (A%) for
some irrational 0, then, for every rational 0 that is sufficiently close to 0, the element b,y = 1(95), (95)]re €
4

n(ng) is invertible as an operator on L2(R)"™ and on So(R)™. Moreover, the element (hj) = (g5) - b(;) in
So(R)™ is such that Aé[(gj), (hj)] is a projection in Mn(Ag{).

Proof. Tt follows from the main result of [9] that every rational 0 that is close enough to 6 is such that the
functions (g;) generate a multi-window Gabor frame. Equivalently, the element b(, ) € Mn(ng) is invertible

on L}(R)"™ and on Sp(R)™. Similar as in the proof of Theorem 6.1 we show that N [(9), (95) - b(*gi)] is a
6

projection. O
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Using Theorem 6.4 it is therefore possible to go from the irrational to the rational case and subsequently
apply Theorem 6.1 and or Theorem 6.3.

Proposition 6.5. Let 6 be irrational and take (g;) to be an n-tuple in So(R)"™ such that ,[(g;), (9j)], A =
7, x 07, is a projection in Mn(Agg). If (0;)ien is a sequence of rational numbers such that lim;_,~ |0 —6;| = 0,
N =7 x 0;Z, and (a;), (b;), (N;) and (M;) are sequences of natural numbers such that 0; = a;/M; = b;/N;
for alli € N and such that the sequence (d;) = (a; - N;) is increasing and unbounded, then the following holds.

(i) For all i that are sufficiently large the n-tuple of vectors in C% given by

z —1/2
(95) = (a; / Pa;ldiZRa;lzgj)

5 =a; > gilait +aidik), te{0,1,....d;}, je{0,1,...,n—1},
kEZ

is such that /:\[(éj), ()], A= a;ZN,; X biZyy, C Zi is a projection in My, (Ai_di),

(ii) For all i that are sufficiently large the n-tuple of functions in So(R)"™ given by

—1/2

7 d. 7=
(k) = (0} Q%. 0, QY

9;)

is such that b = [(kj(z)),(k(z))]/\o € M, (BE.)) is invertible on L2(R)" and on So(R)". In that

i)y -+ -1
(kj ) J 0;

case, the n-tuple (kj(l)) : b&:i)) € So(R)™ is such that [(kj(l)), (k:](l)) . b(;l(i))] is a projection in Mn(Ag{i).
i A 3

Furthermore, we also have that (kj(l)) converges towards (g;) in the module norm as i — oo, that is
Tim [/(9;) — (kj)lla = 0.

Proof. (i). This follows by Theorem 6.4 together with Theorem 6.3(ii).
(ii). Since (d;) is increasing and unbounded, it follows from Lemma 6.2 that for each j the function /f](-l)
converges towards g; in the Sg-norm. Hence, as in the proof of Theorem 6.3 and 6.4, we conclude together

with the main result of [9] that the n-tuple (kj(.z)) has all the desired properties with the convergence in the
module norm. O

Let us note that the sequence of rational noncommtuative tori (Ay,) converges in the quantum Gromov-
Hausdorff distance to Ay, see [29]. Hence Proposition 6.5 shows that Heisenberg modules over (Ap,) are also
close to Heisenberg modules over Ay in the Heisenberg module norm.

Acknowledgments

The work of M.S.J. was carried out during the tenure of the ERCIM “Alain Bensoussan” Fellowship Pro-
gramme at NTNU. This project was completed while both authors were visiting the Faculty of Mathematics
at the University of Vienna and the second author also acknowledges the hospitality of the Erwin Schrodinger
Insitute while attending the program on “Bi-Variant K-theory and its applications to physics”. The first au-
thor thanks Jordy T. van Velthoven for discussions on the embeddings in Remark 3.1 and 4.1.

References

[1] R. M. Balan. Multiplexing of signals using superframes. In Proc. SPIE, Wavelet Applications in Signal
and Image Processing VIII, volume 4119, pages 118-129, 2000.

[2] M. Bownik and K. A. Ross. The structure of translation-invariant spaces on locally compact abelian
groups. J. Fourier Anal. Appl., 21(4):849-884, 2015.



Sampling and periodization of generators of Heisenberg modules 25

13l

4]

[5]

[6]

7]
8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

O. Christensen. An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis.
Birkh&user Basel, Second edition, 2016.

L. Dabrowski, M. S. Jakobsen, G. Landi, and F. Luef. Solitons of general topological charge over
noncommutative tori. ArXiw e-prints, 2018.

U. B. R. Enstad, M. S. Jakobsen, and F. Luef. Time-frequency analysis on the adeles over the rationals.
ArXiv e-prints, 2018.

H. G. Feichtinger. Banach spaces of distributions of Wiener’s type and interpolation. In P. Butzer,
S. Nagy, and E. Goérlich, editors, Proc. Conf. Functional Analysis and Approzimation, Oberwolfach
August 1980, number 69 in Internat. Ser. Numer. Math., pages 153-165. Birkhduser Boston, Basel,
1981.

H. G. Feichtinger. On a new Segal algebra. Monatsh. Math., 92:269-289, 1981.

H. G. Feichtinger and N. Kaiblinger. Varying the time-frequency lattice of Gabor frames. Trans. Amer.
Math. Soc., 356(5):2001-2023, 2004.

H. G. Feichtinger and N. Kaiblinger. Quasi-interpolation in the Fourier algebra. J. Approz. Theory,
144(1):103-118, 2007.

G. Folland. A Course in Abstract Harmonic Analysis. Textbooks in Mathematics. CRC Press, Boca
Raton, Second edition, 2016.

K. Grochenig and M. Leinert. Wiener’s lemma for twisted convolution and Gabor frames. J. Amer.
Math. Soc., 17:1-18, 2004.

K. Grochenig and Y. Lyubarskii. Gabor (super)frames with Hermite functions. Math. Ann., 345(2):267—
286, 2009.

E. Hewitt and K. A. Ross. Abstract Harmonic Analysis. Vol. II: Structure and Analysis for Compact
Groups. Analysis on Locally Compact Abelian Groups. Springer, Berlin, Heidelberg, New York, 1970.

E. Hewitt and K. A. Ross. Abstract Harmonic Analysis. Vol. 1: Structure of Topological Groups;
Integration Theory; Group Representations. 2nd ed. Springer-Verlag, Berlin-Heidelberg-New York, 1979.

M. S. Jakobsen. On a (no longer) New Segal Algebra: A Review of the Feichtinger Algebra. J. Fourier
Anal. Appl., 24(6), p. 1579-1660, 2018.

M. S. Jakobsen and F. Luef. Duality of Gabor frames and Heisenberg modules. ArXiv e-prints, jun
2018.

A. J. E. M. Janssen. From continuous to discrete Weyl-Heisenberg frames through sampling. J. Fourier
Anal. Appl., 3(5):583-596, 1997.

N. Kaiblinger. Approximation of the Fourier transform and the dual Gabor window. J. Fourier Anal.
Appl., 11(1):25-42, 2005.

F. Latremoliere. The Modular Gromov-Hausdorff Propinquity. arXiv preprint arXiv:1608.04881, 2016.

F. Latremoliere. Heisenberg Modules over Quantum 2-tori are metrized quantum vector bundles. ArXiv
e-prints, mar 2017.

F. Latremoliere. Convergence of Heisenberg Modules over Quantum 2-tori for the Modular Gromov-
Hausdorff Propinquity. ArXiv e-prints, mar 2018.

V. Losert. A characterization of the minimal strongly character invariant Segal algebra. Ann. Inst.
Fourier (Grenoble), 30:129-139, 1980.



Sampling and periodization of generators of Heisenberg modules 26

23]

[24]

[25]
[26]

[27]

28]

[29]

[30]

F. Luef. Projective modules over non-commutative tori are multi-window Gabor frames for modulation
spaces. J. Funct. Anal., 257(6):1921-1946, 2009.

F. Luef. Projections in noncommutative tori and Gabor frames. Proc. Amer. Math. Soc., 139(2):571-582,
2011.

H. Reiter. L'-algebras and Segal Algebras. Springer, Berlin, Heidelberg, New York, 1971.

H. Reiter and J. D. Stegeman. Classical Harmonic Analysis and Locally Compact Groups. 2nd ed.
Clarendon Press, Oxford, 2000.

M. Rieffel. Vector bundles for “Matrix algebras converge to the sphere”. Journal of Geometry and
Physics, 132:181-204, 2018.

M. A. Rieffel. Projective modules over higher-dimensional noncommutative tori. Canad. J. Math.,
40(2):257-338, 1988.

M. A. Rieffel. Gromov-Hausdorff distance for quantum metric spaces matrix algebras converge to the
sphere for quantum Gromov-Hausdodorff distance. Mem. Am. Math. Soc, 168(796):1-65 67-91, 2004.

P. L. Sondergaard. Gabor frames by sampling and periodization. Adv. Comput. Math., 27(4):355-373,
2007.



	Introduction
	Preliminaries
	The Feichtinger algebra
	Gabor frames and Heisenberg modules

	Sampling of Gabor frames
	Periodization of Gabor frames
	Examples
	Sampling a separable Gabor frame from L2(Rd) to a frame for 2(Zd)
	Sampling a non-separable Gabor frame for L2(R) to a frame for 2(Z)
	Sampling a certain Gabor frame for L2(RZq) to a frame for 2(ZZq)
	Sampling and Periodizing Gabor frames from L2(R) to a frame for Cd.
	Other examples

	Approximation of Heisenberg modules over irrational noncommutative tori

