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Abstract—We study the problem of optimizing the end-to-end
performance of a full-duplex filter-and-forward MIMO relay
link, consisting of a source, a relay, and a destination node,
by employing linear filtering at each node. The system model
accounts for multipath propagation and self-interference at the
relay, as well as transmitter impairments and limited dynamic
range at every node. The design accommodates signals with
arbitrary spectra and includes the direct link between the source
and destination nodes. Under the minimum mean square error
criterion, the resulting non-convex problem is approximated
by a sequence of convex problems and solved by means of
an alternating minimization method. Linear constraints allocate
some of the degrees of freedom in the relay to guarantee a
sufficiently small residual self-interference. Simulations quantify
the impact of degrees of freedom, the dynamic range, and the
balance between direct and relay paths on the link performance.

I. INTRODUCTION

Relays expand the source-destination architecture by ex-
tending coverage area and improving end-to-end performance
[1], [2]. Among the different relay protocols, filter-and-forward
(FF) relaying constitutes an attractive alternative, in terms
of complexity and performance, to other relaying techniques
such as amplify-and-forward (AF), decode-and-forward (DF)
or compress-and-forward (CF) [3]–[7]. In contrast to AF
relaying, where the signal is forwarded after a spatial trans-
formation, FF relaying forwards the signal after passing it
through a linear filter, usually a linear finite impulse response
(FIR) filter [8]–[12]. The spectrum shaping capabilities of FF
relaying bring about a performance edge over its AF coun-
terpart, as reported in [13]. Additionally, FF relaying allows
for a scalable design in comparison to the implementation
of DF and CF relaying (normally comprising, among others,
timing recovery, frame alignment and/or signal regeneration
operations), because the number of parameters grows linearly
with the number of antennas and the number of filter taps.
By avoiding the decoding and re-encoding of the signal, AF
and FF relays are able to comply with the strict latency
requirements of 5G systems.

In combination with a full-duplex (FD) protocol, any ef-
ficient relay design must deal with the presence of self-
interference (SI) distortion which is a consequence of simul-
taneous transmission and reception in the same frequency
[14]–[20]. If not properly mitigated, SI severely impacts the
performance, as it has been reported in [3], [21]. To cope with

SI distortion, different mitigation methods, both in the analog
and digital domains, have been developed, from which we
highlight those based on interference suppression (exploitation
of spatial diversity), e.g., [14], [22]–[25], and those based
on interference cancellation (generation of an SI replica),
e.g., [26]–[30]. Due to insufficient mitigation and high power
transmission of the relay, residual SI may still be strong
enough to limit performance [14], and, therefore, the relay
design must account for the presence of residual SI.

Any relay implementing a linear filtering based FF protocol,
under the presence of residual SI, is subjected to an impulse
response of infinite duration, in which the relay operation is
contained inside the feedback loop caused by the SI [29]. As
a consequence, data signal and SI are correlated, which turns
any optimal design strategy into an intractable problem and
possibly leading to an unstable system. This is in contrast to
DF and CF relays, where the processing delay, defined as the
relay input-to-output time delay, is long enough to decorrelate
the data signal and the SI [30].

Decorrelation between data and SI can be achieved by
introducing additional processing delay, i.e., the relay waits a
sufficiently long number of samples before transmission. This
decorrelation property applies in relays operating in frequency
domain, where the processing delay is at least one symbol
or several time samples [14]. Under those conditions, the
relay design results in a tractable problem. Processing delay
is an important parameter, and in the case of an orthogonal
frequency-division multiplexing (OFDM) system it should not
exceed the cyclic prefix duration to avoid inter-symbol interfer-
ence due to the direct link. We propose a time-domain design
in which no additional delay is introduced in the processing
path. Still the method ensures decorrelation between data
signal and SI by transmitting in the nullspace of the SI channel.

SI distortion is not the only performance-limiting factor in
an FD architecture. Another important cause of performance
degradation is the limited dynamic range at reception and
transmission [31]–[33]. Limited dynamic range is due to im-
perfections in analog/digital conversion and nonlinear effects
in the modulation/demodulation process [31], and translates
into additional distortion in the system. Our design method
incorporates limited dynamic range at every node of the link
as additional parameters of the system model.
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A. Contributions of the paper

We consider a MIMO FD FF relay link with limited
dynamic range and residual SI distortion after antenna isola-
tion/analog cancellation at the relay [17]. We introduce linear
filters at each node, which are designed by minimizing the
mean square error (MSE) at the destination node. The resulting
optimization problem is non-convex and the IIR nature of the
relay makes the problem intractable. We transform the original
problem into a tractable one by imposing interference-free
constraints on the relay. This modified problem is solved by
employing an alternating optimization technique. In particular,
node filters are obtained by solving a sequence of decoupled
convex optimization problems.

Existing literature in FF design [13], [34]–[36] only con-
siders half-duplex protocol and excludes direct link between
source and destination [34], whereas we model a FD system
with direct link between source and destination. Although [37]
contemplates the presence of a direct link between source
and destination, it does not account for a FD relay with
SI or limited dynamic range at each node of the link. Our
design incorporates additional noise sources that model limited
dynamic range at both transmission and reception.

In [38], the authors study the problem of an FF FD
relay network. In contrast to our approach, the system model
considers filters in the frequency domain, where there is no
correlation between data signal and SI, and dynamic range is
infinite. Furthermore, frequency-domain processing introduces
an unavoidable of at least one OFDM symbol. While [39],
[40] consider source-destination link, only the case of single
antenna with flat-frequency channel response and infinite
dynamic range is treated.

In [41], the authors consider an FF FD relay network in
the frequency domain with limited dynamic range and direct
link between source and destination. A gradient-projection
based approach is used to maximize the signal-to-noise-plus-
interference ratio. Our design method works in the time-
domain and is, therefore, modulation independent, and able
to deal with multipath distortion as well as reducing the end-
to-end delay because it does not require synchronization at the
relay.

Finally, [31] considers the problem of limited dynamic range
for a DF relay link assuming uncorrelated input and output
signals. Concretely, we consider the correlation between data
signal and self-interference at the FF relay, which has a major
impact on the filter design, particularly in the assignment of
its degrees of freedom.

B. Organization of the paper

The paper is organized as follows. Section II describes
the system model of the relay link, with special attention
to the limited dynamic range of the nodes and the equiva-
lent impulse response of the link. Section III formulates the
filter design problem based on the minimum MSE (MMSE)
criterion and details the required approximations in order to
obtain a tractable optimization problem. Section IV solves the
optimization problem by means of an alternating optimization
approach, in which every filter is the solution to a convex

optimization problem. Section V illustrates the performance
of the design algorithm for an OFDM relay system. Finally
Section VI draws the conclusions.

C. Notation

Let {A[k]}LAk=0, with A[k] ∈ CM×N , denote the impulse
response of a complex-valued, LAth-order causal FIR MIMO
filter. The row-expanded matrix of A[n], denoted by A, is
defined as A = [A[0] . . .A[LA]] ∈ CM×N(LA+1). We define
the squared Frobenius filter norm as ‖A‖2 = tr{AAH} =∑LA
k=0 tr{A[k]AH [k]}.
The convolution between filters A[n] and B[n], of respec-

tive sizes M ×N and N × P and orders LA and LB , yields
filter C[n] = A[n] ? B[n] =

∑LC
k=0 A[k]B[n − k], of size

M×P and order LC = LA+LB . In its row-expanded matrix,
C[n] is expressed as

C = AR(B) (1)

where R(B) ∈ CN(LA+1)×P (LC+1) is the row-diagonal-
expanded matrix of order LA of B[n] [42, Sec.7.5.],

R(B) =
L

A
tim

es 


B︷ ︸︸ ︷
B[0] . . . B[LB ]

LA times︷ ︸︸ ︷
0N×P . . . 0N×P

0N×P B[0] . . . B[LB ] . . . 0N×P
...

. . . . . . . . . . . .
...

0N×P . . . 0N×P B[0] . . . B[LB ]

 (2)

where 0N×P denotes a null matrix of size N × P . Note
that R(C) = R(A)R(B) for a proper size of the expanded
matrices. The column-diagonal-expanded matrix of order LA
of B[n], denoted by C(B) ∈ CN(LC+1)×P (LA+1), is defined
as [42, Sec.7.5.]

C(B) =

L
A

tim
es 



B[0]

LA times︷ ︸︸ ︷
0N×P . . . 0N×P

... B[0]
. . .

...

B[LB ]
...

. . . 0N×P

0N×P B[LB ]
. . . B[0]

...
...

. . .
...

0N×P 0N×P . . . B[LB ]


(3)

The convolution between signal vector x[n] and filter A[n]
yields signal y[n] = A[n]?x[n] =

∑LA
k=0 A[k]x[n−k], which

can be equivalently expressed as

y = R(A)x (4)

with y = [yT [n] . . . yT [n − L]]T ∈ CM(L+1) and x =
[xT [n] . . . xT [n − L − LA]]T ∈ CN(L+LA+1) being the
column-expansion (of certain order) of y[n] and x[n], re-
spectively. The Lth-order autocorrelation matrix of y[n] is
denoted as Ry = E{yyH}. Operator 〈A[n]〉−1 denotes the
impulse response of the inverse system of the causal and
stable filter A[n] with coefficients {A[k]}LAk=0 ∈ CM×M , i.e.,
〈A[n]〉−1 ?A[n] = δ[n]IM .

Let x ∼ CN (µ,Γ) denote a vector x that follows a
circularly-symmetric complex normal distribution with mean
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µ and covariance Γ. Matrix IM is the identity matrix of size
M × M , whereas IM [L] ∈ C(L+1)M×M denotes the block
matrix given by

IM [L] = 1TL+1 ⊗ IM = [IM IM . . . IM︸ ︷︷ ︸
L+1 times

] (5)

where 1L is the all-ones column vector of size L and ⊗
denotes the Kronecker product. Operator diag {A} creates a
diagonal matrix with the principal diagonal of A.

II. SYSTEM MODEL

The single-stream full-duplex MIMO relay link under con-
sideration is depicted in Fig. 1 and consists of a source node
(S) equipped with MS antennas that transmits the signal ŝ[n] ∈
CMS , a destination node (D) equipped with ND antennas that
receives the signal d[n] ∈ CND , and a relay node (R) equipped
with NR receive and MR transmit antennas that receives the
signal r[n] ∈ CNR while it simultaneously transmits the signal
r̂[n] ∈ CMR . Assuming a block fading model, the Lij th-order
channel between node i and node j, where i ∈ {S,R} and
j ∈ {R,D}, is denoted by Hij [n] ∈ CNj×Mi . Note that the
strictly causal HRR[n] with coefficients {HRR[k]}LRR

k=1 is the
residual SI channel after antenna isolation/analog cancellation
[6], [17], [43]. Mitigation in the analog domain eliminates a
significant part of the self-interference. The mitigation level
is a function of the frequency and normally insufficient for a
wideband signal. Impulse responses Hij [n] account for the
analog front-end distortion and the propagation effects be-
tween nodes, as well as their respective delays. Noise sources
are represented by vectors vi[n] ∈ CMi , wj [n] ∈ CNj , and
nj [n] ∈ CNj , while aggregated noise sources containing all
noise terms at a node are represented by vectors zj [n] ∈ CNj ,
where i ∈ {S,R} and j ∈ {R,D}. As seen from Fig. 1, each
node filters the locally observed signal. The design criterion
for gS[n], gD[n], and GR[n] is to minimize the MMSE given
by E{|d̂[n]−s[n−τ ]|2}, with τ ≥ 0 being a design parameter.
The joint design of these filters under the MSE criterion is the
topic of subsequent sections of this paper.

Starting with the signal in S, from Fig. 1, the LSth-order
filter gS[n] ∈ CMS precodes the data signal s[n]

ŝ[n] = gS[n] ? s[n] (6)

The relay implements an FF protocol, modeled as the LRth-
order filter GR[n] ∈ CMR×NR and transmits the signal

r̂[n] = GR[n] ? r[n] (7)

where the input signal to the relay filter r[n] can be decom-
posed into

r[n] =ř[n] + HRR[n] ? r̂[n]︸ ︷︷ ︸
self-interference i[n]

+ nR[n] + wR[n] + HRR[n] ? vR[n]︸ ︷︷ ︸
noise terms

(8)

with ř[n] ∈ CNR being the incoming source signal, i.e.,

ř[n] = HSR[n] ? (ŝ[n] + vS[n]) (9)

and i[n] denoting the self-interference. The presence of
the self-interference path introduces a feedback loop, due
to which the relay becomes an infinite impulse response
(IIR) linear MIMO filter. The impulse response of the relay
Geq[n] ∈ CMR×NR is given by

Geq[n] =〈IMRδ[n]−GR[n] ?HRR[n]〉−1 ?GR[n]

=GR[n] ? 〈INRδ[n]−HRR[n] ?GR[n]〉−1 (10)

The LDth-order filter gD[n] ∈ CND linearly combines the
received signal d[n] at D, and produces the output

d̂[n] = gHD [n] ? d[n] (11)

from which source signal s[n] is recovered. We may now
rewrite (11), in terms of the various channels and noise
sources, as follows

d̂[n] = gHD [n] ? (Heq[n] ? gS[n] ? s[n] + zD[n]) (12)

with

Heq[n] = HSD[n] + HRD[n] ?Geq[n] ?HSR[n] (13)
zD[n] = HSD[n] ? vS[n] + wD[n] + nD[n] + HRD[n] ? zR[n]

(14)

The Leqth-order filter Heq[n] ∈ CND×MS represents the overall
channel from S to D including direct (S-D) and relay (S-R-
D) paths. From (12)-(14) we see that synchronization between
direct-link and source-relay-destination signals is not needed
as long as the delay spread of Heq[n] is smaller than the cyclic
prefix length.

From (10), Leq → ∞, as the equivalent channel response
has an infinite duration in principle. Vector zD[n] ∈ CND in
(12) comprises all noise terms at D and zR[n] ∈ CMR denotes
the aggregated noise sources at the relay output:

zR[n] = Geq[n] ? (HSR[n] ? vS[n] + nR[n] + wR[n])

+ 〈IMRδ[n]−GR[n] ?HRR[n]〉−1 ? vR[n] (15)

where vectors nR[n] ∈ CNR and nD[n] ∈ CND are the thermal
noise sources in R and D, respectively. Their respective
distributions are

nR[n] ∼ CN
(
0, σ2

RI
)

(16)

nD[n] ∼ CN
(
0, σ2

DI
)

(17)

Vectors vS[n] ∈ CMS and vR[n] ∈ CMR model imperfections
at the transmit sides of S and R, and are assumed normally
distributed and statistically independent of the transmit signals
ŝ[n] and r̂[n]. Following [31], they are modeled as

vS[n] ∼ CN
(
0, δS diag

{
E{ŝ[n]ŝH [n]}

})
(18)

vR[n] ∼ CN
(
0, δR diag

{
E{r̂[n]r̂H [n]}

})
(19)

with 0 ≤ {δS, δR} � 1. Vectors wR[n] ∈ CNR and wD[n] ∈
CND model limited dynamic range distortion at R and D, and
are assumed normally distributed and statistically independent
of received signals at R and D, with

wR[n] ∼ CN
(
0, εR diag

{
E{r̃[n]r̃H [n]}

})
(20)

wD[n] ∼ CN
(
0, εD diag

{
E{d̃[n]d̃H [n]}

})
(21)
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(S)
(R)

(D)

s[n] ŝ[n] d̃[n] d[n] d̂[n]

ř[n] r̃[n] r[n] r̂[n]
vS[n] nD[n] wD[n]

nR[n] wR[n] vR[n]

gS[n]

GR[n]

gH
D [n]

HSR[n]

HSD[n]

HRR[n]

HRD[n]

Heq[n]

Geq[n]

Fig. 1. System model of an FF relay link incorporating the proposed design.

where r̃[n] and d̃[n] are the received signal prior to digital
conversion at R and D, and 0 ≤ {εR, εD} � 1. The
independent Gaussian distortion models (18)-(19) and (20)-
(21) accurately captures the combined effect of DAC and ADC
nonlinearities and practical hardware impairments, see [31]
and the references therein.

III. MMSE DESIGN

The end-to-end performance depends primarily on the abil-
ity of the system to reconstruct signal s[n] at destination.
Therefore, a reasonable approach for designing filters gS[n],
GR[n] and gD[n] is to minimize the MSE at node D, i.e.,

min
{gS[n],GR[n],gD[n]}

E{|d̂[n]− s[n− τ ]|2}

subject to E{‖ŝ[n]‖2} ≤ PS

E{‖r̂[n]‖2} ≤ PR

(22)

where the end-to-end delay τ ≥ 0 is a design parameter, and
constants PS > 0 and PR > 0 denote the maximum transmit
power at S and R, respectively. In view of (10), the recursive
nature of the SI-affected relay makes problem (22) intractable.
To overcome this, we introduce additional linear constraints.
Since SI is the dominant source of distortion in a FD relay
link, see, e.g., [44], we modify problem (22) to incorporate an
explicit SI suppression constraint, i.e.,

min
{gS[n],GR[n],gD[n]}

E{|d̂[n]− s[n− τ ]|2}

subject to E{‖ŝ[n]‖2} ≤ PS

E{‖r̂[n]‖2} ≤ PR

HRR[n] ?GR[n] = 0

(23)

The immediate effect of introducing the linear constraints
HRR[n] ?GR[n] = 0 in (23) is summarized as follows.

Remark 1. From (10) we see that the equivalent relay impulse
response has now finite order, i.e., Geq[n] = GR[n] and Leq =
max{LSD, LSR + LR + LRD}.

Remark 2. The SI is suppressed, i.e., i[n] = 0, making
problem (23) tractable.

Remark 3. Since the SI suppression constraints constitute a
linear subspace, as will be shown in Sec. IV, the available

degrees of freedom in GR[n] are reduced. Therefore, problems
(23) and (22) are not equivalent and their solutions may
perform differently.

An important consequence of the SI suppression constraint
in (23) is exposed by the next result.

Lemma 1. When HRR[n] ? GR[n] = 0, the inverse system
〈IMRδ[n] −GR[n] ?HRR[n]〉−1 = IMRδ[n] + GR[n] ?HRR[n]
and is of finite order LR + LRR.

Proof. By taking the Fourier transform of the inverse system,
denoted by F{〈IMRδ[n]−GR[n] ?HRR[n]〉−1}, we obtain

F{〈IMRδ[n]−GR[n] ?HRR[n]〉−1}
= (IMR −GR(ejω)HRR(ejω))−1 (24)

Using the Woodbury matrix identity, the right-hand side of
(24) is expanded as

(IMR −GR(ejω)HRR(ejω))−1

= IMR + GR(ejω)(INR + HRR(ejω)GR(ejω))−1HRR(ejω)

= IMR + GR(ejω)HRR(ejω) (25)

where we have used HRR(ejω)GR(ejω) = 0. By taking the
inverse Fourier transform of (25), the inverse system impulse
response is given by

F−1{IMR +GR(ejω)HRR(ejω)} = IMRδ[n]+GR[n]?HRR[n]
(26)

whose order is LR + LRR.
�

By virtue of Lemma 1, the noise term zR[n] at the relay
output (15) can be written as

zR[n] =GR[n] ? (HSR[n] ? vS[n] + nR[n] + wR[n])

+ (IMRδ[n] + GR[n] ?HRR[n]) ? vR[n] (27)

We make the following assumption about the limited dynamic
range

Assumption 1. The statistics of wR[n], wD[n] and vR[n]
depend only on their respective data signal, which follows
from δiδj ≈ 0, δiεj ≈ 0, δiσ2

j ≈ 0, εiδj ≈ 0, εiσ2
j ≈ 0

and εiεj ≈ 0. Let sR[n] = HSR[n] ? gS[n] ? s[n] and
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Algorithm 1 Alternating MMSE linear filter design procedure

1: Initialization point: g
(0)
S [n], G

(0)
R [n] and g

(0)
D [n].

2: repeat for each iteration k = 1, 2, 3, . . .
3: Solve problem (23) with respect to g

(k)
D [n] for fixed

g
(k−1)
S [n] and G

(k−1)
R [n].

4: Solve problem (23) with respect to G
(k)
R [n] for fixed

g
(k−1)
S [n] and g

(k)
D [n].

5: Solve problem (23) with respect to g
(k)
S [n] for fixed

G
(k)
R [n] and g

(k)
D [n].

6: until the convergence criterion is met.

sD[n] = Heq[n] ? gS[n] ? s[n] denote the data signal arriving
at S and D, respectively. Therefore,

wR[n] ∼ CN
(
0, εR diag

{
E{sR[n]sHR [n]}

})
(28)

wD[n] ∼ CN
(
0, εD diag

{
E{sD[n]sHD [n]}

})
(29)

vR[n] ∼ CN
(
0, δR diag

{
E
{
(GR[n]?sR[n]) (GR[n]?sR[n])

H
}})
(30)

Problem (23) is non-convex due to the coupling between
gS[n], GR[n] and gD[n]. Furthermore, the covariance of vS[n],
wR[n], vR[n], wD[n] are functions of filters gS[n], GR[n] and
gD[n], see (18)−(21). In the next section we make use of an
alternating procedure to solve (23).

IV. ALTERNATING FILTER DESIGN

A sub-optimal solution to the non-convex problem (23) can
be iteratively obtained by means of alternating (or cyclic)
minimization, in which the design of each individual filter
is decoupled from the others by fixing them at each iteration.
The steps of such procedure are summarized in Algorithm 1.
The destination node is in charge of the computation and
broadcasts the filter coefficients through the feedback channel.

Symbols g
(k)
S [n], G

(k)
R [n] and g

(k)
D [n] denote the node

filters at iteration k. In summary, Algorithm 1 attempts to
solve (23) by iterating over a sequence of simpler optimization
problems, which, as explained in the following, are convex in
their respective variables and can be solved semi-analytically.
Although a global optimizer of (23) is not guaranteed, the
convergence of Algorithm 1 is ensured under the conditions
described in [45]. Specifically, since the sequence of MSE
values obtained by the algorithm is nonincreasing and bounded
below by 0, it must eventually converge. In [45], it is shown
that algorithms of the same form as Algorithm 1 have linear
convergence, i.e., the ratio of the norm of the difference
between the current iteration and a solution and the norm of
the difference between the previous iteration and a solution
is less than or equal to a constant. The algorithm can be
sensitive to the initialization point due to existence of several
local minima. Therefore, running the algorithm with different
initialization points can robustify the solution in case the
algorithm falls in a local minima.

From now on, unless otherwise stated, we will simply de-
note gS[n] = g

(k)
S [n], GR[n] = G

(k)
R [n] and gD[n] = g

(k)
D [n].

A. Solution of problem (23) with respect to gD[n]

We first solve the problem (23) with respect to gD[n], while
keeping both gS[n] and GR[n] fixed, i.e.,

g?D[n] = arg min
gD[n]

E{|d̂[n]− s[n− τ ]|2} (31)

Note that, since gD[n] is at the receive side of D, its optimal
expression will correspond to that of the MIMO normal
equations. Let gD and gS be the column-expansions of gD[n]
and gS[n], respectively. From (12), we can now express d̂[n]
as

d̂[n] = gHD (R(Heq)R(gS)s + zD) (32)

where vectors s and zD are defined as

s = [s[n] s[n− 1] . . . s[n− LS − Leq − LD]]
T (33)

zD =
[
zTD [n] zTD [n− 1] . . . zTD [n− LD]

]T
(34)

Let eτ denote the τ th canonical basis vector with eτ [τ ] = 1
and 0 elsewhere. Using (32), the MSE can be expressed as

E{|d̂[n]− s[n− τ ]|2} =(
gHDR(Heq)R(gS)− eHτ

)
Rs

(
RH(gS)RH(Heq)gD − eτ

)
+gHD RzDgD (35)

with Rs = E{ssH} and RzD = E{zDz
H
D } (see Table I for a

full expression) denoting the autocorrelation matrices of s[n]
and zD[n], respectively. Combining (35) and (31), the optimal
filter g?D is given by

g?D = R−1D R(Heq)R(gS)Rseτ (36)

where

RD = R(Heq)R(gS)RsRH(gS)RH(Heq) + RzD (37)

is the autocorrelation matrix of the input signal to gD[n]. From
(36) we see that τ , with 0 ≤ τ ≤ (Leq + LD + LS), selects
one of the columns of R−1D R(Heq)R(gS)Rs, and can be
interpreted as a filter selector.

B. Solution of problem (23) with respect to GR[n]

The next step of Algorithm 1 is to design GR[n] as the
solution to (23) assuming both gS[n] and gD[n] fixed, i.e.,

G?
R[n] =arg min

GR[n]
E{|d̂[n]− s[n− τ ]|2}

subject to E{‖r̂[n]‖2} ≤ PR

HRR[n] ?GR[n] = 0

(38)

Even under the SI suppression constraints, solving (38) re-
quires the use of certain approximations. Concretely, from
(27), the power of zR[n] has the following expression

E{‖zR[n]‖2} = E{‖GR[n] ? nR[n]‖2}+ E{‖vR[n]‖2}
+ E{‖GR[n] ?HSR[n] ? vS[n]‖2}
+ E{‖GR[n] ?wR[n]‖2}
+ E{‖GR[n] ?HRR[n] ? vR[n]‖2} (39)

From (7) and (19) we see that the covariance of vR[n]
depends on GR[n]. Consequently, the last term in (39),
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E{‖GR[n] ?HRR[n] ? vR[n]‖2}

= δR tr
{
GRR(HRR)

(
I(LR+LRR+1) ⊗ diag{GRR(HSR)R(gS)RsRH(gS)RH(HSR)GHR }

)
RH(HRR)GHR

}
(39)

E{‖GR[n] ? HRR[n] ? vR[n]‖2}, exhibits a “fourth-order”
relation with GR[n], as seen in (39).

To avoid such higher-order relation, we approximate
G

(k)
R [n]?HRR[n] as G

(k−1)
R [n]?HRR[n]. This transforms (39)

into

E{‖zR[n]‖2} ≈ E{‖G(k)
R [n] ? nR[n]‖2}+ E{‖vR[n]‖2}

+ E{‖G(k)
R [n] ?HSR[n] ? vS[n]‖2}

+ E{‖G(k)
R [n] ?wR[n]‖2}

+ E{‖G(k−1)
R [n] ?HRR[n] ? vR[n]‖2} (41)

with

E{‖vR[n]‖2} = δR tr{diag{G(k)
R RsR(G(k)

R )H}} (42)

Matrix RsR = E{sRsR
H} is the autocorrelation of sR[n] =

HSR[n] ? gS[n] ? s[n], see (30). Vector sR is defined as

sR =
[
sTR [n] sTR [n− 1] . . . sTR [n− LR]

]T
(43)

By using the approximation in (41), E{‖zR[n]‖2} has a
second-order relation with G

(k)
R [n], and (38) can be cast as

a constrained least-squares problem. The difference between
(39) and (41) is roughly proportional to δR and the approxi-
mation in (41) will be tight whenever δR is not the dominant
noise source. Typically, noise due to limited dynamic range is
lower than thermal noise [31].

Although the SI suppression constraints in (38), HRR[n] ?
GR[n] = 0, force the possible solutions to lie within a
subspace of reduced dimension, (38) cannot be analytically
solved by means of the normal equations due to the second-
order power inequality constraints E{‖r̂[n]‖2} ≤ PR. To char-
acterize the interference-free subspace, we arrange constraints
HRR[n] ?GR[n] = 0 in the following matrix form

C(HRR)
[
GT

R [0] . . . GT
R [LR]

]T
=
[
0 . . . 0

]T
(44)

Applying the vec operator, (44) can be written in a compact
form

(INR ⊗ C(HRR))gR = 0 (45)

with gR = vec{
[
GT

R [0] · · · GT
R [LR]

]T } ∈ CNRMR(LR+1)×1.
For a nontrivial solution to (44) to exist, the rank of C(HRR)
must be strictly less than the number of its columns, which is
MR(LR+1). Assuming a full-row rank C(HRR), this condition
reads as NR(LR + LRR) < MR(LR + 1). For this to hold,
the number of transmit antennas must exceed the number of
receive antennas (MR > NR), and in addition, the order of
the relay filter must satisfy LR ≥ NR(LRR − 1)/(MR −NR).
Consequently, the subspace of feasible GR[n] is given by

gR = Nw (46)

where the columns of N constitute a basis of the nullspace

Algorithm 2 Design steps for G
(k)
R [n]

1: Calculate the nullspace basis N of (INR ⊗ C(HRR)).
2: Approximate E{‖zR[n]‖2} according to expression (41).
3: Calculate w? by solving (49).
4: Obtain G

(k)
R [n] through expression g?R = Nw?.

of (INR ⊗ C(HRR)) and w is an arbitrary vector. Due to the
constraints (45), the number of degrees of freedom (DoF) in
GR[n] is equal to the dimension of this null space, which is
given by

DoF = NR (MR(LR + 1)− rank{C(HRR)})
= NRMR(LR + 1)ρ

(47)

where ρ defines the fraction of DoF

ρ = 1− rank{C(HRR)}
MR(LR + 1)

∈ [0, 1] (48)

When ρ→ 1 either HRR[n]→ 0 or MR(LR +1) is very large,
whereas when ρ→ 0 the degrees of freedom in the relay that
are used to suppress the self-interference is maximized. For
a given relay configuration, ρ is minimized when C(HRR) is
of full-rank. Generally speaking, C(HRR) is of full-rank when
HRR[n] follows a Rayleigh fading channel model, setting a
worst case scenario benchmark in terms of self-interference.

Combining (46) and (38) yields the equivalent optimization
problem

w? =arg min
w

E{|d̂[n]− s[n− τ ]|2}

subject to E{‖r̂[n]‖2} ≤ PR

(49)

Problem (49) is a Least Squares minimization problem with
a Quadratic Inequality constraint (LSQI) [46]. Appendix A
provides the details of the computation and a semi-analytical
expression of the solution.

Finally, the optimal G?
R[n] is recovered directly from g?R =

Nw? and reordering of gR = vec{
[
GT

R [0] · · · GT
R [LR]

]T }.
Table 2 summarizes the steps needed to design filter GR[n] at
each iteration.

C. Solution of problem (23) with respect to gS[n]

In order to complete an iteration, and as a final step, we
must solve (23) with respect to gS[n] for both GR[n] and
gD[n] fixed, i.e.,

g?S [n] = arg min
gS[n]

E{|d̂[n]− s[n− τ ]|2}

subject to E{‖ŝ[n]‖2} ≤ PS

(50)

Since gS[n] is located at node S, its optimal expression will
be that of a precoding filter tailored to the combined channel
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gD[n] ? Heq[n]. Similarly to previous step, problem (50) can
be cast as an LSQI problem and solved using the theory in
[46]. We refer the reader to Appendix B for details of the
computation and a semi-analytical expression of the solution.

V. SIMULATION RESULTS AND DISCUSSION

We respectively define the signal-to-noise ratio of the SR
hop, the SD hop and the RD hop as

SNRSR =
E
{
‖HSR[n] ? gS[n] ? s[n]‖2

}
E {‖nR[n]‖2}

SNRSD =
E
{
‖HSD[n] ? gS[n] ? s[n]‖2

}
E {‖nD[n]‖2}

SNRRD =
E
{
‖HRD[n] ?GR[n] ?HSR[n] ? gS[n] ? s[n]‖2

}
E {‖nD[n]‖2}

The final signal-to-noise ratio at the destination takes into
account the limited dynamic range parameters δS, δR, εR and
εD and is defined as

SNRD =
E
{
‖gHD [n] ?Heq[n] ? gS[n] ? s[n]‖2

}
E
{
‖gHD [n] ? zD[n]‖2

}
We consider a source node with MS = 2 antennas trans-

mitting a 64-QAM OFDM modulated signal. The number
of subcarriers is nc = 1024 and the cyclic prefix length
is np = 32. The sampling frequency equals the Nyquist
frequency and E{|s[n]|2} = 1. Destination node has ND = 2
receive antennas, while the relay node has NR = 2 receive
antennas and MR = 5 transmit antennas. The maximum trans-
mit powers at the source and the relay are set to PS = 0 dB
and PR = 0 dB, respectively. The channels follow a Rayleigh
fading model, so each tap of Hij [k] is independently drawn
from a circularly-symmetric complex normal distribution, i.e.,
vec{Hij [k]} ∼ CN (0, INjMi

) and then a scaling is performed
in order to set ‖Hij‖2 = γij . Parameter γij modifies the SNR
for a fixed noise power σ2

i . In this work, we only consider
perfect channel state information, threrefore, the following
results can be seen as a benchmark case. The direct link is
weaker than the relay hop and subjected to stronger multipath
components, and channel orders are LSD = 5, LSR = 2,
LRD = 2 and LRR = 2 and normalization constants are
γSD = 0.1, γSR = 1, γRD = 1 and γRR = 1, respectively.
Noise levels are δS = δR = −30 dB, εR = εD = −20 dB, and
σ2

R = σ2
D = −20 dB. Filters gS[n], GR[n] and gD[n] all have

orders LS = LR = LD = 3. Consequently, from (48) we have
that a fraction DoF ρ = 0.5 is used by GR[n] for suppressing
the self-interference. The end-to-end delay is set to τ = 3 by
using the rule of thumb recommending a value half the length
of the equivalent channel, Leq = 7. A method to optimize τ
can be found in [47], [48], and a study about its influence on
the performance in [49].

Algorithm 1 is assumed to have converged when the
weighted filter norm between two consecutive iterations falls
below a certain threshold ε2 ≥ 0, i.e.,

‖g(k)
S − g

(k−1)
S ‖2/‖g(k)

S ‖
2 ≤ ε2

‖G(k)
R −G

(k−1)
R ‖2/‖G(k)

R ‖
2 ≤ ε2

2 4 6 8 10 12

-15
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-5

Fig. 2. MSE versus SNRRD for various SNRSD.

‖g(k)
D − g

(k−1)
D ‖2/‖g(k)

D ‖
2 ≤ ε2

where the sensitivity threshold ε is set to ε2 = 0.003. The
number of iterations to reach convergence varies as function
of the system parameters and channel impulse reponses. From
the observed results, the algorithm may take from a few dozens
up to several thousands iterations. Initialization points are
g
(0)
S [n] = 1δ[n], g

(0)
D [n] = 1δ[n] and w(0) = 1, with 1

being the all-ones vector of appropriate dimension. The results
are obtained by averaging over 400 independent realizations.
The parameters listed above are fixed throughout simulations
unless otherwise stated.

Figure 2 depicts the MSE as a function of SNRSD and
SNRRD, when γSR = 1, γRD ∈ [0.1, 1] and γSD ∈ [0, 1].
We see that for low values of SNRRD the presence of the
direct link, i.e., when SNRSD > −∞, improves the end-to-
end performance by approximately 5 dB. On the other hand,
when SNRRD is large, the improvement due to the direct link
is roughly 1 dB. We can conclude that the contribution of the
direct link to the overall performance is a nonlinear function
of the SNR of the RD hop. When the RD hop supports a
high SNR, the contribution of the direct link to the end-to-end
performance is marginal.

Figure 3 shows the MSE as a function of SNRSR and
SNRRD, when SNRRD = 0, i.e., no direct link, γSR ∈ [0.1, 1]
and γRD ∈ [0.1, 1]. We see that the impact of SNRSR on the
MSE is more significant than that of SNRRD, due to the noise
from S being propagated to D. For low SNRSR, increasing
SNRRD by 10 dB results in an MSE improvement of 3 dB,
whereas, when SNRSR is large, the same operation results in
an MSE improvement of 5.5 dB. Therefore, a system where
the SR hop supports higher SNR values than the RD hop leads
to better performance.

Figure 4 depicts the MSE as a function of SNRSR and
SNRSD, when γRD = 1, γSR ∈ [0.1, 1] and γSD ∈ [0.1, 1].
Similarly to the results in Fig. 2, the MSE gain decreases as
SNRSR increases.

Figure 5 shows the contour lines of the MSE as a function
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Fig. 3. MSE versus SNRRD for various SNRSR. No S-D link.
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Fig. 4. MSE versus SNRSR for various SNRSD.

of the distortion at the destination, εD, and the distortion at the
relay, εR. From the obtained results, although the MSE depends
on both εD and εR, εD has a stronger impact on the end-to-end
performance than εR, e.g., compare the point (−10,−30) with
the point (−30,−10) in Fig. 5. This is a consequence of the
cumulative effect of wD[n] at D, whose power depends on
other noise sources, such as wR[n].

Figure 6 shows the contour lines of the MSE as a function of
the source transmit noise, δS, and the relay transmit noise, δR.
Note the similar behavior of Fig. 6 and Fig. 5. It is observed
that δS, or, δR has a stronger impact on the MSE than δS. For
instance, comparing the point (δR = −10, δS = −30) and the
point (δR = −30, δS = −10) of Fig. 6, it is seen that there is
approximately a 1 dB gap between both. This is a consequence
of the relay transmit noise being filtered by HRR[n].

Figure 7 shows the final SNR at destination SNRD for dif-
ferent values of SNRRD and SNRSD. The case SNRRD → −∞
indicates the absence of a relay. Therefore, Fig. 7 shows the
performance gain resulting from the relay in the link. Note
the saturation effect when SNRSD is large, where performance
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Fig. 5. MSE contour lines (in dB) versus destination distortion εD and relay
distortion εR.
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Fig. 6. MSE contour lines (in dB) versus source transmit noise δS and relay
transmit noise δR.

gain is 3− 4 dB. On the other hand, when SNRSD is low, the
relay can boost performance in 10− 15 dB.

Figure 8 compares the final SNR at destination SNRD for
different values of SNRSR and SNRSD. Solid lines depict the
unlimited dynamic range (u.d.r.) cases, δS = εR = δR =
εD = 0, whereas dashed lines depict the limited dynamic range
(l.d.r.) cases, δS = δR = −30 dB and εR = εD = −20 dB. The
gap between l.d.r and u.d.r. cases is of approximately 1 − 2
dB, and it increases alongside SNRSD.

Figure 9 shows the MSE as a function of the fraction of
DoF ρ in (48) for different values of MR and LR. Dashed
lines show ρ for the same values of MR and LR. Note the
clear relation between ρ and the MSE. Figure 9 highlights
that different values of MR and LR may lead to the same ρ or
MSE. This is relevant if additional coefficients of GR[n] are
affordable, as performance may reach that of a system with
more antennas, for example, cases (MR = 7, LR = 10) and
(MR = 9, LR = 1) results in the same MSE. However, MR
has a bigger impact on the performance than LR.
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Fig. 8. SNRD versus SNRSR for cases of limited dynamic range (l.d.r.) and
unlimited dynamic range (u.d.r.).

Figure 9 also highlights the difference in performance
between an AF relay (LR = 0) and an FF relay. In all the
tested cases, the FF relay outperforms the AF relay by 2− 3
dB. In fact, an FF relay with less antennas may outperform an
AF relay equipped with more antennas. This is, because for
an AF relay, ρ is low even if MR is large. Consequently, an
FF protocol has clearly the edge in performance over an AF
protocol, particularly in the case where the number of transmit
antennas MR is fixed and LR is set on demand.

Figures 10 and 11 show the histogram of the number of
iterations and the MSE for randomized initialization points
when simulations parameters are fixed. The number of ran-
domized initialization points is 1000, whereas simulations
parameters are set to default values. From Fig. 10 the number
of iterations to reach convergence is of the order of several
dozens. Concretely, most of the times the algorithm takes than
25 iterations before obtaining a solution. Note that this number
depends on the initialization point and the value of ε2, where
lower values of ε2 result, on average, on a higher number of
iterations. Similarly, because the stop criterion is based on the
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Fig. 9. MSE (solid) and fraction of DoF ρ (dashed) versus relay filter order
LR and number of transmit antennas of the relay MR.
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Fig. 10. Histogram of the number of iterations until convergence for
randomized initialization points.

normalized change per iteration, the resulting MSE follows
the histogram in Fig. 11. Note that the MSE is most likely to
lie within an interval of 1.5 2 dB around its mean value.

VI. CONCLUSIONS

We presented a method for MMSE design of node filters
in a filter-and-forward full-duplex MIMO relay link subjected
to limited dynamic range. The original non-convex optimiza-
tion problem is approximated by an alternating optimization
algorithm, where each node’s filter is designed individually
at each iteration. Simulations show that the balance between
direct path (source-destination) and relay path (source-relay-
destination) has a strong influence on the end-to-end perfor-
mance, particularly when the source-to-relay path supports low
SNR. A filter-and-forward protocol outperforms an amplify-
and-forward protocol in most of the cases, even for fewer
antennas. Limited dynamic range decreases the performance
by a factor that depends on the individual hop SNR.
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APPENDIX A

Solution of (23) in terms of GR[n] for fixed gS[n] and gD[n].
Let first write the MSE as a function of w. Using (32), d̂[n]
has the following expression

d̂[n] =gHD (R(HRD)R(GR)R(HSR) +R(HSD))R(gS)s

+ gHD zD (51)

where s denotes a vector of appropriate size that contains
current and L past samples of s[n], i.e.,

s = [s[n] s[n− 1] . . . s[n− L]]
T (52)

By vectorizing both sides of (51), we obtain

d̂[n] =gHD (R(HSD)R(gS)s + zD)

+ gHD ((R(HSR)R(gS)s)T ⊗R(HRD))Pw (53)

where P = VN, and V being a reordering matrix satisfying
vec{R(GR)} = V vec{GR}, see Appendix C. From (53),

E{|d̂[n]− s[n− τ ]|2} = wHQsw − 2 Re{wHqτ}
+ gHD (R(HRD)RzRRH(HSD) + RwD)gD + q (54)

where matrix Qs, vector qτ and scalar q do not depend
on w and are defined in Table II. Matrix RwD denotes the
autocorrelation matrix of wD[n] that depends on GR[n].

Equation (55) expresses gHD RwDgD as a convex function of
w, where in Equality 1 we used the linearity of expectation
and the properties of Kronecker product, whereas in Equality
2 we used Lemmas 2 and 3, presented below.

Lemma 2. For any constant matrices A ∈ CM×N and C ∈
CP×R and any random matrix B ∈ CR×M , the following
property holds

E{tr{C diag{BAAHBH}CH}} =

tr{AHE{BH diag{CHC}B}A} (56)

Proof. Let ei ∈ CR denote the ith canonical basis vector.
Matrix Ji = eie

T
i ∈ CR×R denotes the single-entry matrix

whose ith diagonal element is one and zero elsewhere. The

diag operation can be written as

diag{BAAHBH} =

R∑
i=1

JiBAAHBHJHi (57)

Combining (57) and (56) yields

E{tr{C diag{BAAHBH}CH}}

= E{tr{C
R∑
p=1

JpBAAHBHJHp CH}}

=

R∑
p=1

E{tr{AHBHJHp CHCJpBA}}

= tr{AHE{BH
R∑
p=1

(
JpC

HCJHp
)
B}A}

= tr{AHE{BH diag{CHC}B}A} (58)

where we have used that tr{AAH} = tr{AHA} and that Ji
is a Hermitian matrix. �

Lemma 3. For any filter A[n] ∈ CM×N of order LA the
following property holds

LA∑
k=0

diag
{
AH [k]A[k]

}
= IN [LA] diag

{
AHA

}
ITN [LA]

(59)

Proof. Gramian matrix AHA has the following expression

AHA =

 AH [0]A[0] . . . AH [0]A[LA]
...

. . .
...

AH [LA]A[0] . . . AH [LA]A[LA]

 (60)

which, after applying the diag operatorion, results in

diag
{
AHA

}
=


diag

{
AH [0]A[0]

}
. . .

diag
{
AH [LA]A[LA]

}

(61)

from where the result of the lemma follows immediately. �

Proceeding in a similar fashion with the additional terms in
gHDR(HRD)RzRRH(HSD)gD, the MSE can be written as

E{|d̂[n]− s[n− τ ]|2} = wHQw − 2 Re{wHqτ}+ q (62)

where Q = Qs+QεR +QεD +QδS +QδR +Qσ2
R
. Each matrix

Qi is a result of noise source with parameter i and signal s[n]
propagating to D and is defined in Table II.

The inequality constraint, E{‖r̂[n]‖2} ≤ PR, can be written
as

E{‖r̂[n]‖2} = wHQrw ≤ PR (63)

with Qr = NH(RT
r ⊗ IMR)HN and Rr the autocorrelation

of r[n], see Table II. Finally, the optimization problem can be
expressed as:

min
w

wHQw − 2 Re{wHqτ}+ q

subject to wHQrw ≤ PR

(64)
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gHD RwDgD = gHD

(
I(LD+1) ⊗ εD diag

{
(R(HRD)R(GR)R(HSR)R(gS))E{ss

H} (R(HRD)R(GR)R(HSR)R(gS))
H
})

gD

1
= εD

LD∑
i=0

E
{
gHD [i] diag

{(
(R(HSR)R(gS)s)

T ⊗R(HRD)
)
PwwHPH

(
(R(HSR)R(gS)s)

T ⊗R(HRD)
)H}

gD[i]

}
2
= εDw

H E
{
PH

(
(R(HSR)R(gS)s)

T ⊗R(HRD)
)H

IND [LD] diag
{
gDg

H
D

}
ITND [LD]

(
(R(HSR)R(gS)s)

T ⊗R(HRD)
)
P

}
︸ ︷︷ ︸

QεD

w (55)

Problem (64), as explained in [46], is an LSQI problem,
whose unique solution is obtained as follows:

1) If the unconstrained solution w? = Q−1qτ satisfies
(w?)HQrw

? ≤ PR then w? is a solution of (64).
2) If not, the optimal solution is obtained using the

Lagrange function and is given by w? = (Q +
λ?RQr)

−1qτ where λ?R is a Lagrange multiplier satis-
fying (w?)HQrw

? = PR.
The Lagrange multiplier λ?R can be obtained by means of any
standard root finding technique.

APPENDIX B
Solution of (23) in terms of gS[n] for fixed GR[n] and

GR[n]. Let fS = vec{[gS[0] . . .gS[LS]]} ∈ CMS(LS+1). By
vectorizing both sides of (32), we obtain

d̂[n] =
(
sT ⊗ gHDR(Heq)

)
VfS + gHD zD (65)

with V being matrix satisfying vec{R(gS)} = VfS, see
Appendix C. From (65),

E{|d̂[n]−s[n− τ ]|2}
= fHS TsfS − 2 Re{fHS tτ}+ gHD RzDgD (66)

where matrix Ts and vector tτ are defined in Table III.
Proceeding in a similar fashion as in Appendix A, term
gHD RzDgD can be expressed as a convex function of fS,
resulting in

E{|d̂[n]− s[n− τ ]|2} = fHS TfS − 2 Re{fHS tτ}+ t (67)

where T = Ts + TεR + TεD + TδS + TδR and scalar t collects
all the terms independent of gS. Each matrix Ti is a result of
noise source i and signal s[n] propagating to D and is defined
in Table III.

The inequality constraint, E{‖ŝ[n]‖2} ≤ PS, can be written
in terms of gS as

E{‖ŝ[n]‖2} = fHS TŝfS ≤ PS (68)

with Tŝ = (RT
s ⊗ IMS)

H and Rs the autocorrelation of
s[n]. Finally, fS is the solution to the following optimization
problem:

min
fS

fHS TfS − 2 Re{fHS tτ}+ t

subject to fHS TŝfS ≤ PS

(69)

From Appendix A, (69) is seen to be an LSQI problem, whose
solution f∗S is given by

f?S = (T + λ?STŝ)
−1tτ (70)

where Lagrange multiplier λ?S ≥ 0 ensures (f?S )HTŝf
?
S =

PS when the unconstrained solution f?S = T−1tτ yields
(f?S )HTŝf

?
S > PS.

APPENDIX C

Proof of vec{R(B)} = V vec{B}. In terms of B, (2) can
be rewritten as

R(B) =

LA∑
j=0

UjBWj (71)

where Uj ∈ CN(LA+1)×N and Wj ∈ CP (LB+1)×P (LC+1) are
given by

Uj =
[
0TjN×N ITN 0T(LA−j)N×N

]T
(72)

Wj =
[
0P (LB+1)×jP IP (LB+1) 0P (LB+1)×(LA−j)P

]
(73)

Using (71) and the properties of the vectorization operator,

vec{R(B)} = vec


LA∑
j=0

UjBWj


=

LA∑
j=0

vec {UjBWj}

=

LA∑
j=0

(
WT

j ⊗Uj

)
vec {B}

= V vec {B} (74)

where the resulting vector vec {B} ∈ CNP (LB+1) and matrix
V =

∑LA
j=0

(
WT

j ⊗Uj

)
∈ CNP (LC+1)(LA+1)×NP (LB+1).
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