NTNU - Trondheim
Norwegian University of

Science and Technology

SDN used for policy enforcement in a
federated military network.

Erik S@rensen

Master of Telematics - Communication Networks and Networked Services (2
Submission date: June 2014
Supervisor: @ivind Kure, ITEM

Co-supervisor: ~ Mariann Hauge, FFI
Lars Landmark, FFI

Norwegian University of Science and Technology
Department of Telematics

Title: Evaluating Software Defined Networking for use in
Federated Military Networks

Student: Erik Serensen

Problem description:

Software Defined Networking (SDN) is an approach to computer networking where
the control plane and data plane is decoupled, in contrary to traditional networking. It is
claimed to have more flexibility than legacy networks and provides abilities to innovate
faster. OpenFlow is one protocol that is often used for implementation and prototyping of
SDN. Federated military networks have strong focus on robustness and network utilization.
These networks can be quite dynamic in nature and link capacities can vary much (from
hundreds of Gbits over fiber links to a few tenths of Kbits on narrowband Satellite links).
These networks must serve the needs for national traffic, local coalition traffic, and coalition
transit traffic. The traffic flowing in these networks can have different characteristics and
volume dependent on the types of ongoing operations. At times HD video flows from
many different sensors (and thus high throughput) might be important, at other times
network robustness might be of highest priority. At all times the different interests from
the users (national traffic, coalition traffic and transit traffic) must be filled according to the
negotiated policy.

Objective: It is advantageous to be able to change selected policies for utilization of
the federated network in real time during an ongoing operation in order to meet changed
requirements for network utilization. The purpose of this thesis work is to study how
SDN can solve dynamic policy enforcement in a federated military network with focus on
OpenFlow’s capabilities and constraints.

Methodology: The candidate needs to study how policies can be enforced in a federated
military network and show how SDN can be used to solve this task. Does the SDN solution
show any advantages/disadvantages compared to other important techniques for policy
enforcements? The candidate should also implement a proof of concept testbed utilizing
SDN and Openflow for policy enforcement. To validate the approach, a minimal policy
describing one or two rules should be implemented if the time allows.

Responsible professor: @yvind Kure, ITEM/UNIK

Supervisor: Mariann Hauge & Lars Landmark, FFI

Abstract

This thesis looks at how Software-Defined Networking can be used to provide
policy enforcement in a federated military network. SDN is a concept in
computer networking where the control plane is decoupled from network
forwarding devices, and placed in a centralized location. The methodology
used in this work includes a literature study, a discussion and the design,
implementation and validation of a test bed utilizing the OpenDaylight SDN
controller. We have found that SDN can be used for policy enforcement in
federated networks, and shown this through programmatically re-assigning
a network tunnel to a new path in an automatic fashion using the OpenFlow
protocol. Together with the implementation, we have also described through
design how groups of tunnels can be moved in the same fashion, while avoiding
packet loss.

Sammendrag

Denne masteroppaven er en studie som tar for seg hvordan “Software-Defined
Networking” (SDN) kan brukes for handhevelse av definerte regelsett i fede-
rerte militeere nettverk. SDN er et konsept som brukes i IP-baserte nettverk,
hvor kontrollplanet er separert og frikoblet fra nettverksenheten og plassert
i en sentralisert lokasjon (en server). Den vitenskapelige metodologi som be-
nyttes i denne oppgaven er en litteraturstudie med pafelge diskusjon, samt
design, implementasjon og validering av et forseksnettverk som benytter SDN-
kontrolleren "OpenDaylight”. Vi har gjennom studien funnet at SDN kan
benyttes for handhevelse av definerte regelsett i federerte nettverk. Dette har
ogsa blitt vist ved programmatisk flytting av nettverksbaserte traffiktunneler
fra en nettverkssti til en annen. Dette er muliggjort gjennom bruk av kom-
munikasjonsprotokollen "OpenFlow”. Vi har ogsa, gjennom design, beskrevet
hvorledes grupper av traffiktunneler kan flyttes pa samme vis, hvor en samtidig
unngar unedvendig pakketap.

Preface

This study serves as the master thesis in fulfillment of the authors Master
of Science degree in Telematics - Communication networks and networked
services at the Norwegian University of Science and Technology.

This thesis is the original, unpublished and independent work by the author.
Invaluable input and feedback have been given by supervisors Dr. M. Hauge,
Dr. L. Landmark and Professor @. Kure during the thesis work.

Erik Serensen
Kjeller, Norway
June, 2014

Acknowledgements

I would especially like to thank my supervisors Mariann Hauge and Lars
Landmark for taking time of their busy schedules to give me feedback during
the thesis work. They gave my work a critical eye, and much needed help for
discussion and theoretical foundation. They also helped me to see value in the
work I performed, which gave me much needed motivation when I stood alone
on an island covered in bits and bytes of ODL software, sprinkled with a fine
layer of python programming.

I dedicate this thesis to my parents, who have shown me 30 years of
parenting done right, and my late grandmother who passed away during the
thesis work. Even at old age, she always helped me with the correct spelling
and use of accusative prepositions in German.

Contents

List of Figures xi

List of Tables xiii

List of Listings XV

List of Acronyms xvii

1 Introduction 1

1.1 Motivation 1

1.2 Derived Problem Description 2

1.3 Thesisstructure 2

2 Theory 5

21 SDN . . . 5
211 OpenFlow

2.1.2 Northbound APIs 10

213 SlicinginSDN. L 10

214 Google’sSDN Use Case oo v v .. 11

2.2 Inter-Domain State DistributioninSDN 13

23 MPLS-TE e 13

2.3.1 MPLS-TE Protection Schemes 16

24 IntroductiontoPolicies Lo 17

2.5 Federated Military Networks 18

251 MissionNetworks, 19

2.5.2 Protected Core Networking 21

3 Discussion 25

3.1 SDNin a Federated Environment 25

3.2 Relevant Policy Categories 31

3.2.1 Category 1: Best Effort and Robustness 31

3.2.2 Category 2: Allocate Network Resources 33

3.3 Partial Conclusions 34

ix

4 Design
41 Drop Low-Priority Packets
42 Re-assignTunnels L
421 SolutioninSDN.
4.2.2 Comparison: Cisco MPLS-TE
4.3 Chosen Design for Implementation

5 Implementation
5.1 Possible SDN Controllers
51.1 OpenDaylight
5.2 Network Emulation
5.3 Detailed Review of the Selected Implementation
5.3.1 Network Emulation in Mininet
53.2 SDNController
5.3.3 Policy Application
5.4 Testing and Validation o ..

6 Experiences From Implementation
6.1 Placement of the Policy Application
6.2 OpenDaylight Complexity
6.3 Problem with Mininet2.1

7 Conclusions
7.1 Future Work

References

Appendices
A Test Bed Implementation Code

B Example Topology Script for Mininet

C XML Data from Validation and Testing

37
37
38
39
41
42

45
45
46
54
56
57
58
58
60

65
66
67
67

69
70

71

77

95

97

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
33
3.4
3.5
3.6
3.7

4.1
4.2
4.3

5.1
5.2
53
5.4
5.5
5.6

Traditional Networking
SDN Networking
Software-Defined Networking Architecture.
.................................. 12
............................... 14
........................... 16
........................... 16

B4 Architecture
Forwarding Network
Link Protection in MPLS-TE

Node Protection in MPLS-TE
Afghan Mission Network (AMN) Interconnections.
Protected Core Networking (PCN) Comparison

Segments in a Federated Network
Distributed Controllers
Hierarchical Controller
Single Controller for all Segments
Vector on Best Effort and Robustness
Database Diagram for QoS Tags
Internal SDN Policy Engine

Multi Path Reachback Network

Description for Move Method.

ODL architecture
MD-SAL in OpenDaylight
Example of a Mininet Topology Running in Linux
...................................... 56
Measured Bandwidth During a Tunnel Move (TCP traffic) 61
Measured Bandwidth During a Tunnel Move (TCP traffic). Different BW on

.. 62

List of Figures

.............. 20

................. 22

........................ 26
.............................. 27
.............................. 29
........................ 30
...................... 31
......................... 32
............................ 34

.......................... 37
Simple Topology Where an Established Tunnel Have to be Moved 39
.......................... 41

................................. 47
............................ 48

............... 54

Xi

2.1
2.2
2.3

4.1

5.1
5.2

6.1

Required OpenFlow Match Fields
Required OpenFlow Action Fields
Guiding Principlesin PCN

Ambitions for the Implementation

Available SDN Controllers
Software Versions used in Test Bed

Results - Ambitions for the Implementation

List of Tables

23

43

46
56

66

xiii

4.1
5.1
5.2
5.3
5.4
5.5
5.6
Ci
C.2
Cs3
C4

Move Function in Pseudo-code

XML Topology Response
XMLFlowRule
XML Inventory Response
XML Meter Request Example
XML Group Request Example
Changes in Script for Different Bandwidth .
Flow Rules on Node openflow:2 Before Move
Flow Rules on Node openflow:3 Before Move
Flow Rules on Node openflow:2 After Move

Flow Rules on Node openflow:3 After Move

List of Listings

40
49
49
51
52
53
62
97
98
98
98

XV

List of Acronyms

AD-SAL Application-Driven Service Abstraction Layer
AMN Afghan Mission Network

AO Area of Operation

APC Armored Personnel Carrier

API Application Programming Interface

ARP Address Resolution Protocol

BF Blue Force
BGP Border Gateway Protocol

BGP-LS Border Gateway Protocol - Link-State

CLI Command Line Interface
CP Command Post
CR-LDP Constraint Based Label Distribution Protocol

CSPF Constrained Shortest Path First

DB Database

DCAN Devolved Control of ATM Networks

EGP Exterior Gateway Protocol

ERO Explicit Route Object

FG Flow Group

FMN Federated Mission Network

xvii

FRR Fast Reroute

FSDC Federated SDN Domain Controller

I2RS Interface to the Routing System
IETF Internet Engineering Task Force
IGRP Interior Gateway Routing Protocol
IP Internet Protocol

IRC Internet Relay Chat

IRTF Internet Research Task Force

ISAF International Security Force in Afghanistan
JVM Java Virtual Machine

LAN Local Area Network
LLDP Link Layer Discovery Protocol

LSP Label Switched Path

MD-SAL Model-Driven Service Abstraction Layer
MN Mission Network
MPLS Multi Protocol Label Switching

MPLS-TE Multi Protocol Label Switching - Traffic Engineering

NATO North Atlantic Treaty Organization
NCS Network Control Server

NEC Network Enabled Capability

NHOP Next-Hop bypass tunnel

NNHOP Next-Next-Hop bypass tunnel

NOS Network Operating System

ODL OpenDaylight

OF OpenFlow

OFC OpenFlow Controller

ONF Open Networking Foundation
OSGi Open Service Gateway initiative
OSI Open Systems Interconnection
OSPF Open Shortest Path First

OVS Open vSwitch

OVSDB Open vSwitch Database Management Protocol

PBB Provider Backbone Bridge
PCN Protected Core Networking

PCS Protected Core Segment
QoS Quality of Service

REST Representational State Transfer
RIP Routing Information Protocol
RSVP Resource Reservation Protocol

RSVP-TE Resource Reservation Protocol - Traffic Engineering

SAL Service Abstraction Layer

SDN Software-Defined Networking

SLA Service Level Agreement

SLO Service Level Objective

SPF Shortest Path First

STO Science and Technology Organization

STP Spanning Tree Protocol

T Tunnel
TACOMS Tactical Communications

TCP Transmission Control Protocol

TE Traffic Engineering
TG Tunnel Group

TTL Time-to-Live

UI User Interface

URN Uniform Resource Name

VLAN Virtual Local Area Network

VM Virtual Machine
WAN Wide Area Network

XML Extensible Markup Language

Introduction

Software-Defined Networking (SDN) is a network technology that is starting to gain traction
in the network industry, after several years of research in academia [1]. SDN is a concept
where the control and forwarding planes of network devices (e.g. switches and routers) are
separated, and control logic is put in a centralized location. A specialized communication
protocol is used between the control and forwarding plane, where OpenFlow (OF) is the
most widely implemented.

Federated military networks are federated networks used in a military setting where
several nations interconnect their networks for the purpose of sharing information and
network resources.

1.1 Motivation

In federated military networks, such as e.g., Federated Mission Networks (FMNs) [2] and
Protected Core Networking (PCN) [3], there is a need to share network resources between
coalition partners. One of the main motivations behind the development of federated
military networks is that the different nations shouldn’t have to bring all the networking
equipment themselves. Instead they can share capacity among each other. In traditional
Internet Protocol (IP) networks, the majority of bandwidth resources are idle and unused.
Around 40% utilization of available network resources is a common value [4], but could
often be much less. For instance in Uninett’s’ backbone network, where many of the links
are well below 5% utilization? [5]. We see that a greater utilization of shared network
resources in the battle space could simplify the deployment of network resources. It will
also lower the cost for all nations involved, if these resources could be used more effectively.
There is no secret that the establishment of a military infrastructure based network in
a conflict area is both difficult and expensive. The less links and nodes that have to be
established, the better it will be for all coalition partners.

I The Internet service provider for the Norwegian universities and research establishments.
2Network fluctuations will of course impact the network immensely, so higher values could be found during
peak hours.

2 1. INTRODUCTION

Policies can be defined as a set of rules that govern how traffic should be treated in a
network. Policies can cover such areas as access control and security, dependability and
utilization. The goal of obtaining better network resource utilization is not a new idea. This
can be solved today through the use of a mechanism called Traffic Engineering (TE), which
has been used in a number of years. TE helps to provide multipath forwarding. When
considering TE and policies, one could say that policies are the rules that govern how TE,
as a mechanism, should operate.

One of the best known and widely deployed techniques for TE is the use of Multi
Protocol Label Switching - Traffic Engineering (MPLS-TE). This is the preferred technique
for core and Internet service providers in the pursuit of better network utilization. However,
it has been proposed that MPLS-TE services, can be better provided through the use of
SDN. Google has one of the largest and most well known implementations of SDN in their
B4 internal datacenter WAN [4], for the purpose of dynamic traffic engineering and better
link utilization.

While Googles usage scenario is quite specific and exclusive to their service needs, we
propose that SDN could be used in federated military networks with better results and
flexibility when it comes to policy enforcement and network utilization, than what current
technologies can provide. This thesis will therefore look into the use of SDN as a tool for
policy management and enforcement of policies in federated military networks.

1.2 Derived Problem Description

Based on the problem description (ref. title page) the derived problem description of this
thesis is: How can SDN be used to provide policy enforcement in a federated military network?
An implementation of a simple policy rule should be created to show how policy enforcement
can be solved in SDN.

1.3 Thesis structure

The thesis structure is as follows:

e Chapter 1 is an introduction to, and motivation for, this thesis.

e Chapter 2 will present relevant theory on the subject. This chapter will provide a
backdrop and reference to concepts discussed later.

e Chapter 3 will provide a discussion on the use of SDN in federated military networks,
and relevant policies that can be implemented in such a network.

1.3. THESIS STRUCTURE 3

Chapter 4 will continue on the work from chapter 3 and present some possible designs
for policy implementations in a federated network, specifying closer how it can be
solved through the use of SDN.

Chapter 5 will present the work done on the implementation of a test bed, together
with testing and validation.

Chapter 6 will present experiences gathered through the implementation work.

Chapter 7 will present the conclusions from the thesis work.

Theory

This chapter will provide a short introduction to theory which is considered important for
the understanding of the work presented in this thesis. First an introduction to SDN will be
presented. This is to give an understanding about how SDN differs from legacy networking
techniques!. This will be followed by an introduction to the OF protocol. The chapter
will then give a description of the MPLS-TE protocol, which will be used for comparison
between SDN and legacy networks. An introduction to policies in networking will also be
given, together with an introduction to federated military networks.

2.1 SDN

SDN is a concept in networking where the control and forwarding planes are decoupled,
as opposed to traditional networking where the control plane is located on the physcial
switch or router (ref figure 2.1). In traditional networking, a multitude of (distributed)
protocols run on switches and routers. These are all implemented in a local control plane
on embedded hardware. This means that you would also have to change out the network
device (hardware) if you need new functionality.

1The reader is assumed to have a good understanding of traditional networking techniques and technologies.

6 2. THEORY

plane)

Figure 2.1: Traditional Networking

In SDN, the control plane is moved to a centralized software based controller (ref. figure
2.2). The controller can run on an enterprise grade server, providing more processing power
than embedded hardware solutions. Control logic can also be updated through software,
which makes it easier to update the network if new functionality is needed.

(o
Control Pl ;
| contrerriane SDN Domain Controller

Data (forwarding
plane)

Figure 2.2: SDN Networking

21.SDN 7

The controller in SDN instructs the networking elements by updating forwarding tables,
and thereby controlling how the traffic flows. This is done through an open interface
(e.g. OF[6] or NetConf[7]). Messages containing changes in the topology will also be
sent over this interface. There are no standardized solutions for topology discovery, but
existing protocols that provide such services can be implemented in the controller. E.g.
Link Layer Discovery Protocol (LLDP) [8], Border Gateway Protocol - Link-State (BGP-LS)
[9] or Interface to the Routing System (I2RS) [10]. Forwarding rules can be inserted either
in a proactive, or reactive manner. Proactive means that the flow tables are populated
with flow rules before new packets arrive. Reactive means that newly arrived packets not
matching existing forwarding rules are sent to the controller for processing. The controller
process the packet and installs new forwarding rules on the switch/router. The network
devices could therefore be viewed as dumb devices, that only does table look ups to see
what action(s) it should perform on the packet®. As forwarding of packets are based on
quick look ups in forwarding tables, traffic will be forwarded at line speed as long as flow
rules are installed.

SDN in it’s current form is a concept coined mainly by researchers at Stanford and
Berkley University. There are however several earlier research efforts that have led up to
today’s SDN concept. The most prominent examples are: Open Signaling [11], Active Net-
working [12, 13], Devolved Control of ATM Networks (DCAN) [14], Clean Slate 4D Project[15],
and more recently Ethane [16]. A thorough walkthrough of these efforts can be found in

[1].

SDN can in its simplest form be viewed as having three main layers (or planes). A generic
architecture for SDN can be seen in figure 2.3. The forwarding/data plane is populated with
network devices that does the actual forwarding. Above this plane is the control plane.
This is where the SDN controller resides. The SDN controller communicates bidirectionally
over a so called southbound interface to the network devices. The most common interface
used today is the OF protocol. The controller can also be viewed as layered system with
a Network Operating System (NOS) at the bottom layer. The NOS has a global view of
the network and communicates with the network devices. The network virtualization
layer above provides an abstract view of the topology, and a control application above
serves a specific task or service (e.g. an LLDP implementation.) There could also be several
controllers in the control plane that operates together in a fail over or load sharing scenario.

The top layer in the SDN architecture is called the application plane. This is where
business specific applications resides. They can be used to provide network services by
communicating to the controller over an northbound Application Programming Interface
(API). There is very little, or none, standardization of northbound APIs. It should therefore
be viewed as controller specific. A typical example of an SDN application embedded in this

20OpenFlow enabled switches could also operate in a hybrid mode, where a local control plane assumes control
if communication to the controller is lost.

8 2. THEORY

plane could for instance be a Border Gateway Protocol (BGP)[17] routing deamon. Le. an
application that mimic the behavior of the BGP routing protocol.

Application Plane
. A Management i
Business Applications Applications SDN applications
T T T
«Northbound Interface» «Northbound Interface»
API API

Control Plane SDN Control Software

Control Program

Abstract Network View 'i E

Global Network View

Communication with

other controllers . R
Network Virtualization

SDNi protocol

Network Operating System (e.g. NOX/POX, Beacon,...)

‘r
«Southbound Interface» «Southbound Interface»
J E.g. OpenFlow E.g. OpenFlow
4
Data/Forwarding Plane
_A——
Routey Switch Other Networking device

Figure 2.3: Software-Defined Networking Architecture. Figure based on [18, 19]

2.1.1 OpenFlow

The most common and widely deployed interface towards networking devices is known as
the OF protocol. This protocol were originally developed at Stanford university [6], and has
become a de facto industry standard. In later years, the protocol has come under control
and development by the Open Networking Foundation (ONF). Several industry leaders
are active in the development of the protocol, and have started producing OF compatible

network devices.

21.SDN 9

OF enabled switches have a number of flow tables that are connected in a pipelined
fashion. Incoming packets are sent through the pipeline until the header values matches a
flow rule’s match fields. Match fields can be from layer 1 to layer 4 (ref. the Open Systems
Interconnection (OSI) model), and can for instance be: Input port, Ethernet address, IP
address, Transmission Control Protocol (TCP) port or a tag value (e.g. Multi Protocol Label
Switching (MPLS) tag). It can also be a wild card value. When a match is found in one of
the flow tables, a corresponding action is performed. E.g. forward, push/pop tags, drop
packet etc.

There are also two other tables in an OF enabled switch. A meter and a group table.
Meter tables are used to provide Quality of Service (QoS) functionality such as rate-limiting.
Entries in a meter table are based on three components: A meter identifier that identifies
one unique meter, a meter band that specifies the rate of the band and how to process the
packets, and counters that are incremented each time a meter band is used [20, § 5.7.1].

Group tables are used to perform actions on a group of flows. For instance to forward
on the first live port in a group of ports (fail over), or to forward on all ports in a group of
ports (multicast).

OF uses a number of match fields and action types. These are defined in the OF speci-
fication, where the latest ratified version is 1.3.3 [20]. Table 2.1 and 2.2 lists the required
match fields and action types for the device to be in compliance with the specification:

Match Field
Layer 1 Layer 2 Layer 3 Layer 4
Input port Ethernet src address ~ IPv4/IPv6 protocol number — TCP src port
Ethernet dest address IPv4 src address TCP dest port
Ethernet type IPv4 dest address UDP src port
IPv6 src address UDP dest port

IPv6 dest address

Table 2.1: Required OpenFlow Match Fields, from [20]

Action Description

Output Forwards packet to specified port

Drop Not explicitly specified, but packets without an output action should be dropped
Group Process packet through the specified group in the group table

Table 2.2: Required OpenFlow Action Fields, from [20]

10 2. THEORY

There are also optional action types defined in the OF standard. Most notably are the
Set-Queue action used for QoS operations, and Push-Tag/Pop-Tag actions that can be used on
Virtual Local Area Network (VLAN), MPLS and Provider Backbone Bridge (PBB) headers.
The Time-to-Live (TTL) values for IP and MPLS can also be changed through use of a
Change-TTL action type.

2.1.2 Northbound APIs

Northbound APIs are the connection between network applications and the SDN controller.
The applications could for instance be policies engines, business applications or applications
concerned with network control. The APIs are meant as a way for the applications to
communicate with the controller. To acquire information from the controller, or for giving
the controller instructions for network operation.

At the current time there are no standardized northbound APIs, as compared to OF
or other southbound protocols. Northbound APIs from the SDN controllers are mostly
Representational State Transfer (REST) based, such as in the OpenDaylight (ODL)[21]
controller. The ONF has however set down a working group for standardizing the north
bound interfaces [22]. If this work comes into fruition, and is agreed upon by the developers
of SDN controllers, SDN applications could operate towards any SDN controller. Much in
the same way as SDN controllers can operate any network devices that supports the OF
protocol (or any other south bound protocol for that matter, e.g. NETConf, Cisco onePK[23],
or Open vSwitch Database Management Protocol (OVSDB)[24]).

2.1.3 Slicing in SDN

An important concept in SDN is slicing. Slicing is in its most basic form descriptive of how
SDN can be used to share network resources between different users. Le. "You will get a
slice of the physical network to use for your traffic”. However, the use of the term has shown
to mean different things. One form of slicing is to give specific users of an SDN controller
the possibility to control flows for just a few ports or nodes (i.e. “You can use only these
resources”) [6]. Another view is to provision a user with the possibility to only create flows
with a specified set of flow rule match fields [16]. Le. “You can only create flow rules which
matches addresses in this subnet”. A third and more specific use of the term comes from the
OF specification [20] where slicing is used to describe bandwidth sharing between different
queues on the same output port.

Slicing in SDN networks has received serious traction, especially in data centers where
it is used to create “multi tenancy” networks. This is a concept where a tenant (a data
center customer) is allocated a virtual network on the physical infrastructure of the data
center. This allows the tenant full control of the resources he has been granted without
interfering with other tenants of the data center. The tenant will only see “his own network”

21.SDN 11

between the compute and storage nodes, even though it runs on physical infrastructure
shared between several tenants.

2.1.4 Google’s SDN Use Case

At the current time, Google has the most well known and largest implementation of SDN
in a live production network. For the motivation of this thesis, we see it as important to
look into why Google chose an SDN implementation, and how they implemented it.

Google has an internal Wide Area Network (WAN) that connects all of their data
centers across the globe. This was made fully SDN capable in 2011-2012, and is called B4
[4]. Googles motivation for this was to: Increase utilization of the expensive WAN links,
instead of over-provisioning bandwidth resources two-fold or more. Edge rate control for
competing applications and provide dynamic bandwidth reallocation in case of failures or
shift in demands.

Their data centers have a substantial bandwidth requirement, and has more traffic
than their public facing WAN. There are some sides to this network that makes it unique
compared to other large WANS. First off, Google has complete control of everything on the
network. This includes applications, servers and Local Area Networks (LANs). Secondly,
their data centers perform large-scale data copies between data centers. Google’s SDN ar-
chitecture includes one SDN controller for each data center, and a centralized TE controller
for the whole WAN. This solutions has shown that they can reach ~95% network utilization.

12 2. THEORY

Global

Central TE Server

Gateway

Site controllers

Compute/Storage
Clusters

Figure 2.4: B4 Architecture, from [4]

The B4 WAN architecture (ref. figure 2.4) implements TE as a routing overlay between
sites, with BGP routing between each cluster (BGP routers not shown in figure). Google
chose this separation as a fail safe so that in case of a failure in the SDN controllers or
TE server, the network could go back to Shortest Path First (SPF) routing. OpenFlow
Controllers (OFCs) and OF switches communicates over a separate out-of-band network.
A gateway is used between sites and the TE server to consolidate topology changes. The
abstraction created through this simplifies the graph used by the TE algorithm.

TE provides edge rate limiting, multipath forwarding and dynamic reallocation of
bandwidth in case of failures or shifting resource demands. In operation, the TE server will
create Flow Groups (FGs) that matches a source site, dest site, QoS tuple, Tunnels (Ts) as a
sequence of sites using IP-in-IP encapsulation and Tunnel Groups (TGs) which map FGs
to a set of tunnels with a weight value to show the fraction of traffic from the FG to be
forwarded over each tunnel.

To provide dependability in the network Google employs a number of strategies: Soft-
ware failures are seen as the largest cause of failures, so moving control from the data
plane to the control plane will mitigate this. Network Control Servers (NCSs) are replicas
running on different servers with leader election for primary controller using Paxos [25].

2.2. INTER-DOMAIN STATE DISTRIBUTION IN SDN 13

2.2 Inter-Domain State Distribution in SDN

Forwarding traffic between different network domains (or segments) of a larger network
is an important area in networking. In the Internet, this is mainly done using BGP as
the standard Exterior Gateway Protocol (EGP). SDN is mainly an inter domain network
technology, and would not work straight out of the box in a federated network with
autonomous network segments, each with it’s own controller.

One challenge with SDN is the problem with inter-domain state distribution. Where
state information is shared between interconnected domains. SDN controllers in its current
form does not have any knowledge of the network out side of its own domain, unless
this information is given. This challenge has seen some research. An obvious example
concerning this is the work done by the Internet Research Task Force (IRTF) on proposing
the SDNi protocol. This protocol is meant to provide a standardized information exchange
between controllers from different domains. At the time of this writing, we have understood
that the protocol is still only in draft status, but work continues in this area.

The question of federated SDN networks and the work on inter-domain state distribution
were also raised during the OpenDaylight® summit 2014 during a panel discussion* with
the lead developers of the OpenDaylight project (see section 5.1.1). They acknowledged
this as an important area that needs further research, but that it at the current time is not
yet implemented. This was proposed as a project that could be done in the frame of the
OpenDaylight project, but that it would most likely (in the near time) be a question of
getting different OpenDaylight SDN controllers to talk together and share state-information,
before it’s likely to see SDN controllers in general communicate.

Based on this it seems clear that SDN, at the current time, will have challenges if it’s
to be used for inter-domain routing. However, BGP can be implemented in SDN as an
application and be used to interconnect different SDN domains in the same manner as
BGP would interconnect traditional network domains. But it will not alleviate the inherent
problems we see with BGP today (i.e. large BGP routing tables).

2.3 MPLS-TE

When discussing the use of SDN as a solution for policy enforcement it’s important to
compare it with how the same issues are solved in legacy networking. One very important
technology to provide network traffic steering and link dependability is the MPLS-TE
protocol. The following is an introduction to MPLS-TE were key attributes are used later
for comparison against SDN.

30OpenDaylight is a project between several network industry giants and the Linux Foundation to create an
open source SDN controller that can be used in SDN development and implementations.
“The panel discussion can be viewed here: https://www.youtube.com/watch?v=mwCe7bxvcvE

14 2. THEORY

MPLS-TE is an extension to the MPLS [26] protocol that adds TE to an MPLS network
[27]. TE is a technique for steering and controlling the flow of traffic in a network. The
main purpose of TE is to get the best possible utilization of available network resources.
In normal plain-vanilla IP networks this is not possible due to the fact that different flows
will not be routed over different paths between the same source and destination nodes.
MPLS-TE enables this through multi path routing. MPLS-TE is the dominant technology in
the industry for TE. This is especially true after the move from ATM and Frame Relay to
pure IP networks, as these legacy link layer technologies had the possibility for multi path
forwarding.

In normal IP networks, the traffic is routed on the basis of getting it from sender to
receiver as fast as possible. IP networks are therefore said to have a least-cost forwarding
paradigm [27]. This is done through assigning a cost value for all links throughout the
network. This cost can be a single metric value assigned to the link (as used in Open Shortest
Path First (OSPF) [28, 29]), a composite metric (as used in Interior Gateway Routing Protocol
(IGRP)) or the hop count (as used in Routing Information Protocol (RIP) [30]). This cost
value does however not take bandwidth into consideration, but merely distance®. The effect
of this will be that a router could continue to forward traffic onto a link that already drops
packets. As this is considered the shortest path to the destination.

Consider figure 2.5, where a pure IP network is running the OSPF routing protocol.
All links in the network have a 10Mbps capacity. If traffic should flow from R3 to R7, R3
will set up a path [R3-R4-R7], as this is the shortest path. However, a lot of traffic flows
between R3 and R7, and at some point the nodes will start dropping packets. At the same
time, nothing is routed over the path [R3-R5-R6-R7]. This creates a huge under utilization
of link capacity in the network.

PR P>

Figure 2.5: Forwarding Network

>There has been research into QoS routing to mitigate this problem, but nothing has come into widespread
use on legacy network equipment. An example is Pathlet Routing[31].

2.3. MPLS-TE 15

MPLS-TE provides a solution to this. With MPLS-TE you can map specific traffic to
a MPLS route. In MPLS-TE, the ingress router of a traffic engineered path through the
network is called a head end router, the egress router of the same path is call a tail end router.
The head end router will calculate the most efficient path from head to tail based on link
attributes (delay, jitter, etc.) and available bandwidth. It will the create an Label Switched
Path (LSP) path between the head and tail following the calculated optimal route. Routers
that the traffic flow traverses will push/pop MPLS tags (as in normal MPLS networking),
and label switch the packets forward. Bandwidth for this particular LSP will be reserved on
links between adjacent routers as decided by the head end router. In this way (following
the above mentioned example), router R3 can load balance traffic between itself and R7 on
both path [R3-R4-R7] and [R3-R5-R6-R7]. Creating tunnels on both physical paths.

The head end router employs a path calculation algorithm to calculate MPLS-TE tunnels.
To be able to do this calculation, it needs to have some understanding of what the topology
of the network looks like. To build a topology view, a link state routing protocol have to run
on the network. Each router on the network will flood their understanding of the topology
to all others. The constraint based resource information that the link state routing protocol
carries in the MPLS-TE network are:

— TE Metric: A metric different than (for instance) the OSPF cost which can be used to
create a topology that differs from the IP topology.

— Maximum Bandwidth: The total bandwidth of a link.

— Maximum Reserved Bandwidth: The maximum amount of bandwidth that can be
reserved on a link.

— Unreserved Bandwidth: The total bandwith of a link that’s not reserved for other
tunnels.

- Administrative group: A group that can be customized for use by the network operator.
Could have any meaning that the operator of the network chooses.

When a new tunnel is calculated and ready to set up, a Resource Reservation Protocol
(RSVP) Path message will be sent down the path towards the tail end router. A RSVP
Resv message will be returned. This ensures that the topology hasn’t changed during the
path calculation, and that the bandwidth that has to be reserved to the new path is still
available. The RSVP Path message finds its way through the network using the Explicit
Route Object (ERO) from MPLS. To use RSVP in a MPLS-TE scenario the RSVP protocol
has been extended to support TE, and is now known as Resource Reservation Protocol -
Traffic Engineering (RSVP-TE). Other signaling protocols have also been proposed, such as
Constraint Based Label Distribution Protocol (CR-LDP), but the Internet Engineering Task
Force (IETF) have decided to focus its efforts on the RSVP-TE protocol [32].

16 2. THEORY

2.3.1 MPLS-TE Protection Schemes

MPLS-TE has two main protection schemes built into the protocol standard. Fast Reroute
(FRR) and path protection.

FRR

FRR is a local protection scheme, and comes in two flavors. Link and node protection. In
link protection, a backup tunnel is created beforehand in the case a link on the path should
fail. This backup tunnel is called a Next-Hop bypass tunnel (NHOP). With link protection
only the link is protected, so the NHOP will create an alternative path to the next-hop node.
With node protection, a Next-Next-Hop bypass tunnel (NNHOP) is created to provide an
alternative path to the next-next-hop node. This means that if the next-hop node should
fail, the traffic on the path will be routed around this node. An illustrative example of the
two methods can be seen in figure 2.6 and 2.7 respectively.

NHOP

&3

R2

LSP

-—w -

R1 R3

Figure 2.6: Link Protection in MPLS-TE, from [27]

NNHOP

Figure 2.7: Node Protection in MPLS-TE, from [27]

2.4. INTRODUCTION TO POLICIES 17

Path Protection

Path protection is different from the FRR scheme, as it protects a full path end-to-end. The
path protection scheme creates a separate back-up path end-to-end, which is not influenced
by failures on the primary LSP [33]. Switch over to the back-up LSP, from the protected
LSP, is done at the head-end router immediately after signaling of a broken link or node is
received. Several signal functions can be used for this.

In some implementations of MPLS-TE, it’s also possible to create several back-up LSPs.
This can for instance be done in Cisco IOS Release 12.3(33)SRE and later versions, which
provide up to eight back-up LSPs.

2.4 Introduction to Policies

When looking at policy enforcement in a federated network, it’s important to have an
understanding of what policies actually means in this context, and to have a common
semantically understanding of terms used.

Policies are used in the management of networks. In its shortest form, you could say
that the purpose of a policy is to create predefined rules that specify actions in response to
a defined criteria [34]. The IETF has created an internet-draft on how a Policy Framework
Architecture should look like. This provides an overview of the use of policies in a high-level
and generic way that seems applicable to build understanding of the topic.

To be able to define and use policies, the IETF defines some components of a system as
critical [34]:

— The ability to define and update policy rules

The ability to store and retrieve rules

The ability to decipher the conditional criteria of a rule

The ability to take the specified actions of a rule, if the conditional criteria are met.

The actual policy rules are at the center of a policy based architecture. In the manage-
ment of a network you should be able to create rules on the basis of stated agreements and
objectives of the functionality of the network. Such as Service Level Agreements (SLAs)
and Service Level Objectives (SLOs). These have to be translated into specific rules that
govern the policies. A simple policy rule could for instance be:

— Premium traffic between A and B shall receive a minimum bandwidth of 10 Mbps.

18 2. THEORY

This is a QoS based rule, but is not specific enough so that it can be directly used in a
network. If we translate this rule into the context of an OF based SDN network, a lot of rules
and instructions would have to be set. Defining "premium traffic between A and B” could
be done through the use of a flow rule that matches A and B with a IP source/destination
pair, with a specific TCP port number as "premium” traffic. The notion of a minimum
bandwidth of the flow could be solved through attaching other flows to meter table entries
that rate limit the traffic up to a certain amount, so that 10Mbps is always available to the
flow between A and B.

In legacy network management there has been severe problems with implementing
good high level policies onto low level vendor specific equipment. Changes in policies has
often meant that many network devices would have to be reconfigured, either through
manual reconfiguration done on a Command Line Interface (CLI) or through scripting.
Many network managers have trough time and testing developed their own scripts to
manage their specific network. One could say that the management is based on a high
level of experience with managing the network. If the behavior of the network changes,
an experienced network administrator can in many cases “see” where the problem lies
intuitively. This is however not a good solution, as it will depend highly on specific
individuals operating the network over a long period of time.

There has been work on policy languages for SDN that could be used to translate
high level semantics into low level network device instruction. Examples of these are
Procera[35, 36] and Frenetic[37], which are essentially network programming languages.
This work will however not be regarded further in this thesis as it is not directly relevant,
but rather mentioned to provide an understanding of related work in this research area.

2.5 Federated Military Networks

This section will provide some context regarding the use of the term federated network,
with emphasis on federated military networks.

Federated networks as such are not specific to the military, but could be used to describe
any network where several network segments from different operators are interconnected
to create one common service or resource. Just interconnecting two networks will not
make them federated as such®.

A federated military network is a network built from the interconnection of several
networks from different nations. The purpose of these networks are two fold: Firstly, they
serve information sharing between the different nations in a coalition. Secondly, they
provide an unified mesh so that the different nations can share network resources when

%In the rest of this thesis (unless specified otherwise), a the term federated network is used to describe a
federated military network

2.5. FEDERATED MILITARY NETWORKS 19

needed. This means that the network should be able to transport flows for three main
classes of traffic, as defined here:

— National traffic: Traffic that flow in the network of a specific nation, and only between
nodes of that nation.

— Local coalition traffic: Traffic between nodes of different nations in the same coalition.
This traffic traverses the network of two or more nations, but only in the same theater
of operation.

— Coalition transit traffic: Traffic that traverse through a different nation’s network
towards a remote destination. The remote destination is considered to by outside the
federated network.

Federated networks (or military networks in general) are usually built up by a multitude
of different network bearers. The access network close to end-hosts are usually built up
from high capacity fiber links. Core elements between nations and access networks could
also be interconnected through fiber, but is often based on radio links (radio relays and
SATCOM). Lower capacity radio links are also used between access networks and remote
end-hosts, such as forward operating bases and individual troops.

To exemplify federated military networks we introduce two examples from different
North Atlantic Treaty Organization (NATO) bodies. Mission Network (MN) and PCN.

2.5.1 Mission Networks

MNss are a breed of military networks that are meant to be deployed on a per mission basis.
The main purpose of these networks are to interconnect different coalition partners working
together in the same Area of Operation (AO), which are also connected back to their Jhome
networks”, ref. figure 2.8. There has in later years been a turn, were the expression "Need
to share” slowly takes precedence over "Need to know”. The latter expression, being the
mantra of military information security for many years. This is because one has seen
the need to faster and more reliably share information in a multinational AO. E.g. in a
battlefield management system, for the purpose of avoiding blue-on-blue scenarios’.
These networks main focus has been to create interoperability between coalition part-
ners. An example of this is the Afghan Mission Network (AMN) created between coalition
partners in the International Security Force in Afghanistan (ISAF). At the core of this
network is an ISAF secret security level. This is a mission specific security level on the same
level as NATO secret. Directly connected to this are national networks, also at an ISAF
secret security level, ref. figure 2.8. Through the use of information exchange gateways,

"Le. friendly fire

20 2. THEORY

these national networks are connected to their own national home networks at a standard
NATO secret level. The same is seen with the NATO Mission Security Domain, which
connects to NATO’s own backbone network at a NATO secret level. The information
exchange gateways should be viewed as middle-boxes, which only allow some information
to flow in either direction.

A

\

R

Mission Security
Domain

Figure 2.8: AMN Interconnections. Triangles on links are information exchange gateways,
from [38]

Building on this, NATO has been working on a standardization called FMN®. The
purpose of this is to create a standard that all coalition partners can build on, from mission
to mission, instead of building a network each time from the ground up. FMN should be
considered as a framework for later mission networks [2].

8Formerly known as Future Mission Network.

2.5. FEDERATED MILITARY NETWORKS 21

((The aim of the concept is to provide overarching guidance for establishing a
federated Mission Network (MN) capability that enables effective information
sharing among NATO, NATO nations, and/or non-NATO entities participating
in operations. 99

Quote from [2]

What you would normally see in such networks is that the different nations bring their
own networking equipment to an AO, and interconnect through a common backbone. The
backbone is usually, or should be, created in part by the first nation on the ground so that
newly arriving nations quickly can connect to this. The different nations are some times
co-located, especially in the beginning of a campaign, so fiber or other high bandwidth
links can be utilized. Later, many of the connections from site to site will normally go over
satellite as bases are set up further into the battle space.

2.5.2 Protected Core Networking

PCN is an example of a federated military network. It is a concept under research in the
Science and Technology Organization (STO) in NATO, which is intended to "implement
a flexible transport infrastructure that supports military operations based on a Network
Enabled Capability (NEC)” [3]. The purpose of this is to enable coalition partners to
interconnect and share infrastructure without losing control over their own network[39].
Individual nations should still be able to prioritize their own traffic, but at the same time be
able to share idle capacity with partnering nations. The backdrop for this concept, is an
increased need for bandwidth in multinational military operations. Following this, there
has been observed that the full infrastructure capacity in the networks (all networks from
the different nations as a whole) is not utilized all the time. Therefore, it is a possibility to
share this infrastructure between the different nations, should there be increased needs for
capacity from a given entity. This should be preplanned as a part of the operation planning
for a mission, to make sure that the coalition as a whole has enough network resources.
This way, some nations could enter a theater with very little transport network equipment
of their own. It could in this sense be viewed as an effort towards, or as an example of, a
MN°.

There are infact ongoing initiatives in NATO to allign the efforts in FMN, Tactical Communications (TACOMS)
and PCN as these projects are related and in some way directed towards a common goal.

22 2. THEORY

NATION A

‘LASSIFIED
QCLASSIFIED

GEOGRAPHICAL AREA
— SEOSRTHRILARE 2 | (a) TRADITIONAL NETWORK NATION B

‘LASSIFIED

(: PROTECTED

Figure 2.9: Comparison of PCN versus Traditional Military Network, taken from [3]

PCN defines interfaces between what is known as Protected Core Segments (PCSs),
and between Colored Clouds and PCS (see figure 2.9 for details). PCS is a segment of a
“black side” network, and could be regarded as one part of a bigger multinational network
operated by one single nation or entity. The colored clouds are “red side” networks. A way
to look at this concept is that encryption is moved as far out in the network as possible, and
everything on the “black side”, the PCSs, are considered as interconnected infrastructure
segments (domains). This placement of encryption mechanisms (as far out as possible)
helps in the way that all transport network capacity can be shared between networks of
different security levels.

The work on PCN has also proposed some guiding principles, as stated in [39] and
listed in table 2.3:

2.5. FEDERATED MILITARY NETWORKS 23

Guiding Principle

Explanation

Differentiated services

Similar to concepts in DiffServ [40, 41] in the Internet archi-
tecture. Different flows should get different service through
the network based on marking.

Superior Management and Control

Support for high availability and security, globally in the

network.

Superior knowledge

A need for a real-time view of the network. This includes
knowledge of all metrics concerning the network, from traffic
to security.

Superior protection

E.g. to remove unauthorized traffic immediately, and to give
proper awareness to network operators.

Support of Dynamic and Federated
Environments

Keeping the network interoperable between coalition part-
ners. Should support seamless relocation of users (nodes) and
network elements.

Table 2.3: Guiding Principles in PCN

Discussion

The problem that this thesis tries to tackle, as briefly described in the introduction (ref.
chapter 1), is to look at how SDN can be used to to provide enforcement of policies in a
federated military network. To understand this question it is reasonable to break it down
into smaller pieces:

— What inherent problems do we face with policy enforcement in federated military
networks?

— Can SDN be used to solve these challenges? And if so, in what way?!

- How does these solutions compare with legacy solution?

This chapter will elaborate on these questions, provide a discussion on the matter, and
ultimately give a conclusion. A subset of this conclusion is meant to be used later in the
work on possible designs in chapter 4. A subset of that design solution will then serve as
the basis for an implementation of a specific policy rule in chapter 5.

3.1 SDN in a Federated Environment

A federated network consisting of several interconnected network segments (see figure 3.1)
from different coalition partners is an important aspect of modern battle space resources.
Providing policy enforcement for one segment of such a network is one challenge, but
providing coherent policy enforcement for all flows traversing all segments of a federated
network is another.

!Some of the work presented here is based on the authors own unpublished work in a preliminary project
report [42] written before this master thesis.

25

26 3. DISCUSSION

Segment A

_A—
Segment C
|
Segment B

‘-ml
Figure 3.1: Segments in a Federated Network

Policies can in this scenario be thought of as stated rules for how the traffic flows
should be handled in the network. Whether the rules are connected to access control,
QoS, reliability or otherwise. These rules will first have to be agreed upon between the
different network operators (nations) through an SLA or other forms of policy rule lists or
definitions.

The first obstacle with policy enforcement in federated networks is a high level agree-
ment of the actual policy rules. This is more of a political challenge when it comes to
military networks. All nations have to come together and agree on which policy rules they
want to implement. Then they have to provide trust to one another so that the different op-
erators can be sure that their traffic gets treated correctly, are allocated the proper resources,
and is sufficiently secured in other segments of the network than the one(s) they operate
and own. This also applies to the degree of dependability that is to be expected from the
network. In military networks availability and survivability is considered very important.
The operators (nations) have to be sure that if they rely on resources in a different segment
of the network, this should always be available.

Federated networks should provide mobility for nodes. Le. that a host moves through
the network, and connects to different parts of it. This is a challenge in traditional networks.
In SDN this can be solved through using SDN as an overlay network, as in IBM’s solutions
presented in [43]. This way you could support seamless relocation of hosts through the
federated network, which is in compliance with the guiding principles of PCN (ref. table
2.3, Support of Dynamic and Federated Environments).

Another challenge with federated networks are the way management and control is

3.1. SDN IN A FEDERATED ENVIRONMENT 27

performed. Le. how policy rules are implemented globally across the network. In legacy
networking the control logic for implementing policy rules on the network is placed on
the individual network devices (switches) or higher up in a closed vendor specific network
stack (i.e. a vendor specific management system). In an SDN enabled network, management
of network policies can be placed in a policy engine application at the centralized controller
(controller or application plane). However, this raises a question for federated networks of
where the controller should be placed. A few different solutions can be assumed:

1. Distributed controllers, one for each segment (ref. figure 3.2).
2. Hierarchically tree structure with a central top level controller (ref. figure 3.3).

3. One central controller for all segments (ref. figure 3.4).

SDN Domain B SDN Domain C

OpenFlow
SDNi
Data flow

Figure 3.2: Distributed Controllers

With distributed controllers you would have to use some sort of east/west communi-
cation protocol between the controllers to share topology information etc. The IETF has
proposed a protocol for this called SDNi[44], but it is still only in draft form. The SDNi
protocol is however only relevant if you need a standardized east/west protocol. Specialized
protocols could be written to function between controllers of the same type. This is much of
the same discussion as with standardized northbound APIs (ref. chapter 2.1.2). The control
of the network would here be distributed over a set of controllers, comparable to what you
would see with distributed routing protocols. This means that no single (centralized) entity
has a “true” view of the complete network. Each controller would have to send their view of
the network to the other controllers to be aggregated each time there is a topology change

28 3. DISCUSSION

on any of the segments. This implies a flooding of information from one to all, which will
mean a lot of signaling traffic have to travel between the controllers. It also implies that
when a new path (or set of flow rules) for traffic traversing several segments is computed in
one of the controllers, there have to be some sort of mechanism that prevents the insertion
of flow rules if the topology has changed during the course of the path computation (e.g. as
in MPLS-TE (ref. chapter 2.3) where RSVP-TE is used). For instance, assume that controller
A receives topology updates from controller B. Controller A wants to create a tunnel that
uses resources in segment B. It creates rules based on its current topology understanding of
segment B. Before the new flow rule installation request reaches controller B, the topology
has changed, invalidating the new rules. Controller B, which has the correct topology view,
would then have to reject these rules based on a comparison with its current topology view.
A negative response should then be sent from controller B to controller A. An updated
topology view should be sent at the same time.

The previous example raises some core questions concerning the usage of several
controllers. Especially if these are operated by different entities, and not one as in the B4
SDN usage case (ref. chapter 2.1.4). Namely, what sort of topology information should be
shared between the controllers; a global topology view of that segment, or just a subset.
And to which degree should controllers from other segments be able to control network
devices in another segment (i.e. push new rules); full access, or just to a designated part (a
slice) of the resources. Full access, and full topology view seems like an unlikely and less
than optimal solution. Especially since it’s highly unlikely that network operators (nations)
would like to share all information about their network with others (from a security point of
view). A far better and more manageable solution would be that controllers share a subset
of their topology view with neighboring controllers, and receive requests for flow setups
in return. These requests could then be compared with the current topology view of that
segment, before being translated into low level flow rules and forwarded to the appropriate
devices. In a federated network it does not seem reasonable to share a full topology with all
other segment. The reason being that some resources will probably never be shared with
other segments. Sharing the complete view would only cause unwanted computational
burden on both controllers. This can be further underlined when compared to the findings

n [45]. Here the authors argue that the large number of OF specific microflows between
controller and devices will not scale for large high performance networks. If the controllers
also have to flood all topology updates to other controllers in the federated network, this
problem will only grow. An aggregated subset of the most important updates (e.g. only of
the resources you would like to share) would be a more prudent solution.

When it comes to the control aspect of the actual devices, it also seems unlikely that
neighboring controllers should be given full access to push new flow rules into devices on
other segments. A better solution would be to send requests in form of policy rules, and
have the local controller translate these into actual flow rules. This gives the operator of
a segment the possibility of moving tunnels from other segments around more freely (as

3.1. SDN IN A FEDERATED ENVIRONMENT 29

long as they are still in compliance with the agreed terms, policies, SLA etc.). This could
prove especially valuable in the case of pre planned maintenance. E.g. if a node have to be
upgraded or moved.

Federated SDN
Domain controller

--------------- OpenFlow

—_— e — .. SDNi
Data flow

SDN Domain A e SDN Dgmain B N “SDN Domain C

Figure 3.3: Hierarchical Controller

With a Federated SDN Domain Controller (FSDC) placed hierarchically atop of the SDN
segment controllers you would have one centralized place where the topology information
is shared for the whole federated network, and where path decision are created for all
paths traversing several segments of the federated network. The top controller would pull
and receive topology information for all other controllers. Calculate network paths, and
send flow rules to the underlying controllers for each segment. This can in some sense
be compared to Google’s B4 internal WAN network [4] where they have one centralized
TE server that does traffic engineering for the whole network, and one network controller
for each data center (which can be viewed as a network segment). The traffic engineering
node in Google’s case does also support edge rate limiting at the application level. This
rate limiting serves a large part in how they are able to achieve close to 100% network
utilization. Le. when the network is reaching its threshold of available resources, low
priority applications can be rate limited at the edges, thus keeping the packet loss at a
minimum. One could envision the same practice in a federated military network, but it

30 3. DISCUSSION

seems unlikely. This is because a central shared node would have to have control of edge
rate limiting for all applications in all segments (nations). This is the same argument as
used earlier, concerning full sharing of topology information.

SDN controller

OpenFlow

Data flow

Figure 3.4: Single Controller for all Segments

With only one central controller for all segments (ref. figure 3.4) you will not get any
inconsistencies in topology view, as you might get when you have several controllers in a
distributed fashion. However, using only one controller have several drawbacks. The first
and largest concern is dependability issues. If the central controller should fail, the whole
network will in effect be failed. This is unless the switches run in hybrid mode, where
a local control plane on the devices can process new flows, or the controller have a hot
stand-by. The latter will however not have any effect if the network links between one
segment or more and the controller fails. With only one controller you will also have a long
flow rule installation time because of accumulated latency times when a new flow have to
be sent back and forth between the network device and the controller. A problem assumed
to be one of the larger challenges when it comes to scalability in SDN. For a large federated
network, the computational load could also be to high for a single controller to manage
efficiently. It is also highly unlikely that different nations of a federated military network
would accept a single controller to have full control of all their infrastructure. Especially if
it’s placed in a different location than the main bulk of their segment. Both from a security
and survivability point of view.

A single controller architecture is an unrealistic solution for implementation in a
federated military network.

3.2. RELEVANT POLICY CATEGORIES 31

Considering the three different architectures for controller placement, it seems favorable
to use hierarchical controllers (ref. figure 3.3) in a moderate form. Where the top controller
is used for traffic engineering and policy enforcement for parts of the different segments
that each nations chooses to make available. Such as controlling and creating tunnels for
local coalition traffic (ref. chapter 2.5). One could also envision the top controller providing
edge rate limiting for applications and services that are used to share information between
the different nations. Le. applications that are provided by the coalition as a whole.

3.2 Relevant Policy Categories

As an uptake for the design and implementation part of this thesis we have pin pointed
some general policy categories that are relevant for federated networks. These are also
viewed as possible to implement in a minimal test bed. The categories chosen are related
to how the traffic is steered, and what kind of service (QoS) it receives. Other policy types,
such as types that govern access control and security is regarded out of scope.

3.2.1 Category 1: Best Effort and Robustness

This policy category includes policies that moves the network between degrees of best
effort and robustness. Best effort is a service model in data networks where there are no
QoS commitments of any kind [46]. Le. all flows in the network are treated equally, with no
guarantees for delivery. This creates a scenario with a good probability of high utilization,
but it also means that the network can easily become congested. E.g. a makro flow taking
up all bandwidth, and therefore blocking all micro flows. Different service models for a
data network can be viewed as a vector that goes from best effort to robustness (ref. figure
3.5).

Best Effort Robustness

I\

| I

Figure 3.5: Vector on Best Effort and Robustness

A network with a high degree of robustness could for instance load balance traffic over
several paths or implement more robust routing protocols that are able to continue packet
forwarding faster [47]. A higher degree of reliability will create a more robust network,
but all reliability schemes will in some part lower the utilization of network resources.
Especially if backup paths are idle, or reserved bandwidth is underutilized by the allocated
traffic type. The vector depicting the relationship between best effort and robustness in

32 3. DISCUSSION

data networks can therefore be viewed as having several shades of grey between best
effort and "maximum” robustness. Consider a dual link between two nodes. One scheme
for implementing robustness in this network could for instance be to use a 1+1 masking
protection scheme [48]. This will create a network that is quick to recover from a link
failure, but it will result in a 50% utilization degradation of the available capacity.

For federated military network there will very seldom be room for best effort only.
Different services and applications have to be prioritized, and some have to be given higher
reliability. E.g. a Blue Force (BF) tracking system or a weapons systems connected to a
radar or other sensory data sources.

With SDN it is possible to implement different policies that move the network charac-
teristics between best effort and robustness in a dynamic fashion. In this scenario defined as
operator induced dynamics, meaning that an operator can easily change how the network
operates during an ongoing operation. An example of this could be where groups of flows
are given specific QoS tags. With SDN these tags doesn’t have to be attached to the header
values. They could rather be stored in a database at the controller:

(Flow

¢ Flow_id INT PK

Flow N # FG_id INT FK
is memper of >——MN—y
Source_IP
(Flow_Groups) 1 FG Dest “:T
o FG_id INT PK TCP_port
¥ QoS_id INT FK {
¥ ~] p- =
FG_name_name VARCHAR (100) N QoS_tags
FG =
L <hasos tag 1— ¢ QoS.id INT PK
QoS_name VARCHAR(100)

Figure 3.6: Database Diagram for QoS Tags

Figure 3.6 is just a simple mock-up diagram for a possible entity relationship. An actual
implementation would probably look quite different. The point being, that the tables stored
in a local controller database could be used to organize different flows as the operator wants.
An actual QoS tag doesn’t have to be added to the flows. Although, you could use OF
actions to push a new header with a tag onto the packet. If a tag isn’t added to the packet,
you would need some other mechanism for providing QoS service throughout a federated
network. Such as having a shared database with flow groups and QoS tags for all segments
of the network. Using the above mentioned method with a local database, an operator could
create a network where he uses different methods? to create paths through the network

2The term methods is here meant to describe programmed methods in an application on the controller that
can be invoked to create different flow rules.

3.2. RELEVANT POLICY CATEGORIES 33

for flows in different FGs or with different QoS tags. You could for instance have methods
for creating SPF or Constrained Shortest Path First (CSPF) paths, or for adding a flow to a
group table of one node that will send the flow onto the first live port in a group of ports
(for increased dependability). If an operation changes, paths can then be changed for a
number of FGs (consisting of several flows) quickly. Antoher possible solution here is to be
able to downgrade several FGs through assigning them to a QoS tag with lower priority
through the network. E.g. to put all flows from nation B into the same flow group, and then
change traffic characteristics for all these using their common FG id as input to a method.
This gives a flexibility and speed to the management of a network that is not seen in legacy
solutions such as MPLS-TE.

3.2.2 Category 2: Allocate Network Resources

This policy category includes policies that allocate and re-allocate network resources. Le.
moving paths or flows around the network. This would be an integral part of a traffic
engineering solution where the object is to utilize the available resources in the best possible
way. The thought behind this policy class is to provide policies that enable the network
operator the possibility to share and reclaim network resources easily as changes occur.
This is an important concept in federated military networks, and stated as such in PCN [39,
§2.2], as it’s the commanders prerogative to be able to command all resources under his or
her command. This concept is often overlooked when it comes to network resources, as
traditional military resources most often is in focus.

Assume a federated network with segments from different nations. Say for instance that
nation A has available bandwidth. It can then allocate this to Nation B if needed. Either per
output port (link), or per queue on an specific output port®. If the path for nation B’s traffic
is later needed by nation A (the owner of the network), the established paths have to be
moved. This should be done without much packet loss or downtime. To create a solution for
this in SDN you would have to create an application at the application plane, or implement
the same functionality as a core service/module in the controller itself. The latter being the
strongest solution as it can reuse functionality that’s already in the controller, and it will
operate faster with a more direct access to southbound interfaces and other core services.
The following figure shows a possible architecture for this:

3The differentiation between output queues were implemented in version 1.0 of OF as support of multiple
queues per output port [20, pp. 150]. This is known as slicing in the OF specification, as you can provide a "slice”
of the total bandwidth of the output port to each queue.

34 3. DISCUSSION

fmeeeeeecccas Pohcy
Inserted though NB API Rules

[Northbound APIs
L Southbound interfaces j

Database
[Network Devices j

Figure 3.7: Internal SDN Policy Engine

Figure 3.7 doesn’t take communication between neighboring controllers into considera-
tion. This is in correspondence with the scope set for this thesis, as mentioned earlier.

The solution showed in figure 3.7 assumes the implementation of a policy engine module
in the control plane. Stated policy rules are inserted using a northbound API. A Database
(DB) is used to store flow rules connected to different flows, flow groups, etc. If a flow has
to be moved, a policy will be changed. The policy engine will then check the database to
see which relationships apply. Storing information about flow rules in a local database will
prevent the controller (policy engine) from having to search through all network devices
for rules that have to be changed. This implies a reduction in signaling traffic between the
controller and devices.

3.3 Partial Conclusions

From the discussion we can see that there are several challenges concerning policy en-
forcement in a federated military network. From a political perspective we have found
challenges connected with agreements between operators (nations) on global policies and
the amount of topology information that should be shared. We assume that these are
possible to solve through a discussion between the different nations. At the same time,
most of the topology information doesn’t have to be shared between different nations, only
an aggregated subset of the resources they want to share (e.g. underutilized links).

Connected with this it the need for nations to receive the proper amount of reliability
and service for traffic transported through other segments of a federated network. This is
also assumed solved through SLAs. At the same time, nations should not lose control of
the physical infrastructure in their own segments when sharing resources.

3.3. PARTIAL CONCLUSIONS 35

Other challenges with federated networks are coherent policy enforcement for all
segments, and management of network resources.

While some of these challenges could be regarded as purely political, and mostly
connected with creating good SLAs and high level policy rules, we see some areas where
SDN can add value. Especially through the flexibility in network management that SDN
can provide. With a sound implementation of a policy engine in the controller, policy
enforcement is possible through the use of SDN. The use of SDN can also provide the
flexibility to implement novel management methods and policy rules that fit specific
network scenarios. Management systems that don’t rely on closed vendor specific solutions
or configuration of devices one by one can also be developed for use in SDN.

Node mobility is also something SDN can provide, and which could prove useful in a
federated network setting.

There are however some weaknesses with using SDN at the current time. Inter-domain
state distribution and east/west communication protocols (e.g. SDNi) are scarcely re-
searched, also in this thesis. However, one thing is clear: If SDN is to be used in a federated
network, a communication protocol have to be implemented between the different con-
trollers. At least between segment controllers and a hierarchical top controller (ref. figure
3.3). A scenario closely related to the architecture of B4 [4].

Another weakness with SDN is dependability issues with using a central controller.
Dependability schemes using fail-over controllers and hot-standbys should be studied
further, as well as scenarios with link failures between controller and network devices.
The latter seems especially important due to the dynamic and harsh nature of military
operations.

Both of the first network structures discussed in section 3.1 of this chapter (ref. figure
3.2 and 3.3) relies heavily on the use of east/west protocol between the different controllers.
Implementing such a protocol would require a lot of work as it’s not readily available. It is
therefore considered to be out of scope for this thesis, with regards to the design and test
bed implementation work. However, as a proof of concept for using SDN in a federated
network, an implementation of a single controller architecture in the test bed will still be a
valid solution. A network topology with a single controller will therefore be used in the
design and implementation phase of this thesis.

Design

This chapter looks into possible designs for policy enforcement and policy rules in an
SDN enabled federated network. The scenarios are kept simple to give an overview of
what could be accomplished through the use of SDN. The designs are predominantly based
around scenarios where policy changes have to implemented. I.e. where the state of the
network changes.

4.1 Drop Low-Priority Packets

This section follows the policy category described in section 3.2.1. This design is meant to
provide more robustness in a network for high priority traffic flows.

This policy could prove to be important in a general military network where the
topology is dynamic and you have heterogeneous network bearers. The main idea in this
design concept is that you have a network with two different network links reaching back
to a backbone network. For instance a SATCOM link with a high data rate and a radio link
with a low data rate. If the SATCOM link goes down, the network should react accordingly
and only route high-priority time critical flows over the low data rate radio link. The
topology described in this design scenario is depicted in the following figure (ref. figure
4.1):

[Link A me—

[Link B]=——

—

Figure 4.1: Multi Path Reachback Network

37

38 4. DESIGN

In this topology the switch is considered to be part of a federated network where
nation A shares resources on the two links with nation B. One is a high rate link ([Link
Al), the other is a low rate link ([Link B]) with less bandwidth and more latency. In this
scenario link A goes down more often than link B'. Both links are reachback to a backbone
network which can support all nations in the federated network with some service. In this
scenario a critical BF tracking system?. With this system it’s imperative with a high degree
if availability. Consider that the network is located in a Command Post (CP) which is built
on an Armored Personnel Carrier (APC) platform. The CP aggregates a blue force view
from the units on the ground and sends this information to the backbone. This information
is then pumped into an air force system so that pilots can see where friendly ground forces
are located. The size of the data packets from this system is considered to be small.

The policy in this network should operate so that when the CP is in a static position
(i.e. Link A is up) the network traffic is given a best effort service. Low priority traffic, such
as mail and video streams, are sent on this link together with the high priority blue force
traffic. When the CP is mobile and link A is down only BF traffic should be able to pass over
the remaining link B. All other traffic should be dropped. Also, when in a static position
and both links are up, BF traffic should be routed onto the best alive link, with a minimum
bandwidth guarantee.

This could be implemented with the use of SDN in the following way:

1. A group table forwards traffic on the first live port in a group of ports - Match with
UDP? port number for BF flows
2. Set up flow forwarding for all other traffic with just [Link A] as output port.

3. Rate limit all non-BF traffic with a meter table.

4.2 Re-assign Tunnels

This design follows the policy category described in section 3.2.2. This design is meant to
provide a solution to move tunnels from one path to another.

One possible scenario? for policy enforcement in a federated network is where you have
to reassign network resources (given to another nation) on your own network. This could

The reason for this could for instance be that link B has more mobility than link A. A rather common
scenario in military networks where better uplinks are set up when the operation is static, and worse links are
used when on the move.

2Blue force tracking systems are a system that interconnects military units and share position updates to
avoid friendly fire accidents.

3UDP is more commonly used in BF systems than TCP.

%In this scenario, slicing is not taken into account. Each part of the federated network is assumed to be
under control by a separate SDN controller from each nation. Traffic from the other nation enters the network in
question on node R1, which could be viewed as nothing more than a gateway to some link on R5.

4.2. RE-ASSIGN TUNNELS 39

for instance happen when spare resources (on a network link) are allocated in the form of
a tunnel, but where changes in an ongoing operation imposes that you need to take the
resource back. In this scenario an important factor is that you don’t remove the allocated
tunnel completely, but rather moves the tunnel to another path through your network.
Traffic flowing through the tunnel should still be able to pass, even though the latency or
bandwidth might be degraded. The following multi path network topology between node
R1 and R5 is used as an example (see figure 4.2).

Tunnel with traffic

flowing between two
networks

& &3

R3 R4

Figure 4.2: Simple Topology Where an Established Tunnel Have to be Moved

In this topology the tunnel is firstly placed on the path [R1-R2-R5] iy s~ This is a path
with fewer hops and higher bandwidth then the path over path [R1-R3-R4-R5], gy, s, and
were therefore the path first chosen to allocate the tunnel to because it had a significant
under provisioning of available resources. Then the ongoing operation changes, and the
path have to be freed for use by the nation that owns this segment.

4.2.1 Solution in SDN

In SDN, the task of accomplishing this scenario can be broken down to a few main parts:

1. Create the original tunnel using SPF or other path computational algorithm:

— Create and add the flow rule to R1, R2 and R5 (bi-directional). Store the flow
name

- Add the flow to a meter table with the appropriate rate limiter
2. Use amove method" to move the flow from [R1-R2-R5], ;v s tO [Rl-R3-R4—R5]wMbp s

— Create and add new flow rules to R1, R3, R4 and R5 (bi-directional)

— Read back the old flow rule name and delete these together with the old meter
table entries

40 4. DESIGN
- Add the new flow to a meter table with the appropriate rate limiter

The move method () is here considered the actual implementation of the policy change.
As this rule differs from the normal SPF path creation, it’s thought as a way to easily
move paths on the fly using a set of high level commands in the application plane. This
means that these type of policy changes can be made almost instantaneous without the
need to configure each network device manually for each flow. Of course, this implies
that a policy/network management system fulfilling the needs of such commands have
to be coded and implemented before hand. A typical work flow for this kind of policy
management could be the following:

1. New tunnel creation: Add a SPF tunnel with match fields for IPv4-destination, and
with action fields for output-port and meter table with rate limiter.

2. The need of the network changes: Find out what this means for the traffic in network,
pin-point the tunnels that have to be moved.

3. Move tunnel: Move all tunnels manually”. This could for instance be done through
invoking a move method with two inputs: A list of the tunnel names that should be
moved (i.e. deleted and recreated) and an excluded node which shall not be used in
the path calculation.

— The move method will then take these inputs, iterate over them and create the
new tunnels in one swift operation.

An example of the move method/function could for instance be (in pseudo-code):

function move(listTunnelNames, excludedNode):

for element in listTunnelNames:

delete flowsrules where flowname == element
listOfNodes = calculateSPF(graphOfTopology, excludeNode)
for element in listTunnelNames:

create flowrule with flowname = element

for element in listNodes:

PUT newflowrule to element

Listing 4.1: Move Function in Pseudo-code

The move method should also follow a specified order/sequence for the flow rule
installation and deletion (not considered in listing 4.1). When new rules are created they
should be pushed in order, following the path from destination to source (relative to one
direction of a bidirectional path at a time). When installing the flow rule on the node that
has the first split between two parts of a multipath (node R1 in figure 4.2) it should insert the

4.2. RE-ASSIGN TUNNELS 41

@ / Delete
other
rules

r3®
Delete old
Lower pri.num. rule
(a) Original tunnel. (b) New tunnel unused. (c) New tunnel in use.

Figure 4.3: Description for Move Method. Only for Traffic Moving from Source R1 to
Destination R5

new rule with a lower priority number® for that flow rule before deleting the old flow rule.
This way, the traffic flow will continue to function without packet loss or loop possibilities.
All other flow rules for the original tunnel should then be deleted. Flow rules installed on
nodes before the multipath split should then be updated in dest-src direction one by one if
for instance the rate-limits on meter tables or similar have changed. If they are correct no
action have to be taken.

4.2.2 Comparison: Cisco MPLS-TE

If the same task should be done through the use of MPLS-TE on Cisco routers the following
steps would have to be taken. This is an explanation of how it’s done based on configuration
commands in the IOS of a Cisco MPLS-TE enabled router. Assume that the network is
running the OSPF routing protocol. The original Tunnel1® is set up pretty automatically
using the OSPF protocol, even though some configuration have to entered (excerpt):

tunnel destination 11.0.0.1

tunnel mode mpls traffic-eng # To enable MPLS-TE

tunnel mpls traffic-eng autoroute announce # Tunnel will be
announced by the routing protocol

tunnel mpls traffic-eng bandwidth 1 # To enable RSVP

A routing protocol also have to be set up for the MPLS network, in this scenario OSPF
is used:

SOpenFlow uses a priority number for matching precedence. See [20, § 5] for reference, and listing 5.2 in
chapter 5.1.1 for example

*[R1-R2-R5] 100Mb/s

42 4. DESIGN

mpls traffic-eng area 1

mpls traffic-eng router-id Loopbackl

This will (in short) create Tunnell. If this then have to be moved, now called Tunnel2’,
two possible methods are available:

1. Configure an explicit path, where the IP addresses of all nodes the tunnel are explicitly
mentioned:

ip explicit-path name Tunnel2 enable
next-address <ip-address for R3>
next-address <ip-address for R4>

next-address <ip-address for R5>

2. Exclude R2 from the PCE calculation:

ip explicit-path name Tunnel2 enable

exclude-address <ip-address for R2>

This is pretty straight-forward, and is easy to do if you only have to move one tunnel.
On the other hand, if you want to reassign several tunnels to a new specific/explicit path
it becomes more cumbersome. In that sense, it will be easier to do the same operation
using SDN. This is of course under the assumption that the framework is in place to do
this operation. Also, MPLS-TE can only be used on MPLS-TE capable routers, which causes
hardware dependencies. With SDN, this specific scenario could be created using any OF
capable multi-port network device (switch or router).

4.3 Chosen Design for Implementation

When choosing which designs to implement we looked at relevance of the design. As
resource sharing is an important topic for military federated network, the design for
re-assigning tunnels were chosen to be used in the implementation test bed.

The following table (ref. table 4.1) lists a number of ambitions for the implementation
work, and what we wanted to achieve through the the test bed:

7[R1-R3-R4-R5] | oo«

4.3. CHOSEN DESIGN FOR IMPLEMENTATION 43

Part Description

SDN controller Research different SDN controllers and find one fulfilling the
needs of the implementation.

Network Emulation Establish a functioning network emulation environment that
can be used to validate the functionality of the implementa-
tion.

Policy application Write an application at the control plane that are able to:

Receive and update policies. Utilize the available resources
through the use of multi path. Install flow rules reactively and
proactively.

Reactive rule installa-
tion

The application should be able to install rules automatically
when an unknown packet (with non-matching match fields)
arrives to the network, following a set of policy rules. E.g. that
all packets from the following subnet should use a defined
path.

Proactive rule installa-
tion

The application should be able to install rules proactively

Dynamic Enforcement

The application should be able to respond to sudden changes
in network topology, e.g. link failures.

Table 4.1: Ambitions for the Implementation

Implementation

During the work on this thesis we created a test bed for policy enforcement in a federated
network, using SDN principles and the OF protocol. The work on this test bed enhanced our
understanding, and showed clearer the possibilities, constraints and challenges connected
with the use of SDN. This was an important, and large, phase of the work as the authors
understanding of SDN were mainly based in theory, and not the practical steps associated
with an SDN environment. SDN, and the use of the OF protocol, seems easy on “paper”.
But, as the work on the implementation showed this is in no way easy and straightforward.
The following sections of this chapter are the steps taken to research, set up and develop
on the SDN platform.

5.1 Possible SDN Controllers

When choosing a controller for the test bed, a number of different implementations were
considered. Several different controllers have been created by the industry and in academia.
Among the most important aspects considered were:

— Features and support for needed functionality

Familiarity with programming language

Level of documentation

- Size of user community

From this work, a number of controllers were identified. The following were considered
(ref. table 5.1):

45

46 5. IMPLEMENTATION

Name

Description

OpenDaylight
(21] [49]

Written in Java, runs within a JVM on the OSGi framework. Has received
alot of attention from the community. Open source software with several
large companies backing the project with money and developers. Has a
vibrant development community with an active IRC channel. Supports
a large number of southbound interfaces including OF 1.3, and has a
northbound REST [50, Ch. 5] interfaces to most of the functionality.

NOX
[51] [52]

Wiritten in C++. One of the earliest SDN controllers, built at the same
time as the initial OF version. Has later served as a basis for other SDN
projects.

POX
(53] [54]

Based on the NOX SDN controller. Written in python, and supports OF
version 1.0. Very little development on the controller as of late. Has seen
wide use in research and academia, but spread of the controller seems to
be stagnant.

Beacon
[55] [56]

Written in Java. Developed at Standford University. Has not seen a lot
of new development during the last year. Runs as a stable controller for
the Stanford SDN network.

Floodlight
[57] [58]

Written in Java, runs within a JVM. The project is supported by the
company "Big Switch Networks”, and is a fork out from the Beacon
project.

Ryu
(59]

Written in Erlang. Most of the developers are Japanese, and very little
documentation are available. Does not seem to have a large following or
community but has seen some use in academia.

Table 5.1: Available SDN controllers

When considering these controllers we put special emphasis on the level of ongoing

development and user community. An example of this is the POX controller. This has

widespread use in academia and many users, but hadn’t been updated for eight months

when controllers were considered. Also, the lack of OF 1.3 support were disqualifying.
After considering the different identified controllers (and trying some of them), ODL were
considered as the most promising candidate.

5.1.1 OpenDaylight

The ODL controller were under active development when it was chosen, and it was not

formally released!. Even though the software were quite immature and untested (from an
application development stand point), it had a vibrant community of developers. The devel-

1ODL were released february 5. 2014 [60]

5.1. POSSIBLE SDN CONTROLLERS 47

opers were also easy to contact directly as they all communicate on a public Internet Relay
Chat (IRC) channel?. A wiki-page were also actively update with controller information,
user/development guides, tutorials and API references.

The ODL project is an open source software project that seeks to create an SDN
controller that can be used as a baseline for SDN development. Several large network and
software vendors contribute to the project with code, developers and financing. Among
the largest contributors are such companies as Cisco and IBM.

The architecture of ODL can be viewed in figure 5.1:

P----

OpenDaylight APIs (REST)]

Base Network Service Functions

OpenFlow Southbound Interfaces &
[1.0/1.3 } [0vsDB][NETCONF] [LIsP } [BGP] [PCEP] [SNMP } Protocol Plugins

Figure 5.1: ODL architecture [61]

The ODL controller runs in a Java Virtual Machine (JVM) with the Open Service Gateway
initiative (OSGi) framework [62]. Using the OSGi framework makes it possible to add,
remove and update bundles/modules without having to reboot the complete system. The
modules of ODL can be viewed in figure 5.1 as "green boxes” above the Service Abstraction
Layer (SAL) in the controller platform.

From the ODL controller there are a number of APIs available. These are basically
divided in two. Layer 2 (controller plane) APIs that are internal to the controller, and who
works between the different bundles, and layer 3 (application plane) APIs that are north
bound from the controller.

24opendaylight channel on irc.freenode.net

48 5. IMPLEMENTATION

Service Abstraction Layer APIs

The internal APIs (layer 2) are created for communication between the different modules
in the controller

Network Devices ce e

(RESTCONF)

Protocol | o o ¢ Protocol PRPEPY
Plugin Plugin Southbound

Interfaces & Protocol

_ -

Figure 5.2: MD-SAL in OpenDaylight, from [63]

As seen in figure 5.2, the modules in ODL are connected using a shared message
bus called Model-Driven Service Abstraction Layer (MD-SAL)[63] (This figure should be
viewed in comparison with figure 5.1 for better understanding). As seen in the figure, from a
software development view, MD-SAL sees no difference between southbound or northbound
interfaces. When creating a controller application (e.g. a policy engine), the most powerful
solution will be to place it as a module in ODL within the OSGi framework. This will give
the application module access to the other modules in a direct way, and it can be both
a consumer and provider of data within the controller. An example of this is a simple
learning switch application that’s bundled with the ODL release. This gives learning switch
functionality to the network so that you can run a flat LAN over your network devices. It
emulates common functionality found in L2 switching such as Address Resolution Protocol
(ARP) and Spanning Tree Protocol (STP). As the Learning switch application is placed in the
controller plane, and connected to the MD-SAL, it can easily consume packet_in messages
that arrives from the network devices to the OF plugin. It can also produce data that the OF
plugin consumes for encapsulation into packet_out messages towards the network devices.
This functionality is not available through the northbound REST APIs.

Nortbound REST APIs

The north bound (layer 3) REST APIs (also called RESTCONTF, ref. figure 5.2) are easy to
access through HTTP requests from most programming languages or applications. Most of

5.1. POSSIBLE SDN CONTROLLERS 49

the bundles in the controller have north bound REST APIs implemented. They give a basic
functionality for communicating with the controller. A full reference for the different REST
APIs can be found at [64].

The REST APIs in ODL are based on the concepts of REST[50] and provides namespace
Uniform Resource Names (URNs) towards the different modules/bundles and components
of the controller. This system is based on requests from the northbound application (client
side) towards the controller (server side) where Extensible Markup Language (XML) data
bodies are sent and received. Most of the information that the controller stores about
the network can be received and changed in this way. For instance, if a northbound
application wants to add a flow to one of the switches it will first request data from
the controller about the topology with a GET request towards the topology namespace
(e.g. http://localhost:8080/restconf/operational/network-topology:network-topology/). The
controller will then respond with an XML body containing all network topology information,
for instance (excerpt):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<topology
xmlns="urn:TBD:params:xml:ns:yang:network-topology">
<topology-id>flow: 1</topology-id> %ID of the network topology
<node>
<node-id>openflow: 1</node-id>%Name of the network device
<inventory-node-ref
xmlns:tyhj="urn:opendaylight:inventory"
xmlns="urn:opendaylight:model:topology:inventory">
/tyhj:nodes/tyhj:node[tyhj:id="openflow:1"]
</inventory-node-ref>
</node>
<link>%0One link in the network
<destination>%Name and portnumber for destination node
<dest-tp>openflow:2:1</dest-tp>
<dest-node>openflow: 2</dest-node>
</destination>
<link-id>openflow:3:3</link-id>%Name for this link
<source>%Name and portnumber for source node
<source-tp>openflow:3:3</source-tp>
<source-node>openflow: 3</source-node>
</source>
</1link>

Listing 5.1: XML Topology Response

This basic information can then be used by the application to find out on which nodes
it want to add flow rules. The application will then build flow rules and send these to
the controller using a PUT request. The controller will then push the flow rules to the
corresponding network devices (switches). A flow rule could for instance be on the following
form:

50 5. IMPLEMENTATION

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
<strict>false</strict>
<flow-name>Flowrulel</flow-name>%Unique name of flow on that switch
<id>258</id>%ID of flow on that switch
<cookie_mask>255</cookie_mask>
<cookie>103</cookie>
<table_id>2</table_id>%ID of the table in the pipeline that stores that
flow
<priority>2</priority>%Priority number for that flow [1:500]
<hard-timeout>1200</hard-timeout>%Timeout for when the rule expires
<idle-timeout>3400</idle-timeout>%Timeout if the rule is unused
<installHw>true</installHw>%Install the rule in switch directly or
store at controller
<instructions>%Start of action fields
<instruction>
<order>0</order>
<apply-actions>
<action>
<order>0</order>
<output-action>%A forward action to output port
<output-node-connector>1</output-node-connector>
<max-length>60</max-length>
</output-action>
</action>
</apply-actions>
</instruction>
</instructions>
<match>%Start of match fields
<ipv4-source>10.0.0.1</ipv4-source>
</match>
</flow>

Listing 5.2: XML Flow Rule

This particular flow rule would be sent towards the following namespace: http://
localhost:8080/restconf/config/opendaylight-inventory:nodes/node/1/table/2/flow/258. So,
the table and flow id’s have to correspond in both the XML body and URN namespace. If
we consider that this is the only flow rule on that particular switch it would perform a
very simple match and action operation where all packets that’s received from host with IP
address 10.0.0.1 will be forwarded out to port 1. All other packets will be dropped unless
other rules are added to the switch by the controller.

What seems to be most important in this thesis work is to understand the possibilities
found in the REST APIs towards the OF version 1.3 plugin. This interface can be broken
into four main groups: Inventory, Flows, Meters and Groups.

GET requests towards the inventory will retrieve a list of OF nodes that the controller

http://localhost:8080/restconf/config/opendaylight-inventory:nodes/node/1/table/2/flow/258
http://localhost:8080/restconf/config/opendaylight-inventory:nodes/node/1/table/2/flow/258

5.1. POSSIBLE SDN CONTROLLERS 51

know about (nodes connected to the controller). A request towards the URN namespace http:
//localhost:8080/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/ will
for instance give the following response in XML:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<nodes
xmlns="urn:opendaylight:inventory">
<node>
<serial-number
xmlns="urn:opendaylight:flow:inventory">None
</serial-number>
<hardware
xmlns="urn:opendaylight:flow:inventory">Open vSwitch%Switch
model
</hardware>
<software
xmlns="urn:opendaylight:flow:inventory">2.0.0%Switch model
version
</software>
<manufacturer
xmlns="urn:opendaylight:flow:inventory">Nicira, Inc.%Switch
manufacturer
</manufacturer>
<switch-features
xmlns="urn:opendaylight:flow:inventory">%List of the switches
features and capabilities
<capabilities
xmlns:flownode="urn:opendaylight:flow: inventory">
flownode:flow-feature-capability-flow-stats
</capabilities>
<capabilities
xmlns: flownode="urn:opendaylight:flow: inventory">
flownode:flow-feature-capability-port-stats
</capabilities>
<capabilities
xmlns:flownode="urn:opendaylight:flow: inventory">
flownode: flow-feature-capability-queue-stats
</capabilities>
<capabilities
xmlns:flownode="urn:opendaylight:flow: inventory">
flownode:flow-feature-capability-table-stats
</capabilities>
<max_buffers>256</max_buffers>
<max_tables>254</max_tables>%Maximum number of forwarding
tables
</switch-features>
<id>openflow:1</id>%Name of the switch (device)
</node>
</nodes>

Listing 5.3: XML Inventory Response

http://localhost:8080/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/
http://localhost:8080/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/

52 5. IMPLEMENTATION

This is the information about just one node (namely ’openflow:1’), for information
about all connected nodes in the same XML body you can send a request towards http:
//localhost:8080/restconf/operational/opendaylight-inventory:nodes/ instead.

Flow rule requests corresponds to the possibilities found in the OF version 1.3 specifica-
tion [20]. Examples can be seen listing 5.2 and in files actions.txt and matches.txt attached
to annex A.

Meter requests updates the meter tables of the OF nodes. An example for this can be
the following PUT request towards a meter table, that tells the switch to drop a packet if
the defined rate is exceeded:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<meter xmlns="urn:opendaylight:flow:inventory">
<container-name>Container0Ol</container-name>
<flags>meter-burst</flags>
<meter-band-headers>
<meter-band-header>
<band-burst-size>444</band-burst-size>%Size of bursts
<band-id>0</band-id>%ID of that band
<band-rate>234</band-rate>%The lowest rate at which the band
applies, in kb/s unless a flag is set to look at packet/s.
<perc_level>1</perc_level>%By which amount the drop precedence
of that packet should be increased if the band is exceeded.
<meter-band-types>%Defines how a packet should be processed
<flags>ofpmbt_drop</flags>%Drop the packet if meter applies
</meter-band-types>
</meter-band-header>
</meter-band-headers>
<meter-id>1</meter-id>%ID of this meter
<meter-name>Meter(Ol</meter-name>%Logical name of this meter
</meter>

Listing 5.4: XML Meter Request Example

http://localhost:8080/restconf/operational/opendaylight-inventory:nodes/
http://localhost:8080/restconf/operational/opendaylight-inventory:nodes/

5.1. POSSIBLE SDN CONTROLLERS 53

Groups are another useful table to use. An example PUT request to add a new group
rule to a group table of a OF switch could be:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<group xmlns="urn:opendaylight:flow:inventory">
<group-type>group-all</group-type>

<buckets>
<bucket>
<action>
<set-field>%Rewrites the IP source address
<ipv4-source>10.0.0.1</ipv4-source>
</set-field>
<order>0</order>%Lowest order is done first
</action>
<action>
<set-field>%Rewrites the IP destination address
<ipv4-destination>10.0.0.2</ipv4-destination>
</set-field>
<order>1</order>
</action>

<bucket-id>13</bucket-id>%ID for this bucket in the group table
<watch_group>14</watch_group>
<watch_port>1</watch_port>
</bucket>
</buckets>
<barrier>false</barrier>
<group-name>ChangeIP</group-name>%Name of the group table rule
<group-id>1</group-id>%ID for that group table rule
</group>

Listing 5.5: XML Group Request Example

In this listing (ref. listing 5.5) we see that the group table applies two actions to the
flow sent to it: It uses the optional set-field action of OF to rewrite the IPv4 source and
destination address. The set-field action is an optional functionality of the OF protocol,
and set-field for IP addresses is neither explicitly mentioned in the specification. This is
added functionality that the ODL controller implements. This is encouraged in the OF
specification as it’s said to add “usefulness [to] an OF implementation” [20, § 5.12].

Unfortunately, the group table support are currently removed from Open vSwitch (OVS)
version 2.0 (which were used in this testbed). The support for this are planned to be added
in the next release, version 2.13. This information was discovered too late in the thesis work
to make any changes in the test bed environment, so we had to do without this functionality
in the testbed* (ref. chapter 6.3).

Shttp://comments.gmane.org/gmane.linux.network.openvswitch.general/3251

“Note: At a later point we were informed that the CPqD[65] virtual switch does support group tables as
specified in the OF 1.3 specification. It is therefore assumed that this could be used before the new release of OVS
in future work.

54 5. IMPLEMENTATION

5.2 Network Emulation

At the start we looked into different possibilities for creating a network. We had some
hardware switches available (2 pieces), but this didn’t seem to cover our needs, with regard
to both OF version 1.3 support (the switches support only version 0.9) and quantity. As an
absolute minimum, the network had to consist of at least three switches to be able to create
realistic scenarios. We started therefore to look into the possibility of using a virtualized
switch network.

The emulation of switching networks is an important aspect in the study of computer
networks. Solutions to emulate such networks have therefore been developed. This is
work mainly done in academia, and they are therefore readily available for use. The most
prominent example, and the one chosen in this thesis, is Mininet [66, 67]. Mininet is meant
as a tool to prototype networks® in a speedy an efficient manner.

Mininet takes advantage of a concept named process-based virtualization [66], where
network namespaces in the Linux operating system (implemented in kernel version 2.2.26)
can provide single processes (e.g. Mininet hosts) with their own network interfaces, routing
tables and ARP tables. The separate hosts and switches are then interconnected using
virtual Ethernet pairs. The following figures is used to explain this in more detail (figure
5.3):

Linux OS

Network 10.0.0.1 10.0.0.2 Network Network 10.0.0.3 10.0.0.4 Network
namespace 1 ‘ eth0 eth0 ‘ namespace 2 namespace 1 ‘ etho eth0 ‘ namespace 2
vethl veth2 vethl veth2

Root namespace

Figure 5.3: Example of a Mininet Topology Running in Linux

SIf you want to create even larger topologies, Maxinet can be used. Maxinet create large topologies from
several Mininet instances spread over several physical hosts. More information on this framework can be found
in [68, 69]

5.2. NETWORK EMULATION 55

In this figure we can see two virtual switches with two hosts connected to each. The
hosts are connected to the vethX interfaces on the switches. These interfaces can be seen
on the host operating system as individual Ethernet ports just like any other port on the
host. E.g.:

$ ifconfig sil-ethi

sl-ethl Link encap:Ethernet HwWaddr 86:d8:87:0f:ec:e8
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

The OVS type switches that run in Mininet can also be set up to run in hybrid mode
where a local control plane on the switch takes over if the controller plane fails (i.e. the
controller). This can be with the following command, either through scripting or directly
in bash:

$ ovs-vsctl set-fail-mode s1 standalone

This will set the OVS switch s to operate in standalone mode, which is the same as a
hybrid switch as used in OF terminology. An example in scripting can be seen in annex B.

56 5. IMPLEMENTATION

5.3 Detailed Review of the Selected Implementation

This section describes the chosen test bed implementation.

A sketch of the test bed can be seen in the figure 5.4, and table 5.2 lists the different
version and build numbers for the software and packages used.

&

ODL Application

= |

Requests

VMWare virtual machines
VM1 VM2

SDN controller Mininet Topology

VMNet

Figure 5.4: Test Bed

Item Version
Open vSwitch in Mininet 2.0.0
Mininet 2.1.0

OpenDaylight Controller

0.1 SCM number 57f507d105b1daa%9aa9663ca5ec6d258251fca2e

OS VM1

Ubuntu 13.04

0OS VM2

Ubuntu 14.04

Python

2.7.6

Virtualization env.

VMWare Fusion Professional 5.0.4 (1435862)

Client OS

Mac OS X 10.9.2

Table 5.2: Software Versions used in Test Bed

5.3. DETAILED REVIEW OF THE SELECTED IMPLEMENTATION 57

5.3.1 Network Emulation in Mininet

Mininet[66, 67] were chosen early on as the preferred platform for emulating a network.
Topologies with a sufficient number of nodes can easily be created through scripting (see
annex B for an example script). Mininet is prominently used in many areas of network
research and development and is easy to set up and understand®. Following is a short
overview of the most important commands used in the test bed implementation.

To run a Mininet topology you have to use the command:

$ sudo mn

Running the basic mn command will create a default topology with two hosts connected
to a single switch, using the default Mininet SDN controller. For more advanced topologies
you would either have to use the built-in options for the mn command, or write a script.
An example command using the built-in options could for instance be:

$ sudo mn -controller=remote,ip=192.168.231.246 -topo tree,3

-switch ovsk,protocols=OpenFlowl3

Which will start a tree topology with three levels, connected to a remote controller and
using the OVS kernel with OF version 1.3 support’.

When using a script to build your Mininet topology, and you’re using a remote con-
troller you have to add this to the script file. For instance:

c0 = net.addController(’c0O0’, ip=’127.0.0.1°, port=6633)

This will connect the nodes to a remote controller in the same way as the -controller=remote,ip<ip-
address> option.

The hosts created in Mininet runs in their own network namespaces in Linux, and the
switches are set up as instances of OVS. This implies that each host emulated by Mininet
can run all programs that are installed on the host client. The individual hosts can be given
commands directly from the Mininet console:

mininet> hl ping h2

For more information about the use of Mininet, please refer to the the Mininet tutorial: http://mininet.org/
walkthrough/ and chapter 5.2
7See chapter 6.3 for additional details

http://mininet.org/walkthrough/
http://mininet.org/walkthrough/

58 5. IMPLEMENTATION

Which will run the ping command on host h1 towards h2. Another way is to open an
Xterm terminal window for each of the hosts you want to work on. E.g:

mininet> xterm hil

5.3.2 SDN Controller

ODL were chosen as the preferred SDN controller for use in the test bed implementation.
The controller were installed in a separate Linux Virtual Machine (VM) installation to not
interfere with the network emulation in any way.

The details on how to install the ODL controller can be found on the wiki pages of the
ODL project®. This was the same procedure as were used for installing the controller in the
test bed.

To run and use the ODL controller with the implementation you have to add an option
to start the controller with OF 1.3 support:

$./run.sh -of13

This starts OF 1.3 plugin module in the controller, and gives the possibility to use all
functions in OF specification if the network devices support it. For the test bed we had to
stop a module in the controller that provides simple switch forwarding (Learning switch
module). This is done through a few commands in the OSGI command line interface

osgi> ss simple
osgi> 112 ACTIVE org.opendaylight.controller
.samples.simpleforwarding_0.4.1

osgi> stop 112
This will stop the simple forwarding bundle from interfering with the operation of

policy application.

5.3.3 Policy Application

The following is a description of the policy application (implementation of the actual policy
rule) developed for use in the test bed, depicted as ODL Application in figure 5.4.

The application provides a very simple command line based User Interface (UI). It can be
used to manually add flows, add a SPF flow, look at the installed flows and delete installed

8https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation

5.3. DETAILED REVIEW OF THE SELECTED IMPLEMENTATION 59

flows. This is basic functionality that ODL controller doesn’t have “out of the box” support
for when using the OF 1.3 plugin.

To test the designed policy implementation from chapter 4.2, Re-assign a tunnel, the
application were developed to be able to move a tunnel. This is an implementation where a
flow path between two hosts are created. To keep it simple, and to show that moving a
tunnel with ease is achievable, the tunnel is no more than a defined path for flows between
to IPv4 hosts. We believe that the same principle could also be used for traditional tunneling
methods, e.g. IP-in-IP encapsulation, or with an attached label in the header such as in
MPLS/MPLS-TE. In the application, the tunnel is not named as TunnelX, but rather a logical
srclP, destIP tuple. When the operator wants to move a tunnel, he will answer the following
in the UL

Welcome, what would you like to do? Type in number:
1. Add Flow

2. Look at flows

3. Delete flows

4. Move a flow

>

You want to move a flow

Between which hosts do you want to move the tunnel?
Source host >

Destination host >

Choose node to exclude from SPF calculation:

>

When the input is added (marked in green) the program will first try to calculate a
new path through the network, not using the excluded node. This is the same way as in
MPLS-TE (ref. chapter 4.2.2), where you can explicitly state a node that should be excluded
from the path calculation. It will then search through all nodes and look for active flow
rules. It will then look at the active rules, and see if any of them have a srcIP or destIP
matching the input in their match fields. If so, the rule will be deleted. After all old rules
are deleted, new flow rules will be sent to the devices along the calculated path. A message
will be prompted after flow rule installation.

The new path is: [u’openflow:1’, u’openflow:3’, u’openflow:4’,

u’openflow:5’]

60 5. IMPLEMENTATION

5.4 Testing and Validation

This section describes the testing and validation phase of this thesis, were the object was to
ensure that the test bed operates as expected.

The network topology used in the testing and validation phase were implemented using
the script in annex B, and can be seen in figure 4.2. Please note that the logical names for
the nodes as provided by the controller is openflow:1-openflow:5 instead of R1-R5. Two hosts
are connected to the network, h1 connected to openflow:1, and h2 connected to openflow:5.

To test the implementation a few different methods were used. As this is a small and
controlled test environment, the flow rule tables where inspected manually before and
after the tunnel move. This showed that the correct flow rules had been changed, and
that all old flow rules had been deleted. The tunnel path were during the move changed
from [openflow:1, openflow:2, openflow:5] , Ghps to [openflow:1, openflow:3, openflow:4,
openflow:5]_; .- Please note that the bandwidth on all links are the same in the beginning
of the test phase. The bandwidth of ~7 Gbps were the maximum bandwidth possible in
Mininet running on the provided hardware’. The results can be seen in listings C.1-C.4 in
annex C.

The XML bodies in these listings shows clearly that the flow rules on node openflow:2
and openflow:3 have been updated during the tunnel move. When the flow rules have been
moved from one node (i.e. deleted), the XML response will be No data exists. Please
note that the listings only shows the stored flow rules in flow table 0 of each node. The
ODL application only operates on flow table 0 of the network nodes. There are however
256 tables in total on each OVS instance that could have been used for creating flow rules
in a pipe lined fashion (ref. chapter 2.1.1). All other tables (in the range 1-255) were empty
during the testing and validation phase. This is ensured by the ODL application, as it
inspects all active tables on all nodes.

To look at the performance of the network during a move, two methods where used. A
ping command were issued between the two hosts, while two tunnel moves where executed.
It is clear from the print out that the tunnel move caused longer latencies and packet loss.
The packet loss is due to the flow rules being deleted before new ones are installed. This
causes the switch to drop packets because no matches are found in the flow tables. This is
the expected behavior. The following shows part of the ping command print out. Instances
of increased latency and packet loss are marked with red, and [...] is used to denote omitted
parts of the print out:

64 bytes from 10.0.0.2: icmp_seq=20 ttl=64 time=0.055 ms
64 bytes from 10.0.0.2: icmp_seq=21 ttl=64 time=0.406 ms
64 bytes from 10.0.0.2: icmp_seq=22 ttl=64 time=0.043 ms

92012 Macbook Pro, 2.6 Ghz Intel Core i7, 16GB 1600MHz DDR3 Memory

5.4. TESTING AND VALIDATION 61

[...]

64 bytes from 10.0.0.2: icmp_seq=37 ttl=64 time=0.094 ms
64 bytes from 10.0.0.2: icmp_seq=39 ttl=64 time=0.260 ms
64 bytes from 10.0.0.2: icmp_seq=40 ttl=64 time=0.045 ms

Secondly, an iperf test!®

dation during the tunnel move. TCP was used as transmission protocol. The TCP variant
used in the test bed were CUBIC [70]. A simple test showed a dip in measured bandwidth
during the tunnel move because of packet loss. A graph has been made to show this:

were run between the two hosts to look at bandwidth degra-

Gbps

5

— Bandwidth, TCP traffic, iperf measurement
=== Timeof tunnel move
O‘““5‘H‘10‘“‘1‘5””2‘0”“2‘5””3‘0t[%conds]

Figure 5.5: Measured Bandwidth During a Tunnel Move (TCP traffic)

In figure 5.5 the move were done right after the 10 second mark (measurement points is
taken in 1 (one) second intervals). The expected result from packet drops is here seen, as the
bandwidth is reduced with approx. 50%. This is in correspondence with what you should
expect when using the TCP protocol [71]. However, the value of this graph for validation
is rather small. In essence, it only shows that the slow start mechanism of TCP works. It
also shows very large bandwidth fluctuations. A better test would therefore be to move
the tunnel to a path with less bandwidth. The same test (using iperf) were conducted on a
network where the tunnel were moved from [Rl,RZ,RS]lOOOMbpS to [Rl,R3,R4,R5]100MbpS, and
then back to [R1L,R2,R5] 44g\pps- The changes in the network were done through changing

Command: iperf -c 10.0.0.2 -P 1 -i 1 -p 5001 -w 56K -M 1K -1 2M -f k -t 120

62 5. IMPLEMENTATION

the following lines of code in the Mininet start-up script (ref. annex B):

linkoptsA = dict(bw=1000, delay=’Oms’, loss=0)#Bandwith for path [R1,R2,
R5] and host to switch
linkoptsB = dict(bw=100, delay=’Oms’, loss=0)#Bandwidth for secondary
path [R1,R3,R4,R5]
print "*** Add links between switches
net.addLink(switches[0],switches[1], **1linkoptsA)
net.addLink(switches[0],switches[2], * *1linkoptsB)
net.addLink(switches[2],switches[3], * *1linkoptsB)
net.addLink(switches[3],switches[4], * *1inkoptsB)
net.addLink(switches[1],switches[4], * *1linkoptsA)
print "*** Add links to hosts ***"
net.addLink(switches[0],h1, **1inkoptsA)
net.addLink(switches[4],h2, **1linkoptsA)

PR

Listing 5.6: Changes in Script for Different Bandwidth

A rerun of the iperf test were then conducted, with the following results:

Mbps

700 — Bandwidth, TCP traffic, iperf measurement

--=- First tunnel move
600

-=-=- Second tunnel move

500

400

300

200

100

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 t [%COI’]CIS]

Figure 5.6: Measured Bandwidth During a Tunnel Move (TCP traffic). Different BW on
Paths

In this figure (ref. figure 5.6) it is clear that the bandwidth changes when the tunnel
is moved between the two paths. This validates that the tunnel is moved back and forth

5.4. TESTING AND VALIDATION 63

successfully. However, the graph shows massive bandwidth fluctuations when the tunnel
is on path [Rl,RZ,RS]lOOOMbpS. The reason for this is unknown. No other traffic than iperf
and OF packets were present on the Mininet network during the test.

Experiences From Implementation

This chapter is a description of our experiences obtained during the course of the imple-
mentation work. It covers learning points, challenges and functionality missing in the
implementation in its current form.

The following table is recap of table 4.1 from chapter 4.3. Here we take a look at the
stated ambitions for the implementation, and regard if they are solved or unsolved.

65

66 6. EXPERIENCES FROM IMPLEMENTATION

Part Ambition solved/unsolved

SDN controller OpenDaylight were chosen as controller. Provides an ample
degree of functionality. Very complex with a large framework.
Difficult framework for development. A simpler controller
with less functionality and easier development, such as Pox
[53], might have been more suited for this work. Especially
regarding time constraints and size of a master thesis.

Network Emulation Implemented in Mininet. Provides a flexible framework for
testing network topologies. Can be expanded with Maxinet
[68]. Does not have support for OF version 1.3 as of yet.

Policy application We were not able to create an application at the control plane.
Application created at the application plane. Uses northbound
REST API to communicate with controller. Written in Python.
Will not install flow rules reactively. No support for receiving
policy updates. Policies must be written manually.

Reactive rule installa- Not solved. Not able to receive packet_in messages. Depends
tion on control plane implementation.

Proactive rule installa- Solved, but in a manual fashion except for SPF and movement
tion of tunnels.

Dynamic Enforcement ~ Not solved. Will have to pull information from the controller
to see topology changes. Depends on control plane implemen-
tation.

Table 6.1: Results - Ambitions for the Implementation

From the table it’s clear to see that several ambitions were not solved. The most
important points are described further in section 6.1, 6.2 and 6.3.

6.1 Placement of the Policy Application

When the implementation work commenced, the initial thought was to create a new
software module in the controllers OSGi framework using Maven [72]. This would mean
the creation of a program written in Java that could interact with direct method calls against
the other modules of the controller. It would also make it possible to create listeners that
could pick up on changes in the topology, and to receive new packets entering the network
directly (i.e. encapsulated packets sent between the controller and network device using
the packet_in/packet_out function in the OF protocol). All through using the MD-SAL
shared message bus in ODL. This was considered the most powerful and best solution to
implement a policy application. However, the framework were unknown to the authors and

6.2. OPENDAYLIGHT COMPLEXITY 67

it proved very difficult to set up a working development environment. The framework relies
on development using the Eclipse code editor with a number of plugins. Also, special XML
files have to be written so that new software bundles can be put into the OSGi framework.
Considerable time were spent on trying to set up and learn the development environment,
but it proved unsuccessful. It was therefore decided to create the ODL application in the
application plane instead, using the Python programming language.

Placing the application in the application plane, rather than the control plane, caused a
situation were several ambitions were rendered impossible to solve. Specifically reactive
rule installation and dynamic enforcement. In a broad sense the latter could have been solved
at the application plane, but only in very a sluggish and sub optimal way. An application
placed in the application plane can not respond to dynamic topology changes in real time.
It would have to request for information from the controller at regular intervals, check
for changes, and then respond to these changes accordingly. It would not be possible to
implement reactive rule installation as it’s not possible to retrieve packet_in messages sent
to the controller over the north bound REST API. With a control plane implementation,
dynamic enforcement and reactive rule installation would have been possible.

6.2 OpenDaylight Complexity

Apart from requiring a complex development environment, the ODL controller is very
complex in itself. It’s built with a large number of modules that provides high degree of
functionality and possibilities. It’s clear that the controller should be able to operate in
large number of scenarios, including enterprise data center and core networks. This shows
in the large code base. A large amount of documentation has been written for the controller,
primarily at [73], but it’s difficult to navigate through it. This caused a situation were approx.
a week amount of work were done on the wrong API. Namely on the Application-Driven
Service Abstraction Layer (AD-SAL) instead of MD-SAL, which has more possibilities.

Another experienced challenge with using the OpenDaylight controller is that it’s very
new. Its first official release were at February 5™ 2014 [60]; just at the start of the thesis
work. This meant that there were very little examples or tutorials to look at, as very few
developers had started developing applications for it.

6.3 Problem with Mininet 2.1

The tutorials found online about Mininet 2.1 and OVS version 2.0 will tell you that it has
support for OF version 1.3. This is not the whole truth, and were discovered late in the
work on the test bed implementation. OVS version 2.0 which is implemented in Mininet
does not have support for group tables, which is a part of the OF 1.3 specification. This will

68 6. EXPERIENCES FROM IMPLEMENTATION

not be implemented until the next revision of OVS!. This took quite some time to realize,
as an initial thought were to use of the group tables, described in the OF 1.3 specification,
in a policy covering a dependability scheme (path protection).

!Details can be found here: https://www.mail-archive.com/discuss@openvswitch.org/msg07882.html

https://www.mail-archive.com/discuss@openvswitch.org/msg07882.html

Conclusions

In this thesis we have shown that Software-Defined Networking can be used for policy
enforcement in a federated military network. This has also been proven through a minimal
policy rule implementation in a test bed, where a tunnel is moved between two paths of a
network. The design phase of the implementation has also shown that tunnels in a network
can be moved with more ease using SDN compared to MPLS-TE.

We have also found that dynamic enforcement of policies, and reactive flow rule
installation, is possible if implemented in the control plane of the OpenDaylight controller.
It is also described how this is not possible when implemented at the application plane.

The thesis also describes challenges connected with federated military networks, and
possible solutions for controller placement in such a network. Following this, it has been
found that more research is needed towards implementation of an east/west communication
protocol between controllers of a federated network.

SDN is said to be a paradigm shift in networking, possibly solving many challenges that
we find in traditional networking today. Flexibility to create new solutions is an often heard
selling points for SDN. However, while SDN brings with it the possibility to create new
solutions in the network through software programming, it also brings with it complexity.
Complexity in the sense that it’s not straight forward, or easy, to develop a high performance
SDN solution. This thesis, through the implementation work, has shown this. The research
area is still quite new, and few commercial off-the-shelf solutions are yet available. We
assume that the research will continue in this field, and that in time, more solutions will
be developed. This will show clearer how SDN best can be utilized in federated military
networks.

69

70 7. CONCLUSIONS

7.1 Future Work

List of possible topics that could be studied further:

- Implement a federated network with east/west communication between controllers.

- Implement a policy engine as a software bundle in the OSGi framework of the
OpenDaylight controller, to support real time dynamic capabilities.

References

B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti, “A survey of software-
defined networking: Past, present, and future of programmable networks,” Communica-
tions Surveys Tutorials, IEEE, vol. PP, no. 99, pp. 1-18, 2014.

J. Eckert, “Answering Questions on the Future Mission Network” http://www.act.nato.
int/article-2013-1-16, retrieved okt 20. 2013, 2013.

G. Hallingstad and S. Oudkerk, “Protected core networking: an architectural approach
to secure and flexible communications,” Communications Magazine, IEEE, vol. 46, no. 11,
pp. 35-41, 2008.

S.Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer,
J. Zhou, M. Zhu, J. Zolla, U. Hélzle, S. Stuart, and A. Vahdat, “B4: Experience with a
globally-deployed software defined wan,” in Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM 13, (New York, NY, USA), pp. 3-14, ACM, 2013.

Uninett, “https://www.uninett.no/en/traffic, retrieved may 12. 2014

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,” SIG-
COMM Comput. Commun. Rev., vol. 38, pp. 69-74, Mar. 2008.

R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “RFC 6241: Network Configu-
ration Protocol (NETCONF),” 2011.

IEEE, “802.1AB Station and Media Access Control Connectivity Discovery,” 2009.
T. D. Nadeau and K. Gray, SDN: Software Defined Networks. O’Reilly, 2013.

A. Atlas, J. Halpern, S. Hares, D. Ward, and T. D. Nadeau, “An Architecture for the
Interface to the Routing System.” Informational Internet-Draft, 2013.

A. T. Campbell and I Katzela, “Open Signaling for ATM, Internet and Mobile Networks
(Opensig’98),” 1999.

D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Minden, “A survey of
active network research,” Communications Magazine, IEEE, vol. 35, no. 1, pp. 80-86,
1997.

71

http://www.act.nato.int/article-2013-1-16
http://www.act.nato.int/article-2013-1-16
https://www.uninett.no/en/traffic

72

[13]

[14]

[15]

[16]

[27]

REFERENCES

D. L. Tennenhouse and D. J. Wetherall, “Towards an active network architecture,” SIG-
COMM Comput. Commun. Rev., vol. 37, pp. 81-94, Oct. 2007.

J. E. Van Der Merwe and I. M. Leslie, “Switchlets and dynamic virtual atm networks,” in
Proc Integrated Network Management V, pp. 355-368, Chapman and Hall, 1997.

A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie, H. Yan, J. Zhan,
and H. Zhang, “A clean slate 4D approach to network control and management,” SIG-
COMM Comput. Commun. Rev., vol. 35, pp. 41-54, Oct. 2005.

M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, “Ethane:
taking control of the enterprise,” SIGCOMM Comput. Commun. Rev., vol. 37, pp. 1-12,
Aug. 2007.

Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4)” RFC, January
2006.

W. Stallings, “Software-Defined Networks and OpenFlow,” The Internet Protocol Journal,
vol. 16, pp. 2—-14, March 2013.

ONF, “Software-defined networking: The new norm for networks,” white paper, Open
Networking Foundation, April 2012.

ONF, OpenFlow Switch Specification Version 1.3.3 (Protocol Versoin 0x04). Open Network-
ing Foundation, September 2013.

OpenDaylight Foundation, “https://www.opendaylight.org/, retrieved march 23. 2014”

S.Raza and D. Lenrow, “ONF North Bound Interface Working Group (NBI-WG) Charter,”
tech. rep., ONF, 2013.
Cisco, “Technical Overview of onePK” http://developer.cisco.com/web/

onepk-developer/technical-overview, retrieved 24. nov 2013.

B. Pfaff and B. Davie, “The Open vSwitch Database Management Protocol,” October
2013.

T. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an engineering perspective,’
in In Proc. of PODC, pp. 398-407, ACM Press, 2007.

E. Rosen, A. Viswanathan, and R. Callon, “RFC 3031: Multiprotocol Label Switching
Architecture,” 2001.

L. Ghein, MPLS Fundamentals - A Comprehensive Introduction to MPLS Theory and
Practice. Cisco Press, 2007.

[28] J. Moy, “RFC 2328: OSPF Version 2,” April 1998.

[29]

[30]

R. Coltun, D. Ferguson, J. Moy, and A. Lindem, “RFC 5340: OSPF for IPv6,” July 2008.

G. Malkin, “RFC 2453: RIP version 2,” November 1998.

https://www.opendaylight.org/
http://developer.cisco.com/web/onepk-developer/technical-overview
http://developer.cisco.com/web/onepk-developer/technical-overview

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[40]

[41]

[42]

[43]

[44]

[45]

REFERENCES 73

P. B. Godfrey, I. Ganichev, S. Shenker, and L. Stoica, “Pathlet routing,” SIGCOMM Comput.
Commun. Rev., vol. 39, pp. 111-122, Aug. 2009.

G. Andersson, L. & Swallow, “RFC 3468: The Multiprotocol Label Switching (MPLS)
Working Group decision on MPLS signaling protocl,” 2003.

Cisco Systems, MPLS Traffic Engineering (TE): Path Protection. Cisco, Cisco Systems,
Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA, July 2011.

G. Waters, J. Wheeler, A. Westerinen, L. Rafalow, and R. Moore, Policy Framework
Architecture. IETF, internet-draft ed., February 1999.

K. Hyojoon and N. Feamster, “Improving network management with software defined
networking,” Communications Magazine, IEEE, vol. 51, no. 2, pp. 114-119, 2013.

A. Voellmy, H. Kim, and N. Feamster, “Procera: A language for high-level reactive
network control,” in Proceedings of the First Workshop on Hot Topics in Software Defined
Networks, HotSDN °12, (New York, NY, USA), pp. 43-48, ACM, 2012.

N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and D. Walker,
“Frenetic: A network programming language,” in Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming, ICFP 11, (New York, NY, USA),
pp. 279-291, ACM, 2011.

D. Coppieters and J. van Geest, “Future Mission Training,” Tech. Rep. STO-MP-MSG-094,
NATO Communications and Information Agency, Unknown year.

T. G. RTG-032/IST-069, “Requirements for a Protected Core Networking (PCN) Interop-
erability Specification (ISpec),” Tech. Rep. TR-IST-069, NATO, July 2012.

C. Semaria and J. W. Stewart, “Supporting Differentiated Service Classes in Large IP
Networks,” white paper, Juniper Networks, 2001.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “RFC 2475: An
Architecture for Differentiated Services,” 1998.

E. Sorensen, “Evaluating Software Defined Networking for Use in Military Networks.”
Unpublished Preliminary Project Report, November 2013.

W. Scull, “Introducing IBM Software Defined Network for Virtual Environments (SDN
VE) VMware Edition,” tech. rep., IBM Systems and Technology Group, 2014.

H. Yin, H. Xie, T. Tsou, D. Lopez, P. Aranda, and R. Sidi, “SDNi: A Message Exchange
Protocol for Software Defined Networks (SDNS) across Multiple Domains.” Internet-
Draft, June 2012.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee,
“Devoflow: Scaling flow management for high-performance networks,” SIGCOMM
Comput. Commun. Rev., vol. 41, pp. 254-265, Aug. 2011.

74

[46]

(47]

REFERENCES

G. Fayolle, A. de la Fortelle, J.-M. Lasgouttes, L. Massoulie, and]J. Roberts, “Best-effort
networks: modeling and performance analysis via large networks asymptotics,” in INFO-
COM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, vol. 2, pp. 709-716 vol.2, 2001.

H. Vo, O. Lysne, and A. Kvalbein, “Permutation routing for increased robustness in ip
networks,” in NETWORKING 2012 (R. Bestak, L. Kencl, L. Li, J. Widmer, and H. Yin, eds.),
vol. 7289 of Lecture Notes in Computer Science, pp. 217-231, Springer Berlin Heidelberg,
2012.

B. E. Helvik, Dependable Computing Systems and Communication Networks - Design and
Evaluation. Department of Telematics, NTNU, 2009.

Linux Foundation, “https://git.opendaylight.org/gerrit/p/controller.git, retrieved march
23.2014”

T. Fielding, Architectural styles and the design of network-based software architectures.
PhD thesis, University of California, Irvine, 2000.

NOXRepo.org, “http://www.noxrepo.org/nox/about-nox/, retrieved march 23. 2014”
NOXRepo.org, “http://noxrepo.org/git/nox, retrieved march 23. 2014”
NOXRepo.org, “http://www.noxrepo.org/pox/about-pox/, retrieved march 23. 2014”
NOXRepo.org, “https://github.com/noxrepo/pox, retrieved march 23. 2014

D. Erickson, “The Beacon OpenFlow Controller,” in HotSDN, ACM, 2013.

Stanford University, “https://openflow.stanford.edu/display/Beacon/Home, retrieved
march 23. 20147

Project Floodlight, “http://www.projectfloodlight.org, retrieved march 23. 2014
Project Floodlight, “https://github.com/floodlight/floodlight, retrieved march 23. 2014

Nippon Telegraph and Telephone Company, “http://osrg.github.io/ryu/, retrieved march
23.2014”

Tech Target, “OpenDaylight Hydrogen release and what you can do with it, retrieved
june 11. 2014

OpenDaylight Foundation, “Technical Overview.” http://www.opendaylight.org/project/
technical-overview, retrieved nov 24. 2013.

OSGi Alliance, “http://www.osgi.org/Main/HomePage, retrieved junw 2. 2014”

Linux Foundation, “https://wiki.opendaylight.org/view/OpenDaylight_Controller:
MD-SAL:MD-SAL_App_Tutorial, retrieved june 2. 2014.”

Linux Foundation, “https://wiki.opendaylight.org/view/OpenDaylight_Controller:
MD-SAL:Model Reference, retrieved march 25. 2014”

https://git.opendaylight.org/gerrit/p/controller.git
http://www.noxrepo.org/nox/about-nox/
http://noxrepo.org/git/nox
http://www.noxrepo.org/pox/about-pox/
https://github.com/noxrepo/pox
https://openflow.stanford.edu/display/Beacon/Home
http://www.projectfloodlight.org
https://github.com/floodlight/floodlight
http://osrg.github.io/ryu/
http://www.opendaylight.org/project/technical-overview
http://www.opendaylight.org/project/technical-overview
http://www.osgi.org/Main/HomePage
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:MD-SAL_App_Tutorial
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:MD-SAL_App_Tutorial
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Model_Reference
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Model_Reference

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

REFERENCES 75

CPqD/ofsoftswitch13 , “https://github.com/CPqD/ofsoftswitch13, retrieved 23. april
20147

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid prototyping for
software-defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, Hotnets-IX, (New York, NY, USA), pp. 19:1-19:6, ACM, 2010.

Mininet.org, “Mininet - an instant virtual network on your laptop (or other pc) http:
//www.mininet.org, retrieved april 24. 2014

P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, and H. Zahraee, “MaxiNet: Distributed
Emulation of Software-Defined Networks,” in IFIP Networking 2014 Conference (Net-
working 2014), IFIP, 2014.

P. Wette, M. Drixler, A. Schwabe, F. Wallaschek, and H. Zahraee, “Maxinet: Distributed
software defined network emulation http://www.cs.uni-paderborn.de/fachgebiete/
fachgebiet-rechnernetze/people/philip-wette-msc/maxinet.html, retrieved may 14.
20147

S. Ha, I Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed tcp variant,” SIGOPS
Oper. Syst. Rev., vol. 42, pp. 64-74, July 2008.

L. Parziale, D. Britt, C. Davis, J. Forrster, W. Liu, C. Matthews, and N. Rosseblot, TCP/IP
Tutorial and Technical Overview. IBM Redbooks, 2006.

Apache Maven Project, “https://maven.apache.org/what-is-maven.html, retrieved june
6.2014”

Linux Foundation, “https://wiki.opendaylight.org/, retrieved june 11. 2014”

https://github.com/CPqD/ofsoftswitch13
http://www.mininet.org
http://www.mininet.org
http://www.cs.uni-paderborn.de/fachgebiete/fachgebiet-rechnernetze/people/philip-wette-msc/maxinet.html
http://www.cs.uni-paderborn.de/fachgebiete/fachgebiet-rechnernetze/people/philip-wette-msc/maxinet.html
https://maven.apache.org/what-is-maven.html
https://wiki.opendaylight.org/

Test Bed Implementation Code

This appendix includes the following files from the test best implementation.

e odl-application.py: The main part of the ODL application used to interact with the
controller.

o frontend.py: The main part of the console based user interface
e restconf.py: Functions used to communicate with the controller using REST.

e actions.txt: Text file containing possible flow rule actions. Used for reference in the
application.

e matches.txt: Text file containing possible flow rule matches. Used for reference in
the application.

77

78 A. TEST BED IMPLEMENTATION CODE

odl-application.py

#External libraries

import sys

import json

import networkx as nx

from networkx.readwrite import json_graph
import httplib2

from xml.dom import minidom
from 1xml import etree

#Own libraries

import restconf

import frontend

#Base URLs for Config and operational
baseUrl = ’http://192.168.231.250:8080°

confUrl = baseUrl + ’/restconf/config/’ #Contains data inserted via

controller

operUrl = baseUrl + ’/restconf/operational’ # Contains other data
findTopology = operUrl + ’/network-topology:network-topology/topology/flow

11/

h = httplib2.Http(".cache")

#Username and password for controller
h.add_credentials(’admin’, ’admin’)

#Counter used when creating flows

flowIdCounter = int(100)

#Create a list with active hosts in the network
hosts = restconf.get_active_hosts()

#Function to find topology parameters

def get_topology(xml):
topology = json.loads(xml)
print topology
nodes = topology[’topology’][0][’node’]
links = topology[’topology’][0][’link’]
return topology

#Function to find the shortest path between two nodes in the network

def get_sp(topology, src, dst):
graph = nx.Graph()
nodes = topology[’topology’][0][’node’]
links = topology[’topology’][0][’link’]
for node in nodes:
graph.add_node(node[’node-id’])
for link in links:

e = (link[’source’][’source-node’], link[’destination’][’dest-node

D
graph.add_edge(*e)

#Using the networkx library to calculate shortest path

sp = nx.shortest_path(graph, src, dst)
return sp

#Function to find which node a host is connected to

def host_switch(hosts, IP):

>

79

for host in hosts:
if host[’networkAddress’] == IP:
switch = host[’nodelId’]
return switch#If an error is thrown here, you have to do a ’pingall’ on
mininet. This is caused by a bug in ODL
#Function to find which port of node a host is connected to
def host_port(hosts, IP):
for host in hosts:
if host[’networkAddress’] == IP:
switchport = host[’nodeConnectorId’]
return switchport#If an error is thrown here, you have to do a ’pingall
> on mininet. This is caused by a bug in ODL
#Function to fint port numbers for links between nodes
def find_ports(xml, headNode, tailNode):
links = xml[’topology’][0][’link’]
for link in links:
if link[’source’][’source-node’] == headNode and link[’destination’
][’dest-node’] == tailNode:
portId = link[’source’][’source-tp’]
return portIld
return None
#Function to add shortest path flows
def add_sp_flows(shortest_path, srcIP, dstIP):
flowlId = flowIdCounter
hardTimeOut, idleTimeOut = ’0’,°’0’
#Create flow rules to directly connected hosts from headnode and
tailnode
#HEAD
flowName = shortest_path[0] + ’to’ + srcIP
outPutPort = host_port(hosts, srcIP)
hostURL = confUrl+’opendaylight-inventory:nodes/node/’+shortest_path
[0]+’/table/0/flow/’+str(flowId)
#Because of a bug in ODL when updating flows we have to delete
#any flows with the same flow id:
restconf.delete(hostURL)
flow = flow_rule_base(flowName, ’0’, str(flowId), hardTimeOut,
idleTimeOut)
flow = add_flow_action_sp(flow, outPutPort)
flow = add_flow_match_sp(flow, srcIP)
XMLstring = etree.tostring(flow,pretty_print=True,xml_declaration=True,
encoding="utf-8", standalone=False)
restconf.put (hostURL, XMLstring)
#TAIL
flowIld = flowld + 1
flowName = shortest_path[-1] + ’to’ + dstIP
outPutPort = host_port(hosts, dstIP)
hostURL = confUrl+’opendaylight-inventory:nodes/node/’+shortest_path
[-1]+’/table/0/flow/’ +str(flowld)
restconf.delete(hostURL)
flow = flow_rule_base(flowName, ’0’, str(flowId), hardTimeOut,
idleTimeOut)
flow = add_flow_action_sp(flow, outPutPort)

80 A. TEST BED IMPLEMENTATION CODE

flow = add_flow_match_sp(flow, dstIP)
XMLstring = etree.tostring(flow,pretty_print=True,xml_declaration=True,
encoding="utf-8", standalone=False)
restconf.put (hostURL, XMLstring)
#For loop to create flow rules between all OF nodes end to end
for i in range(len(shortest_path)-1):
headNode = shortest_path[i]
tailNode = shortest_path[i+1]
flowId = flowld + 1
#Forward Flow
flowName = headNode + ’to’ + tailNode + ’IPto’ + dstIP
outPutPort = find_ports(get_topology(restconf.get(findTopology)),
shortest_path[i], shortest_path[i+1])
forwardURL = confUrl+’opendaylight-inventory:nodes/node/’+
shortest_path[i]+’/table/0/flow/’+str(flowId)
restconf.delete(forwardURL)
flow = flow_rule_base(flowName, ’0’, str(flowId), hardTimeOut,
idleTimeOut)
flow = add_flow_action_sp(flow, outPutPort)
flow add_flow_match_sp(flow, dstIP)
forwardXMLstring = etree.tostring(flow,pretty_print=True,
xml_declaration=True, encoding="utf-8", standalone=False)
restconf.put (forwardURL, forwardXMLstring)
#Backward Flow
flowName = tailNode + ’to’ + headNode + ’IPto’ + srcIP
outPutPort = find_ports(get_topology(restconf.get(findTopology)),
shortest_path[i+1], shortest_path[i])
backwardURL = confUrl+’opendaylight-inventory:nodes/node/’+
shortest_path[i+1]+’/table/0/flow/’+str(flowId)
restconf.delete(backwardURL)
flow = flow_rule_base(flowName, ’0’, str(flowlId), hardTimeOut,
idleTimeOut)
flow = add_flow_action_sp(flow, outPutPort)
flow = add_flow_match_sp(flow, srcIP)
backwardXMLstring = etree.tostring(flow,pretty print=True,
xml_declaration=True, encoding="utf-8", standalone=False)
restconf.put (backwardURL, backwardXMLstring)
#Function to build the base of a flow rule
def flow_rule_base(flowName, tablelId, flowId, hardTimeout, idleTimeout):
flow = etree.Element("flow")
flow.set(’x1lmns’, urn:opendaylight:flow:inventory’)
strict = etree.SubElement(flow, "strict")
strict.text = "false"
flow_name = etree.SubElement(flow, "flow-name")
flow_name.text = flowName
id = etree.SubElement(flow, "id") #ID of the flow
id.text = flowld
table_id = etree.SubElement(flow, "table_id") #ID of the table on that
switch
table_id.text = tableld
hard_timeout = etree.SubElement(flow, "hard-timeout")
hard_timeout.text = hardTimeout

81

idle_timeout = etree.SubElement(flow, "idle-timeout")
idle_timeout.text = idleTimeout

priority = etree.SubElement(flow, "priority")
priority.text = "1"

cookie = etree.SubElement(flow, "cookie")
cookie.text = "O"

barrier = etree.SubElement(flow, "barrier")
barrier.text = "false"

cookie_mask = etree.SubElement(flow, "cookie_mask")
cookie_mask.text = "255"

installHw = etree.SubElement(flow, "installHw")
installHw.text = "True"

#The Actions

instructions = etree.SubElement(flow, "instructions")
instruction = etree.SubElement(instructions, "instruction")
order_instruct = etree.SubElement(instruction, "order")
order_instruct.text = "O"

apply_actions = etree.SubElement(instruction, "apply-actions")
action = etree.SubElement(apply_actions, "action")
order_action = etree.SubElement(action, "order")

order action.text = "0"

#The Matches
match = etree.SubElement(flow, "match")
ethernet_match = etree.SubElement (match, "ethernet-match")
ethernet_type = etree.SubElement(ethernet_match, "ethernet-type")
type = etree.SubElement(ethernet_type, "type")
type.text = "2048"
return flow

#function to add a match field to a flow rule

def add_flow_match_sp(flow, destination):
mat = flow.xpath(’//match’)[0]
ipv4d = etree.SubElement(mat, ’ipv4-destination’)
ipv4d.text = destination
return flow

#Function to add an action to a flow rule

def add flow_action_sp(flow, port):
action = flow.xpath(’//action’)[0]
_act = etree.SubElement(action, ’output-action’)
onc = etree.SubElement(_act, ’output-node-connector’)
onc.text = port
ml = etree.SubElement(_act, ’max-length’)
ml.text = ’600°
return flow

#Function to exclude node from path calculation

def exclude_switch_spf(nonSwitch, topology, src, dst):
graph = nx.Graph()
nodes = topology[’topology’][0][’node’]
#nodes.remove (nonSwitch)
links = topology[’topology’][0][’1link’]
for node in nodes:

82 A. TEST BED IMPLEMENTATION CODE

graph.add_node(node[’node-id’])

for link in links:
e = (link[’source’][’source-node’], link[’destination’][’dest-node’
D
graph.add_edge(*e)
graph.remove_node(nonSwitch)
sp = nx.shortest_path(graph, src, dst)
return sp
#Function to delete old flow rules when moving a flow
def move_delete_old(srcIP, destIP):
nodes = restconf.get_topology(restconf.get(findTopology)) [’ topology’
1[0][’node’]
for node in nodes:
tables = restconf.get(’http://192.168.231.250:8080/restconf/
operational/opendaylight-inventory:nodes/node/’+node[’node-id’
D
flowTables = json.loads(tables)
try:
for table in flowTables[’node’][0][’flow-node-inventory:table’
1:
if table[’opendaylight-flow-table-statistics:flow-table-
statistics’][’opendaylight-flow-table-statistics:active
-flows’] != 0:
try:
flowRules = restconf.get(confUrl+’opendaylight-
inventory:nodes/node/’+node[’node-id’]+’ /table/
’+str(table[’flow-node-inventory:id’]))
rules = json.loads(flowRules)
for rule in rules[’flow-node-inventory:table’][0][’
flow-node-inventory:flow’]:
if rule[’flow-node-inventory:match’][’flow-node
-inventory:ipv4-destination’] == srcIP:
tableID = str(table[’flow-node-inventory:id
D
flowID = str(rule[’flow-node-inventory:id’
D
url = confUrl+’opendaylight-inventory:nodes
/node/’+node[’node-id’]+’ /table/’ +
tableID+’ /flow/’+flowID
restconf.delete(url)
elif rule[’flow-node-inventory:match’][’flow-
node-inventory:ipv4-destination’] == destIP

tableID = str(table[’flow-node-inventory:id
D

flowID = str(rule[’flow-node-inventory:id’
D

url = confUrl+’opendaylight-inventory:nodes
/node/’+node[’node-id’]+’ /table/’ +
tableID+’ /flow/’+flowID

restconf.delete(url)

83

except ValueError:
pass
except KeyError:
pass

#Main program
def program():
answer = frontend.main_menu()

if answer == ’addFlow’:
answer = frontend.show_act_mat()
if answer == ’addFlow’:

_node, _tableld, _flowId, _flowName, _hardTimeOut, _idleTimeOut
= frontend.add_flow_gui()

newFlow = flow_rule_base(_flowName, _tableId, _flowId,
_hardTimeOut, _idleTimeOut)

newFlow = frontend.add_actions(newFlow)

newFlow = frontend.add_matches(newFlow)

print etree.tostring(newFlow, pretty_print=True,xml_declaration
=True, encoding="utf-8", standalone=False)

print restconf.put(confUrl+’opendaylight-inventory:nodes/node/
openflow:1/table/’+_tablelId+’/flow/’+_flowld, etree.
tostring(newFlow, xml_declaration=True, encoding="utf-8",
standalone=False))

elif answer == ’spfFlow’:

srcHost, destHost = frontend.get_ip_spf()

shortest_path = get_sp(get_topology(restconf.get(findTopology))
, host_switch(hosts, srcHost), host_switch(hosts, destHost)
)

print "The shortest path between host %s and %s follows the
following path:\n" % (srcHost,destHost) +str(shortest_path)

print "Would you like to add this flow? (y/n) "

answer = frontend.yes_no()

if answer == ’y’:
add_sp_flows(shortest_path, srcHost, destHost)
print "Your shortest path flow is added to the switches"

else:
pass
else:
pass
elif answer == ’lookFlows’:
print json.dumps(frontend.view_flows(), indent=2)
print ’\n’
frontend.main_menu()
elif answer == ’delFlow’:
frontend.del_flow()
elif answer == ’moveFlow’:

nonSwitch, srcHost, destHost = frontend.move_flow()

topo = get_topology(restconf.get(findTopology))

newPath = exclude_switch_spf(nonSwitch, topo, host_switch(hosts,
srcHost), host_switch(hosts, destHost))

print ’The new path is: ’+str(newPath)

84 A. TEST BED IMPLEMENTATION CODE

move_delete_old(srcHost,destHost)
add_sp_flows(newPath, srcHost, destHost)
else:
pass
program()

program()

85

frontend.py

import restconf

import json

from 1xml import etree

#Base URLs for Config and operational

baseUrl = ’http://192.168.231.250:8080’

confUrl = baseUrl + ’/restconf/config/’

operUrl = baseUrl + ’/restconf/operational/’

findTopology = operUrl + ’/network-topology:network-topology/topology/flow

11/’
actionsTxt = open(’actions.txt’, ’r’)
matchesTxt = open(’matches.txt’, ’r’)

#Function to view flows in the topology
def view flows():
print ’On which switch do you want to look at the flows?’
print ’Type in the number of the switch (as listed):’
nodes = restconf.get_topology(restconf.get(findTopology)) [’ topology’
1[0][’node’]
for node in nodes:
print node[’node-id’]
answer = raw_input(’> ’)
print ’Type in the number of the table you would like to look at:’
answer2 = raw_input(’>)
content = restconf.get(’http://192.168.231.250:8080/restconf/config/
opendaylight-inventory:nodes/node/openflow: ’+answer+’/table/’ +
answer2+’/’)
flows = json.loads(content)
return flows[’flow-node-inventory:table’][0][’flow-node-inventory:flow’
]
#User input yes or no
def yes_no():
answer = raw_input(’ >’)
return answer
#Function to delete a flow manually
def del flow():
print ’On which node do you want to delete a flow?’
node = raw_input(’> ’)
print ’In which table of node ’+node+’ do you want to delete a flow?’
table = raw_input(’> ’)
print ’what is the flow id for the flow you want to delete?’
flowld = raw_input(’> ’)
print ’Do you really want to delete flow ’+flowId+’ in table ’+table+’
on node ’+node+’ ? (y/n)’
answer = raw_input(’> ’)
if answer == ’

>

yo:
url = confUrl+’opendaylight-inventory:nodes/node/openflow: ’+node+’/
table/’+table+’/flow/’+flowId
print restconf.delete(url)
elif answer == ’
del_flow()
else:
print ’You answered gibberish! Try again’

>

n°:

86 A. TEST BED IMPLEMENTATION CODE

del_flow()
#User input for host source and destination addresses
def get_ip_spf():
srcHost = raw_input(’Type IP of Source host > ’)
destHost = raw_input(’Type IP of destination host >’)
return srcHost, destHost

def show_act_mat():
print ’\nYou chose to add a flow. Would you like to see your possible
match and action fields? Type in number:’
print ’1. Show actions’
print ’2. Show instructions’
print ’3. Show both’
print ’4. Add manual flow’
print ’5. Add SPF flow’
answer = raw_input(’> ’)
if answer == ’1°’:
print actionsTxt.read()
show_act_mat ()
elif answer == ’27:
print matchesTxt.read()
show_act_mat()
elif answer == ’3’:
print actionsTxt.read()
print matchesTxt.read()
show_act_mat()
elif answer == ’4’:
return ’addFlow’
elif answer == ’5°:
return ’spfFlow’
else:
print ’You answered gibberish! Try again’
show_act_mat ()
return None
#User input for flow specifics
def add_flow_gui():
print ’You chose to add a flow. Please answer these parameters’
print ’First the RESTConf specific parameters. E.g: /opendaylight-
inventory:nodes/node/openflow:1/table/0/flow/1’
node = raw_input(’Node? > ’)
table = raw_input(’Table? > ’)
flowld = raw_input(’Flow number? > ’)
print ’Then the flow specifics:’
flowName = raw_input(’FlowName? > ’)
hardTimeOut = raw_input(’Hard Time Out? > ’)
idleTimeOut = raw_input(’Idle Time Out? > ’)
return node, table, flowld, flowName, hardTimeOut, idleTimeOut

#User input for actions
def add_actions(xml):

print ’You need to add some actions to your flow’

i = int(input(’How many actions do you need to add? > ’))

print ’write in your actions. Remember that they are:
print actionsTxt.read()
while (i > 0):

>

j = str(i)
act = raw_input(’Action ’+j+’ >)
if act == ’output-action’:
print °’ You need to add some subelements to that one:’
print °’ physical port #, ANY, LOCAL, TABLE, INPORT, NORMAL,
FLOOD, ALL, CONTROLLER’
output_node_connector = raw_input(’ >)
print °’ And max length:’
max_length = raw_input(’ >)

action = xml.xpath(’//action’)[0]
_act = etree.SubElement(action, act)

onc = etree.SubElement(_act, ’output-node-connector’)

onc.text = output_node_connector
ml = etree.SubElement(_act, ’max-length’)
ml.text = max_length
else:
action = xml.xpath(’//action’)[0]
etree.SubElement (action, act)
i=1i-1
return xml
#User input for matches
def add_matches(xml):
mat = xml.xpath(’//match’)[0]
print ’You need to add some matches to your flow’

i = int(input(’How many matches do you need to add? > ’))

print ’write in your matches. Remember that they are:
print matchesTxt.read()
while (i > 0):

>

j = str(i)
match = raw_input(’Match ’+j+’ > ’)
if match == ’ethernet-match’:
print °’ The default Ethernet type is 2048. Do you need to

change this? (y/n)’
answer = raw_input(’ >7)

3,0

if answer == ’y’:
e_type = xml.xpath(’//ethernet-type’)[0]
else:
pass
print °’ You need to add some subelements to that one:’
print °’ Source address? (y/n)?’

ethernet_match = xml.xpath(’//ethernet-match’)[0]

answer = raw_input(’ >7)
if answer ==’

>

y o

es = etree.SubElement(ethernet_match, ’ethernet-source’)
es_address = etree.SubElement(es, ’address’)

address = raw_input(’ Address >’)
es_address.text = address

87

88 A. TEST BED IMPLEMENTATION CODE

else:
pass
print °’ Destination address? (y/n)’
answer == raw_input(’ >7)
if answer == ’y’:
ed = etree.SubElement(ethernet_match, ’ethernet-destination
)
ed_address = etree.SubElement(ed, ’address’)
address = raw_input(’ Address >’)
ed_address.text = address
else:
pass
elif match == ’ipv4-destination’:
answer = raw_input(’ Address >’)
ipv4d = etree.SubElement(mat, match)
ipv4d.text = answer
elif match == ’ipv4-source’:
answer = raw_input(’ Address >’)
ipv4s = etree.SubElement(mat, match)
ipv4s.text = answer
elif match == ’tcp-source-port’:
answer = raw_input(’ Address >’)
tcpsp = etree.SubElement(mat, match)
tcpsp. text = answer
elif match == ’tcp-destination-port’:
answer = raw_input(’ Address >’)
tcpdp = etree.SubElement(mat, match)
tcpdp.text = answer
elif match == ’udp-source-port’:
answer = raw_input(’ Address >’)
udpsp = etree.SubElement(mat, match)
udpsp.text = answer
elif match == ’udp-destination-port’:
answer = raw_input(’ Address >’)
udpdp = etree.SubElement(mat, match)
udpdp.text = answer
elif match == ’vlan-match’:
answer = raw_input(’ VLAN ID >’)
vlanm = etree.SubElement(mat, match)
vlanid = etree.SubElement(match, ’vlan-id’)
vlanid_ = etree.SubElement(vlanid, ’vlan-id’)
vlanid_.text = answer
vlanidpresent = etree.SubElement(_vlanid, ’true’)
answer = raw_input(’ VLAN PCP >’)
vlanpcp = etree.SubElement(match, ’vlan-pcp’)
vlanpcp.text = answer
elif match == ’tunnel’:
answer = raw_input(’ Tunnel ID >’)
tunnel = etree.SubElement(mat, match)
tunnelid = etree.SubElement(match, ’tunnel-id’)
tunnelid.text = answer
else:

pass
i=1-1
return xml
#User input used when moving a tunnel
def move_flow():
print ’Between which hosts do you want to move the tunnel?’
srcHost = raw_input(’Source host >’)
destHost = raw_input(’Destination host >’)
print ’Choose node to exclude from SPF calculation:’
nonSwitch = raw_input(’ >’)
return nonSwitch, srcHost, destHost

#Main meno for the UI
def main_menu():
print "Welcome, what would you like to do? Type in number:"
print "1. Add Flow"
print "2. Look at flows"
print "3. Delete flows"
print "4. Move a flow"
answer = raw_input(’> ’)

if answer == ’1’:
return ’addFlow’
elif answer == ’2’:

print ’You chose to look at flows’
return ’lookFlows’

elif answer == ’3°:
print ’You want to delete a flow’
return ’delFlow’

elif answer == ’4’:
print ’You want to move a flow’
return ’moveFlow’

else:
print ’You answered gibberish! Try again’
main_menu()

89

90 A. TEST BED IMPLEMENTATION CODE

restconf.py

import sys
import json
import httplib2

#Base URLs for Config and operational
baseUrl = ’http://192.168.231.250:8080’
confUrl = baseUrl + ’/restconf/config’
operUrl = baseUrl + ’/restconf/operational’

#"0Old" REST APIs that still are used
sdSalUrl = baseUrl + ’/controller/nb/v2/’

#Specific REST URLs

findNodes = operUrl + ’/opendaylight-inventory:nodes/’

findTopo = operUrl + ’/network-topology:network-topology/’

findNodeConnector = operUrl + ’/opendaylight-inventory:nodes/node/node-
connector/’

findTopology = operUrl + ’/network-topology:network-topology/topology/flow
11/

findFlow = confUrl +’/opendaylight-inventory:nodes/node/openflow:1/table/0/

>

findTopology = operUrl + ’/network-topology:network-topology/topology/flow

:1/’
h = httplib2.Http(".cache")
h.add_credentials(’admin’, ’admin’)

#GET function. Retrieve information
def get(url):
resp, xml = h.request(

url,

method = "GET",

headers = {’Content-Type’ : ’application/xml’}
)

return xml
#Put function.
def put(url, body):
resp, content = h.request(

url,
method = "PUT",
body = body,

> >

headers = {’Content-Type
application/xml’}

’application/xml’, ’Accept’:

)
return resp, content
#DELETE function
def delete(url):
resp, content = h.request(
url,
method = "DELETE"
)

return resp

91

#Find active hosts
def get_active_hosts():
resp, content = h.request(sdSalUrl + ’hosttracker/default/hosts/active/
>, "GET")
hostConfig = json.loads(content)
hosts = hostConfig[’hostConfig’]
return hosts
#Find topology
def get_topology(xml):
topology = json.loads(xml)
nodes = topology[’topology’][0][’node’]
links = topology[’topology’][0][’1link’]
return topology

92 A. TEST BED IMPLEMENTATION CODE

actions.txt

Possible actions ###H#HH#H
- dec-nw-ttl
- dec-mpls-ttl
- output-action
* output-node-connector (physical port #, ANY, LOCAL, TABLE, INPORT,
NORMAL, FLOOD, ALL, CONTROLLER)
* max-length
- flood-all-action
- drop-action

https://jenkins.opendaylight.org/openflowjava/job/openflowjava-verify/ws/
openflow-protocol-api/target/site/restconf/openflow-action.html#output
HAEHHHHHHHHHRHH AR AR H AR AR

matches.txt

H#i##### Possible Matches ######
- inport (<in-port>0</in-port>)
- ethernet-match
* ethernet-type
- type
ethernet-source
- address (<address>00:00:00:00:00:01</address>)
ethernet-destination
- address
- ipv4-destination (<ipv4-destination>10.0.1.1/24</ipv4-destination>)
- ipv4-source
- ipv6-destination
- ipvé6-source
- ipvo6-label
* ipve-flabel
- ipv6-ext-header
* ipvé6-exthdr
- ip-match
* ip-protocol (<ip-protocol>56</ip-protocol>)
ip-dscp (<ip-dscp>15</ip-dscp>)
ip-ecn (<ip-ecn>1</ip-ecn>)
- icmpv4-match
* icmpv4-type
icmpv4-code
- icmpv6-match
* icmpvé6-type
icmpv6-code
- tcp-source-port
- tcp-destination-port
- udp-source-port
- udp-destination-port
- arp-op
- arp-source-transport-address
- arp-target-transport-address
- arp-source-hardware-address
* address
- arp-taget-hardware-address
* address
- vlan-match
* vlan-id
- vlan-id
- vlan-id-present (<vlan-id-present>true</vlan-id-present>)
vlan-pcp
- protocol-match-fields
* mpls-label
mpls-tc
mpls-bos
- metadata
* metadata (<metadata>12345</metadata>)
* metadata-mask (<metadata-mask>//FF</metadata-mask>)

*

*

*

*

*

*

*

*

*

93

94 A. TEST BED IMPLEMENTATION CODE

- tunnel
* tunnel-id

https://jenkins.opendaylight.org/controller/job/controller-merge/
lastSuccessfulBuild/artifact/opendaylight/md-sal/model/model-flow-base/
target/site/models/opendaylight-match-types.html
HAHHAHHAHHHRHHAHHAHHHAHHAHH

Example Topology Script for Mininet

This appendix includes the script used to build the Mininet topology used in the test bed.

mn-script.py

#!/usr/bin/python
#Library import

from
from
from
from
from
from
from
from

subprocess import call

mininet.topo import Topo

mininet.net import Mininet

mininet.node import Controller, RemoteController, OVSKernelSwitch
mininet.cli import CLI

mininet.log import setLogLevel

mininet.link import Link, TCLink

mininet.util import irange

def federatedNet():
net = Mininet(controller=RemoteController, 1ink=TCLink, switch=

OVSKernelSwitch)

print "*** Creating Nodes ***"

print "*** Adding remote controller ***"

#Add a remote controller for MN to connect to

c0 = net.addController(’c0’, ip=’192.168.231.250’, port=6633)

print '

1k ok PEEAl

Adding switches

#Add 5 switches
switches = [net.addSwitch(’s%s’ % s) for s in irange(1, 5)]
print switches

print "*** Adding hosts

PEEAl

#Add two hosts to the topology
hosts = {}
for h in irange(1, 2):

globals()[’h’+str(h)] = net.addHost(’h%s’ % h, mac=’
00:00:00:00:00:0%s’ % h, ip=’10.0.0.%s/8’ % h)

#Configure switches for OF1.3 capabilities
switches[0].cmd(’ovs-vsctl set Bridge s1 protocols=OpenFlowl13’)

95

96 B. EXAMPLE TOPOLOGY SCRIPT FOR MININET

switches[1].cmd(’ovs-vsctl set Bridge s2 protocols=OpenFlowl3’)
switches[2].cmd(’ovs-vsctl set Bridge s3 protocols=OpenFlowl3’)
switches[3].cmd(’ovs-vsctl set Bridge s4 protocols=OpenFlowl3’)
switches[4].cmd(’ovs-vsctl set Bridge s5 protocols=OpenFlowl3’)
print "*** Add links between switches ***"

#Create links between switches
net.addLink(switches[0],switches[1])
net.addLink(switches[0],switches[2])
net.addLink(switches[2],switches[3])
net.addLink(switches[3],switches[4])
net.addLink(switches[1],switches[4])

print "*** Add links to hosts ***"

#Add links to connect hosts to switches
net.addLink(switches[0],h1)

net.addLink(switches[4],h2)

#Build and start the network

net.build()

net.start()

CLI(net)
net.stop()

>

if name__ == ’__main__
setLogLevel(’info’)
federatedNet ()

>,

XML Data from Validation and Testing

These listings are XML data collected during the validation phase. Parts of the XML response
has been omitted for readability with a %[...] comment:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<table
xmlns="urn:opendaylight:flow:inventory">
<flow>
%[...]
<flow-name>openflow: 2toopenflow:5IPt010.0.0.2</flow-name>
<id>103</id>
<table_id>0</table_id>
%[...]
<instructions>
%[...]
</instructions>
<match>
%[...]
<ipv4-destination>10.0.0.2</ipv4-destination>
</match>
</flow>
<flow>
%[...]
<flow-name>openflow: 2toopenflow:1IPt010.0.0.1</flow-name>
<id>102</id>
<table_id>0</table_id>
%[...]
<instructions>
%[...]
</instructions>
<match>
%[...]
<ipv4-destination>10.0.0.1</ipv4-destination>
</match>
</flow>
</table>

Listing C.1: Flow Rules on Node openflow:2 Before Move

97

98 C. XML DATA FROM VALIDATION AND TESTING

‘No data exists.

Listing C.2: Flow Rules on Node openflow:3 Before Move

‘No data exists.

Listing C.3: Flow Rules on Node openflow:2 After Move

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<table
xmlns="urn:opendaylight:flow:inventory">
<flow>
%[...]
<flow-name>openflow:3toopenflow:1IPto10.0.0.1</flow-name>
<id>102</id>
<table_id>0</table_id>
%[...]
<instructions>
%[...]
</instructions>
<match>
%[...]
<ipv4-destination>10.0.0.1</ipv4-destination>
</match>
</flow>
<flow>
%[...]
<flow-name>openflow:3toopenflow:4IPto10.0.0.2</flow-name>
<id>103</id>
<table_id>0</table_id>
%[...]
<instructions>
%l...]
</instructions>
<match>
%l...]
<ipv4-destination>10.0.0.2</ipv4-destination>
</match>
</flow>
</table>

Listing C.4: Flow Rules on Node openflow:3 After Move

	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Introduction
	Motivation
	Derived Problem Description
	Thesis structure

	Theory
	SDN
	OpenFlow
	Northbound APIs
	Slicing in SDN
	Google's SDN Use Case

	Inter-Domain State Distribution in SDN
	MPLS-TE
	MPLS-TE Protection Schemes

	Introduction to Policies
	Federated Military Networks
	Mission Networks
	Protected Core Networking

	Discussion
	SDN in a Federated Environment
	Relevant Policy Categories
	Category 1: Best Effort and Robustness
	Category 2: Allocate Network Resources

	Partial Conclusions

	Design
	Drop Low-Priority Packets
	Re-assign Tunnels
	Solution in SDN
	Comparison: Cisco MPLS-TE

	Chosen Design for Implementation

	Implementation
	Possible SDN Controllers
	OpenDaylight

	Network Emulation
	Detailed Review of the Selected Implementation
	Network Emulation in Mininet
	SDN Controller
	Policy Application

	Testing and Validation

	Experiences From Implementation
	Placement of the Policy Application
	OpenDaylight Complexity
	Problem with Mininet 2.1

	Conclusions
	Future Work

	References
	Test Bed Implementation Code
	Example Topology Script for Mininet
	XML Data from Validation and Testing

