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The Reassigned Pseudo Wigner-Ville Transform in

Electrochemical Noise Analysis

Ivana Jevremovic,∗ and Andreas Erbe

Several different time-frequency transforms from signal processing were used to analyze electro-

chemical noise data to determine frequency components contained within the noise record and

their time evolution. Bilinear time-frequency representations (TFR) based on the Wigner-Ville dis-

tribution (WVD) were compared with a special focus on the reassigned smoothed pseudo WVD

(RSPWVD). Spectra obtained with WVD were compared with traditional linear time-frequency rep-

resentations, such as short time Fourier transform and wavelet transform. Comparison to other

TFRs showed that the RSPWVD suppressed artifacts, provided better resolution of the time-

frequency analysis in both time and frequency domains, and improved the overall readability of a

representation. The obtained spectra from RSPWVD were consistent with the results from DWT,

but permitted a more comprehensive analysis of transients. Consequently, RSPWVD is suitable

for electrochemical noise analysis. In the presence of Cl−, RSPWVD showed that the passivity of

Al was compromised, as evidenced by the presence of various current transients in the frequency

range from 10−2 to 1 Hz.

1 Introduction

Electrochemical noise (EN) measurement is a noninvasive in situ
electrochemical method that has the potential to deliver com-
plimentary information about different electrochemical processes
not available by other classical electrochemical methods. EN has
been used for characterization and corrosion monitoring,1,2 as a
nondestructive diagnosis tool for fuel cells,3–5 for batteries,6,7 for
the evaluation of catalyst performance,8–10 and for characteriza-
tion of electroplating processes.11–13 In particular, in corrosion,
EN should offer the intrinsic time and frequency scales that are
observed in and relevant for the corrosion process.

EN data can be obtained in different ways as the fluctuations
of potential and current under open circuit conditions, or under
anodic or cathodic polarization of the working electrode.14,15 EN
data offers a lot of information about reaction mechanisms that
is by no means straightforward, easy to classify and understand.
Data can be analyzed in the time, frequency or time-frequency
domain. Characterization in the time domain can be performed
using sequence-independent methods such as moments, standard
statistical parameters, skew, kurtosis, or root mean square.16,17

On the other hand, for the presentation of the spectrum and to es-
timate the amplitudes of the different components in the analyzed
signal, data is analyzed by application of fast Fourier transfor-
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mation (FFT) or the maximum entropy method (MEM).18,19 EN
enables an identification of corrosion types occurring on the elec-
trode surface, of corrosion mechanisms and of kinetics from the
calculation of different parameters such as noise resistance, lo-
calization index, power spectral density (PSD) and spectral noise
resistance, which can be compared with the magnitude of the
electrochemical impedance at the same frequency.20

Time-frequency representations provide a powerful tool for the
analysis of EN data. The aim of a joint time-frequency analysis is
to directly represent the frequency content of the noise data while
still keeping the time description parameter. In time-frequency
analysis of EN data, different methods have been used, such as the
short-time Fourier transform (STFT),21,22 and the wavelet trans-
form.23,24 Recently, the Hilbert-Huang transform has been em-
ployed for the decomposition of individual transients into their in-
stantaneous frequencies.25,26 Corrosion processes are often non-
stationary and nonlinear, and consequently characterized by a DC
drift of the signal. The presence of a baseline trend in EN data
can also be the result of a slow alteration of the system caused
by changes in its chemical composition (e.g. solvation, species
dissolution), small fluctuations in the temperature or increasing
asymmetry between working electrodes. The problem is partic-
ularly complicated when dealing with low intensity signals. For
instance, passive electrodes are polarizable and hence more sus-
ceptible to potential fluctuations.

Unless baseline wander is removed prior to further analysis,
the low frequency drift will dominate the data and mask impor-
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tant information. The choice of the method is known as one of the
most challenging problems in EN analysis.27 Many procedures to
remove drift have been presented so far, including linear trend
removal,28 polynomial fitting, digital filtering,29 wavelet trans-
form, empirical mode decomposition,30 or employment of a dis-
crete version of the Wiener-Khinchin theorem.31 Nevertheless, se-
lecting the ideal method to deal with the baseline problem and to
distinguish the drift from the useful information remains open.

The purpose of this paper is to evaluate the suitability of a time-
frequency decomposition based on the Wigner-Ville distribution
(WVD) for the analysis of EN signals by comparing it to linear
time-frequency methods for spectral estimation of EN. WVD is the
Fourier transform of instantaneous autocorrelation function of a
signal and was first introduced by Wigner in quantum mechanics
and was reintroduced by Ville for signal analysis.32–34 WVD has
been established in other branches of science which rely heavily
on noise analysis as the quasi standard to conduct such analyses.
In this work, the theoretical mathematical background of differ-
ent time-frequency methods is reviewed first in order to make the
later parts understandable. At the same time, different practical
advantages and disadvantages of the different methods shall be
briefly described. It is to be understood, however, that this treat-
ment cannot replace a deeper reading of the references cited there
if one wants to apply these techniques. In electrochemistry, WVD
was previously employed only to a limited extend for the quan-
titative analysis of the stationarity of EN data and to investigate
the process of electrodissolution of metals.22

EN records used in this paper were obtained on AA1080 and
AA6016 in a range of solutions and immersion times at open
circuit potential (OCP) in order to compare extracted parame-
ters with known features from pit formation and repassivation in
these systems.

2 Theoretical background of time-

frequency transforms

2.1 General considerations

Joint time-frequency distribution shows how the “energy” of a
signal is distributed over time and frequency.∗ Energy E of the
signal x(t) as function of time t can be calculated by integration
of either the instantaneous power |x (t) |2 over time,35

E = ∫
+∞

−∞

|x (t) |2dt, (1)

or the energy spectral density |X (f ) |2 over the frequency35,

E = ∫
+∞

−∞

|X (f ) |2df . (2)

A real signal x(t) exhibits Hermitian symmetry between the
positive-frequency and negative-frequency components of its
spectrum. The power spectral density, S(f ), of a signal is defined

∗This work follows the terminology used in signal processing, in which “power” is

the squared modulus of the signal, and “energy” the integral over the signal with

time as defined in eq. (1). In other words, power and energy in this context are not

the physical quantities of energy and power.

as the Fourier transform of its auto-correlation function R (�),

S (f ) = ∫
+∞

−∞

R (�)−✐2�f� d�, (3)

with lag time � and ✐ =
√
−1. R (�) is the kernel for the WVD,

which will be used later throughout this paper.

One can thus define a joint time-frequency energy density
�(t,f ), the integration of which also yields the energy,

E =∬
+∞

−∞

� (t,f )dtdf (4)

The joint time-frequency energy density must satisfy the marginal
conditions

|X (f ) |2 = ∫
+∞

−∞

� (t,f )dt (5)

and

|x (t) |2 = ∫
+∞

−∞

� (t,f )df , (6)

which indicate that the integration of the joint time-frequency
energy density over the frequency gives the square modulus of
the signal, |x (t) |2, instantaneous power, and the integration over
the time gives the energy spectrum, |X (f ) |2.36

2.2 Short-time Fourier transform (STFT)

The extensively used STFT method is a linear time-frequency rep-
resentation that decomposes signals by taking Fourier transforms
over a sliding time window as37

STFT (t,f ) =X (�,f ) = ∫
+∞

−∞

x (t)ℎ (t− �)−✐2�ftdt (7)

where ℎ (t) is a short time analysis window centered around t = 0

and � = 0. The frequency resolution can be defined as the spac-
ing between data points in frequency, while the adequate time-
frequency resolution is achieved by choosing the proper window
length about the same size as the time-invariance of the indi-
vidual signal components.Time-frequency resolution of STFT is
governed by the Heisenberg uncertainty principle.32 Due to this
relationship, high spectral resolution can only be achieved with
relatively long windows, which inevitably results in a loss of tem-
poral resolution. STFT has low computational complexity and can
be used to determine the general time-frequency structure of the
noise signal.

2.3 Wavelet transform (WT)

A wavelet is an oscillatory, finite length, real or complex function
of zero mean. The WT method is also a linear time-frequency
representation where a short time oscillating function  (t) desig-
nated as “mother wavelet” is used instead of short time analysis
window ℎ(t). The integral wavelet transform of the signal can be
written as

W Tx (t,a) =
1

√
a ∫

+∞

−∞

x (�) 
(
t− �

a

)
d�, (8)
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where � is time translation, a is time dilation and 1∕
√
a is a nor-

malization factor.38 Compression and expansion of the mother
wavelet are referred to as “scaling”, where a is the scale parame-
ter, which acts as a pseudo-frequency. It shrinks or stretches the
wavelet as it is translated along time, leading to a variable reso-
lution. The squared modulus of WT, referred to as ”scalogram”,
reveals the energy distribution in the scale-time plane.

In electrochemistry, continuous wavelet transform (CWT) and
discrete wavelet transform (DWT) are often applied as tools for
denoising, baseline drift removal and separation of overlapping
transients.23,39 The most relevant feature of WT is its capability of
decomposing EN records into a sum of scaled and shifted versions
of the wavelet function called wavelet coefficients, which contain
information, e.g., about corrosion events occurring on different
timescales. The time record xn, (n= 1,… ,N) is decomposed using
a linear combination of functions which are derived from the fa-
ther wavelets Φi,k and the mother wavelets  i,k through scaling
and translation as

x (t) =
∑

i

d1,k 1,k (t)+d2,k 2,k (t)+…+di,k i,k (t)+ai,kΦi,k (t) , (9)

where ai,k ,d1,1 ,… ,di,k are the wavelet coefficients, k =

1,2,… ,N∕2i, and i= 1,2,… , I , where I is a small natural number
which depends on the number of analysed data N and the func-
tions which are derived from the father wavelets and the mother
wavelets.

The mother and father wavelets are given as

 i,k (t) = 2
−
i

2 

(
t−2ik

2i

)
, (10)

and

Φi,k (t) = 2
−
i

2Φ

(
t−2ik

2i

)
. (11)

The signal can also be decomposed into partial signals, known
as “crystals”,

x (t) =D1 (t)+D2 (t)+…+Di (t)+Ai (t) (12)

where D1(t),…Di(t) are crystals that can be obtained by inverse
DWT. Crystals are partial signals that describe x(t) on a particular
timescale covering a specific frequency range. The approxima-
tion signal Ai(t) contains the general trend of the signal and by
subtracting it from x(t) one eliminates the DC drift from the time
record. The “fast wavelet transform” algorithm is used for the
computation of DWT in practice. Signals are analyzed at differ-
ent scales by using different low-pass and high-pass filters. The
high frequency component of the signal (the detail) is collected
through a series of high-pass filters, while the application of series
of low-pass filters is used to retain the low frequency component.
After filtering and down-sampling the signal is decomposed into
the detail coefficients, d1,d2… ,dI and the smooth coefficients aI ,
containing the information about the local fluctuations and the
general trend of the signal, respectively. The scale range that cov-
ers certain crystals can be approximated as

(D
(i)
1
,D

(i)
2
) ≈ 2iΔt,2i−1Δt (13)

where Δt is the sampling interval and i is the crystal level.
The scale range can be used to approximate pseudo-frequencies,
� = �0∕a, where a is a scale, and �0 is the central frequency
(�0=0.7143 Hz for db4 wavelets).24 The energy content of each
scale normalized to the total energy in the signal can display
the dominant corrosion events occurring in the investigated sys-
tem.30,40,41 The energy of the whole signal is42

E =

N∑

n=1

x2
n
. (14)

The energy contained within detail and approximation coeffi-
cients, respectively, is42

E
(d)
i

=
1

E

N

2i∑

n=1

d2
i,n

i = 1...I (15)

where i stands for the corresponding crystal, and

E
(a)
I

=
1

E

N

2i∑

n=1

a2
I,n

. (16)

Because the chosen wavelets are orthogonal, the equation

E = E
(a)
I

+

I∑

i=1

E
(d)
i

(17)

is satisfied.

2.4 Wigner-Ville distribution

Time-frequency representations can be expressed in terms of the
general family of bilinear time-frequency distribution representa-
tions known as Cohen’s class representations,43

� (t,f ) = (18)

∭
+∞

−∞

e✐2��(u−t)Ω(�,�)xa

(
u+

�

2

)
xa

∗
(
u−

�

2

)−✐2�f�
d�dud�,

where Ω(�,�) is the parameterization function that determines
the characteristics of the time-frequency distribution, and ∗ in-
dicates the complex conjugate. The properties of a particular
distribution are reflected by constraints on the kernel. Cohen’s
class includes a large number of the existing time-frequency en-
ergy distributions. The WVD (and all of Cohen’s class of distri-
butions) uses a variation of the autocorrelation function where
time remains in the result, called instantaneous autocorrelation
function. The WVD is obtained by setting Φ(�,�) = 1. In this rep-
resentation, x (t) is used in the form of its analytic associate xa (t),
which is defined by its Hilbert transform H[x(t)] and presents a
signal without negative frequency components,44,45

xa (t) = x (t)+✐H [x (t)] . (19)

Because of the Hermitian symmetry, no information is lost in the
transformation process. The Hilbert transform is used for obtain-
ing the instantaneous envelope and frequency (IF) of a time se-
ries. The IF is a basic parameter which may be used to describe

1–12 | 3



the nonstationarity in a process and can be defined as the time
rate of change in the instantaneous phase angle.46 WVD is actu-
ally the Fourier transform of the signal’s autocorrelation function
with respect to the time delay variable,

W VDx (t,f ) = ∫
+∞

−∞

xa

(
t+

�

2

)
xa

∗
(
t−

�

2

)−✐2�f�
d�. (20)

WVD gives the energy density of various frequency components
at given times. A WVD is always real-valued, time and frequency
covariant and satisfies the marginal properties given in eq. (5)
and (6). The main drawback of this time-frequency transform is
generation of cross-terms. Cross-terms are artifacts that appear in
the WVD and falsely indicate the existence of signal components
between actual signals. Their presence can hinder the readabil-
ity of the obtained spectra, but they also contain some additional
information about the investigated signal. The major motivation
for smoothing the WVD is that many of the cross-terms are sup-
pressed.37

The pseudo-WVD (PWVD) can be represented as a WVD
smoothed with a short time window ℎ(�),

PW V Dℎ,x (t,f ) = ∫
+∞

−∞

xa

(
t+

�

2

)
xa

∗
(
t−

�

2

)
ℎ (�)−✐2�f� d�

(21)
The window width should be smaller than the typical scale of
the fluctuation of interest. Likewise, the smoothed pseudo WVD
(SPWVD) almost completely suppresses cross-terms artifacts but
with lower resolution compared to the original WVD. Here, an
additional window function is added so that smoothing in time
and frequency can be adjusted independently,

SPW V Dg,ℎ,x (t,f ) =

∬
+∞

−∞

xa

(
t+

�

2

)
xa

∗
(
t−

�

2

)
g (�)ℎ (�)−✐2�f� d�d�, (22)

where � is the frequency offset, g (�) is the time smoothing win-
dow and ℎ (�) the frequency smoothing window. Compared to the
WVD the cross-terms will be attenuated, but some properties of
the WVD will be lost, such as the marginal properties, the unitar-
ity, and also the frequency-support conservation.47

In order to further improve the spectra in terms of readability,
a reassignment-based methodology was proposed.37 To further
describe this method, it is convenient to express Cohen’s class as

�x (t,f ) =∬
+∞

−∞

Π(u− t, �−f )W VDx (u,�)dud�, (23)

where the arbitrary kernel Π(�,�) is the two-dimensional Fourier
transform of parametrization function Φ(�,�). This method as-
signs the energy content to a new point within the time-frequency
plane. The reassignment procedure creates a modified version of
the TFR based upon moving the computed center of gravity of the
signal power around t and f to new coordinates t̂ and f̂ such that

t̂ (x; t,f ) =
∬ +∞
−∞ uΠ(u− t, �−f )W VDx (u,�)dud�

∬ +∞
−∞ Π(u− t, �−f )W VDx (u,�)dud�

(24)

and

f̂ (x; t,f ) =
∬ +∞
−∞ �Π(u− t, �−f )W VDx (u,�)dud�

∬ +∞
−∞ Π(u− t, �−f )W VDx (u,�)dud�

. (25)

This distribution reduces the cross-terms of the WVD. The reas-
signed WVD at any point

(
t′,f ′

)
is therefore the sum of all the

spectral values moved to this point,

RSPW V Dx
(
t′,f ′

)
=

∬
+∞

−∞

�x (t,f )�
(
t′− t̂ (x; t,f )

)
�
(
f ′− f̂ (x; t,f )

)
dtdf (26)

where � (t) represents the Dirac � distribution. The aim of the re-
assignment method is to achieve both reduction of the cross-terms
and an improved sharpness of the signal components by reallo-
cating its energy distribution in the time-frequency plane.37 The
modified representation preserves the time and frequency shift
invariance, the energy conservation and provides the sharp local-
ization but no longer belongs to Cohen’s class due to lost bilinear-
ity.

3 Materials and methods

The time records of current and potential were recorded in a
three electrode configuration with two nominally identical work-
ing electrodes. Experiments were conducted on AA1080 (99.8%,
“industrially pure” Al) and AA6016 at OCP. The electrodes of
working area of 1.2 cm2 were wet ground up to 1000-grit carbide
paper. A saturated Ag/AgCl was used as the reference electrode in
both setups. AA1080 electrodes were first passivated in a borate
buffer (pH=6.4), for 24 h. After passivation, NaCl was added so
that the final concentration became 0.1 M NaCl in the solution.
Prior to experiments AA6016 was annealed by heating to 560◦C.
This process enhances the final mechanical properties of the alloy
and generates a thick oxide layer on the surface, because of the
rearrangement of the surface crystalline structure. After anneal-
ing AA6016 was exposed to 0.1 M NaCl solution for 24 h. Elec-
trochemical current (ECN) and potential (EPN) noise were col-
lected at OCP. The electrolyte solution was not stirred and kept
at a temperature of 25◦C, controlled by a thermostat. Current
and potential signals were recorded using Ivium-n-Stat potentio-
stat working as zero resistance ammeter (ZRA) and potentiome-
ter. This type of potentiostat was successfully used before for EN
analysis by other research groups.25,26,30,48–50 The sampling fre-
quency used for all the measurements was varied from 1 Hz to 10
Hz with a 10 Hz low-pass filter. In order to validate the EN mea-
surement system, EN measurements with dummy cells have been
performed at 3 sampling frequencies to control the overlap of the
PSDs in common frequency ranges. This validation procedure
has been detailed in a guideline for assessing EN measurement
devices.51

Prior to time-frequency analysis, several data treatment steps
have been performed. The first step in data analysis was to re-
move the DC component from the EN signals. For this purpose,
DWT was employed using the orthogonal Daubechies wavelet,
db4, with 10 levels of decomposition. In this work, the DWT was
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chosen for the baseline removal since it offers good representa-
tion of nonstationary signals and efficient trend removal without
removing the useful information present in the data.30 The appli-
cation of wavelet trend removal was demonstrated to be superior
when compared to moving average, polynomial or linear trend
removal.30 After trend subtraction, to remove cross-terms from
the time-frequency distribution, the analytic associate of the sig-
nal was calculated by performing the Hilbert transformation. The
data were processed using Matlab from MathWorks. The CWT
was computed with an analytic Morlet wavelet. The WVD were
obtained by the Time-Frequency Toolbox (TFTB) for the analysis
of non-stationary signals using time-frequency distributions de-
veloped by F. Auger et al.47. The raw data, and the analysis
scripts for RSPWVD method are available in a data package as-
sociated with this work.52

The energy distribution plots (EDP) and energy spectral densi-
ties (ESD) were also calculated for all the investigated systems to
compare with the obtained results from RSPWVD and DWT.

4 Results and discussion

4.1 Comparison of time-frequency transforms

The purpose of this section was to compare different time-
frequency transforms applied to spectral decompositions of EN
data. As shown in Figure 1, we conducted STFT, CWT, PWVD,
SPWVD and RSPWVD spectral decomposition of the EPN record
obtained on AA6016 after 24 h immersion in 0.1 M NaCl to induce
pitting on the sample surface surface. Under these conditions at
ambient temperature, pitting attack is expected to occur.53,54 The
Cl− ions can prevent oxide film formation by adsorbing or incor-
porate into an already formed oxide, by changing the activity of
hydrogen ions in pits, and by forming a layer of salt at the pit
bottom.55 All the spectra were normalized to [0,1] to facilitate
comparison. Figure 1 shows data in the frequency range up to
1 Hz, where most of the features were observed. WVD can yield
negative values, which would correspond to a negative energy. As
this is not physically possible following the definitions in eq. (1),
(2) and (4), only the positive values were considered in the spec-
tra based on WVD.56

Figure 1a shows the potential fluctuations recorded at OCP
with few transients that are easy to distinguish visually. Tran-
sients have a sharp potential change, corresponding to pit initia-
tion and growth. The termination of the pit growth is followed by
slower potential recovery, corresponding to repassivation or film
growth and discharge of the interface capacity of the repassivated
surface.57

Fig. 1 Time-frequency spectra of a) EPN time record, obtained with dif-

ferent methods of spectral decomposition b) STFT, c) CWT, d) PWVD, e)

SPWVD, f) RSPWVD on AA6016 in 0.1 M NaCl, after 24 h immersion

For STFT results presented in Figure 1b, a Hamming window
of length 15 s was applied. Such a short window allows good
resolution with respect to time, while the frequency resolution
is reduced. Due to time-frequency windows of short time, STFT
offers limited resolution in both time and frequency domain. At
this window length, the resolution of STFT was approximately
70 mHz, while the temporal resolution was close to 8 s when
looking at the group of transients occurring at about 13 s. How-
ever, the main drawback of STFT is the right choice of the window
length to achieve sharp localization in time and frequency simul-
taneously, i.e. the necessary trade-off between time and frequency
resolutions. The STFT is relatively simple, but mostly suitable for
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stationary signals. STFT provided certain discrimination between
signal frequency components when looking at the transients oc-
curring at about 53 s This comparison showed that even with
a compromise window length, resolution in both time and fre-
quency domains was lower compared to the methods based on
WVD.

CWT, on the other hand, employs a size-adjustable window,
which is beneficial compared to the fixed window used by STFT.
CWT consequently provided better spectral resolution compared
to STFT and yielded more details (Figure 1c). The frequency res-
olution here was approximately 10 mHz. However, time localiza-
tion for the dataset in this study was rather poor, as the transients
occurring at 13 s and 79 s were smeared out significantly.

Application of PWVD (Figure 1d) yielded enhanced spectral
and temporal resolution compared to both STFT and CWT. How-
ever, the spectra suffered from the presence of spurious energy
terms. PWVD (Figure 1d) provided good spectral resolution close
to 5 mHz while the SPWVD (Figure 1e) significantly reduced the
spurious energy terms from PWVD. STFT and SPWVD could dis-
tinguish between the two components of the signal when look-
ing at the group of transients occurring at about 53 s, however,
STFT showed a higher leakage between the two frequency peaks
compared to the SPWVD. The thick energy band obtained by SP-
WVD was making small frequency variations difficult to distin-
guish, while RSPWVD (Figure 1f) provided an enhanced concen-
tration of the signal components and followed in more detail the
frequency variations, with a resolution higher than 1 mHz and
temporal resolution around 0.1 s. In this paper, we have used
the Hamming window set to N∕8 and N∕4 for time and fre-
quency smoothing windows, respectively, where N is the number
of recorded samples. Shorter smoothing windows will give more
details, especially when it comes to high-frequency signals, but
also introduce more artifacts. RSPWVD removed the majority of
interferences and enabled good frequency and temporal resolu-
tion. From all methods used here, RSPWVD provided the lowest
spectral width of the features, and at the same time the lowest
temporal width. In the time domain, regions with wide spectral
features coincided with observed sharp transients in EPN. Thus,
RSPWVD was chosen to analyze the data in more detail.

4.2 Application of RSPWVD to study the breakdown of Al

passivity

In this section, the applicability of RSPWVD for the analysis of
EN measurements will be discussed in more detail on EN records
obtained on Al electrodes under different conditions. EN mea-
surements are used to study Al covered by passive films and the
changes in the signal that occur when the passive film breaks
down and pitting occurs.

Electrodes made of AA1080 were passivated in a borate buffer
(pH=6.4) for 24 h at OCP. After passivation, NaCl was added to
the solution to induce a localized attack. ECN was recorded at
OCP after 5 h of exposure of 1080 electrodes in solution. In a
second set of experiments, electrodes made of AA6016, annealed
by heating to 560◦C, were exposed to unbuffered 0.1 M NaCl so-
lution for 24 h at OCP. Figure 2 and Figure 3 show ECN (a) and

Fig. 2 Time records of a) ECN and b) EPN of AA1080 in borate buffer

after 24 h of exposure under OCP.

EPN (b) recorded at OCP and their corresponding RSPWVD in a
two-dimensional contour plot, respectively. The ECN record (Fig-
ure 2a) is flat without any prominent transients and within 0.3 �A
current range, while the EPN fluctuations (Figure 2b) reach up to
5 mV drift from zero. In neutral noncomplexing solutions, the
oxide film on aluminum has very low solubility, and low con-
ductivity, blocking most of the redox reactions. Al oxide films
grown in a borate solution are reported to be thin, dense, co-
herent and amorphous.55 An amorphous passive film is generally
considered more protective than a crystalline one due to lower
tendency to localized breakdown because of its uniform struc-
ture.58 The passive film has a dynamic structure and the break-
down of the passive film is the initial stage of the pitting process.
In RSPWVD time-frequency spectra of ECN and EPN (Figure 3a
and b), one notices the absence of high frequency events as well
as the presence of a low intensity and a low frequency events (be-
low 5⋅10−3 Hz). This absence indicates the occurrence of long
timescale processes and the presence of a passive oxide film. The
presence of these processes on larger timescales in the EPN spec-
tra can be explained by the slow potential drift or as the discharge
of the passivated surface. The low magnitude of RSPWVD result
and the absence of current and voltage transients indicate the
expected Al passivity. Figure 4 and Figure 5, respectively, show
ECN (a) and EPN (b) records and their corresponding RSPWVD
spectra obtained on AA1080 in borate buffer 5 h after addition
of 0.1 M NaCl. The amplitude of the current record obtained
in the presence of 0.1 M NaCl (Figure 4a) exhibits approximately
1.5 �A current range with significant increase in the noise levels,
with occurrence of many transients. Accordingly, the EPN fluc-
tuations reached up to 10 mV potential range. In the RSPWVD
spectrum of ECN (Figure 5a) many overlapping transients can be
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Fig. 3 Time-frequency spectra of a) ECN and b) EPN of AA1080 in

borate buffer after 24 h of exposure under OCP obtained with RSPWVD.

Fig. 4 Time records of a) ECN and b) EPN of AA1080 in borate buffer

with 0.1 M NaCl after 5 h at OCP.

Fig. 5 Time-frequency spectra obtained with RSPWVD of a) ECN and

b) EPN of AA1080 in borate buffer with 0.1 M NaCl after 5 h at OCP.

observed. The transients in the ECN record occurring at ≈30 s,
250 s and 450 s in the frequency range from 10−2 to 10−1 Hz are
exhibiting high energy content and probably indicate the break-
down of the passive layer in the presence of Cl− ions. In line with
this interpretation, the larger time constant events in Figure 5 can
be attributed to the increase in the lifetime of the metastable pits
and transition towards more stable pitting. Pitting of Al involves
repeated breakdown-repair events.58,59

Pure aluminium from 1xxx series is more resistant to some
types of corrosion than other alloys, although its corrosion resis-
tance can vary with the change in alloying content. In pH range
4 to 9 where the oxide is stable, Al is reported to be subject to
only localized pitting corrosion.60 Pitting is considered to be a
self-accelerating process where the local pit environment becomes
depleted of cathodic reactant. Consequently the pit environment
becomes enriched in metal cations and anionic species (e.g. Cl−)
are being transported into the pit to provide charge neutrality and
thereby creating acidic environment that ensures a propagation of
pit growth. Chloride is a small anion with a high diffusivity, that
is well known to interfere with passivation.61 Metastable pitting
is in general characterized by current fluctuations occurring prior
to the pitting corrosion of metals corresponding to small pits in
an early stage of development.61 It is further well known that
metastable pits initiate at potentials far below the critical pitting
potential.61

Figure 6 and Figure 7 show ECN and EPN time records and cor-
responding RSPWVD spectra, respectively, obtained on AA6016
immersed in 0.1 M NaCl for 24 h.

The raw ECN record obtained before detrending was positive
within a 2 �A dynamic range. On the other hand raw EPN record
obtained before detrending was negative within approximately
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Fig. 6 Time records of a) ECN and b) EPN of AA6016 in 0.1 M NaCl

after 24 h at OCP.

Fig. 7 Time-frequency spectra obtained with RSPWVD of a) ECN and

b) EPN of AA6016 in 0.1 M NaCl after 24 h at OCP.

5 mV dynamic range. The ECN signal shows positive and neg-
ative transients consistent with pitting on both measuring and
counter electrode. In addition, the EPN signal shows also a pat-
tern characteristic for ongoing pitting corrosion. Different shapes
of current transients may be observed. Isolated transients of both
EPN and ECN have decay times in the range between 1 and 3 s.

Depending on metal and corrosive environment, the net an-
odic current associated with a metastable pits can have differ-
ent forms.62 The decay times of the current bursts is reported to
correspond to the maximum repassivation times.63 Passive films
were reported to always be in a state of breakdown and repair
as the result of nucleation, short growth and repassivation of a
micropit on the surface.63 Nucleation and growth of metastable
pits are important processes for understanding the transition from
metastable to stable pitting. Observed transients in ECN (Figure
6a) decreased approximately exponentially with time, which can
be associated with discrete pitting events.64 Only pits that survive
metastable pitting become stable growing pits.61

Aluminum alloys have a heterogeneous structure composed of
an Al-rich matrix and secondary phase particles. The variations in
electrochemical properties of these elements may introduce local
electrochemical cells in the material which can make the Al alloys
susceptible to corrosive attacks.65

Cathodic events in ECN (Figure 6a) observed at 85 s, 280 s and
475 s show multiple peaks, which is reported to correspond to the
dissolution of active secondary phase particles that can disrupt
the oxide film.66 The spectra presented in Figure 7 enable us to
determine the frequency contribution of individual transients.

The cathodic transient at approximately 85 s and 0.05 Hz is
showing the energy amplitude approximately 5 times lower as
compared to the cathodic transient occurring at 280 s at 0.05 Hz.
On the other hand, anodic transients at 480 s with maximum at
a frequency of 0.1 Hz shows 2.5 times higher energy content as
compared to anodic transients at 380 s and exhibits the frequency
of approximately 0.3 Hz at the amplitude maximum as read from
RSPWVD. The frequency distribution in the spectrum obtained by
RSPWVD (Figure 7) indicated the initiation of localized processes
on the electrode surface, which were characterized by instanta-
neous frequencies between 10−2 to 1 Hz.67

The observed difference confirms that RSPWVD can provide
quantification of each individual event recorded. RSPWVD proves
to be sensitive to the differences existing between two similar
processes of similar magnitude. The delay at the lower poten-
tial in EPN transients at about 370 s and 475 s is reported to be
indicative of a pit growth at a slower rate as compared to prop-
agation/repassivation phase.68 The formation of a pit causes an
ohmic potential drop in solution.62

Difference in the noise pattern obtained on AA1080 in borate
buffer 5 h after addition of 0.1 M NaCl (Figure 5), and obtained
on AA6016 immersed in 0.1 M NaCl for 24 h (Figure 7) can be
explained by the influence of different alloying elements on the
protectiveness of the passive film. The alloy composition and mi-
crostructure can also have strong effects on the tendency for an al-
loy to pitting. Two main alloying elements of AA6016 are Mg and
Si. The variations in electrochemical properties of these elements
may introduce local electrochemical cells in the material which
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make the alloys susceptible to localized corrosion attacks.69 In
addition AA6016 was also thermally treated with solution heat
treatment and aging to attain the desired mechanical properties.
The heat treatment of the alloy will affect the corrosion resistance
of the material. Pitting can also initiate by local alkalisation near
cathodic inclusions, caused by intermetallic particles.70 Stable
pits survive the metastable stage and continue to grow, whereas
metastable pits repassivate and stop growing. It is believed that
that metastable pit growth is under ohmic control as a result of
the resistance associated with the porous pit cover. Therefore, the
increase in the energy of low frequency components for AA1080
(Figure 5) could also indicate the onset of slower processes on the
surface, such as diffusion-controlled growth of pits and salt nuclei
on the surface.71,72 Furthermore, the current amplitudes shifted
to higher values probably due to the stabilization of individual
pits.72 On the other hand, noise spectrum of AA6016 (Figure 7)
shows higher values of instantaneous frequencies.

Metastable pits are typically considered to be those of micron
size at most with a lifetime on the order of seconds or less.73

Repassivation includes both pit solution dilution and film growth
and occurs within times ranging from several to tens of sec-
onds.67 It has been reported that when stable pits are small, they
behave identically to metastable pits.61

EPN and ECN data which was collected was transformed into
ESD plots for the whole measurement time. The ESD plots were
calculated from the RSPWVD after trend removal with DWT.
ESDs are used to characterize the corrosion process in the fre-
quency domain. To facilitate interpretation of the frequency char-
acteristics, two dimensional representations are used here. ESD
contains information about the sum of the amplitudes of the noise
signal at each time, and allows the quantification of the intensity
and the mechanism of the corrosion process. In Figure 8 and 9 the
ESD of ECN and EPN of different samples at OCP are presented.

ESD plots of ECN (Figure 8a) and EPN (Figure 9a) signals
of AA1080 in borate buffer after 24 h exposure are clearly
demonstrating the contribution of very low frequency compo-
nents around 10−3 Hz. On the other hand, ESD plot of ECN and
EPN record (Figure 8b and Figure9b) obtained on AA1080 in the
borate buffer in the presence of 0.1 M NaCl after 5 h exposure
demonstrate the contribution of the frequency components be-
tween 10−2 and 10−1 Hz and increased severity of the corrosion
process compared to AA1080 in borate buffer. Furthermore, ESD
plot of ECN and EPN record (Figure 9b Figure 9c) obtained on
AA6016 in the presence of 0.1 M NaCl after 24 h of immersion
further clearly demonstrate the significant increase in the contri-
bution of the frequency components between 10−1 and 1 Hz.74

In continuation, EDP plots obtained from DWT are often used
to discriminate between different corrosion types.39 Each crystal
in EDP gives some information about prevalent physicochemical
processes. The position of the peak in the EDP plot indicated the
dominant frequencies in certain corrosion events and its change
may indicate the dominant corrosion process.24 In Figure 10 and
Figure 11 the EDP plots of ECN and EPN signals on all samples
under OCP are shown separately.

EDP plots are used as an additional method to verify the re-
sults obtained by RSPWVD. In addition EDP and ESD plots from

Fig. 8 ESD plots obtained from RSPWVD of ECN of a) AA1080 in borate

buffer after 24 h and b) AA1080 in borate buffer with 0.1 M NaCl after 5

h and c) AA6016 in 0.1 M NaCl after 24 h at OCP.
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Fig. 9 ESD plots obtained from RSPWVD of EPN of a) AA1080 in borate

buffer after 24 h and b) AA1080 in borate buffer with 0.1 M NaCl after 5

h and c) AA6016 in 0.1 M NaCl after 24 h at OCP.

Fig. 10 EDP plots obtained with DWT of ECN of all the samples in dif-

ferent electrolytes.

Fig. 11 EDP plots obtained with DWT of EPN of all the samples in differ-

ent electrolytes.

RSPWVD can be easily compared.

In the ECN signals of AA1080 in borate buffer the energy was
stored predominantly in the higher crystals D9-D10, which corre-
spond to a large timescale. In the obtained time records (Figure
2a and Figure 2b), these were characterized mainly by a very slow
drift. The ECN recorded in the presence of 0.1 M NaCl displayed
an increase in the relative energy of the crystals, and particularly
crystal D8, corresponding to larger timescales, and a peak at D6
corresponding to medium timescales.

The high values for the relative energy of crystals D8, D9 and
D10 reveal the fact that transients with a large time constant pre-
vailed over those with a medium one in the ECN signal. Domi-
nance of large and medium time constant processes is in accor-
dance with the dominant frequency contribution from 10−2 to
10−1 Hz in the RSPWVD spectra. Long timescale crystals indicate
diffusion-controlled processes, which can be present in general
corrosion. In EDP plots of ECN records obtained on AA6016, rel-
ative energy is mostly stored in D3-D5 crystals, confirming the
change in mechanism compared to AA1080 and the presence
of certain localized corrosion events on the surface. Medium
timescales are reported to be dominant in the case of metastable
pitting.75 The peaks in D3-D5 crystals appeared as the result of
the contribution of frequencies in the range from 10−1 to 1 Hz.
Similar observations of the main corrosion events contributing to
the experimental signal were acquired by both RSPWD and DWT.

In the EPN signals of 1080 in borate buffer (figure 11) the en-
ergy was stored predominantly in the higher crystals, due to the
baseline drift in the EPN signal. On the other hand EPN signals
recorded in the presence of 0.1 M NaCl displayed an increase
in the relative energy of the crystals D6-D9, corresponding to
medium and larger timescales. EDP plots of EPN records obtained
on AA6016 in the presence of 0.1 M NaCl show peaks in crystals
D4, D6, D8 and D10. The increase in the lower frequency compo-
nents in the EPN signals as compared to ECN signals can be due
to a slower recovery of the potential after the occurrence of each
transient. The difference between AA1080 and AA6016 and the
decrease in the number of transients in the case of AA6016 can
be further explained that crystals on medium timescales indicate
the the propagation/repassivation, while the large timescale in-
dicate the growth of pits, determined by the Ohmic resistance of
the perforated pit cover and its ability to withstand diffusion.76
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5 Conclusion

Several time-frequency transforms, as commonly used in signal
processing, have been applied to the investigation of EN data of
AA1080 and solution heat treated AA6016 at OCP in buffered and
unbuffered Cl−-containing solutions. The RSPWVD method has
been shown to be superior over other transforms more commonly
applied in electrochemistry. RSPWVD permitted the estimation of
the intensity of the corrosion process and the identification of the
corrosion mechanism, which was demonstrated on corrosion of Al
under different conditions. RSPWVD enabled a better detection
of frequency changes as compared to other time-freqeuncy trans-
forms and proved to be sensitive even to the slight differences
existing between the different systems. The consistency found
between the results of RSPWVD and DWT further confirmed the
applicability RSPWVD for EN data analysis.

RSPWVD was used to successfully discriminate between differ-
ent corrosion types. Passivity of AA1080 in borate buffer was
confirmed by the absence of transients and by the presence of
only slowly drifting baseline. In the presence of 0.1 M NaCl a
decrease in oxide film stability was demonstrated by many over-
lapping transients in the frequency range from 10−2 to 10−1 Hz.
RSPWVD was able to successfully detect differences existing be-
tween two different alloys. In addition RSPWVD for observed
transients of AA6016 shows multiple peaks, corresponding to the
dissolution of secondary phase particles. AA1080 is characterized
by longer timescale processes, which probably indicate diffusion-
controlled processes, or increase in the lifetime of the metastable
pits and transition towards more stable pitting. On the other hand
AA6016 shows decreased number of transients with contribution
of frequencies in the range from 10−1 to 1 Hz probably due to ini-
tiation of metastable pitting. The observed difference in corrosion
mechanisms between two alloys can be ascribed to the influence
of alloying elements on localized corrosion and protectiveness of
passive film on the metal surface. In the system investigated here,
simpler analysis techniques would mostly have been sufficient to
reach similar conclusions, making it a very well suited test sys-
tem to compare the different time-frequency transforms. Being
superior both in spectral as well as time resolution to the anal-
ysis of noise, RSPWVD may be suitable to reveal unprecedented
quantitative and qualitative details of the electrochemistry of a
corrosion process on a system while the process is ongoing. Im-
portantly, 2D output such as obtained from this analysis is also
highly suitable as input for machine learning algorithms that may
facilitate detection of certain types of events.

Conflicts of interest

There are no conflicts to declare.

Acknowledgement

The authors are grateful to Svein Sunde for many useful discus-
sions and to Hans-Martin Heyn for pointing out to us this par-
ticular class of time-frequency transforms. The Department of
Materials Science and Engineering, NTNU, is acknowledged for
financial support.

Notes and references

1 K. Hladky and J. Dawson, Corros. Sci., 1981, 21, 317–322.

2 K. Hladky and J. Dawson, Corros. Sci., 1982, 22, 231–237.

3 E. A. Astafev, A. E. Ukshe and Y. A. Dobrovolsky, J. Elec-

trochem. Soc., 2018, 165, F604–F612.

4 R. Maizia, A. Dib, A. Thomas and S. Martemianov, J. Solid

State Electrochem., 2017, 1649.

5 M. A. Rubio, K. Bethune, A. Urquia and J. St-Pierre, Int. J.

Hydrog. Energy, 2016, 41, 14991–15001.

6 S. Martinet, R. Durand, P. Ozil, P. Leblanc and P. Blanchard,
J. Power Sources, 1999, 83, 93–99.

7 S. Martemianov, N. Adiutantov, Y. K. Evdokimov, L. Madier,
F. Maillard and A. Thomas, J. Solid State Electrochem., 2015,
19, 2803–2810.

8 R. A. Rincón, A. Battistel, E. Ventosa, X. Chen, M. Nebel and
W. Schuhmann, ChemSusChem, 2014, 8, 560–566.

9 A. Zeradjanin, E. Ventosa, S. Bondarenko and W. Schuhmann,
ChemSusChem, 2012, 5, 1905–1911.

10 F. Huet, M. Musiani and R. Nogueira, Electrochim. Acta, 2003,
48, 3981–3989.

11 Z. Zhang, W. H. Leng, Q. Y. Cai, F. H. Cao and J. Q. Zhang, J.

Electroanal. Chem, 2005, 578, 357–367.

12 X. Huang, Y. Chen, T. Fu, Z. Zhang and J. Zhang, J. Elec-

trochem. Soc., 2013, 160, D530–D537.

13 E. Budevski, W. Obretenov, W. Bostanov, G. Staikov, J. Doneit,
K. Jüttner and W. Lorenz, Electrochim. Acta, 1989, 34, 1023 –
1029.

14 C. Gabrielli, F. Huet and M. Keddam, Electrochim. Acta, 1986,
31, 1025–1039.

15 J. J. Kim, Mater. Lett., 2007, 61, 4000–4002.

16 R. Cottis, Corrosion, 2001, 57, 265–285.

17 H. A. A. Al-Mazeedi and R. A. Cottis, Electrochim. Acta, 2004,
49, 2787–2793.

18 U. Bertocci, J. Frydman, C. Gabrielli, F. Huet and M. Keddam,
J. Electrochem. Soc., 1998, 145, 2780–2786.

19 F. Mansfeld and H. Xiao, J. Electrochem. Soc., 1993, 140,
2205–2209.

20 F. Mansfeld and Z. Sun, Corrosion, 1999, 55, 915–918.

21 J. Smulko, K. Darowicki and A. Zieliński, Electrochim. Acta,
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